
SCUM - Probabilistic Method

Rikhav Shah

April 2018

The probabilistic method is a proof technique pioneered by Paul Erdos. There is a textbook
titled the Probabilistic Method by Noga Alon and Joel Spencer.

1 Introduction

The probabilistic method is used for proving existence theorems, i.e. theories of the form “if
condition C, then there exists an X such that property P holds”.

For events of the form A(c) ≡ f(c) R k, we can use the expected value of f . If E[f(c)] = k,
then there must be a positive probability that f(c) ≥ k, and a positive probability that f(c) ≤ k

E[f(c)] = k =⇒ Pr[f(c) ≤ k],Pr[f(c) ≥ k] > 0 (1)

The proof of this follows immediately from considering the expectation as the average of f and
noting that f must at some point be equal to its average, more than its average, or less than its
average.

2 Warm up: Independent Sets

An independent set I of a graph G = (V,E) is a set of vertices such that there are no edges
between them. The ‘independence number’ α(G) is the size of the largest independent set, the
MIS. Computing α(G) is NP-hard, so we’ll focus on bounding it. If we can find an independent
set of size k, then α(G) ≥ k. We can ask a natural question: under what conditions on G are we
guaranteed to be able to find an independent set of size k?

2.1 Bound from |V | and |E|
Let n = |V |,m = |E|. Finding the MIS is NP-hard, so instead we will randomly pick a subset of
vertices S ⊂ V . Of course, this set may not be independent. However, we can easily construct
one from it: for every edge with both endpoints in S, simply remove one of the endpoints from S.
At the end of this procedure, there will be no edges with both endpoints in S, and so S will be
independent. Let’s call S the original random set and S′ the set after all the deletions. If there
were X vertices in S and Y edges with both endpoints in S, then S′ will be of size X − Y since we
delete one vertex for every edge.

1

By using expectation, we are thus guaranteed that there exists an independent set of size at
least E[X − Y].

Now see that X and Y are random variables that are based on the method of randomly selecting
S. Let

For a graph G = (V,E) on n nodes and m edges, place each vertex in S ⊂ V with equal
independent probability p, which we’ll specify later. The expected number of vertices in S is np
and the expected number of edges is mp2. This gives E[X − Y] = np−mp2. Recall that we want
this quantity to be small and that we get to pick p. We simply set the derivative wrt p to 0 and

see that p = n
2m is the best choice. This gives E[X − Y] = n2

4m , so Pr[X − Y ≥ n2

4m] > 0.

2.2 Turan’s Theorem

We could construct our random set S a little bit more intelligently. Lets label the nodes 1 through
n and include each vertex in S if and only if its label is larger than all of its neighbors labels. It
should be clear that this is an independent set: for every edge, the endpoint with the smallest label
is not eligible for membership in S. The event we’re interested in is |S| ≥ k. We’ll use expectation
again. If Xv is the indicator for v ∈ S then |S| =

∑
vXv and we can use linearity of expectation.

E[S] =
∑
v

Pr[v ∈ S]

If dv is the degree of vertex v then Pr[v ∈ S] is the probability that the label of v is the minimum
of dv + 1 values selected uniformly randomly, so is 1/(dv + 1). Plugging this into the sum gives the
final result: α(G) ≥

∑
v∈V

1
dv+1

3 Lovász Local Lemma

For events in the form A = B1∧B2∧· · ·∧Bk where each Bi is a ‘bad’ event, we can use the Lovász
Local Lemma. Pick p < 1 and d > 0 so that Pr[Bi] ≤ p for every i, and each Bi is dependent on at
most d of the other Bj events. Let e be the base of the natural logarithm.

ep(d+ 1) ≤ 1 =⇒ Pr[A] = Pr[B1 ∧B2 ∧ · · · ∧Bk] > 0 (2)

In words, this says that when bad events are not too likely, and when bad events
are not too correlated, there’s a positive probability that we simultaneously avoid all
bad events. To prove this, we begin by using Bayes rule to expand the probability of A,

Pr[A] = Pr[B1] · Pr[B2 |B1] · Pr[B3 |B1 ∧B2] · Pr[Bk |B1 ∧ · · · ∧Bk−1]· (3)

We want to bound each factor below by some positive value. We will instead bound the com-
plementary probabilities above by a value less than 1. In particular, we will show that for every
i,

Pr[Bi |B1 ∧ · · · ∧Bi−1] <
1

d+ 1

2

In fact, it will be easier to show the more general statement that for every subset of events B
excluding Bi that

Pr[Bi |
∧

Bj∈B
Bj] <

1

d+ 1
(4)

We will prove this using induction on the size of B. The base case of |B| = 0 is simple since
Pr[Bi] ≤ p < 1

e(d+1) <
1

d+1 . Now fix any B with |B| ≥ 1. We can renumber the events so that

B = {B1, · · · , B|B|} and Bi depends on B1, · · · , Bd′ and not on Bj , · · · , B|B| (by assumption d′ ≤ d).
We can again apply Bayes rule.

Pr[Bi |B1 ∧ · · · ∧B|B|] =
Pr[Bi ∧B1 ∧ · · · ∧Bd′ |Bd′+1 ∧ · · · ∧B|B|]

Pr[B1 ∧ · · · ∧Bd′ |Bd′+1 ∧ · · · ∧B|B|]

We will now upper bound the numerator and lower bound the denominator.
Numerator:

Pr[Bi ∧B1 ∧ · · · ∧Bd′ |Bd′+1 ∧ · · · ∧B|B|] ≤ Pr[Bi |Bd′+1 ∧ · · · ∧B|B|] (5)

= Pr[Bi] (6)

≤ p (7)

where (6) follows since event (Bi ∧ B1 ∧ · · · ∧ Bd′) implies the event Bi; (7) follows since Bi is
independent of the variables being conditioned on; and (8) holds by assumption. The denominator
again uses Bayes rule (last time I promise!)

Denominator:

Pr[B1 ∧ · · · ∧Bd′ |Bd′+1 ∧ · · · ∧B|B|] = Pr[B1 |B2 ∧ · · · ∧Bd′ ∧Bd′+1 ∧ · · · ∧B|B|] (8)

· Pr[B2 |B3 ∧ · · · ∧Bd′ ∧Bd′+1 ∧ · · · ∧B|B|] (9)

... (10)

· Pr[Bd′ |Bd′+1 ∧ · · · ∧B|B|] (11)

Now see that in every factor on the RHS, that
(
Bj ∧ · · · ∧Bd′ ∧Bd′+1 ∧ · · · ∧B|B|

)
contains

fewer than |B| events, so by the inductive hypothesis their complements are are bounded above by
1

d+1 , and thus are bounded below by 1 − 1
d+1 . Recalling that d′ ≤ d we arrive at a nice bound on

the denominator.

Pr[B1 ∧ · · · ∧Bd′ |Bd′+1 ∧ · · · ∧B|B|] ≥
(

1− 1

d+ 1

)d′

≥
(

1− 1

d+ 1

)d

≥ 1

e
(12)

Combining (8) and (13) shows that

Pr[Bi |B1 ∧ · · · ∧B|B|] ≤
p

1/e
= ep ≤ 1

d+ 1

where the final step follows from assumption. Lets plug this into (4)

3

Pr[A] ≥
(

1− 1

d+ 1

)k

Ironically, when the events are all independent we can set d = 0 and this lemma gives a trivial
bound, but for all other d this gives Pr[A] > 0 as desired. Now let’s turn to some specific problems
where we can use these tools.

4 Ramsey Numbers

R(k, k) is the smallest integer such that any red/blue edge coloring of the complete graph on R(k, k)
vertices must contain a monochromatic clique of size k. Bounding R(k, k) is an open problem with
the difference between the upper and lower bounds being quite large. We will prove a lower bound.

Call a coloring ‘good’ if it avoids monochromatic k-cliques. If we can find a good coloring of
Kn, then R(k, k) > n. We could try to come up with a really clever algorithm for coloring, but
instead we’re just going to color the graph randomly. Intuitively, if a good coloring exists, then
there’s some (possibly exponentially small) positive probability that we’ll happen to guess it with
our random coloring. Conversely, if there are no good colorings, then there’s no way our random
coloring will be good.

Let C be the set of all colorings and let f(c) be the number of monochromatic k-cliques when
colored by c. One way to write the event that a coloring is good is f(c) = 0. Since we know f(c)
is nonnegative, this event is the same as f(c) ≤ 0. This form of the event suggests us to use the
expected value.

4.1 Lower bound due to Erdos: R(k, k) ≥ k
e
√
2
2k/2

First we write f(c) as the sum of indicators XH(c) for the event that H is a monochromatic clique.

E[f(c)] =
∑

H size k

Pr[H is monochromatic]

=

(
n

k

)
1

2(k
2)−1

What happens when the expected value is less than 1? Well f(c) is an integer, so if E[f(c)] < 1,
there must be a nonzero probability that f(c) is 0. This allows us to conclude that some coloring
is good when

(
n
k

)
1

2(
k
2)−1

< 1.

We can use Stirling’s approximation and the inequality
(
n
k

)
≤ nk

k! to turn this into an asymptotic:

n < k
e
√
2
2k/2 (details are left to the reader). There is another way of thinking about the event

f(c) = 0 which will allow us to use Lovasz.

4.2 Lower bound due to Spencer: R(k, k) ≥ k
√
2

e
2k/2

Recall that f(c) is the sum of indicators XH . The only way for this sum to be zero is if every
XH is 0. In other words, we need each size k subset to not be monochromatic. Thus the XH -s

4

are our ‘bad’ events. L3 tells us that the probability of avoiding every bad event is nonzero when

ep(d + 1) ≤ 1. In our case, we’ve already stated that p = 21−(k
2). For d, see that XH1 and XH2

are dependent only when H1 and H2 share an edge, i.e. share at least two vertices. For a fixed H1,
the number of ways for H2 to share at least two vertices is less than

(
k
2

) (
n−2
k−2
)
, which makes that

a suitable selection for d. Therefore, a sufficient condition on the existence of a good coloring is

e 21−(k
2)
(
k
2

) (
n−2
k−2
)
≤ 1. Using Stirling’s approximation again gives the result.

5 k-Satisfiability

Say we have given a boolean formula in k-cnf form. These formulas are made of three parts: variables
xi which can be assigned true or false; literals yi which are either a variable or it’s negation (i.e.
yi = xi or yi = x̄i; clauses Cj which are made up of k variables strung together with the ‘or’ (∨)
operation (we impose that each variable can only appear in a given clause once). The clauses are
strung together with the ‘and’ (∧) operation to create the formula. The k − SAT problem asks if
a given formula has an assignment of its variables that makes the entire formula evaluate to true.
Such an assignment is called a satisfying assignment.

Instead of trying to find a satisfying assignment, we will simply independently uniformly ran-
domly assign true values to each variable. We can let C be the set of all boolean assignments and
f(c) the number of unsatisfied clauses. As before, the event we are after is f(c) = 0, which can be
thought of as f(c) ≤ 0. If we look at expectation, note that each clause is only false when each
literal is false. Since each literal is assigned independently of others, this occurs with probability
1/2k. Thus we are guaranteed that there is an assignment which leaves at most 1/2k of the clauses
unsatisfied – but this is not strong enough!

Alternatively, we can view the failure to satisfy a clause as a ‘bad’ event and use LLL. Say m is
the max number of times a variable appears in the formula. Then, p = 2−k and d = k(m−1) so LLL
tells us that it is possible to avoid all bad events when epk(m− 1) + ep ≤ 1. This turns into a nice

condition m ≤ 2k

ke −
1
k + 1. Unfortunately, for the important 3-SAT problem this only guarantees us

a satisfying assignment when each variable appears at most once. On the other hand, this bound is
exponential in k and independent of the number of clauses. For 100-SAT each variable can appear
4.66× 1027 times and no matter what, there will exist a satisfying assignment.

6 Games and Constructions

So far, the probabilistic method has only given us guarantees that solutions exist, but no indication
about how to go about constructing them. We now turn our attention to an instance in which the
the probabilistic method can be used to create an algorithm to construct a solution.

The Liar game works like this: Alice picks secret x ∈ [n]. Bob is allowed to as q questions to
Alice about x. His questions must be of the form “is x in S?” where S ⊂ [n]. If Alice answers
truthfully, then Bob can determine x if q ≥ lg n by using binary search. To make the problem more
interesting, Alice is allowed to lie a total of k times. We say that Bob wins if he is able to uniquely
determine x, and that Alice wins if after q questions and answers, there are more than one possible
value for x that are consistent with all the answers. We can modify the problem slightly by allowing
Alice to cheat: instead of picking x at the beginning, she simply gives whatever answers to Bob’s
questions she pleases. If Alice isn’t careful, it may end up being the case that no value of x satisfies

5

the answers shes given, and so Bob can prove that she cheated and thus wins by default. This
perspective will make our analysis clearer: Bob wins if he’s able to reduce the number of possible
values of x to 1 or 0.

A natural question to ask is for which n, q, k do Alice or Bob have winning strategies? When
q ≥ k+(k+1) lg n, Bob can win using binary search and just repeating every question many times.
On the other hand, when q < lg n Alice will win even if k = 0. Instead of trying construct strategies
for Alice and Bob, we instead allow them to play randomly. We will focus on Alice’s strategy. First,
let’s reformulate the game:

There are a row of k + 1 buckets numbered 0 through k placed on a table. n balls numbered 1
through n are placed in bucket k. Each ball represents a possible value of x. Bob’s queries consist
of selecting a subset S of the balls. If Alice says “yes, x ∈ S”, then Bob moves all the balls in [n]\S
down one bucket. If Alice says “no, x 6∈ S”, then Bob moves all the balls in S down one bucket. If
a ball is in the 0th bucket and is moved down, it’s simply removed from the table. Note that ball
i is moved off the table when (and only when) Alice has indicated that x 6= i more than k times,
and so it must be true that x 6= i. Thus, Alice wins if she can keep more than 1 ball on the table
by the end of the game. If she answers each question randomly, we can ask the expected number
of balls on the table. If Xi is the indicator for ball i staying on the table.

E[number of balls left on table] =
∑
i

Pr[Xi] = nPr[X1]

For a given question, no matter what Bob selects S to be, the probability that any particular
ball is moved down one bucket is 1/2. In order for X1 = 1, of q questions, at most k of Alice’s
responses must result in the first ball being moved down a bucket. The number of sequences of
responses by Alice that result in the ball being moved m times is

(
n
m

)
. Summing gives the desired

probability

Pr[X1] =

k∑
m=0

2−q
(
q

m

)
=

(
q
0

)
+
(
q
1

)
+ · · ·+

(
q
k

)
2q

Since
∑n

i=1Xi must be an integer, if its expectation is more than 1, there is a positive probability
it’s at least 2. Therefore, in that case, there must exist a sequence of responses which results in at
least 2 balls remaining on the table. A sufficient condition for Alice having a winning strategy is
thus

n

(
q
0

)
+
(
q
1

)
+ · · ·+

(
q
k

)
2q

> 1

Again, however, this alone doesn’t tell us Alice’s winning strategy. To find it, let’s generalize
the game. Instead of placing all n chips in bucket k, let’s put ni balls in bucket i. Of the balls in
bucket i, the expected number of balls on the table at the end of the game follows analogously as
before:

E[number of balls left on table from bucket i] = ni

(
q
0

)
+
(
q
1

)
+ · · ·+

(
q
i

)
2q

Summing over i gives

6

E[number of balls left on table] =

k∑
i=0

(
ni

(
q
0

)
+
(
q
1

)
+ · · ·+

(
q
i

)
2q

)
Note that as Alice and Bob play the original game, every intermediate state is an instance

of the generalized game: Bob has a certain number of questions remaining and the balls are
distributed among the many buckets. We can define the easily computable function f(~n, q) =∑k

i=0

(
ni

(q
0)+(q

1)+···+(q
i)

2q

)
with ~n = n1 · · ·nk. When asked a question, Alice has two possible an-

swers: “yes” and “no”. Each answer would change the state of balls ~n, call the possible new states
~nY ES , ~nNO. If Alice responds randomly, then E[f(~n, q)] = 1

2E[f(~nY ES , q−1)]+ 1
2E[f(~nNO, q−1)].

Therefore, when E[f(~n, q)] > 1, one of E[f(~nY ES , q−1)] or E[f(~nNO, q−1)] must also be more than
1. Recall that Alice wins when E[f(~n, q)] > 1. At every step, she computes both of E[f(~nY ES , q−1)]
and E[f(~nNO, q − 1)] and selects “yes” or “no” based on which expectation is more than 1. She
can continue this process until the end of the game. When Bob has no more questions remaining,
f(~n, 0) > 1 shows that at least 2 balls remain on the table, and so Alice wins.

7

