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Advertisement

Online class on Ricci flow this fall semester

14:10–15:30 (Pacific time)
August 27 – December 3

email me (rbamler@berkeley.edu) or check my webpage
(https://math.berkeley.edu/~rbamler) for further details
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Motivation & History

Consider a Ricci flow (M, (gt)t∈[0,T )) on a compact manifold Mn:

∂tgt = −2 Ricgt

Important Question: Understand the singularity formation if T <∞
(and the long-time asymptotics if T =∞)

Blow-up analysis:

Choose (xi , ti ) ∈ M × [0,T ) s.t.:

ti ↗ T |Rm|(xi , ti ) −→∞

Hope the for some λi →∞:

(M, (λ2i gλ−2
i t+ti

), xi ) −−−→
i→∞

(M∞, (g∞,t)t≤0, x∞)︸ ︷︷ ︸
parabolic rescaling

︸ ︷︷ ︸
“singularity model”

So far: curvature bounds are necessary!
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Dimension 2: singularity model = (S2, (2|t|gS2)t<0) (Chow, Hamilton)

Dimension 3: singularity models are κ-solutions . . . (Perelman)

Gradient shrinking soliton (M, g , f ): Ric +∇2f − 1
2g = 0

 gt := |t|φ∗t g is RF, where φt = flow of |t|∇f , t < 0

|Rm| ∼ C/|t| (Type I)

The singularity model of (M, (gt)t<0) is the flow itself.

Type-I curvature bound (|Rm| ≤ C/(T− t)): All singularity models are
gradient shrinking solitons. (Sesum, Naber, Enders, Buzano, Topping)

Type-I scalar curvature bound (R ≤ C/(T− t)): All singularity models are
gradient shrinking solitons with codimension 4 singular set.

(B., Chen, Hallgren, Wang, Zhang)

Folklore Conjecture

For a general Ricci flow “most” singularity models are gradient shrinking solitons.

Goal of this talk: Verify this conjecture in a certain (possibly optimal) sense.
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Examples in higher dimensions

Appleton: ∃ RFs in dimension 4 whose blow-up limts are:

Eguchi-Hanson, R4/Z2,
(
Bryant soliton/Z2, RP3 × R

)
Ricci flat singular

gradient shrinking soliton

Stolarski: ∃ RFs in dimensions n ≥ 13 whose only gradient shrinking soliton
blow-up limit is a Ricci flat cone

Li, Tian, Zhu: ∃ Kähler-RF that has to develop a singularity, but cannot
converge to a smooth gradient shrinking soliton.

Conclusion: Need to allow singular set in Folklore Conjecture + Ricci flat cones
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Recall: Einstein metrics

Consider a sequence of pointed, complete Einstein manifolds (Mn
i , gi , xi ),

Ric = λigi , |λi | ≤ 1. After passing to a subsequence we have Gromov-Hausdorff
convergence to a pointed metric length space:

(Mn
i , gi , xi )

GH−−−−−→
i→∞

(X , d , x∞).

Suppose that the following non-collapsing condition holds:

|B(xi , r)| ≥ v > 0.

Then there is a regular-singular decomposition

X = R ·∪ S

such that:

R is an open manifold and there is a smooth Einstein metric g∞ on R such
that d |R = dg∞ . So (X , d) is isometric to the metric completion of (R, dg∞).

dimM S ≤ n − 4 (Cheeger, Colding, Tian, Naber)

Any tangent cone at any point of X is a metric cone. (Cheeger, Colding)

There is a filtration S0 ⊂ . . . ⊂ Sn−4 = S such that dimM Sk ≤ k and every
x ∈ Sk has a tangent cone that splits of an Rk -factor. (Cheeger, Naber)
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Main results of this talk

Similar theory for minimal surfaces, harmonic maps, mean curvature flow,
harmonic map heat flow, . . .

Key points:

There is a compactness and partial regularity theory for Ricci flow that is
comparable to that of Einstein metrics.

This theory allows us to establish the Folklore Conjecture and several other
related results.

We need new, parabolic versions of notions such as: “metric space”,
“Gromov-Hausdorff limit”, . . .
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Theorem (B. 2020) Compactness theory of Ricci flows

Consider a sequence of n-dimensional, pointed Ricci flows:

(Mi , (gi,t)t∈(−Ti ,0], (xi , 0)), T∞ := lim
i→∞

Ti > 0.

Then a subsequence F-converges to a metric flow over (−T∞, 0]:

(Mi , (gi,t)t∈(−Ti ,0], (νxi ,0))
F−−−−→

i→∞
(X , d , (νx∞)).

Suppose that the following non-collapsing condition holds:

Nxi ,0(τ0) ≥ −Y0 > −∞.
Then we have a regular-singular decomposition

X = R ·∪ S
such that:

X restricted to R is given by a smooth Ricci flow spacetime structure
and X is uniquely determined by this structure.

dimM∗S ≤ (n + 2)− 4

All tangent flows of X are gradient shrinking solitons with singularities.

There is a filtration S0 ⊂ . . . ⊂ Sn−2 = S such that dimM∗ Sk ≤ k and
every x ∈ Sk has a tangent flow that splits off an Rk -factor or is static and
splits off an Rk−2-factor.
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Consequences + Further results

Regarding Folklore Conjecture:

Theorem (B. 2020)

Consider a Ricci flow (M, (gt)t∈[0,T )), T <∞. Then there is a metric space
(MT , dT ) “= limt↗T (M, gt)” such that:

If gt → gT smoothly on U ⊂ M, then U ⊂ MT and dT |U is locally isometric
to dgt |U .

For any z ∈ MT there is a sequence “(xi , ti )→ (z ,T )” whose “blow-up
sequence produces a singular gradient shrinking soliton”. Vice versa, any
such sequence has a subsequence that “corresponds to a point z ∈ MT”.

In dimension 4:

Theorem (B. 2020)

In dimension 4 all singular gradient shrinking solitons are given by (M, g , f ),
Ric +∇2f − 1

2g = 0, where M is an orbifold with conical singularities.
Moreover, either R > 0 or (M, g) ∼= R4/Γ.
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Regarding long-time asymptotics:

Theorem (B. 2020)

Suppose that (M, (gt)t≥0) is immortal and consider (xi , ti ) ∈ M × [0,∞),
ti →∞. Then after passing to a subsequence, one of the following holds:

(M, (t−1i gti t), xi ) converges to a singular, Einstein Ricci flow with
Ric = − 1

2t g∞,t .
If n = 4, then this flow is given by an Einstein orbifold.

We have collapsing Nxi ,ti (ti/2)→ −∞

Picture in dimension 4:
If t � 1, then

M = Mthick(t) ·∪ Malmost.sing.(t) ·∪ Mthin(t)

where:

Ric ≈ − 1
2t gt on Mthick(t)

Malmost.sing.(t) consists of components Ω with ∂Ω ≈ S3/Γ and
∂Ω ⊂ ∂Mthick(t) and diam ∂Ω�

√
t

Mthin(t) is locally collapsed =⇒ |B(x , t,At1/2)| � tn/2 for any A <∞.
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Application: Backwards Pseudolocality

Theorem (B. 2020)

If [t0 − r2, t0] ⊂ I and

|B(x0, t0, r)| ≥ αrn, |Rm| ≤ (αr)−2 on B(x0, t0, r),

then |Rm| ≤ (ε(n, α)r)−2 on P(x0, t0; εr ,−(εr)2).

Further Remarks:

In dimension 3, this theory essentially recovers Perelman’s theory.

Compactness theory (not assuming non-collapsing) also holds for super Ricci
flows ∂tgt + 2 Ric ≥ 0.
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Heat kernels on Ricci flow backgrounds

Let (M, (gt)t∈I ) be a Ricci flow and u, v ∈ C 2(M × I ).

Heat equation: �u = (∂t −4gt )u = 0

Conjugate heat equation: �∗v = (−∂t −4gt + Rgt )v = 0

Heat kernel: K (x , t; y , s), x , y ∈ M, s < t

for fixed (y , s): �K (·, ·; y , s) = 0, limt↘s K (·, t; y , s) = δy

for fixed (x , t): �∗K (x , t; ·, ·) = 0, lims↗t K (x , t; ·, s) = δx

Representation formulas: If �u = �∗v = 0, then

u(x , t) =

∫
M

K (x , t; ·, s)u(·, s)dgs v(y , s) =

∫
M

K (·, t; y , s)v(·, t)dgt

Reproduction formula for heat kernel: s < t ′ < t

K (x , t; y , s) =

∫
M

K (x , t; ·, t ′)K (·, t ′; y , s)dgt′
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Properties of heat equation:

u ≤ C and u ≥ −C are preserved.
|∇u| ≤ C are preserved
Let Φ : R× R≥0 be the solution the the 1-dimensional heat equation
∂tΦt = Φ′′t with initial condition Φ0 = χ[0,∞).

Improved gradient estimate (B. 2020)

If 0 < u(·, t0) < 1, then for t > t0

ut(x) = Φt(x
′) =⇒ |∇ut |(x) ≤ Φ′t−t0(x ′) (∗)

Moreover, (∗) is preserved for any fixed t0.

Properties of conjugate heat equation:
v ≥ 0 is preserved∫
M

v(·, s)dgs is constant in s and

∫
M

K (x , t; ·, s)dgs = 1

Think of v as µs = v(·, s)dgs .
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Conjugate heat kernel probability measure:

dνx,t;s := K (x , t; ·, s)dgs , νx,t;t := δx

Integral characterization of (conjugate) heat flows:

Heat flow: �u = 0 ⇐⇒ u(x , t) =

∫
M

u(·, s)dνx,t;s

Conjugate heat flow:

dµs = v(·, s)dgs , �∗v = 0 ⇐⇒ µs =

∫
M

ν·,t;sdµt

Reproduction formula:

νx,t;s =

∫
M

ν·,t′;sdνx,t;t′
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Metric flows

Metric flow over an interval I

X =
(
X , t, (dt)t∈I , (νx ;s)x∈X ,s∈I ,s≤t(x)

)
1 X is a set consisting of points

2 t : X → I is the time-function and its level sets Xt := t−1(t) are time-slices

3 (Xt , dt) is a complete and separable metric space for all t ∈ I

4 νx ;s are probability measures called conjugate heat kernel and satisfy
νx ;t(x) = δx and the reproduction formula

νx ;s =

∫
Xt

ν·,t;sdνx ;t

5 (Conjugate) heat flows are defined using the integral property as before.

6 We require that the improved gradient estimate holds for heat flows:
If ut0 = Φt0 ◦ ft0 for some 1-Lipschitz ft0 : Xt0 → R, then for all t ≥ t0 we
have ut = Φt ◦ ft for some 1-Lipschitz ft : Xt → R.
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Ricci flow (M, (gt)t∈I ) −→ Metric flow X
X := M × I

t := projection onto second factor.

dt := dgt on Xt = M × {t}
dν(x,t);s := K (x , t; ·, s)dgs

Note:

The distance between points in different time-slices is not defined!

This construction forgets worldlines t 7→ (x , t).
Instead: For x ∈ Xt there is a probability distribution νx ;s of points y ∈ Xs

that lie in the “past” of x .
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Concentration property

Variance of probability measure µ on a metric space (X , d):

Var(µ) :=

∫
X

∫
X

d2(x , y)dµ(x)dµ(y)

Theorem (B. 2020)

On any Ricci flow
Var(νx,t;s) ≤ Hn(t − s), (∗)

where Hn := (n−1)π2

2 + 4.

A metric flow X is called H-concentrated if (∗) + . . . holds for Hn = H.

“The past in Xs of any point x ∈ Xt is determined
up to an error of ∼

√
t − s.”
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1-Wasserstein distance

µ1, µ2 probability measures on complete, separable metric space (X , d)

dW1(µ1, µ2) := inf
q coupling
btw µ1, µ2

∫
X×X

d dq = sup
f : X → R
1-Lipschitz

∫
X

f d(µ1 − µ2)

Lemma

If x , y ∈ Xt , then for s ≤ t we have

dXs

W1
(νx ;s , νy ;s) ≤ dt(x , y).

Moreover, s 7→ dXs

W1
(νx ;s , νy ;s) is non-decreasing and the same is true for any other

pair of conjugate heat flows.

“Distances don’t shrink on metric flows (in a probabilistic sense)”
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Parabolic balls

Conventional parabolic ball in a Ricci flow:

P(x0, t0; r) := Bgt0
(x0, r)× [t0 − r2, t0 + r2]

P∗-parabolic ball in a metric flow:

P∗(x0; r) :=

x ∈ Xt0 :
t(x) ∈ [t0 − r2, t0 + r2]

d
Xt0−r2

W1
(νx0;t0−r2 , νx ;t0−r2) < r


standard containment properties still hold for P∗-parabolic palls
(e.g. P∗(x ; r1) ⊂ P∗(x ; r2) if r1 ≤ r2)
Conventional and P∗-parabolic balls are comparable if curvature bounded.
The natural topology on X is generated by the set of all P∗-parabolic balls.
P∗-parabolic balls allow the definition of the parabolic Hausdorff and
Minkowski dimension dimH∗ and dimM∗ .
We count the time-direction twice!
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Gromov-W1-distance and convergence

Gromov-W1-distance
If (Xi , di , µi ), i = 1, 2, are two normalized metric measure spaces, then

dGW1

(
(X1, d1, µ1), (X2, d2, µ2)

)
:= inf

ϕ1,ϕ2,Z
dZ
W1

((ϕ1)∗µ1, (ϕ2)∗µ2),

where the infimum is taken over all isometric embeddings ϕi : (Xi , di )→ (Z , dZ )
into a common metric space (Z , dZ ).

Gromov-W1-convergence

(Xi , di , µi )
GW1−−−−−−→
i→∞

(X∞, d∞, µ∞)

Compare with pointed Gromov-Hausdorff convergence: The probability measures
µi take the role of the basepoint.
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dF-distance and F-convergence

dF-distance:
Consider metric flows Xi , i = 1, 2 equipped with conjugate heat flows (µi,t)t∈I .
We define

dF
(
(X 1, (µ1

t )t∈I ), (X 2, (µ2
t )t∈I )

)
to be the infimum over all r > 0 such that there are isometric embeddings(

ϕi
t : (X i

t , d
i
t )→ (Zt , d

Z
t )
)
t∈I\E ,i=1,2

with:

1 |E | ≤ r2

2 dZt

W1
((ϕ1

t )∗µ
1
t , (ϕ

2
t )∗µ

2
t ) ≤ r for all t ∈ I \ E

3 “integral W1-closeness of conjugate heat kernels between times s, t ∈ I \ E”

F-convergence
If dF

(
(X i , (µi

t)t∈I ), (X∞, (µ∞t )t∈I )
)
→ 0, then we write

(Xi , (µi,t)t∈Ii )
F−−−−→

i→∞
(X∞, (µ∞,t)t∈Ii )

This implies Gromov-W1-convergence at almost every time.
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Let FI be the space of pairs (X , (µt)t∈I ).

Theorem (B. 2020)

(FI , dF) is a complete metric space.

Suppose I = (−T , 0]. Fix n.

Theorem (B. 2020){
(X , (µt)t∈I ) corresponding to

Ricci flows (Mn, (gt)t∈I , (νx,0;t)t∈I )

}
⊂ FI is precompact. (∗)

Corollary

For any sequence of n-dimensional, pointed Ricci flows (Mi , (gi,t)t∈(−T ,0], (xi , 0))
there is a subsequence such that:

(Mi , (gi,t)t∈(−Ti ,0], (νxi ,0))
F−−−−→

i→∞
(X , (νx∞)).

Remark: There is a compact subset F∗I (H) ⊂ FI , essentially corresponding to
all H-concentrated metric flows, that contains the subset from (∗).
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Digesting F-convergence

If we assume curvature bounds, then: F-convergence ⇐⇒ local smooth
convergence in the sense of Cheeger, Gromov, Hamilton.

Example: Bryant soliton (MBry, (gBry,t)t∈R, xBry)

rotational symmetric

gBry,t = dr2 + f 2(r)gS2 ,
where f (r) ∼

√
r

steady gradient soliton
=⇒ all time-slices are isometric

Consider blow-downs (MBry, (λ
2
i gBry,λ−2

i t)t∈R, xBry)

for λi → 0.

Gromov-Hausdorff limit at any fixed time:
[0,∞)

F-limit:
round shrinking cylinder (S2 × R, (gt = 2|t|gS2 + gR)t<0)
this is the asymptotic soliton!
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Ricci flow spacetimes

Ricci flow spacetime over an interval I :

M =
(
M, t, ∂t, g

)
1 M is a smooth (n + 1)-manifold, called spacetime manifold

2 t :M→ I is a smooth map whose level sets Mt := t−1(t) are called
time-slices.

3 ∂t is a smooth vector field onM with ∂t t = 1. Its trajectories are worldlines.

4 g is a metric on the horizontal distribution ker dt ⊂ TM
5 Ricci flow equation: L∂tg = −2 Ricg

Ricci flow (M, (gt)t∈I ) −→ Ricci flow spacetime M
M := M × I

t := projection onto second factor

∂t := std. vector field on I

g := gt on Mt = M × {t}
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Structure of non-collapsed F-limits

Let X be a F-limit of smooth Ricci flows over I .
Assume the non-collapsing condition Nxi ,0(τ0) ≥ −Y0 > −∞.

Theorem (B. 2020)

There is a decomposition
X = R ·∪ S

and a smooth Ricci flow spacetime structure (R, t, ∂t, g) on R such that:

R ⊂ X is open and dense.

For any t ∈ I the time-slice (Xt , dt) is the metric completion of (Rt , dgt ).

(Conjugate) heat flows restricted to R are uniquely characterized by �u = 0
and �∗v = 0 on R.

dimM∗ S ≤ (n + 2)− 4

Tangent flows at any x ∈ X (= F-limits of blow-ups of (X , (νx,t))) are
singular gradient shrinking solitons.

There is a filtration S0 ⊂ . . . ⊂ Sn−2 = S such that dimM∗ Sk ≤ k and
every x ∈ Sk has a tangent flow that splits off an Rk -factor or is static and
splits off an Rk−2-factor.
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Theorem (B. 2020)

If X is a gradient shrinking soliton, then there is an identification

X = X × I

for a metric space (X , d) with regular part RX ⊂ X such that:

(Xt , dt) = (X , |t|1/2d)

(Rt , gt) = (RX , |t|gRX
)

The soliton equation holds on RX .

If n = 4, then (X , d) is the length space of a smooth orbifold.
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Outstanding promise: Non-collapsing condition

Pointed Nash entropy: (Perelman, Topping, Hein, Naber)
Fix (x0, t0) ∈ M × I and write τ := t0 − t, K (x0, t0; ·, ·) =: (4πτ)−n/2e−f

Nx0,t0(τ) :=

∫
M

f (·, t0 − τ)dνx0,t0;t0−τ −
n

2

Basic properties:

Nx0,t0(τ) ≤ 0
d
dτNx0,t0(τ) ≤ 0

There is a relation between N and Perelman’s µ-entropy that implies: If
I = [0,T ), then

Nx0,t0(τ) ≥ µ[M, g0,T ] > −∞.

So a non-collapsing condition always holds on a fixed flow with T <∞.
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Guiding principle: On a manifold with Ric ≥ −g :
|B(x , r)|

rn
≈ eNx (r

2)

Theorem (B. 2020)

Suppose that R ≥ Rmin. Set N ∗s (x , t) := Nx,t(t − s).

1 |∇N ∗s | ≤
√

n

2(t − s)
− Rmin

2 − n

2(t − s)
≤ �N ∗s ≤ 0

3 (1)+(2) imply a bound on oscN ∗s over P∗-parabolic neighborhoods.

4 For any (x , t), s < t, there is a point z near the “center” of νx,t;s such that

K (x , t; y , s) ≤ C (ε)

(t − s)n/2
exp

(
− d2

s (y , z)

(8 + ε)(t − s)

)
5 |B(x , t, r)| ≤ C (Rmin) exp(Nx,t(r

2))

6 Reverse lower volume bound holds near concentration centers of conjugate
heat kernels and under scalar curvature bounds.

7 . . .
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The picture at the first singular time

Suppose that (M, (gt)t∈[0,T )) develops a singularity at time T <∞.

Singular time-slice (MT , dT ):

MT :=
{

conjugate heat flows(µt)t∈[0,T ) : Var(µt) ≤ Hn(T − t)
}

dT ((µ1
t ), (µ2

t )) := lim
t↗T

dgt
W1

(µ1
t , µ

2
t )

Theorem

(MT , dT ) is a complete metric space.

If gt → gT on U as t ↗ T , then U ↔ U ′ ⊂ MT and dgT
∼= dT locally.

For any p := (µt) any blow-ups of (M, (gt)t∈[0,T ), (µt)t∈[0,T )) subsequentially
F-converge to a singular gradient shrinking soliton.
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