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Introduction

A widely used practice to more easily visualize the cluster structure present in data
is to first reduce the dimension of data to a low integer, typically two. A popular tool
to do this is the t-distributed Stochastic Neighborhood Embedding (t-SNE) algorithm
[7].

Given a set ofN points x1, · · · , xN ∈ Rd, t-SNE first computes the similarity score
pij between xi and xj defined as pij = (pi|j + pj|i)/(2N) where for a fixed i, pj|i ∝
exp(‖xi − xj‖2/σ2i ) for some parameter σi. Intuitively, the value pij measures the
‘similarity’ between points xi and xj. t-SNE then aims to learn the lower dimensional
points y1, · · · , yN ∈ R2 such that if qij ∝ (1 + ‖yi − yj‖22)

−1, then qij minimizes the
Kullback–Leibler divergence of the distribution {qij} from the distribution {pij}. For
a more detailed explanation of the t-SNE algorithm, see [7].

A drawback of t-SNE is its large computational cost, which largely can be written
as O(# of distances computed · d) where d is the dimension of the input data. This
drawback severely limits its potential use in unsupervised learning problems.

Practical developments have included parallel computation, GPU, and multicore
implementations mostly focused on reducing the number of pairwise distances com-
puted between the input points [1, 9, 11, 6]. We instead focus on reducing the value
of d in the runtime cost.

In this work, we show that the distance computation can be optimized by first
projecting the input data into a much smaller random subspace before running t-
SNE. Our motivation for this approach comes from the field of metric embeddings
where it is known that random projections preserve many geometric structures of the
input data. [3, 4, 8]. One of the key results of this field is the Johnson–Lindenstrauss
(JL) Lemma which roughly states that given any set ofN points, a random projection
of these points into dimension O(logN/ε2) preserves all pairwise distances up to
multiplicative error (1± ε) [3].
Our contributions are the following:
• We empirically show that projecting to a very small dimension (even as low

as 5% of the original dimension in some cases) and then performing t-SNE pre-
serves local cluster information just as well as t-SNE with no prior dimensionality
reduction step.

• We empirically show that performing dimensionality reduction first and then run-
ning t-SNE is significantly faster than just running t-SNE.

Experimental Setup and Justification

We devise an accuracy score to measure the quality of the cluster structure of a low-
dimensional embedding. First we note that ideal clusters are ones in which every
element has the same label as others in the same cluster. Ideally, such a clustering
would be created without looking at the labels ahead of time. A datapoint is said
to be “correctly clustered" in the embedding if its label matches that of its nearest
neighbor. The accuracy of an embedding then is given by the fraction of datapoints
that are correctly clustered.

We construct embeddings by first applying a random projection into d′ dimensions,
then using t-SNE to arrive at a two dimensional embedding. The random projections
are performed by using an appropriately sized random matrix with i.i.d. Gaussian
entries N (0, 1/d) where d is the original dimension of the input data. We repeat this
process for several values of d′ exponentially spaced and ranging from 7 to d.

We use a highly optimized implementation of t-SNE called openTSNE [10] as well
as the standard scikit-learn implementation.

We use the following four datasets in our experiments: MNIST, Kuzushiji-MNIST
(KMnist) (data set of Japanese cursive characters in the same format as MNIST) [2],
Fashion-MNIST (data set of fashion images in the same format as MNIST) [12], and
the Small Norb data set (data set of images of toys) [5]. All of our experiments were
done in Python 3.7 using one core of a MacBook Pro using a 2.7 GHz Intel Core
i5 processor. We only report the time to perform t-SNE since the t-SNE runtime is
many orders of magnitude larger than all the other steps. Our code can be accessed
from the following GitHub reprository: https://github.com/ssilwa/optml

Results

We first compare the time taken to perform t-SNE and the accuracy scores achieved if a dimensionality
reduction step is used before using t-SNE versus the case where no dimensionality reduction is used. We
do so by plotting the ratio of the runtime and accuracy scores. For a given dimension, a higher accuracy
score ratio is better and signifies that projecting down to that dimension using a random projection does not
deteriorate the performance of t-SNE. Likewise, a lower time ratio is better. In figures 1a-1d, we plot the ratio
of the accuracy scores and the time taken when we use the openTSNE implementation. The x axis is the
dimension of the random projection (ranging all the way up to the actual dimension of the input data). In all
four datasets, we see that as the dimension increases, both the accuracy ratio and the ratio of the time taken
approach 1. However, we also observe that the accuracy score ratios approach 1 much faster, indicating a
‘’sweet spot” where the dimension is high enough for the random projection to preserve geometric structure,
while still low enough for t-SNE to run relatively quickly.

Fig. 1: Green: Ratio of time taken to run t-SNE after dimensionality reduction to time taken to run t-SNE without dimensionality reduction. Red: Ratio of

accuracy score after dimensionality reduction to accuracy score without dimensionality reduction. The t-SNE implementation used was openTSNE. x axis

shows the dimension after dimensionality reduction. The base of the logarithm is 1.5.

Likewise, we show the results of the same experiments using the scikit-learn implementation. Since the
scikit-learn implementation is significantly slower than the openTSNE implementation, we subsample the d
values used and do not test the Small Norb dataset. However, even using this different implementation, we
again observe the same trends as in the openTSNE implementation.

Fig. 2: Green: Ratio of time taken to run t-SNE after dimensionality reduction to time taken to run t-SNE without dimensionality reduction. Red: Ratio of

accuracy score after dimensionality reduction to accuracy score without dimensionality reduction. The t-SNE implementation used was the scikit

implementation. x axis shows the dimension after dimensionality reduction. The base of the logarithm is 1.5. Since the scikit implementation is very slow,

we used fewer datapoints for the datasets shown and did not test on the Small Norb dataset.

Remarks

In practice, SVD methods such as principal component analysis (PCA) are more widely
used than random projections for the general task of dimensionality reduction. We show
that for our four datasets, PCA indeed outperforms random projections. That is, we em-
pirically observe that using PCA, rather than a random projection before t-SNE, allows us
to project to a much smaller dimension while still retaining a high accuracy score ratio,
(compared to the case where no dimensionality reduction is used). This is shown in Fig-
ure 3 where regardless of the dataset, a projection to a dimension of d = 25 is sufficient
to get an accuracy score ratio close to 1. An advantage of random projections however,
is that it is data oblivious (the dimensionality reduction does not depend on the data) and
it has provable guarantees in many cases, such as the JL lemma.
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Fig. 3: Ratio of the accuracy score using
PCA for dimensionality reduction instead
of random projections and then perform-
ing t-SNE. We see that across all datasets,
the accuracy scores become comparable
to the scores when using t-SNE with no
prior dimensionality reduction even for very
small dimensions. This suggests that in
practice, PCA might be a better choice than
random projections to perform dimension-
ality reduction before t-SNE.

Fig. 4: Plotting the output of t-SNE.
Left: a dimensionality reduction to d = 50
is performed before t-SNE on the MNIST
dataset. Right: no dimensionality reduction
is performed. Colors represent the label of
the points. Observe that the same cluster
structures appear in both plots.
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