Uniqueness of Weak Solutions to the Ricci Flow and Topological Applications

Richard H Bamler (joint work with Bruce Kleiner, NYU)

May 2020

2 / 28

Structure of Talk

- Part I: Topological Results
- Part II: Ricci flow, Weak solutions, Uniqueness, Continuous dependence
- Part III: Applications to Topology

Part I: Topological Results

Basic definitions

M (mostly) 3-dimensional, compact, orientable manifold

Recall: The topology of 3-manifolds is sufficiently well understood due to the resolution of the Poincaré and Geometrization Conjectures by Perelman, using Ricci flow.

Main objects of study:

- Met(M): space of Riemannian metrics on M
- $Met_{PSC}(M) \subset Met(M)$: subset of metrics with positive scalar curvature
- Diff(M): space of diffeomorphisms $\phi: M \to M$
- ... each equipped with the C^{∞} -topology.

Goal: Classify these spaces up to homotopy (using Ricci flow)!

Met(M) is contractible

Space of PSC-metrics

Main Result 1:

Ba., Kleiner 2019

 $Met_{PSC}(M)$ is either contractible or empty.

History:

- true in dimension 2 (via Uniformization Theorem or Ricci flow (see later))
- Hitchin 1974; Gromov, Lawson 1984; Botvinnik, Hanke, Schick, Walsh 2010: Further examples with $\pi_i(\text{Met}_{PSC}(M^n)) \neq 1$ for certain (large) i, n.
- Marques 2011 (using Ricci flow with surgery): Met_{PSC}(M³)/Diff(M³) is path-connected Met_{PSC}(S³) is path-connected,

Diffeomorphism groups

Smale 1958: $O(3) \simeq Diff(S^2)$

Smale Conjecture: $O(4) \simeq Diff(S^3)$

proven by Hatcher in 1983

For a general spherical space form $M = S^3/\Gamma$ consider the injection

$$\mathsf{Isom}(M) \longrightarrow \mathsf{Diff}(M)$$

Generalized Smale Conjecture

This map is a homotopy equivalence.

- Verified for a handful of other spherical space forms, but open e.g. for $\mathbb{R}P^3$.
- All proofs so far are purely topological and technical. No uniform treatment.

Main Result 2:

Theorem (Ba., Kleiner 2019)

The Generalized Smale Conjecture is true.

Remarks:

- ullet Proof via Ricci flow (first purely topological application of Ricci flow since Perelman's work \sim 15 years ago).
- Uniform treatment of all cases.
- Alternative proof in the S^3 -case (Smale Conjecture).
- There are two proofs:
 - "Short" proof (Ba., Kleiner 2017): GSC if $M \not\approx S^3, \mathbb{R}P^3$, M hyperbolic
 - ullet Long proof (Ba., Kleiner 2019): full GSC and $S^2 imes \mathbb{R}$ -cases

Similar techniques imply results in non-spherical case:

- If M is closed and hyperbolic, then $Isom(M) \simeq Diff(M)$. (topological proof by Gabai 2001)
- If (M,g) is aspherical and geometric and g has maximal symmetry, then $Isom(M) \simeq Diff(M)$. (new in non-Haken infranil case.)
- Diff $(S^2 \times S^1) \simeq O(2) \times O(3) \times \Omega O(3)$ (topological proof by Hatcher)
- Diff($\mathbb{R}P^3\#\mathbb{R}P^3$) $\simeq O(1)\times O(3)$ (topological proof by Hatcher)

Connection to Ricci flow

Lemma

For any $g \in \operatorname{Met}_{K \equiv \pm 1}(M)$:

$$\mathsf{Isom}(M,g) \simeq \mathsf{Diff}(M) \qquad \Longleftrightarrow \qquad \mathsf{Met}_{K\equiv \pm 1}(M) \ \ \mathsf{contractible}$$

Proof: Fiber bundle

$$\mathsf{Isom}(M,g) \longrightarrow \mathsf{Diff}(M) \longrightarrow \mathsf{Met}_{K\equiv \pm 1}(M)$$

$$\phi \longmapsto \phi^* g$$

Apply long exact homotopy sequence.

This reduces both results to:

Theorem (Ba., Kleiner 2019)

 $Met_{PSC}(M)$ and $Met_{K\equiv 1}(M)$ are each either contractible or empty.

or equivalently:

$$\pi_k(\mathsf{Met}(M), \mathsf{Met}_{PSC/K=1}(M)) = 1.$$

Part II: Ricci flow, Weak solutions, Uniqueness, Continuous dependence

Ricci flow

Ricci flow: $(M, g(t)), t \in [0, T)$

$$\partial_t g(t) = -2\operatorname{Ric}_{g(t)}, \qquad g(0) = g_0 \tag{*}$$

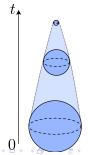
Short-time existence (Hamilton):

- For every initial condition g_0 the initial value problem (*) has a unique solution for maximal $T \in (0, \infty]$.
- If $T < \infty$, then "singularity at time T". Curvature |Rm| blows up as $t \nearrow T$.

Example: Round shrinking sphere

$$M = S^n$$

$$g(t) = (1 - 2(n-1)t)g_{S^n}$$

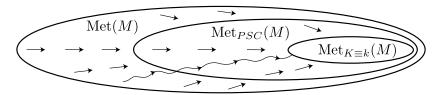


Ricci flow in 2D

Hamilton, Chow: On S^2 for any initial condition g_0 we have

$$T=rac{ ext{vol}(S^2,g_0)}{8\pi}, \qquad (T-t)^{-1}g(t)\longrightarrow g_{ ext{round}}$$

Interpretation on the space of metrics:



- Preservation of positive scalar curvature (in all dimensions)
- ullet \leadsto deformation retractions from ${
 m Met}(S^2)$ and ${
 m Met}_{PSC}(S^2)$ onto ${
 m Met}_{{\cal K}\equiv 1}(S^2)$

Theorem

 $\mathsf{Met}_{PSC}(S^2) \simeq \mathsf{Met}_{K\equiv 1}(S^2) \simeq \mathsf{Met}(S^2) \simeq *$ Therefore $\mathsf{Diff}(S^2) \simeq O(3)$.

Ricci flow in 3D

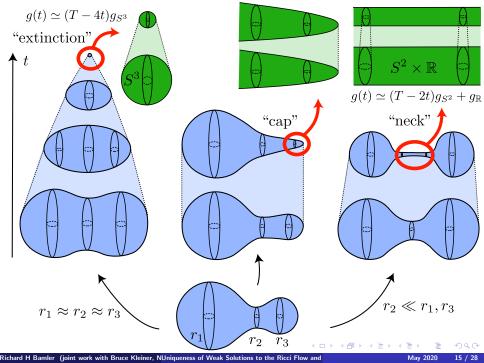
Difficulties:

- Flow may incur non-round and non-global singularities.
- Necessary to extend the flow past the first singular time (surgeries).
- Continuous dependence on initial data?

Results:

- ullet Perelman: Qualitative classification of singularity models (κ -solutions)
- Brendle 2018 / Ba., Kleiner 2019: Further classification / rotational symmetry of κ -solutions

Example: rotationally symmetric dumbbell



Ricci flow with surgery

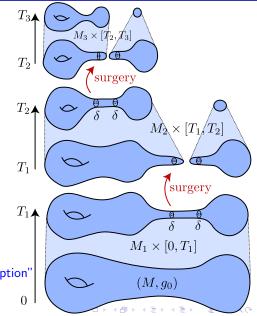
Given (M, g_0) construct Ricci flow with surgery:

$$(M_1, g_1(t)), t \in [0, T_1],$$
 $(M_2, g_2(t)), t \in [T_1, T_2],$ $(M_3, g_3(t)), t \in [T_2, T_3], \dots$

Observations:

- $\bullet \ \, {\rm surgery} \,\, {\rm scale} \approx \delta \ll 1$
- high curvature regions are ε-close to singularity models from before:

" ε -canonical neighborhood assumption"



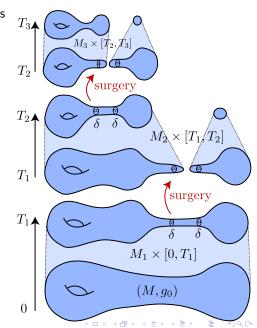
RF with surgery was used to prove Poincaré & Geometrization Conjectures

Drawback:

surgery process is not canonical (depends on surgery parameters)

Perelman:

- It is likely that [...] one would get a canonically defined Ricci flow through singularities, but at the moment I don't have a proof of that.
- Our approach [...] is aimed at eventually constructing a canonical Ricci flow, [...] - a goal, that has not been achieved yet in the present work.



Theorem (Ba., Kleiner, Lott)

Perelman's "conjecture" is true:

- There is a notion of a weak Ricci flow "through singularities" and we have existence and uniqueness within this class.
- \bullet This weak flow is a limit of Ricci flows with surgery, where surgery scale $\delta \to 0.$

Comparison with Mean Curvature Flow:

- Notions of weak flows: Level Set Flow, Brakke flow
- General case: fattening \cong non-uniqueness
- ullet Mean convex case: non-fattening \cong uniqueness
- \bullet 2-convex case: uniqueness + weak flow is limit of MCF with surgery as surgery scale $\delta \to 0$

How to take limits of sequences of Ricci flows with surgery?

Space-time picture

Space-time 4-manifold:

$$\mathcal{M}^4 = \begin{pmatrix} \textit{M}_1 \times [0, \textit{T}_1] \ \cup \ \textit{M}_2 \times [\textit{T}_1, \textit{T}_2] \ \cup \ \textit{M}_3 \times [\textit{T}_2, \textit{T}_3] \ \cup \ \ldots \end{pmatrix} - \text{surgery points}$$

Time function: $\mathfrak{t}:\mathcal{M}\to[0,\infty)$

Time-slices: $\mathcal{M}_t = \mathfrak{t}^{-1}(t)$

Time vector field:

 $\partial_{\mathfrak{t}}$ on \mathcal{M} (with $\partial_{\mathfrak{t}} \cdot \mathfrak{t} = 1$)

Metric g: on the distribution

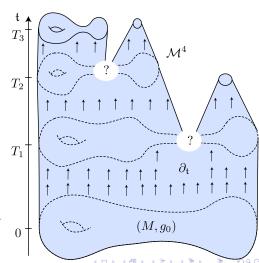
 $\ker d\mathfrak{t}\subset T\mathcal{M}$

Ricci flow equation:

$$\mathcal{L}_{\partial_{\mathfrak{t}}} g = -2\operatorname{\mathsf{Ric}}_g$$

 $\mathcal{M} = (\mathcal{M}, \mathfrak{t}, \partial_{\mathfrak{t}}, g)$ is called a Ricci flow spacetime.

Note: there are "holes" at scale $\approx \delta$ space-time is δ -complete



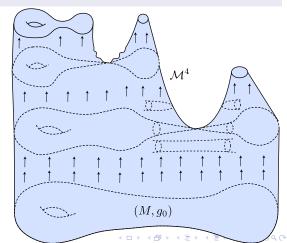
Kleiner, Lott 2014: Compactness theorem and $\delta_i \to 0$ \Longrightarrow existence of singular Ricci flow starting from any (M,g)

Singular Ricci flow: Ricci flow spacetime ${\mathcal M}$ that:

- is 0-complete (i.e. "surgery scale $\delta = 0$ ")
- ullet satisfies the arepsilon-canonical neighborhood assumption for small arepsilon.

Remarks:

- M is smooth everywhere and not defined at singularities
- singular times may accummulate



Uniqueness

Theorem (Ba., Kleiner 2016)

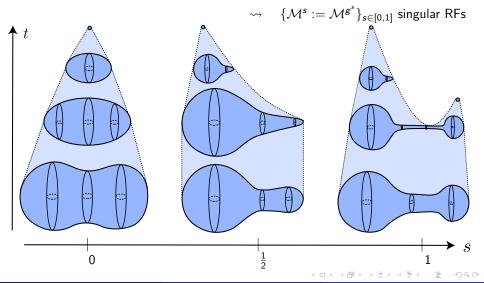
 \mathcal{M} is uniquely determined by its initial time-slice (\mathcal{M}_0, g_0) up to isometry.

So for any (M,g) there is (up to isometry) a canonical singular Ricci flow $\mathcal M$ with initial time-slice $(\mathcal M_0,g_0)\cong (M,g)$.

Write: \mathcal{M}^g .

Uniqueness — Continuous dependence

continuous family of metrics $(g^s)_{s\in[0,1]}$ on M



Continuity of singular RFs

 \mathcal{M}^g depends continuously on its initial metric g.

Precise statement:

Theorem (Ba., Kleiner 2019)

Given a continuous family $(g^s)_{s\in X}$ of Riemannian metrics on M over some topological space X, there is a continuous family of singular RFs $(\mathcal{M}^s = \mathcal{M}^{g^s})_{s\in X}$. That is:

• A topology on $\sqcup_{s \in X} \mathcal{M}^s$ such that the projection

$$\bigsqcup_{s\in X}\mathcal{M}^{g^s}\longrightarrow X$$

is a topological submersion.

• A compatible lamination structure on $\sqcup_{s \in X} \mathcal{M}^s$ with leaves \mathcal{M}^s with respect to which all objects $\mathfrak{t}^s, \partial_{\mathfrak{t}}^s, g^s$ are transversely continuous.

4 □ ト 4 圖 ト 4 필 ト 4 필 ト 9 Q (*)

Part III: Applications to Topology

Setup

Theorem (Ba., Kleiner 2019)

$$\pi_k(\mathsf{Met}(M), \mathsf{Met}_{PSC/K\equiv 1}(M)) = 1$$

Meaning (PSC-case): For any family of metrics $(h_{s,0})_{s\in D^k}$ on M, where

$$h_{s,0}$$
 has PSC for $s \in \partial D^k$,

there is a homotopy $(h_{s,t})_{s\in D^k\times[0,1]}$, s.t.

$$h_{s,1}$$
 has PSC for $s \in D^k$

$$h_{s,t}$$
 has PSC for $s \in \partial D^k$, $t \in [0,1]$

Previous results: $(h_{s,0})_{s\in D^k} \rightsquigarrow \text{cont. family of singular RFs } (\mathcal{M}^s = \mathcal{M}^{g^s})_{s\in D^k}$

Remaining Conversion Problem: Convert continuous family of sing. RFs $(\mathcal{M}^s)_{s\in X}$ with initial time-slice $\mathcal{M}^s_0=M$ to $(h_{s,t})_{s\in X,t\in[0,1]}$ with:

- **1** $(M, h_{s,0}) \cong (\mathcal{M}_0^s, g_0^s).$
- $oldsymbol{0}{2} h_{s,1}$ has PSC.
- **3** If \mathcal{M}^s has PSC, then so does $h_{s,t}$ for all $t \in [0,1]$.

Conversion Problem: Given $(\mathcal{M}^s)_{s \in X}$, find $(h_{s,t})_{s \in X, t \in [0,1]}$ s.t.:

- $oldsymbol{0}{2} h_{s,1}$ has PSC
- **3** If \mathcal{M}^s has PSC, then so does $h_{s,t}$ for all $t \in [0,1]$.

- Rounding procedure: perturb metrics on $(\mathcal{M}^s)_{s\in X}$ so that they are round or rotationally symmetric in high curvature regions (this works because κ -solutions are round or rot. symmetric)
- **Strategy:** Construct $(h_{s,t})$ by backwards induction over time.
- **Problem:** For any fixed $T \ge 0$ the family $s \mapsto \mathcal{M}_T^s$ of time-T-slices is a "continuous family of Riemannian manifolds" whose topology may vary.
- **New notion:** "Partial homotopy at time T"

Conversion Problem: Given $(\mathcal{M}^s)_{s \in X}$, find $(h_{s,t})_{s \in X, t \in [0,1]}$ s.t.:

- $oldsymbol{2}$ $h_{s,1}$ has PSC
- **3** If \mathcal{M}^s has PSC, then so does $h_{s,t}$ for all $t \in [0,1]$.

Partial homotopy at time T:

Notion involving families of metrics $(h_{s,t})$ as in 0-3, but with

"
$$(M, h_{s,0}) \cong (\mathcal{M}_T^s, g_T^s)$$
",

defined where $|Rm| \lesssim r^{-2}$ over a simplicial decomposition of X.

Lemma

- If $T\gg 0$, then there is an (empty) partial homotopy at time T for $(\mathcal{M}^s)_{s\in X}$.
- A partial homotopy at time T for $(\mathcal{M}^s)_{s\in X}$, can be transformed into a partial homotopy at time $T-\varepsilon$, where $\varepsilon>0$ is uniform, through certain modification moves.
- If there is a partial homotopy at time T=0 for $(\mathcal{M}^s)_{s\in X}$, then there is a family $(h_{s,t})$ satisfying \P - \P

Partial homotopy at time T:

Fix a simplicial decomposition of X. For each simplex $\sigma \subset X$ choose:

- a continuous family of compact domains $(Z_s^{\sigma} \subset \mathcal{M}_T^s)_{s \in \sigma}$. (roughly: $Z_s^{\sigma} \approx \{|\mathsf{Rm}| \lesssim r_{\dim \sigma}^{-2}\}$ for $r_0 \ll \ldots \ll r_n$.)
- a continuous family of Riemannian metrics $(h_{s,t}^{\sigma})_{s \in \sigma, t \in [0,1]}$ on (Z_s^{σ}) .

such that 0-3 hold at time T and:

- Compatibility: If $s \in \tau \subset \sigma$, then $Z_s^{\sigma} \subset Z_s^{\tau}$ and $h_{s,t}^{\sigma} = h_{s,t}^{\tau}|_{Z_s^{\sigma}}$.
- Largeness of the domains: $|\text{Rm}| \gtrsim r_{\dim \sigma}^{-2}$ on $\mathcal{M}_T^s \setminus Z_s^{\sigma}$ (\Rightarrow round or rot. symmetric)
- "Contractible ambiguity": $h_{s,t}^{\tau}$ is round or rot. symmetric on any $Z_s^{\tau} \setminus Z_s^{\sigma}$.

Modification Moves:

- Passing to a simplicial refinement.
- Enlarging some (Z_s^{σ}) by a family of round or rot. symmetric subsets.
- Shrinking some (Z_s^{σ}) by removing a family of disks.
- Reducing T to $T \varepsilon$ if (Z_s^{σ}) stay away from high curvature regions.

