Classification of diffeomorphism groups of 3-manifolds through Ricci flow

Richard H Bamler (joint work with Bruce Kleiner, NYU)

January 2018

Richard H Bamler (joint work with Bruce Kleiner, NClassification of diffeomorphism groups of 3-manifold

Richard H Bamler (joint work with Bruce Kleiner, NClassification of diffeomorphism groups of 3-manifold

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Structure of Talk

- Part 0: Diffeomorphism Groups
- Part I: Uniqueness of singular Ricci flows
- Part II: Applications of Ricci flow to diffeomorphism groups
- Part III: Further Questions

Part 0: Diffeomorphism Groups

Diffeomorphism groups

M mostly 3-dimensional compact manifold

Goal of this talk:

Understand $\text{Diff}(M) = \{\phi : M \to M \text{ diffeomorphism}\}$ (with C^{∞} -topology).

Main theme:

Pick a "nice" Riemannian metric g on M (e.g. constant sectional curvature) and compare Diff(M) with Isom(M).

 $\operatorname{Isom}(M) \longrightarrow \operatorname{Diff}(M)$

Smale 1958 $O(3) = \text{Isom}(S^2) \longrightarrow \text{Diff}(S^2)$ is a homotopy equivalence. Richard H Bamler, (joint work with Bruce Kleiner, Nclassification of diffeomorphism groups of 3-manifold

Smale Conjecture

 $O(4) = \text{Isom}(S^3) \longrightarrow \text{Diff}(S^3)$ is a homotopy equivalence.

Cerf 1964: Isomorphism on π_0 Hatcher 1983: Homotopy equivalence

Remark: Smale conjecture is equivalent to $\text{Diff}(D^3 rel \partial D^3) \simeq *$

Generalized Smale Conjecture

 $\operatorname{Isom}(S^3/\Gamma) \longrightarrow \operatorname{Diff}(S^3/\Gamma)$ is a homotopy equivalence.

Ivanov 1984, Hong, Kalliongis, McCullough, Rubinstein 2012: Lens spaces (except $\mathbb{R}P^3$), prism and quaternionic case remaining cases: $\mathbb{R}P^3$, tetrahedral, octahedral and icosahedral case

Diffeomorphism groups

Non-spherical cases

Gabai 2001

If M is closed hyperbolic, then $Isom(M) \longrightarrow Diff(M)$ is homotopy equivalence.

Assume that M is irreducible, geometric, non-spherical, g = metric of maximal symmetry.

Generalized Smale Conjecture for geometric manifolds

 $\operatorname{Isom}(M) \longrightarrow \operatorname{Diff}(M)$ is a homotopy equivalence.

Gabai, Ivanov, Hatcher, McCullough, Soma: Verified for all cases except for *M* non-Haken infranil.

(日)

Main Results

Using Ricci flow

Theorem A (Ba., Kleiner 2017)

The Generalized Smale Conjecture holds for all spherical space forms $M = S^3/\Gamma$ except for (possibly) $M = \mathbb{R}P^3$ (and S^3):

 $\operatorname{Diff}(M) \simeq \operatorname{Isom}(M)$

Theorem B (Ba., Kleiner 2017)

(*) also holds for all closed hyperbolic 3-manifold M. (Gabai's Theorem)

Remarks:

- Proof provides a uniform treatment of Thms A, B on fewer than 30 pages.
- Proof relies on Hatcher's Theorem for $M = S^3$.
- $M = \mathbb{R}P^3$ and $M = S^3$ (without Hatcher's Theorem) and other topologies still work in progress.

<ロ> <問> <問> < 回> < 回>

(*)

Part I: Uniqueness of singular Ricci flows

Image: A mage: A ma

Basics of Ricci flow

Ricci flow:
$$(M^n, g(t)), t \in [0, T)$$

 $\partial_t g(t) = -2 \operatorname{Ric}_{g(t)}, \qquad g(0) = g_0 \qquad (*)$

Theorem (Hamilton 1982)

- (*) has a unique solution (g(t))_{t∈[0,T)} for maximal T > 0 if M is compact.
- If $T < \infty$, then

 $\lim_{t \to T} \max_{M} |\mathsf{Rm}_{g(t)}| = \infty$

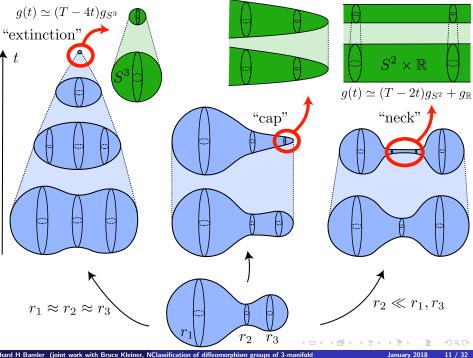
Speak: "g(t) develops a singularity at time T".

Goal of Part I:

Theorem (Ba., Kleiner, 2016)

Any (compact) 3-dimensional (M^3, g_0) can be evolved into a **unique** (canonical), singular Ricci flow defined for all $t \ge 0$ that "flows through singularities".

(日) (四) (日)



Richard H Bamler (joint work with Bruce Kleiner, NClassification of diffeomorphism groups of 3-manifold

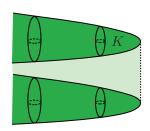
Singularities in 3d

Theorem (Perelman 2002)

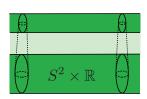
The singularity models in dimension 3 are κ -solutions.

Qualitative classification of κ -solutions

"extinction"



"cap"



< □ > < 同 >

"neck"

Ricci flow with surgery

Given (M, g_0) construct Ricci flow with surgery:

$$(M_1, g_1(t)), t \in [0, T_1],$$

 $(M_2, g_2(t)), t \in [T_1, T_2],$
 $(M_3, g_3(t)), t \in [T_1, T_2], \ldots$

surgery scale $\approx \delta \ll 1$

Perelman 2003

- process can be continued indefinitely
- no accumulation of T_i .
- extinction if $\pi_1(M) < \infty$.

```
M_k \approx connected sums components of
        M_{k+1} and copies of S^2 \times S^1.
```



 $T_{3\blacktriangle}$

 T_2

 $T_2 \blacktriangle$

 T_1

 $M_3 \times [T_2, T_3]$

0

surgery

 $M_2 \times [T_1/T_2]$

13 / 32

A Œ

Ricci flow with surgery

Given (M, g_0) construct Ricci flow with surgery:

$$(M_1, g_1(t)), t \in [0, T_1],$$

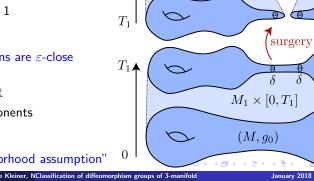
 $(M_2, g_2(t)), t \in [T_1, T_2],$
 $(M_3, g_3(t)), t \in [T_1, T_2], \ldots$

surgery scale $\approx \delta \ll 1$

high curvature regions are ε -close to κ -solutions:

- necks $\approx S^2 \times \mathbb{R}$
- spherical components
- caps

" ε -canonical neighborhood assumption"



 $T_{3\blacktriangle}$

 T_2

 $T_2 \blacktriangle$

 $M_3 \times [T_2, T_3]$

Œ

surgery

 $M_2 \times [T_1/T_2]$

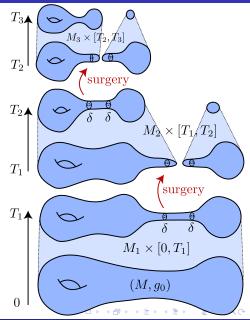
Ricci flow with surgery

Note:

surgery process is not canonical (depends on surgery parameters)

Perelman:

- It is likely that [...] one would get a canonically defined Ricci flow through singularities, but at the moment I don't have a proof of that.
- Our approach [...] is aimed at eventually constructing a canonical Ricci flow, [...] - a goal, that has not been achieved yet in the present work.



Space-time picture

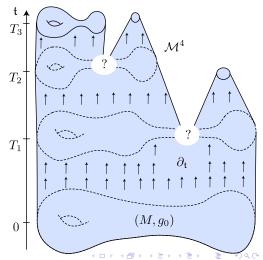
• Space-time 4-manifold:

 $\mathcal{M}^4 = \begin{pmatrix} M_1 \times [0, T_1] \ \cup \ M_2 \times [T_1, T_2] \ \cup \ M_3 \times [T_2, T_3] \ \cup \ \dots \end{pmatrix} - \text{surgery points}$

- Time function: $\mathfrak{t}: \mathcal{M} \to [0,\infty)$.
- Time-slice: $\mathcal{M}_t = \mathfrak{t}^{-1}(t)$
- Time vector field: ∂_t on \mathcal{M} (with $\partial_t \cdot t = 1$).
- Metric g: on the distribution $\{d\mathfrak{t}=0\} \subset T\mathcal{M}$
- Ricci flow equation: $\mathcal{L}_{\partial_{t}}g = -2 \operatorname{Ric}_{\sigma}$

 $(\mathcal{M}, \mathfrak{t}, \partial_{\mathfrak{t}}, g)$ is called a Ricci flow space-time.

```
Note: there are "holes" at scale \approx \delta
space-time is \delta-complete
```



January 2018

16 / 32

Richard H Bamler (joint work with Bruce Kleiner, NClassification of diffeomorphism groups of 3-manifold

Theorem (Kleiner, Lott 2014)

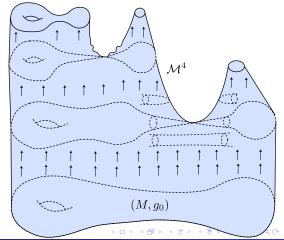
Given a compact (M^3, g_0) , there is a Ricci flow space-time $(\mathcal{M}, \mathfrak{t}, \partial_{\mathfrak{t}}, g)$ s.t.:

- initial time-slice: $(\mathcal{M}_0, g) = (\mathcal{M}, g_0)$.
- $(\mathcal{M}, \mathfrak{t}, \partial_{\mathfrak{t}}, g)$ is 0-complete (i.e. "singularity scale $\delta = 0$ ")
- \mathcal{M} satisfies the ε -canonical nbhd assumption at small scales for all $\varepsilon > 0$.

 $(\mathcal{M}, \mathfrak{t}, \partial_{\mathfrak{t}}, g)$ flows "through singularities at infinitesimal scale"

Remarks:

- $(\mathcal{M}, \mathfrak{t}, \partial_{\mathfrak{t}}, g)$ is smooth everywhere and not defined at singularities
- singular times may accummulate
- $(\mathcal{M}, \mathfrak{t}, \partial_{\mathfrak{t}}, g)$ arises as limit for $\delta_i \to 0$.



Theorem (Ba., Kleiner, 2016)

There is a constant $\varepsilon_{can} > 0$ such that:

Every Ricci flow space-time $(\mathcal{M}, \mathfrak{t}, \partial_{\mathfrak{t}}, g)$ is uniquely determined by its initial time-slice (\mathcal{M}_0, g_0) , provided that it

- is 0-complete and
- satisfies the $\varepsilon_{\rm can}\text{-}{\rm canonical}$ neighborhood assumption below some positive scale.

Corollary

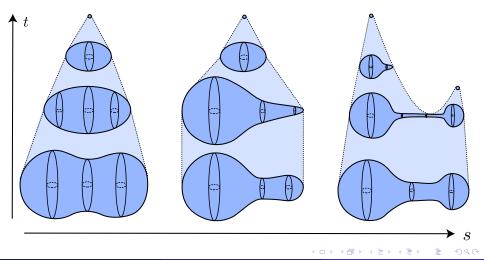
For every compact (M^3, g_0) there is a unique, canonical singular Ricci flow space-time \mathcal{M} with $\mathcal{M}_0 = (M^3, g_0)$.

< □ > < 同 > < 回 >

Uniqueness \longrightarrow Continuity

continuous family of metrics $(g^{(s)})_{s \in [0,1]}$ on M

 $\rightsquigarrow \quad \{\mathcal{M}^{(s)}\}_{s\in[0,1]} \text{ singular RFs}$

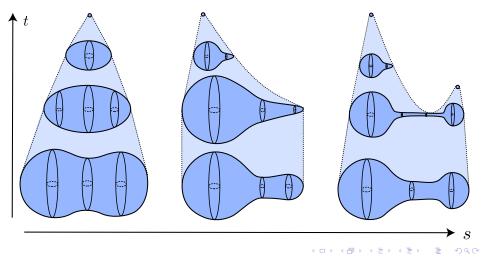


Richard H Bamler (joint work with Bruce Kleiner, NClassification of diffeomorphism groups of 3-manifold

Uniqueness \longrightarrow Continuity

continuous family of metrics $(g^{(s)})_{s \in [0,1]}$ on M

 $\rightsquigarrow \quad \{\mathcal{M}^{(s)}\}_{s\in[0,1]} \text{ singular RFs}$



Richard H Bamler (joint work with Bruce Kleiner, NClassification of diffeomorphism groups of 3-manifold

Corollary

The singular Ricci flow space-time \mathcal{M} depends continuously on its initial data (\mathcal{M}_0, g_0) (in a certain sense).

Corollary

Every continuous/smooth family $(g^{(s)})_{s\in\Omega}$ of Riemannian metrics on a compact manifold M^3 can be evolved to a "continuous/smooth family of singular Ricci flows" $(\mathcal{M}^{(s)})_{s\in\Omega}$.

(日)

Part II: Applications of Ricci flow to diffeomorphism groups

$\operatorname{Diff}(M) \longleftrightarrow \operatorname{Met}(M)$

 $Met(M) = \{g \text{ metric on } M\}$ $Met_{K \equiv k}(M) = \{g \in Met(M) \mid K_g \equiv k\}$

Lemma

For any $g_0 \in Met_{K \equiv k}(M)$:

$$\operatorname{Diff}(M) \simeq \operatorname{Isom}(M, g_0) \qquad \Longleftrightarrow \qquad \operatorname{Met}_{K \equiv k}(M) \simeq *$$

Proof

i

$$\operatorname{Isom}(M, g_0) \longrightarrow \operatorname{Diff}(M) \longrightarrow \operatorname{Met}_{K \equiv k}(M)$$

 $\phi \mapsto \phi^* g_0$

Theorems A + B (Ba., Kleiner 2017)

If $M \not\approx \mathbb{R}P^3, S^3$, then

 $Met_{K\equiv\pm1}(M)\simeq *$

Richard H Bamler (joint work with Bruce Kleiner, NClassification of diffeomorphism groups of 3-manifold

<ロ> <問> <問> < 回> < 回>

Smale 1958

 $O(3) = \text{Isom}(S^2) \longrightarrow \text{Diff}(S^2)$ is a homotopy equivalence.

Proof (different from Smale's proof)

$$* \simeq \operatorname{Met}(S^2) \longrightarrow \operatorname{Met}_{K \equiv 1}(S^2)$$

 $g \mapsto \text{limit of } \mathsf{RF} \ (g_t)_{t \in [0, T)} \ (\text{modulo rescaling})$ with initial condition $g_0 = g$

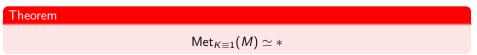
is a deformation retraction

 \implies $Met_{K\equiv 1}(S^2) \simeq *$

3d case

Assume $M = S^3/\Gamma$, $\Gamma \neq 1, \mathbb{Z}_2$ (hyperbolic case is similar)

Goal:



Strategy:

- Hope: Construct retraction $Met(M) \longrightarrow Met_{K \equiv 1}(M)$.
- For any $g \in Met(M)$ consider the (unique) \mathcal{M} with $(\mathcal{M}_0, g_0) = (M, g)$.
- $\bullet \ \mathcal{M}$ goes extinct in finite time
- Analyze asymptotic behavior of \mathcal{M} and extract limiting data, which "depends continuously on g".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Given \mathcal{M} with $(\mathcal{M}, g_0) = (\mathcal{M}, g)$, there are $T_g^1 < T_g^2$ such that:

for every t ∈ [T¹_g, T²_g) there is a unique component C_t ⊂ M_t with C_t ≈ M.
(C_t, g_t) converges to a round metric as t ≯ T²_g (modulo rescaling).

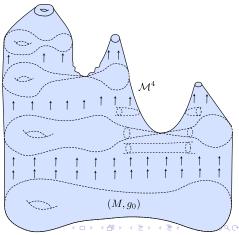
Def: x survives until time t_0 if the ∂_t -trajectory through x intersects \mathcal{M}_{t_0} in $x(t_0)$.

Lemma: All but finitely many bad points of $C_{T^1_{\sigma}}$ survive until time 0.

 $W := \left\{ x(0) \mid x \in \mathcal{C}_{\mathcal{T}_{\varphi}^{1}} \right\} \subset M$

 $\overline{g}_t := \text{pushforward of } g_t \text{ onto } W$ by flow of $-\partial_{\mathfrak{t}}$

 $\overline{g}_t \xrightarrow[t \not T_{\sigma}^2]{} \overline{g} \text{ modulo rescaling}$



Theorem

Given \mathcal{M} with $(\mathcal{M}, g_0) = (\mathcal{M}, g)$, there are $T_g^1 < T_g^2$ such that:

• for every $t \in [T_g^1, T_g^2)$ there is a unique component $C_t \subset \mathcal{M}_t$ with $C_t \approx M$.

• (\mathcal{C}_t, g_t) converges to a round metric as $t \nearrow T_g^2$ (modulo rescaling).

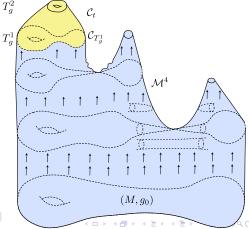
Def: x survives until time t_0 if the ∂_t -trajectory through x intersects \mathcal{M}_{t_0} in $x(t_0)$.

Lemma: All but finitely many bad points of $C_{T^1_{x}}$ survive until time 0.

 $W := \left\{ x(0) \mid x \in \mathcal{C}_{T^1_g} \right\} \subset M$

 $\overline{g}_t := \text{pushforward of } g_t \text{ onto } W$ by flow of $-\partial_t$

 $\overline{g}_t \xrightarrow[t \nearrow T_{\sigma}^2]{} \overline{g}$ modulo rescaling



Richard H Bamler (joint work with Bruce Kleiner, NClassification of diffeomorphism groups of 3-manifold

Theorem

Given \mathcal{M} with $(\mathcal{M}, g_0) = (\mathcal{M}, g)$, there are $T_g^1 < T_g^2$ such that:

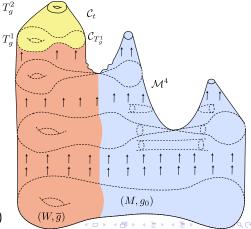
- for every $t \in [T_g^1, T_g^2)$ there is a unique component $C_t \subset \mathcal{M}_t$ with $C_t \approx M$.
- (\mathcal{C}_t, g_t) converges to a round metric as $t \nearrow T_g^2$ (modulo rescaling).
- **Def:** x survives until time t_0 if the ∂_t -trajectory through x intersects \mathcal{M}_{t_0} in $x(t_0)$.
- **Lemma:** All but finitely many bad points of $C_{T^1_{g}}$ survive until time 0.

$$W := \left\{ x(0) \mid x \in \mathcal{C}_{\mathcal{T}_g^1} \right\} \subset M$$

 $\overline{g}_t := \text{pushforward of } g_t \text{ onto } W$ by flow of $-\partial_t$

$$\overline{g}_t \xrightarrow[t \nearrow T_g^2]{} \overline{g} \text{ modulo rescaling}$$

$$(W,\overline{g})\cong (S^3/\Gamma - \{p_1,\ldots,p_N\},g_{K\equiv 1})$$



Richard H Bamler (joint work with Bruce Kleiner, NClassification of diffeomorphism groups of 3-manifold

Conclusion

This process describes a continuous canonical map

$$\operatorname{\mathsf{Met}}(M) \longrightarrow \operatorname{\mathsf{PartMet}}_{K\equiv 1}(M)$$
 $g \longmapsto (W, \overline{g})$

where $\operatorname{PartMet}_{K\equiv 1}(M)$ consists of pairs (W, \overline{g}) such that:

- $W \subset M$ open
- \overline{g} is a metric on W
- (W, \overline{g}) is isometric to the round punctured S^3/Γ
- $M \setminus W$ can be covered finitely many pairwise disjoint disks
- If $K_g \equiv 1$, then $(W, \overline{g}) = (M, g)$.

Topology on $PartMet_{K \equiv 1}(M)$: C^{∞} -convergence on compact subsets of W (not Hausdorff)

< □ > < 同 > < 三 >

Proof of Main Theorem

Goal: Show $Met_{K \equiv 1}(M) \simeq 1$, i.e. construct nullhomotopy for any

$$g: S^k = \partial D^{k+1} \longrightarrow \operatorname{Met}_{K \equiv 1}(M).$$

Solution:

1 extend g to continuous family

$$g': D^{k+1} \longrightarrow \operatorname{Met}(M), \qquad g'|_{\partial D^{k+1}} = g$$

2 previous slide ~> continuous family

$$(W(p), \widehat{g}(p)) \in \mathsf{PartMet}_{K \equiv 1}(M), \qquad p \in D^{k+1}$$

such that W(p) = M and $K_{\widehat{g}(p)} \equiv 1$ for $p \in \partial D^{k+1}$.

3 Remaining: "extend" $(W(p), \hat{g}(p))$ to $\overline{g}(p) \in Met_{K \equiv 1}(M)$ "up to contractible ambiguity".

< □ > < 同 > < 三 > .

Main ingredient:

Lemma

Let $A = A(1 - \varepsilon, 1) \subset D(1) \subset \mathbb{R}^3$ and $h: D^k \longrightarrow \operatorname{Met}_{K \equiv 1}(A),$ $h_0: \partial D^k \longrightarrow \operatorname{Met}_{K \equiv 1}(D(1))$

be continuous such that:

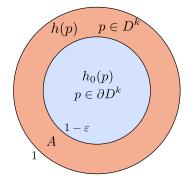
- $h_0(p)|_A = h(p)$ for all $p \in \partial D^k$.
- (A, h(p)) embeds into the round sphere for all p ∈ D^k.

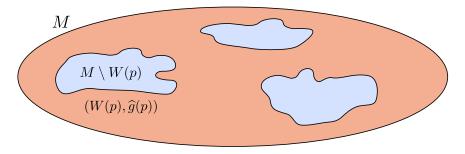
Then, after shrinking ε , there is a continuous map

 $\overline{h}: D^k \longrightarrow \operatorname{Met}_{K \equiv 1}(D(1))$

with $\overline{h}(p)|_A = h(p)$ for all $p \in D^k$ and $\overline{h}(p) = h_0(p)$ for all $p \in \partial D^k$.

Proof: Hatcher's Theorem \implies Diff $(D^3 rel \partial D^3) \simeq 1$

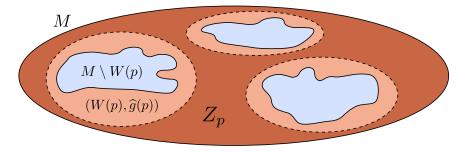




Extending $(W(p), \hat{g}(p))$ to $\overline{g}(p)$ on M:

- $p \in D^{k+1}$
- Choose compact domain Z_p ⊂ W(p) such that M \ Int Z_p consists of finitely many disks.
- $Z_p \subset W(p')$ for p' close to p.
- Extend $\widehat{g}(p')|_{Z_p}$ to $\overline{g}(p) \in Met_{K \equiv 1}(M)$, for p' close to p.
- $\overline{g}(p')$ is "unique up to contractible ambiguity" by previous Lemma
- Construct ḡ(p') for all p' ∈ D^{K+1} by induction over skeleta of a fine enough simplicial decomposition of D^{k+1}
- q.e.d.

< D > < P > < P >



Extending $(W(p), \hat{g}(p))$ to $\overline{g}(p)$ on M:

- $p \in D^{k+1}$
- Choose compact domain Z_p ⊂ W(p) such that M \ Int Z_p consists of finitely many disks.
- $Z_p \subset W(p')$ for p' close to p.
- Extend $\widehat{g}(p')|_{Z_p}$ to $\overline{g}(p) \in Met_{K\equiv 1}(M)$, for p' close to p.
- $\overline{g}(p')$ is "unique up to contractible ambiguity" by previous Lemma
- Construct ḡ(p') for all p' ∈ D^{K+1} by induction over skeleta of a fine enough simplicial decomposition of D^{k+1}
- q.e.d.

< 17 ▶

Part III: Further Questions

< □ > < 同 >

Further Questions

- $\mathbb{R}P^3$ case
- Reprove Hatcher's Theorem (S^3 case)
- (Re)prove Generalized Smale Conjecture for other geometric manifolds.

PSC Conjecture

 $\operatorname{Met}_{R>0}(S^3) = \{g \in \operatorname{Met}(S^3) \mid R_g > 0\}$ is contractible.

Marques 2012: $\pi_0(\mathcal{R}^+(S^3)) = 0.$

Necessary Tools:

- Better understanding of continuous families of singular Ricci flows
- Asymptotic characterization of the flow. Does the flow always converge towards its geometric model?

(日)