Uniqueness of Weak Solutions to the Ricci Flow and Topological Applications

Richard H Bamler UC Berkeley (joint work with Bruce Kleiner, NYU)

August 2020

Image: A matrix

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Advertisement

Online class on Ricci flow this fall semester (August 27 – December 3)

- UCB students: Math 277
- other students: email me (rbamler@berkeley.edu) or check my webpage (https://math.berkeley.edu/~rbamler) for further details

Structure of Talk

- Part I: Topological Results
- Part II: Ricci flow, Weak solutions, Uniqueness, Continuous dependence
- Part III: Applications to Topology

Part I: Topological Results

(日)

M (mostly) 3-dimensional, compact, orientable manifold

Recall: The topology of 3-manifolds is sufficiently well understood due to the resolution of the Poincaré and Geometrization Conjectures by Perelman, using Ricci flow.

Main objects of study:

- Met(M): space of Riemannian metrics on M
- $Met_{PSC}(M) \subset Met(M)$: subset of metrics with positive scalar curvature
- Diff(M): space of diffeomorphisms $\phi: M \to M$

 \ldots each equipped with the C^{∞} -topology.

Goal: Classify these spaces up to homotopy (using Ricci flow)!

Met(M) is contractible

Space of PSC-metrics

Main Result 1:

Ba., Kleiner 2019

 $Met_{PSC}(M)$ is either contractible or empty.

History:

- true in dimension 2 (via Uniformization Theorem or Ricci flow (see later))
- Hitchin 1974; Gromov, Lawson 1984; Botvinnik, Hanke, Schick, Walsh 2010: Further examples with $\pi_i(\text{Met}_{PSC}(M^n)) \neq 1$ for certain (large) *i*, *n*.
- Marques 2011 (using Ricci flow with surgery): Met_{PSC}(M³)/Diff(M³) is path-connected, Met_{PSC}(S³) is path-connected

< □ > < 同 > < 回 > .

Diffeomorphism groups

Smale 1958: $O(3) \simeq \text{Diff}(S^2)$

Smale Conjecture: $O(4) \simeq \text{Diff}(S^3)$ proven by Hatcher in 1983

For a general spherical space form $M = S^3/\Gamma$ consider the injection

 $\mathsf{Isom}(M) \longrightarrow \mathsf{Diff}(M)$

Generalized Smale Conjecture

This map is a homotopy equivalence.

- Verified for a handful of other spherical space forms, but open e.g. for $\mathbb{R}P^3$.
- All proofs so far are purely topological and technical. No uniform treatment.

Main Result 2:

Theorem (Ba., Kleiner 2019)

The Generalized Smale Conjecture is true.

Remarks:

- Proof via Ricci flow (first purely topological application of Ricci flow since Perelman's work \sim 15 years ago).
- Uniform treatment of all cases.
- Alternative proof in the S³-case (Smale Conjecture).
- There are two proofs:
 - "Short" proof (Ba., Kleiner 2017): GSC if $M \not\approx S^3$, $\mathbb{R}P^3$, M hyperbolic
 - Long proof (Ba., Kleiner 2019): full GSC and $S^2 \times \mathbb{R}$ -cases

Similar techniques imply results in non-spherical case:

- If M is closed and hyperbolic, then Isom(M) ≃ Diff(M). (topological proof by Gabai 2001)
- If (M, g) is aspherical and geometric and g has maximal symmetry, then $Isom(M) \simeq Diff(M)$.

(new in non-Haken infranil case)

•
$$\text{Diff}(S^2 \times S^1) \simeq O(2) \times O(3) \times \Omega O(3)$$

(topological proof by Hatcher)

•
$$\mathsf{Diff}(\mathbb{R}P^3 \# \mathbb{R}P^3) \simeq O(1) \times O(3)$$

(topological proof by Hatcher)

< ロ > < 同 > < 三 > < .

Connection to Ricci flow

Lemma

$$\begin{array}{ll} \mbox{For any }g\in {\rm Met}_{{\cal K}\equiv\pm1}({\cal M})\colon\\ \mbox{Isom}({\cal M},g)\simeq {\rm Diff}({\cal M}) & \Longleftrightarrow & {\rm Met}_{{\cal K}\equiv\pm1}({\cal M}) \mbox{ contractible} \end{array}$$

Proof: Fiber bundle

$$\mathsf{Isom}(M,g) \longrightarrow \mathsf{Diff}(M) \longrightarrow \mathsf{Met}_{K\equiv \pm 1}(M)$$
$$\phi \longmapsto \phi^* g$$

Apply long exact homotopy sequence.

This reduces both results to:

Theorem (Ba., Kleiner 2019)

 $Met_{PSC}(M)$ and $Met_{K \equiv 1}(M)$ are each either contractible or empty.

<ロ> (日) (日) (日) (日) (日)

Part II: Ricci flow, Weak solutions, Uniqueness, Continuous dependence

Ricci flow

Ricci flow: $(M, g(t)), t \in [0, T)$

$$\partial_t g(t) = -2\operatorname{Ric}_{g(t)}, \qquad g(0) = g_0 \qquad (*)$$

Short-time existence (Hamilton):

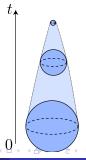
- For every initial condition g₀ the initial value problem (*) has a unique solution for maximal T ∈ (0,∞].
- If $T < \infty$, then "singularity at time T". Curvature $|\mathsf{Rm}|$ blows up as $t \nearrow T$.

Example: Round shrinking sphere

 $M = S^n$

$$T=\frac{1}{2(n-1)}$$

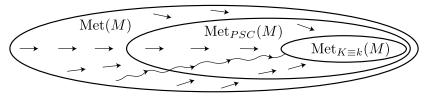
$$g(t)=2(n-1)(T-t)g_{S^n}.$$



Ricci flow in 2D

Hamilton, Chow: On $M = S^2$ for any initial condition g_0 we have $T = \frac{\operatorname{vol}(S^2, g_0)}{8\pi}, \qquad (T - t)^{-1}g(t) \longrightarrow g_{round}$

Interpretation on the space of metrics:



• Preservation of positive scalar curvature (in all dimensions)

• \rightsquigarrow deformation retractions from Met(S²) and Met_{PSC}(S²) onto Met_{K=1}(S²)

Theorem

$$\operatorname{Met}_{PSC}(S^2) \simeq \operatorname{Met}_{K \equiv 1}(S^2) \simeq \operatorname{Met}(S^2) \simeq *$$

Therefore $\operatorname{Diff}(S^2) \simeq O(3)$.

Ricci flow in 3D

Difficulties:

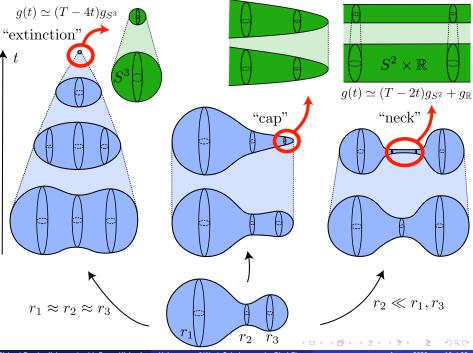
- Flow may incur non-round and non-global singularities.
- Necessary to extend the flow past the first singular time (surgeries).
- Continuous dependence on initial data?

Results:

- Perelman: Qualitative classification of singularity models (κ -solutions)
- Brendle 2018 / Ba., Kleiner 2019: Further classification / rotational symmetry of $\kappa\text{-solutions}$

Example: rotationally symmetric dumbbell

• □ > • < </p>
• □ > • < </p>



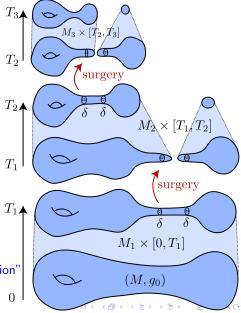
Ricci flow with surgery

Given (M, g_0) construct Ricci flow with surgery:

$$egin{aligned} &(\mathcal{M}_1,g_1(t)),t\in[0,\,\mathcal{T}_1],\ &&(\mathcal{M}_2,g_2(t)),t\in[\mathcal{T}_1,\,\mathcal{T}_2],\ &&(\mathcal{M}_3,g_3(t)),t\in[\mathcal{T}_2,\,\mathcal{T}_3], \end{aligned}$$

Observations:

- surgery scale $pprox \delta \ll 1$
- high curvature regions are *ɛ*-close to singularity models from before: "*ɛ*-canonical neighborhood assumption"



. . .

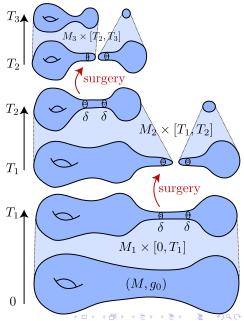
RF with surgery was used to prove Poincaré & Geometrization Conjectures

Drawback:

surgery process is not canonical (depends on surgery parameters)

Perelman:

- It is likely that [...] one would get a canonically defined Ricci flow through singularities, but at the moment I don't have a proof of that.
- Our approach [...] is aimed at eventually constructing a canonical Ricci flow, [...] - a goal, that has not been achieved yet in the present work.



Theorem (Ba., Kleiner, Lott)

Perelman's "conjecture" is true:

- There is a notion of a weak Ricci flow "through singularities" and we have existence and uniqueness within this class.
- This weak flow is a limit of Ricci flows with surgery, where surgery scale $\delta \rightarrow 0.$

Comparison with Mean Curvature Flow:

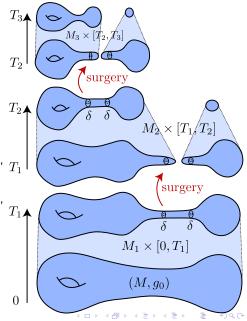
- Notions of weak flows: Level Set Flow, Brakke Flow
- \bullet General case: fattening \cong non-uniqueness
- Mean convex case: non-fattening \cong uniqueness
- $\bullet\,$ 2-convex case: uniqueness + weak flow is limit of MCF with surgery as surgery scale $\delta\to 0$

How to take limits of sequences of Ricci flows with surgery?

< □ > < 同 > < 三 >

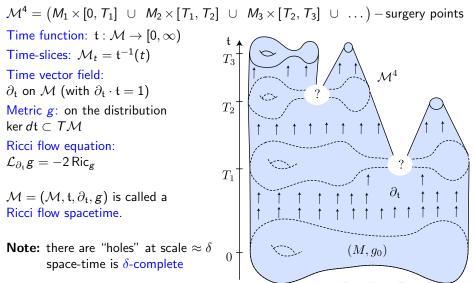
RF with surgery

- Consider the spacetimes $M_1 \times [0, T_1], \quad M_2 \times [T_1, T_2], \quad \dots$
- Identify:
 - $M_{1} \times \{T_{1}\} \setminus \{\text{surgery points}\} \\ \leftrightarrow M_{2} \times \{T_{1}\} \setminus \{\text{surgery points}\}, T_{1}$ $M_{2} \times \{T_{2}\} \setminus \{\text{surgery points}\} \\ \leftrightarrow M_{3} \times \{T_{2}\} \setminus \{\text{surgery points}\}, T_{1}$ \dots



Spacetime picture

Spacetime 4-manifold:



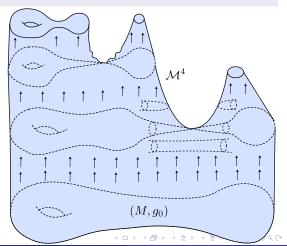
Kleiner, Lott 2014: Compactness theorem and $\delta_i \rightarrow 0$ \implies existence of (weak) singular Ricci flow starting from any (M, g_0)

Singular Ricci flow: Ricci flow spacetime \mathcal{M} that:

- is 0-complete (i.e. "surgery scale $\delta = 0$ ")
- satisfies the ε -canonical neighborhood assumption for small ε .

Remarks:

- *M* is smooth everywhere and not defined at singularities
- singular times may accummulate



Theorem (Ba., Kleiner 2016)

 ${\mathcal M}$ is uniquely determined by its initial time-slice $({\mathcal M}_0,g_0)$ up to isometry.

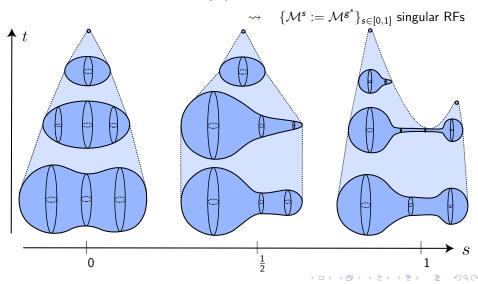
So for any (M,g) there is (up to isometry) a canonical singular Ricci flow \mathcal{M} with initial time-slice $(\mathcal{M}_0, g_0) \cong (M, g)$.

Write: \mathcal{M}^{g} .

(日)

${\sf Uniqueness} \quad \longrightarrow \quad {\sf Continuous \ dependence}$

continuous family of metrics $(g^s)_{s \in [0,1]}$ on M



Continuous dependence Uniqueness

continuous family of metrics $(g^s)_{s \in [0,1]}$ on M $\rightsquigarrow \quad \{\mathcal{M}^{s} := \mathcal{M}^{g^{s}}\}_{s \in [0,1]} \text{ singular RFs}$

 $\frac{1}{2}$

S

Continuity of singular RFs

Vague statement: \mathcal{M}^{g} depends continuously on its initial metric *g*.

Precise statement:

Theorem (Ba., Kleiner 2019)

Given a continuous family $(g^s)_{s\in X}$ of Riemannian metrics on M over some topological space X, there is a continuous family of singular RFs $(\mathcal{M}^s = \mathcal{M}^{g^s})_{s\in X}$. That is:

• A topology on $\sqcup_{s \in X} \mathcal{M}^s$ such that the projection

$$\bigsqcup_{s\in X}\mathcal{M}^{g^s}\longrightarrow X$$

is a topological submersion.

 A compatible lamination structure on ⊔_{s∈X} M^s with leaves M^s with respect to which all objects t^s, ∂^s_t, g^s are transversely continuous.

< ロ > < 同 > < 回 > < 回 >

Part III: Applications to Topology

Generalized Smale Conjecture

Let $M \approx S^3/\Gamma$, then $\text{Diff}(M) \simeq \text{Isom}(M)$.

Goal: As in 2D, construct a retraction

$$* \simeq \operatorname{Met}(M) \longrightarrow \operatorname{Met}_{K \equiv 1}(M)$$

Strategy:

$$\mathsf{Met}(M) \longrightarrow \{\mathsf{singular } \mathsf{RFs}\} \longrightarrow ^? \longrightarrow \mathsf{Met}_{\mathcal{K} \equiv 1}(M)$$

Short proof (30 pages): if $M \not\approx S^3$, $\mathbb{R}P^3$ and assuming the Smale Conj. for S^3

(日)

2 Observations:

- **1** Distinguished end $C \approx M \times [T_g^1, T_g^2) \subset \mathcal{M}^g$ on which metric converges to $K \equiv 1$ metric modulo rescaling.
- 2 Every component of every time-slice only has finitely many bad points.

(bad point $x \in \mathcal{M}$: trajectory of $-\partial_t$ through x does not exists up to time 0.)

$$(W, \overline{g}_t) := \text{push-forward of } (\mathcal{C}_t, g_t)$$

via flow of $-\partial_t$

$$\begin{aligned} (W,\overline{g} := \lim_{t \nearrow T_g^2} \lambda_t \overline{g}_t) \\ & \cong S^3/\Gamma \setminus \{p_1, \dots, p_N\} \end{aligned}$$

 \rightsquigarrow continuous, canonical map

$$\operatorname{Met}(M) \longrightarrow \operatorname{Part}\operatorname{Met}_{K \equiv 1}(M), \qquad g \longmapsto \mathcal{M}^g \longmapsto (W, \overline{g})$$

$$\operatorname{Obstruction theory} \quad \rightsquigarrow \quad \operatorname{Part}\operatorname{Met}_{K \equiv 1}(M) \longrightarrow \operatorname{Met}_{K \equiv 1}(M), \quad a \equiv g \in \mathbb{R}$$

