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Introduction

The following thesis deals with the surgery process for the Ricci flow on 3-manifolds as
developed in [Per1] and [Per2]. With the help of this method it is possible to prove the
Poincaré Conjecture as well as the Geometrization Conjecture.

Poincaré Conjecture. Every closed (i.e. compact and boundaryless) simply connected
3-manifold M is homeomorphic to S3.

Note that any topological 3-manifold admits a unique differentiable structure, so it
remains to show that every closed simply connected smooth 3-manifold is homeomorphic
to S3.

The Geometrization Conjecture reads as follows:

Geometrization Conjecture. Every closed orientable 3-manifold M is a connected sum
of closed 3-manifolds Mi such that for every i there is a finite collection of pairwise disjoint
imbedded tori Tij ⊂ Mi such that

(i) the tori {Tij}j are incompressible in Mi (i.e. π1Tij →֒ π1Mi)
(ii) the components of Mi\

⋃
j Tij are diffeomorphic to metric quotients with finite volume

of one of the following 8 homogeneous geometries

S3, S2 × S1, H3, R3, H2 × R, P̃SL(2, R), Nil or Sol.

For more details see [Mor], [Thu] or [KL, Appx I]. Note that the Poincaré Conjecture
follows easily from the Geometrization Conjecture.

The idea for proving the Poincaré conjecture and the Geometrization Conjecture for
a manifold M via Ricci flow is the following: We endow M with an arbitrary metric and
evolve it via the Ricci flow. Näıvely we can expect the metric to get more and more
homogeneous since the evolution equation for the curvature under the Ricci flow is of heat
type. So for example in the case in which the starting metric has positive Ricci curvature,
Richard Hamilton showed in [Ham1] that the metric converges to a constant curvature
metric under the Ricci flow. However, in the general case it may happen that the metric
develops regions of diverging curvature called singularities. Perelman has found ways (see
[Per1]) to prove that the injectivity radius in these regions does not decrease faster than
the curvature diverges. This gives him the possibility to conclude that the singularities
are geometrically close to a certain type of ancient Ricci flows called κ-solutions. It is
now an important step to analyze these model solutions and to find they look neck-like at
certain areas, that is, their geometry is close to the homogenoeus geometry S2 × R. This
in turn implies that the singularities essentially look neck-like, too. In order to get rid of
the singularities, one can cut out those necks and glue 3-balls whose geometry should be
chosen in a certain way into the produced cutting surfaces. This process is called surgery.
Now one can start the Ricci flow again and repeat the surgery procedure if necessary.
Note that topologically the surgery process corresponds to performing the inverse of a
connected sum.

This thesis is organized as follows: Chapters 1 and 2 give a very brief introduction to
results in Riemannian geometry and Ricci flow that will be needed subsequently. Most
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6 CHAPTER 0. INTRODUCTION

often proofs are omitted if there are appropriate references. In chapter 3 we present
an overview on geometric convergence and geometric compactness theorems. Results on
Gromov-Hausdorff compactness are assumed to be familiar to the reader and will only be
repeated without proofs. However, the theory of smooth convergence and convergence of
Ricci flows is presented more thoroughly since one hardly finds a complete and accurate
exposition on the topic in the literature. The proof of only one technical fact is omitted,
but reference is given. Amongst others we try to convey a certain languague to the
reader in this chapter that will be used in the following chapters. Chapter 4 gives a short
introduction to the methods used to prove Perelman’s No Local Collapsing Theorem.
These methods will be used in chapter 7 again. References for more detailed presentations
of the topics are given. In chapter 5 the theory of κ-solution is developed and chapter 6
presents the Canonical Neighborhood Theorem (compare with 12.1 in [Per1]). Chapters
5 and 6 follow Bruce Kleiner’s and John Lott’s notes on Perelman’s papers [KL] with
some modifications. All proofs are given except for the proof of the theorem that there
is a universal κ0 for all non-round 3-dimensional κ-solutions. Note that in chapter 6 we
try to cover as complete as possible the results on the classification of 3 dimensional κ-
solutions. However, some of these results will not be needed in the following chapters.
Chapter 7 deals with the surgery process in the Ricci flow. At first, general Ricci flows
with surgery are introduced. Then we give a brief description of the surgery process.
Some technical details are omitted, but can be found in [KL]. Eventually, in the last three
sections we prove that it is always possible to perform the surgeries in the described way.
Finally, chapter 8 gives a brief overview on the methods that can now be used to prove
the Poincaré or the Geometrization Conjecture.

At this point we like to list other sources that cover Ricci flow with surgery. Very
useful are [KL], [MT] and [Hei1]. Sometimes, Perelman’s original papers [Per1] and [Per2]
are quite helpful although they present the material in a very condensed way. Another
reference is [CZ]. For a detailed overview on the topic see [Mor].

The author is aware of the fact that the references [Bam1], [Bam2], [LB1], [LB2], [LB3],
[LB4] and [Lee2] are hardly accessible to the reader. Hopefully, these sources will be added
to a future version of this text.

This diploma thesis was written at the Ludwig-Maximilians University, Munich. I like
to thank my advisor Bernhard Leeb for the numerous inspirations and help. Furthermore,
I like to thank Hans-Joachim Hein for his support and intensive reading circles.



Chapter 1

Preliminaries on geometry and

topology

1.1 Notations and conventions

Let (M,g) be an n dimensional Riemannian manifold, i.e. a smooth manifold with a
symmetric and positive definite bilinear form g ∈ Sym2 T ∗M , the metric. In a canonical
way, the metric g induces metrics on all higher tensor bundles T k

l TM = (TM)⊗l⊗(T ∗M)⊗k

and their subbundles resp. quotients such as ΛkTM or Symk TM . If M is orientable, let
vol ∈ ΓΛnTM = ΩnM be the Riemannian volume form, i.e. the form that satisfies
vol(e1, . . . , en) = 1 for any oriented local orthormal frame (ei). Define the Riemannian
measure µ to be the measure on M associated to vol. Observe that working locally, we
can also define µ in the case in which M is non-orientable.

We denote by ∇ the Levi-Civita connection on TM , i.e. the connection that satisfies
∇XY −∇Y X = [X,Y ] (i.e. ∇ is torsion free) and X〈Y,Z〉 = 〈∇XY,Z〉+〈Y,∇XZ〉 (i.e. ∇
is a metric connection) for all vector fields X,Y,Z on M . Analogously, ∇ induces metric
connections on all higher tensor bundles T k

l TM and their parallel subbundles or quotients.
Let E be a vector bundle over M equipped with a connection ∇. We define the curvature
tensor R ∈ Γ(Λ2T ∗M ⊗ EndE) by

R(X,Y )e := ∇X∇Y e −∇Y ∇Xe −∇[X,Y ]e

for any two vector fields X,Y ∈ Γ(TM) and section e ∈ Γ(E). It is easy to see that R
is indeed a tensor. In the case E = TM , the curvature R is the Riemannian curvature.
Let p ∈ M and π ⊂ TpM be a 2-plane. Choose a basis u, v ∈ π and define the sectional
curvature on π by

K(π) = K(u ∧ v) :=
〈R(u, v)v, u〉
‖u ∧ v‖2

≥ κ where ‖u ∧ v‖2 = ‖u‖ · ‖v‖ − 〈u, v〉2.

One easily checks that K(u ∧ v) does not depend on the choice of u, v ∈ π. We say that
M has constant sectional curvature κ if K(π) ≡ κ for all points p ∈ M and 2-planes
π ⊂ TpM . For each n ≥ 2 and κ ∈ R there is up to isometry exactly one complete and
simply connected Riemannian manifold with constant sectional curvature κ. We will call
this space the model space of constant sectional curvature κ, Mn

κ .

Finally we define the Riemannian curvature operator R̂ ∈ Γ(Endsym Λ2TM) by

〈R̂(X ∧ Y ), U ∧ V 〉 = 〈R(X,Y )V,U〉

for any vector fields X,Y,U, V (note again that we set 〈X ∧ Y,U ∧ V 〉 := 〈X,U〉〈Y, V 〉 −
〈X,V 〉〈Y,U〉).

7



8 CHAPTER 1. PRELIMINARIES ON GEOMETRY AND TOPOLOGY

Contracting the Riemannian curvature yields the Ricci curvature:

Ric(X,Y ) := tr R(·,X)Y =
∑

i

〈R(X, ei)ei, Y 〉

for any local vector fields X,Y and any local orthonormal frame (ei). Note that Ric ∈
Γ(Sym2 T ∗M), however sometimes we dualize and assume that Ric ∈ Γ (Endsym TM).

Tracing the Ricci tensor gives the scalar curvature:

S = tr Ric =
∑

i

Ric(ei, ei).

For a more developed introduction to Riemannian curvature quantities see [dCa].

1.2 Metric geometry

In the following denote (X, dX ) a metric space. If there is no chance for confusion, we will
simply write d instead of dX for the metric.

Definition 1.2.1. A metric space (X, d) is called a length space if for all x, y ∈ X we
have

d(x, y) = inf

{
ℓ(γ) :

γ : [0, 1] → X continuous
γ(0) = x, γ(1) = y

}

where ℓ(γ) denotes the length of γ, i.e.

ℓ(γ) := sup

{
n∑

k=1

d(γ(tk−1), γ(tk)) : n ∈ N, 0 = t0 < t1 < . . . < tn = 1

}

For a Riemannian manifold (M,g) we define the path metric dist by

dist(x, y) := inf

{∫ 1

0
‖γ̇‖dt : γ : [0, 1] → M, C1, γ(0) = x, γ(1) = y

}

Obviously, (M,dist) is a length space. In order to make sure that the property of being a
length space persists Gromov-Hausdorff limits we mention (see [Bal1])

Lemma 1.2.2. For a metric space (X, d) the following properties are equivalent:
(i) X is a length space
(ii) For any ε > 0 and any two points x, y ∈ X there is a point z ∈ X such that

d(x, z) − 1
2d(x, y), d(z, y) − 1

2d(x, y) < ε

Definition 1.2.3. Let I ⊂ R be an interval equipped with the standard metric dI . A
map γ : I → X is called a minimizing geodesic if γ is an isometry between (I, cdI) and
(X, dX ) for some c ≥ 0. If c = 1 we say that γ is a minimizing geodesic parameterized
by arclength. If I = R≥0, γ will be called a ray and if I = R, a line.

We call γ a geodesic (parameterized by arclength) if for any t ∈ I there is an interval
J ⊂ I around t such that γ|J is a minimizing geodesic (parameterized by arclength).

Under certain conditions, we are able to formulate a synthetic version of the Hopf-
Rinow Theorem in the Riemannian case (see [dCa, Ch 7]). For the proof see [Bal1, I.2]

Proposition 1.2.4. Let (X, d) be a locally compact length space. Then the following
conditions are equivalent:
(a) X is complete as a metric space,
(b) any geodesic γ : [0, 1) → X can be extended to a geodesic on [0, 1],
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(c) for some x ∈ X, any geodesic γ : [0, 1) → X starting in x, i.e. γ(0) = x, can be
extended to a geodesic on [0, 1],

(d) bounded subsets are precompact (i.e. their closure is compact).

Furthermore, (a)-(d) imply

(e) for any pair of points x, y ∈ X there is a minimizing geodesic γ : [0, 1] → X with
γ(0) = x and γ(1) = y.

1.3 Comparison geometry

Let (M,g) be a Riemannian manifold and x1, x2, x3 ∈ M be points joined by (not neces-
sarily minimizing) geodesics γ1, γ2, γ3 ⊂ M in such a way that γi connects xi−1 with xi+1

(where we view indices always modulo 3). We call the triple (γ1, γ2, γ3) a triangle in M
if ℓ(γi) + ℓ(γi+1) ≥ ℓ(γi+2) for all i = 1, 2, 3. If there is no chance of confusion, we will
abbreviate △x1x2x3 := (γ1, γ2, γ3) and denote the sides γi by xi−1xi+1.

Let κ ∈ R. If the perimeter ℓ(γ1) + ℓ(γ2) + ℓ(γ3) ≤ 2π√
κ

(we set 2π√
κ

= ∞ if κ ≤ 0),

there exists a triangle △x̃1x̃2x̃3 = (γ̃1, γ̃2, γ̃3) in the model space M2
κ of constant curvature

κ with ℓ(γi) = ℓ(γ̃i). Note that the length of no side exceeds π√
κ
. We call △x̃1x̃2x̃3

a comparison triangle of △x1x2x3. In the case in which all sides of the triangle are
smaller than π√

κ
this triangle is uniquely determined up to congruence. We call the angles

∢̃xi+1xixi−1 := ∢xi(γ̃i+1, γ̃i−1) (if △x̃1x̃2x̃3 exists and is unique; if one of the sides x̃ix̃i−1

or x̃ix̃i+1 has length π√
κ
, we set ∢̃xi+1xixi−1 = 0) the comparison angles. Observe that

if the sides γi of △x1x2x3 are minimizing geodesics, the comparison triangle and the
comparison angles are already defined in terms of the distances between the points xi.

Assume now that the sectional curvatures of M are bounded below by κ. Hereby we
mean K(π) ≥ κ for any 2-plane π ⊂ TpM and p ∈ M .

Toponogov’s Theorem expresses this pointwise bound globally, namely it states that
triangles in M are “thicker” than in the corresponding constant curvature case.

Theorem 1.3.1 (Toponogov). Let (M,g) be a complete Riemannian manifold with
sectional curvature K ≥ κ. Then

(A) For any triangle △x1x2x3 ⊂ M with minimizing sides there is a comparison triangle
△x̃1x̃2x̃3 (with ℓ(xixi+1) = ℓ(x̃ix̃i+1)) such that for any point w ∈ x2x3 and the cor-
responding point w̃ ∈ x̃2x̃3 (i.e. the point on x̃2x̃3 for which dist(x̃2, w̃) = dist(x2, w)
and dist(w̃, x̃3) = dist(w, x3) holds) we have dist(x1, w) ≥ dist(x̃1, w̃).

(B) For any two minimizing geodesics γ, σ ⊂ M with γ(0) = σ(0) = x the comparison
angle ∢̃γ(t)xσ(s) (in M2

κ) exists and is monotonically decreasing both in t and in s.
(C) For any four distinct points x0, x1, x2, x3 ∈ M the comparison angles ∢̃x1x0x2,

∢̃x2x0x3, ∢̃x3x0x1 in M2
κ exist and

∢̃x1x0x2 + ∢̃x2x0x3 + ∢̃x3x0x1 ≤ 2π.

(D) For any triangle △x1x2x3 ⊂ M with positive side lengths there is a comparison
triangle △x̃1x̃2x̃3 ⊂ M2

κ with

∢xi(xixi−1, xixi+1) ≥ ∢exi
(x̃ix̃i−1, x̃ix̃i+1) = ∢̃xi+1xixi−1.

Proof. For a proof of property (D) see [CE] or [Kar] who primarily proves a generalization
of property (A) namely that even every secant of △x1x2x3 is longer than the corresponding
secant in the comparison triangle (not just the ones starting at a vertex). However,
property (A) as well as (B) can also be deduced from property (D) by the fact that in
M2

κ the length of a side of a triangle with minimizing sides varies monotonically with the
opposite angle. Property (C) can be reduced to the Euclidean case by using (D).
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One can even refine the assertions of the Theorem: In [CE] it is shown that in (D)
instead of claiming that all sides of △x1x2x3 are minimizing, it suffices to assume that e.g.
the sides x1x2 and x2x3 are minimizing and the length of x3x1 does not exceed π√

κ
. The

assertion then holds for i = 1, 3. Similarly, in (A) it is enough to claim that the sides x1x2

and x1x3 are minimizing and the length of x2x3 is not larger than π√
κ

or the other way

round. Analogously, we may generalize (B) to the case where one geodesic is minimizing
and the other has length not larger than π√

κ
.

It is also possible to formulate a localized version of Toponogov’s Theorem: After
inspecting the proof, it becomes clear that in order to ensure property (A) we just have to
claim that if △x1x2x3 ⊂ Br(x1), the sectional curvatures K ≥ κ on B3r(x1) and the ball
is relatively compact in M . Analogously, (B) holds if we have the curvature bound on the
relatively compact ball Br(x) ⊂ M and γ, σ ⊂ Br(x). (C) holds if we have the curvature
bound on the compact ball Br(x0) and x1, x2, x3 ∈ Br(x0). Last but not least (D) is true
if the curvature bound holds on the compact ball Br(xi) and xi−1, xi+1 ∈ Br(xi).

Toponogov’s theorem gives us a tool to synthesize the sectional curvature bound K ≥ κ:

Definition 1.3.2 (Alexandrov space). A locally compact complete length space (X, d)
is called an Alexandrov space of curvature ≥ κ if one of the (equivalent) properties (A),
(B) or (C) in Theorem 1.3.1 is satisfied.
A length space X is said to be locally Alexandrov of curvature ≥ κ in x ∈ X if X is locally
compact in x and there is a neighborhood U of x such that property (A), (B) or (C) apply
for all triangles, minimizing geodesics resp. points in U .

In fact, properties (A), (B) and (C) can be shown to be equivalent in locally compact
complete length spaces. For a proof see [BGP, §2]. Moreover, with the help of property
(B) we can define the angle between two geodesics γ, σ ⊂ X starting in some point x ∈ X
by

∢x(γ, σ) := lim
s,t→0

∢̃γ(t)xσ(s).

It is easy to prove that property (D) holds in Alexandrov spaces.

Using property (C) we easily conclude that the Alexandrov property is closed under
Gromov-Hausdorff limits (see chapter 3), i.e. the limit of a sequence of Alexandrov spaces
of curvature ≥ κ is again an Alexandrov space of curvature ≥ κ.

Note that our definition for Alexandrov spaces differs from the definition given in
[BGP]. In this paper the authors only assume that the space is locally Alexandrov. Next
they prove in a globalization theorem that this definition is equivalent to the one stated
above.

1.4 Topology and geometry of manifolds with curvature

bounded from below

The assumptions Ric ≥ (n− 1)κ or K ≥ κ have strong topological and geometric implica-
tions. For example recall Toponogov’s Theorem 1.3.1 at this point. In the case of bounded
Ricci curvature we have the following result (see [dCa, 9 §3]):

Theorem 1.4.1 (Bonnet, Myers). A complete connected Riemannian manifold (M,g)
with Ric ≥ (n − 1)κ > 0 has diameter diam M ≤ π√

κ
and thus is compact.

Moreover, we conclude that the fundamental group of any compact manifold M with
Ric > 0 must be finite.

Theorem 1.4.1 is a direct consequence of a more general result (see [Kar, 1.9.2]):
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Theorem 1.4.2 (Bishop, Gromov). Let (Mn, g) be a complete Riemannian manifold
with Ric ≥ (n − 1)κ, x ∈ M and x0 ∈ Mn

κ . Then the quantity

vol BM
r (x)

vol B
Mn

κ
r (x0)

is noninreasing in r and its limit for r → 0 is 1.

In the case of nonnegative Ricci curvature, we cannot assume compactness. However,
we have the Ricci splitting Theorem (see [CG]):

Theorem 1.4.3 (Cheeger, Gromoll). Assume that (Mn, g) is a connected Riemannian
manifold of nonnegative Ricci curvature that contains a line γ. Then isometrically M ∼=
N × R where Nn−1 is a complete manifold of nonnegative Ricci curvature. Moreover, the
product can be chosen such that γ is parallel to the R factor (i.e. γ = {x} × R for some
x ∈ N).

The theorem has strong topological implications: Let M be a connected noncompact
Riemannian manifold. Let K ⊂ M be a compact subset. We call the noncompact com-
ponents of M \ K the ends of M . Assume now that M carries a complete metric g of
nonnegative Ricci curvature. If K can be chosen such as to produce at least two ends
M1,M2 ⊂ M \ K, we can find a sequence of minimizing geodesics γk connecting M1 with
M2 such that the endpoints lie further and further away from K. Since the γk have to
pass K, they subconverge to a line γ ⊂ M and by the Ricci splitting theorem we must
have M ∼= N ×R and the projection of K to N must be N . Hence N is compact. We get
that M can only have one or two ends.

In dimension two there are only two compact connected manifolds that admit a metric
of positive curvature: the sphere S2 and the projective space RP 2. If we relax the condition
of positive curvature to nonnegative curvature we have to add the torus T 2 and the Klein
bottle K2 to our list. This is a consequence of the Gauß-Bonnet Theorem (see [Ber, Sec
15.7])

Theorem 1.4.4 (Gauß-Bonnet). Let (M,g) be a closed surface and denote χ(M) its
Euler characteristic. Then

χ(M) =
1

4π

∫

M
Sdµ.

The only noncompact complete 2-manifolds are R2, S1 × R or the Möbius strip Moe2

(this is a consequence of the Soul Therem 1.4.8 mentioned below).
In dimension three Richard Hamilton has shown in [Ham1] using the fact that a metric

of positive Ricci curvature gets asymptotically round under the Ricci flow:

Theorem 1.4.5 (Hamilton). If a compact manifold M3 admits a metric of positive Ricci
curvature then it even carries a metric of constant positive sectional curvature.
Thus M is diffeomorphic to a spherical space form.

Recall that a 3 dimensional spherical space form is a manifold that is diffeomorphic
to a quotient S3/Γ of the round 3-sphere where Γ ⊳ Isom S3 is a discrete subgroup acting
freely on S3. For the classification of spherical space forms see [Wol].

Moreover, by the strong maximum principle (see Theorem 2.5.4) we can show that if
M only admits metrics of nonnegative but not of positive Ricci curvature then M has
at least one parallel nonzero vector field X ∈ ΓTM with Ric(X,X) = 0. So the 1-form
α := 〈X, ·〉 ∈ Ω1M is harmonic and Hodge theory1 theory gives us that H1(M ; R) 6= 0.

1For an introduction to Hodge theory see [Roe, Chp 6]. However we can also directly prove that α 6= 0
in H1(M ; R): Assume α = df . The parallelity of α implies Hess f ≡ 0, so f ≡ const.
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This forces the universal cover M̃ of M to be noncompact. Since π1M acts cocompactly
on the universal cover, M̃ contains a line and by the Ricci splitting Theorem 1.4.3 we
have M̃ ∼= N ×R where N2 has nonnegative curvature. By the strong maximum principle
applied to the Ricci flow on N we can assume that N is either positively curved or flat,
hence N ≈ S2 or N ∼= R2.

We can prove that in the case N ≈ S2 the manifold M is diffeomorphic to a metric
quotient of the round cylinder2 S2 × R. So in the first case M is diffeomorphic to one
of the following manifolds: S2 × S1, S2×̃S1 := S2 × S1/ ∼ (where (x, y) ∼ (−x,−y)),
RP 3#RP 3 or RP 2 × S1.

In the second case, M̃ is isometric to 3 dimensional Euclidean space. We can apply
the Bieberbach Theorem (Corollary 4.1.13 and Proposition 4.2.4 in [Thu]).

Theorem 1.4.6 (Bieberbach). Let Γ < Isom Rn be a discrete group of isometries of Rn.
Then there is a subgroup Γ′ ≤ Γ of finite index and a unique Γ′-invariant affine subspace
V ⊂ Rn on which Γ′ acts cocompactly by translations.

Thus M is diffeomorphic to a metric quotient of a flat torus T 3 (for a classification of the
flat 3-manifolds see [Sco] or [Wol]). Observe that any metric of nonnegative Ricci curvature
on one of these manifolds is automatically flat: It is enough to show this statement for
the torus T 3. Since Z3 = π1T

3 acts cocompactly on the universal cover, M̃ contains a line
and by the Ricci splitting Theorem M̃ ∼= N × R. Again, N is noncompact and we have a
cocompact operation of Z3 on N . Thus N ∼= R2. For completeness we mention that this
fact is an immediate consequence of the Bochner Theorem (see [Bal2, 1.3]):

Theorem 1.4.7 (Bochner). Let M be a closed and connected Riemannian manifold of
nonnegative Ricci curvature. Then b1(M) = dimH1(M, R) ≤ n and equality holds if and
only if M is flat.
Moreover, there are exactly b1(M) linearly independent parallel vector fields X1, . . . ,Xb1(M) ∈
ΓTM .

The assumption of nonnegative sectional curvature has even stronger implications on
the topology of the manifold:

Theorem 1.4.8 (Soul theorem). Let (Mn, g) be a complete noncompact Riemannian
manifold of nonnegative sectional curvature. Then M contains a compact totally geodesic
and totally convex submanifold S ⊂ M whose induced metric has nonnegative Ricci cur-
vature.
Moreover, M is diffeomorphic to the normal bundle ν(S) of S in M .
If M has everywhere positive sectional curvature, then the soul S is always a point and M
is diffeomorphic to Rn.

We are now able to classify all topological types of noncompact complete Riemannian
3-manifolds M with nonnegative sectional curvature: Let S be a soul of M .

If S is a point, we have M ≈ R3.

If S is one dimensional, it has to be diffeomorphic to S1. Hence, in this case M is
diffeomorphic to a plane bundle over S1. We conclude that M ≈ S1 × R2 or Moe2 × R.
In both cases the lift S̃ of S in the universal cover M̃ is a line. So by the Ricci splitting
Theorem we have M̃ ∼= R × N , where N is a 2-manifold of nonnegative curvature. Hence
M ∼= R × N/Γ where Γ = 1 or Γ = 〈(s,Φ)〉 for an s > 0 and an isometry Φ : N → N that
fixes a point.

2If N is not isometric to the round S2 we can either use the result of [Ham2] or the facts that N has
no nontrivial orientation preserving isometries without fixed points (Therem 3.7 in [dCa]) and that any
orientation preserving isometry of N is isotopic to the identity since it is a Möbius transform on N ≈ CP 1

where we choose the induced complex structure on N .
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Finally, if S is two dimensional, we have S ≈ S2, RP 2, T 2 or K2 and M is either
diffeomorphic to S × R or it is a twisted line bundle over S. In the case S ≈ S2 or RP 2

there are the following possibilities: M ≈ S2 × R, RP 2 × R or S2×̃R := (S2 × R)/ ∼
(where (a, b) ∼ (−a,−b)). If S ≈ T 2 or K2, then the lift S̃ of S in the universal cover

M̃ is isometric to R2 and totally geodesic. Hence by the Ricci splitting Theorem M is
flat and isometric to a quotient of the Euclidean space R3 (for a classification of the flat
3-manifolds see again [Wol]).

1.5 Cones

Definition 1.5.1. Let (N, dN ) be a metric space with diam N ≤ π. Denote C = Cone(N) :=
N × [0,∞)/ ∼ where (α1, 0) ∼ (α2, 0) for all α1, α2 ∈ N . We define a metric dC on C by

dC((α1, s1), (α2, s2)) :=
√

s2
1 + s2

2 − 2s1s2 cos dN (α1, α2)

Then (C, dC ) becomes a metric space which we call the (metric) cone over N and p :=
[N × {0}] its tip.

The cone C is called smooth if C0 := C\{p} carries the structure of a smooth manifold
with Riemannian metric gC whose path metric is locally isometric to dC .

Observe that by the above Definition e.g. the set {(x0, x1, x2) ∈ R3 : x2
0 = x2

1 +
x2

2, x0 ≥ 0} ⊂ R3 with the restricted metric is not a smooth cone since it is not locally
a length space. Furthermore, there are smooth cones C with the property that dC is not
globaly isometric to the path metric of gC (consider for example the case in which N = S1

and dN = 1
2dS1 + 1

2Φ∗dS1 where Φ : S1 → S1 denotes the double cover and dS1 the angle

metric, i.e. dS1(eiα, eiβ) = | arg ei(α−β)|).
In the following we use the scalar function r : C → [0,∞) to denote the radial distance

from the tip, r := dC(p, ·) = pr2. For every λ > 0 there is the canonical homothety
Tλ : C → C with Tλ[(α, s)] = [(α, λs)]. Obviously T ∗

λdC = λdC . Note that T[0,∞)x is a
geodesic ray for all x ∈ C0. So if C is smooth, t 7→ Ttx is smooth in t and we may define
the vector field ∂r on C0 by (∂r)x := 1

r
d
dt |t=1Ttx. So ‖∂r‖ = 1. Moreover, Tet is the flow of

the vector field Z = r∂r. Observe that we do not a priorily know that ∂r or Z is smooth.

Proposition 1.5.2. Let C = Cone(N) be a smooth cone. Then r and ∂r are smooth on
C0 and N can be given the structure of a Riemannian manifold with metric gN such that
C0 = N × (0,∞) as a smooth manifold and the Riemannian metric gC on C0 has the form

gC = r2gN + dr ⊗ dr. (1.1)

Moreover, we have

∇v(r∂r) = v and R(v, ∂r)∂r = 0 (1.2)

for any vector v ∈ TC0.

Proof. Observe that for any λ > 0 the map Tλ : C → C is smooth on C0 since it is locally
an isometry of the path metrics of (C0, gC) and (C0,

1
λ2 gC).

Consider the vector field Z := r∂r. So for any x ∈ C0 we have Zx = d
dt |t=1Ttx. Then,

‖Z‖ = r = pr2. We will show that Z is smooth. This will then imply the smoothness of r
and ∂r.

Let x ∈ C0. Choose a neighborhood U ⊂ C0 around x such that between any pair of
points y, z ∈ U there exists a unique minimizing geodesic γy,z : [0, 1] → C0 that depends
smoothly on y and z. Consider a small embedding of an n − 1 ball Φ : Bn−1 → U with
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0 7→ x such that the image is transverse to the geodesic T[0,∞)x in x. Moreover, choose a
small δ > 0 such that T[1,1+δ]Φ(Bn−1) ⊂ U and define

Ψ : Bn−1 × [0, 1] → C0 (q, t) 7→ γΦ(q),T1+δΦ(q)(t) = T1+tδΦ(q).

Ψ is a local diffeomorphism at (0, 0) and carries the (smooth) vector field (0, 1+tδ
δ ∂t) on

Bn−1 × [0, 1] over to the vector field Z. Thus Z is smooth in x.
Since ∂r · r = 1 we conclude that r does not have any critical points on C0. So if we

identify N with r−1(1), we find C0 = N × (0,∞) in the smooth sense. Let gN := ι∗NgC0 ,
where ι : N → C0 is the above embedding. It is easy to see that (1.1) holds.

As for assertion (1.2) we observe that for any two vectors v,w ∈ TxC0 we have
〈∇v∂r, w〉 = 〈∇v∇r, w〉 = ∇2

v,wr, so ∇·∂r is a symmetric endomorphism and so is ∇·Z =
dr ⊗ ∂r + r∇·∂r. Hence we get

2〈v,w〉 =

(
d

dt

∣∣∣∣
t=0

T ∗
etg

)
(v,w) = (LZg)(v,w) = 〈∇vZ,w〉 + 〈∇wZ, v〉 = 2〈∇vZ,w〉.

This shows the first part of (1.2). As for the second part we extend v to a vector field
V ∈ Γ(TC0) with Vx = v and [V,Z]x = 0 and get

R(v, Z)Z = (∇V ∇ZZ −∇Z∇V Z)x = (∇V Z −∇ZV )x = 0.



Chapter 2

Basics on Ricci flow

2.1 Notations and conventions

Let M be an n dimensional manifold and (gt)t∈I a smooth family of Riemannian metrics
parameterized by an interval I. For t ∈ I denote the Riemannian curvature tensor of
(M,gt) by Rt, the Ricci tensor by Rict, the scalar curvature by S(·, t) and the path metric
by distt. Analogously we define the geometric quantities diamt, volt and the Riemannian

measure µt. Furthermore, we denote distance balls by Br(x, t) := B
(M,gt)
r (x) ⊂ M . De-

pending on the situation we sometimes assume Br(x, t) to lie in M × {t}. For ∆t ∈ R we
define the parabolic neighborhood P (x, t, r,∆t) := Br(x, t)× ([t, t+∆t]∩ I) if ∆t ≥ 0 resp.
P (x, t, r,∆t) := Br(x, t) × ([t + ∆t, t] ∩ I) if ∆t ≤ 0.

Assume now that the metric gt satisfies

∂

∂t
gt = −2Rict

everywhere on M ×I. Then we say that (M ×I, gt) is a Ricci flow or a Ricci flow solution
that we will also denote by M × I if there is no chance of confusion. We call I the time
interval and the elements of I the times. For t ∈ I we denote by M(t) := (M,gt) or
sometimes (M × {t}, gt) the time t slice.

Let (S2, g) be the round 2-sphere that has constant scalar curvature 1. Unlike in most
other texts on differential geometry we will refer to this metric as the standard round
metric. Note that the metric that is usually refered to as the standard round metric is
1
2g. It is easy to check that (S2 × (−∞, 1), (1 − t)g) is a Ricci flow on a maximal time
interval. Observe that the scalar curvature at time t is equal to 1

1−t . We will refer to this

flow as the standard round shrinking S2 and the product flow that is (S2×R)× (−∞, 0] as
the standard round shrinking cylinder. Analogously we can proceed in higher dimensions:
For n ≥ 2 consider the round metric g on Sn that has scalar curvature 1. Then (S3 ×
(−∞, n

2 ), (1 − 2
n t)g) is a Ricci flow on a maximal that will be called the standard round

shrinking Sn.
Let (Φt)t∈I be a smooth family of diffeomorphisms Φt : M → M and consider smooth

families of Riemannian metrics (gt)t∈I on M that are of the form gt = λ(t)Φ∗
t g where g is

a Riemannian metric on M and λ : I → R+ a smooth scalar function. If (gt) satisfies the
Ricci flow equation, then we call (M × I, gt) a soliton. Consider first the case in which Φt

is the flow of a vector field V ∈ ΓTM and λ ≡ 1. Then the Ricci flow equation for (gt) is
equivalent to

Ric +
1

2
LV g = 0.

If V is the gradient of a function f with respect to the metric g, we call M × I or (M,g)
a gradient soliton or a steady gradient soliton. Observe that in this case we have

Ric +∇2f = 0.

15
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On the other hand, it can be shown that if Φt is the flow of the time dependend vector
field 1

t V (for some vector field V on M) and if λ(t) = ct for some c 6= 0, then (gt) is a
Ricci flow if and only if

Ric +
c

2
LV g +

c

2
g = 0.

In the case in which V = ∇f this becomes

Ric +c∇2f +
c

2
g = 0.

If c > 0, then I ⊂ (0,∞) and we call M × I or (M,g) an expanding gradient soliton. On
the other hand, if c < 0, we have I ⊂ (−∞, 0) and M × I or (M,g) is called a gradient
shrinking soliton.

2.2 Parabolic rescaling

Obviously, if (M × I, gt) is a Ricci flow, then so is (M ′ × I ′, g′t′) = (M × (λ2I), λ2gλ−2t)
for λ > 0 (here λ2I denotes the scaled interval, e.g. λ2I = [λ2T1, λ

2T2] if I = [T1, T2]).
We call this process parabolic rescaling and λ the scaling factor. Moreover, we write
M ′ × I ′ = λ(M × I).

It is important to keep in mind how geometric quantities rescale: The scalar curvature
S′(x, t′) of the rescaled Ricci flow equals λ−2S(x, λ−2t′). Analogously, the sectional curva-
ture K ′

x,t′ is equal to λ−2Kx,λ−2t′ . The Ricci tensor viewed as element of Γ(Endsym Λ2TM)

and the Riemmanian curvature tensor R ∈ Γ(T 3
1 TM) do not change under parabolic

rescaling except for the dilation in time. Finally, for the Riemannian measure we have
µ′

t′ = λnµλ−2t′ .

2.3 Distance distortion estimates

We mention two results that give bounds on the distortion of the distance function in
terms of bounds on the curvature. For the proofs see [KL, Sec 27].

Theorem 2.3.1. Let M × [t1, t2] be a Ricci flow on an n dimensional manifold. Suppose
that the Ricci curvature satisfies (n − 1)κmin ≤ Ric ≤ (n − 1)κmax. Then

e−(n−1)κmax(t2−t1) ≤ distt2(x, y)

distt1(x, y)
≤ e(n−1)κmin(t2−t1)

for any distinct x, y ∈ M .

This theorem implies the following fact: If M × I is a Ricci flow with bounded Ricci
curvature and one time slice M(t) is complete, then all time slices are complete.

Theorem 2.3.2. There is a constant Cn < ∞ depending only on the dimension n such
that the following holds:
Let M × I be a Ricci flow on an n dimensional manifold and let t0 ∈ I be not the initial
time. Assume that M(t0) is complete and satisfies Ric ≤ (n − 1)κ. Then in the barrier
sense we have

d

dt−

∣∣∣∣
t=t0

distt(x, y) ≥ −Cn

√
κ

for any x, y ∈ M .

Observe that the bound is independent of the distance itself.
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2.4 Evolution of geometric quantities

It is easy to deduce that the Riemannian measure satisfies

µ̇t = −Sµt

under the Ricci flow.
We will now briefly discuss the results obtained in [LB1]. Consider a Ricci flow M × I

on an n dimensional manifold M . Let π : M × I → M be the natural projection and
consider the pullback T spat(M × I) := π∗TM of the tangent bundle TM and pullbacks
T k

l T spat(M × I) = T k
l π∗TM = π∗T k

l TM of higher tensor bundles. There is a natural
metric connection ∇̄ on T spat(M × I) with respect to the pulled back Riemannian metric:
Let T := (0, ∂t) ∈ ΓT (M×I). For spatial vector fields X,Y ∈ ΓT spat(M×I) ⊂ ΓT (M×I)
we define ∇̄ by

∇̄XY := ∇XY and ∇̄T X =
∂

∂t
X − Ric(X).

It is easy to check that ∇̄g = 0. If dt ∈ Ω1(M × I) denotes the pullback of the 1-form
dt ∈ Ω1(I) under the projection M × I → I, we can write

∇̄ = ∇′ − Ric⊗dt

where ∇′ denotes the connection on π∗TM which is ∇ on the M factor of M × I and
∂
∂t on the second. The connection ∇̄ naturally induces connections on the higher tensor
bundles T k

l T spat(M × I) wich we will also denote by ∇̄.
Now it is very convenient to express the ∇̄T derivative of the Riemannian curvature

(as derived in [LB1]): For two vector fields X,Y ∈ ΓT spat(M × I) we have

(∇̄T R)(X,Y ) = (△R)(X,Y ) + tr R(R(X,Y )·, ·) − 2 tr [R(X, ·), R(Y, ·)] . (2.1)

Note that one major advantage of considering the ∇̄T derivative instead of ∇′
T is that

the evolution of R takes this form no matter whether we consider the R to be a (1, 3)
tensor, a (2, 2) tensor etc. We can even express (2.1) in a more elegant way: Let R̂ ∈
Γ Endsym(Λ2T spatM) be the Riemannian curvature operator. Then we have

∇̄T R̂ = △R̂ + 2R̂2 + 2R̂#.

Here R̂# = R̂#R̂ = ad ◦(R ∧ R) ◦ ad∗ where ad : Λ2(Λ2T spatM) ∼= Λ2so(n) → so(n)
denotes the Lie bracket (see [BW] for more details).

By contracting we can deduce the evolution equation for the Ricci curvature

∇̄T Ric = △Ric +2
∑

i

R(·, ei)(Ric ei)

for any orthonormal frame (ei). The evolution of the scalar curvature becomes

Ṡ =
∂

∂t
S = △S + 2‖Ric ‖2. (2.2)

As derived in [LB1], the evolution of the norms of higher curvature derivatives takes
the following form:

(
‖∇lR‖2

)·
= △

(
‖∇lR‖2

)
− 2‖∇l+1R‖2 +

∑

i + j = l,
i, j ≥ 0

∇iR ∗ ∇jR ∗ ∇kR (2.3)

for l ≥ 0. Here ∇iR ∗ ∇jR ∗ ∇kR denotes some unspecified contraction of the tensor
∇iR ⊗∇jR ⊗∇kR that is equivariant under the action of the orthogonal group.
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2.5 Maximum principles

In order to estimate solutions to equations of heat type we can use the weak maximum
principle. We first mention an easy result (for a proof see e.g. [CLN, Sec 2.3]):

Theorem 2.5.1 (Weak maximum principle, baby case). Let (M,g) be a compact
Riemannian manifold and u : M × [0, T0) → R be a smooth scalar function satisfying

u̇ ≥ △u.

Now if u(·, 0) ≥ 0 on M , then u ≥ 0 everywhere on M × [0, T0).

The assertion stays true if we just require the differential inequality to hold in the
barrier sense. We can refine this result to the case in which the solution u lives in a vector
bundle (see [Ham3, Lem 8.1] or [Lee2])

Theorem 2.5.2 (Weak maximum principle, bundle case). Let M be a compact
manifold with boundary and (gt)t∈[0,T0) a smooth family of Riemannian metrics. Further-
more, let E → M × [0, T0) be a Euclidean vector bundle equipped with a metric connection
∇. Consider a closed subbundle C ⊂ E of convex sets Cx,t ⊂ Ex,t that is parallel in spatial
direction and a smooth vertical vector field Φ ∈ ΓTE that has the property that the flow
of the vector field Φ + ∇T preserves C (here ∇T denotes the vector field on E that is
horizontal with respect to ∇T and projects down to the vector field T on M).
Now if u ∈ Γ(M × [0, T0), E) satisfies the PDE

∇T u = △u + Φ(u, t)

and if u ∈ C on ∂par(M × [0, T0)) := M × {0} ∪ ∂C × [0, T0), then u ∈ C everywhere on
M × [0, T0).

There are ways of getting rid of the assumption that M be compact. However, in
this case we have to assume that the solution u satisfies some bounds depending on the
distance to a basepoint (see [CLN, Sec 7.4] or [Bam1]).

We now discuss the equality case:

Theorem 2.5.3 (Strong maximum principle, baby case). Let (M,g) be a not nec-
essarily compact Riemannian manifold and u : M × [0, T ) → R a smooth scalar function
satisfying

u̇ ≥ △u and u ≥ 0.

If u(x, t) = 0 for some x ∈ M and t > 0, then we already have u = 0 on M × [0, t].

In the bundle case we have (see again [Lee2])

Theorem 2.5.4 (Strong maximum principle, bundle case). Let M be a not neces-
sarily compact manifold and (gt)t∈[0,T0) a smooth family of Riemannian metrics. Further-
more, let E → M × [0, T0) be a Euclidean vector bundle equipped with a metric connection.
Consider a closed subbundle C ⊂ E of convex sets Cx,t ⊂ Ex,t that is parallel in space and
(!) time direction and a vertical vector field Φ ∈ ΓTE as in Theorem 2.5.2. Assume that
u ∈ Γ(M × [0, T0), E) satisfies

∇T u = △u + Φ(u, t) and u ∈ C everywhere on M × [0, T0)

Now if u(x, t) ∈ ∂C for some x ∈ M and t > 0, then we have u ∈ ∂C everywhere on
M × [0, t].
Moreover, for any (x′, t′) ∈ M × [0, t) the vector Φ(u(x′, t′)) and the Hessian Hess u are
perpendicular to any normal vector N of Cx′,t′. (Here, a vector N ∈ Ex′,t′ is said to be
normal to Cx′,t′ at u(x′, t′) if 〈v,N〉 ≤ 〈u(x′, t′), N〉 for all v ∈ Cx′,t′.)
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We mention some useful applications of the weak and strong maximum principle:

Corollary 2.5.5. Let M × [0, T ) be a Ricci flow on a compact n-dimensional manifold
M and suppose that Smin ≤ S(·, 0) ≤ Smax on M . Then

1
1

Smin
− 2

n t
≤ S(·, t)

and if Ric ≥ 0 everywhere,

S(·, t) ≤ 1
1

Smax
− 2t

.

Corollary 2.5.6. Consider a Ricci flow M × [0, T ) on a compact manifold M . If the
curvature operator at time 0 is everywhere nonnegative definite, then this property is pre-
served under the Ricci flow.
In particular, in dimension 3 nonnegative sectional curvature is preserved.

Corollary 2.5.7. Let M × [0, T ] be a Ricci flow on an n dimensional manifold. Assume
that the curvature operator R̂ is everywhere nonnegative definite and M(T ) ∼= N × R,
where (N, gN ) is an n − 1 dimensional Riemannian manifold. Then the splitting already
existed before T and the Ricci flow M × [0, T ] is of product form (N × R) × [0, T ] where
N × [0, T ] denotes a Ricci flow on N .

Corollary 2.5.8. Consider a Ricci flow M×[0, T ) on a compact 3-manifold M . If Ric ≥ 0
and Ric ≥ cS for some c ≥ 0 at time 0 then this condition is preserved under the Ricci
flow.
Moreover, if c > 0 and for some t > 0 there is no c′ > c such that Ric ≥ c′S at time t,
then M × [0, T ) is the Ricci flow of a metric quotient of the round S3.

Proof. The first statement can be found in [Ham1, Thm 9.6]. For the second statement we
apply the strong maximum principle. Analyzing the calculations in the reference, we find
that either Ric = cS〈·, ·〉 everywhere on M × [0, t] (this implies that M(0) has constant
nonnegative curvature) or Ric has a zero eigenvalue in which case M × [0, T ) must be flat.
But flat metrics do not satisfy the condition of the last statement.

2.6 Shi’s estimates

We can derive a smoothing property of the Ricci flow from the weak maximum principle
and (2.3):

Theorem 2.6.1 (global Shi estimates). Consider a Ricci flow M × [0, T ) on a compact
manifold M . Assume that ‖R‖ ≤ D on M × [0, T ). Then we have

‖∇lR‖ ≤ Cl
D

tl/2
on M ×

(
[0, 1

D ] ∩ [0, T )
)

for any l ≥ 0 where the Cl are constants that only depend on l and the dimension n.

Observe that we don’t assume bounds on higher curvature derivatives at time 0.

Proof. For a proof see [Ham5, Sec 7] or [LB3].

A localization of this statement reads as follows:
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Theorem 2.6.2 (local Shi estimates). Let D < ∞, T ≤ 1
D and r ≥ 1√

D
. Consider

a Ricci flow M × [0, T ) on a not necessarily complete manifold M and a point p ∈ M .
Assume that Br(p, 0) ⊂ M is relatively compact and ‖R‖ < D on Br(p, 0) × [0, T ]. Then
for all l ≥ 0

‖∇lR‖(p, t) ≤ Cl
D

tl/2
for all t ∈ (0, T ].

Here Cl again depends only on l and the dimension n.

Proof. A proof of this statement can be found in [Shi]. For a more readable exposition
see [Ham5, Sec 13] or [LB4].

2.7 Short and long time existence

Theorem 2.7.1 (short time existence and uniqueness). Let (M,g0) be a compact
Riemannian manifold. Then there is a δ > 0 and a Ricci flow (M × [0, δ), gt) with initial
metric g0.
Moreover, the solution is unique in the following sense: If (M × [0, δ′), g′t) is another
solution with initial metric g0, then gt and g′t coincide on [0, δ) ∩ [0, δ′).

A proof of this result can be found in [Ham1]. However, this proof makes use of deep
analytical tools since the Ricci flow equation is not strictly parabolic. By a method known
as “DeTurck’s trick” it is possible to reduce the problem to a strictly parabolic one (see
[DeT]). Now the existence and uniqueness follows from standard PDE techniques. For an
exposition of the methods used to prove Theorem 2.7.1 see [Hei2] or [Bam2].

Using the global Shi estimates it is easy to discuss the long time existence statement:

Theorem 2.7.2 (long time existence). Let M × [0, T ) be a Ricci flow on a compact
manifold defined on a maximal time interval [0, T ). Then maxM ‖Rt‖ → ∞ for t ր T .

Proof. Applying the weak maximum principle to ‖R‖2 (see (2.3) for the case l = 0), it
is easy to see that either maxM ‖Rt‖ stays bounded in t or maxM ‖Rt‖ → ∞ for t ր T .
Assume that maxM ‖Rt‖ is bounded. By the global Shi estimates (Theorem 2.6.1) we find
that the curvature derivatives ‖∇lR‖ are each bounded on M × [0, T ). Fix an arbitrary
Riemannian metric g̃ on M and denote by | · | its associated norm as well as by ∇̃ its Levi-
Civita connection. By Lemma 3.3.2 in chapter 3 we conclude that the derivatives |∇̃lgt|
are uniformly bounded on M × [0, T ). So the family of metrics gt smoothly converges to
a metric gT on M . This shows that we can extend the Ricci flow on M × [0, T ) to a larger
time interval [0, T ] and by Theorem 2.7.1 to an even larger time interval [0, T + δ). A
contradiction.

2.8 A Harnack inequality for the Ricci flow

We can derive a differential inequality similar to the Harnack inequality from [LY].

Theorem 2.8.1. Let M ×(0, T ) be a Ricci flow with complete time slices and nonnegative
curvature operator. Assume furthermore that the curvature is bounded on compact time
intervals. Then for any (x, t) ∈ M × (0, T ) and v ∈ TxM

∂S

∂t
(x, t) +

S

t
+ 2〈∇S, v〉 + 2Ric(v, v) ≥ 0.

Integrating this inequality appropriately yields:
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Theorem 2.8.2. Under the same assumptions of the Theorem above let (x1, t1), (x2, t2) ∈
M × (0, T ) such that t1 < t2. Then

S(x2, t2) ≥
t1
t2

exp

(
−dist2t1(x1, x2)

2(t2 − t1)

)
S(x1, t1).

For a proofs of both Theorems see [Ham7] or [Mül].

2.9 Hamilton-Ivey pinching

We have seen in Corollary 2.5.6 that in dimension 3 nonnegative sectional curvature is
preserved under the Ricci flow. Other lower bounds on the sectional curvature are not
preserved. But we have

Theorem 2.9.1 (Hamilton-Ivey pinching). Let M × [T1, T2) be a Ricci flow on a
compact manifold M and ϕ−1 > −T1. Consider the following time dependent property:
For x ∈ M and t ∈ [0, T ) there is an X > 0 with K(x, t) ≥ −X such that

S(x, t) ≥ X(log X + log(ϕ−1 + t) − 3) and S(x, t) ≥ − 3

ϕ−1 + t
.

Now if all points on M satisfy the property at time T1, then so do the points at all times
of [T1, T2).

Proof. The result is a parabolically rescaled version of [Ham6, Thm 4.1].

Observe that the Theorem asserts that although there is no lower bound on the sec-
tional curvature, the ratio of the lowest sectional curvature and the scalar curvature S
goes to zero for S → ∞. So if we have an upper bound on the scalar curvature, then we
have a lower bound on the sectional curvature. This in turn implies that we have an upper
bound on the sectional curvature.

2.10 Ricci flows on cones

Lemma 2.10.1. Let (C, p) be a smooth cone and U ⊂ C0 open. Suppose the metric gC

on U is the final time slice of a Ricci gt flow on U × (−ε, 0] such that gt has nonnegative
curvature operator for all t ∈ [−ε, 0] . Then C is locally flat in U .

Proof. By Proposition 1.5.2 we know that Ric(∂r, ∂r) = 0 on U . Now, we apply the strong
maximum principle to the evolution of the curvature operator (compare also with the
proof of Corollary 2.5.7) and get that for any point x ∈ U there is a neighborhood V ⊂ U
such that for any z ∈ V there is a parallel vector field P (z) ∈ Γ(TV ) with Pz(z) = (∂r)z
and Ric(P (z), P (z)) = 0 on V . Let Nx ⊂ TxU be the null space of Ric. Since Ric ≥ 0 we
have Px(z) ∈ Nx for any z ∈ V . So for any v ∈ TxU we have again by Proposition 1.5.2

Nx ∋ (dPx)x (v) = (dPx)x (v) + (∇vP )x (x) = (dy(Py(y)))x (v) = (∇v∂r)x =
1

r
v.

We conclude Nx = TxU . Hence K ≡ 0 on U .
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Chapter 3

Geometric compactness theorems

In the following, unless otherwise stated, metric spaces are always assumed to be complete
and proper (i.e. bounded sets are totally bounded). Note that by Proposition 1.2.4 this
property is always fulfilled for complete, locally compact length spaces.

Further representations concerning the first two sections can be found in [Gro] and
[Ham4]. However, the reader is advised to familiarize with the language developed in
these sections.

3.1 Gromov-Hausdorff convergence & compactness

3.1.1 The compact case

Consider a sequence (Xk) of compact metric spaces. We say that (Xk) converges to a com-
pact metric space X∞ in the Gromov-Hausdorff sense if one of the following (equivalent)
conditions is satisfied:

(A) For any ε > 0 there are an N = N(ε) and ε-nets {x(1)
∞ , . . . , x

(m)
∞ } ⊂ X∞, {x(1)

k , . . . , x
(m)
k } ⊂

Xk for k > N such that

∣∣∣d
(
x

(i)
k , x

(j)
k

)
− d

(
x(i)
∞ , x(j)

∞
)∣∣∣ < ε for all 1 ≤ i, j ≤ m.

(B) There are a sequence εk → 0 and εk-isometries Φk : X∞ → Xk with Bεk
(Im Φk) = Xk

(here B·(·) denotes the tubular neighborhood), where we call a map Φ : A → B
between two metric space A and B an ε-isometry if

‖Φ∗dB − dA‖∞ < ε.

(C) We have dGH(Xk,X∞) → 0, where dGH denotes the Gromov-Hausdorff distance, i.e.
for two arbitrary (not necessarily complete or proper) metric spaces A and B

dGH(A,B) := inf

{
dZ
H(ι1A, ι2B) :

Z arbitrary metric space, ι1 : A → Z,
ι2 : B → Z isometric embeddings

}
∈ [0,∞]

Here dZ
H(U, V ) denotes the Hausdorff distance in Z, i.e.

dZ
H(U, V ) := inf {r : Br(U) ⊃ V and Br(V ) ⊃ U} .

(D) There are a metric space Z (not necessarily complete or proper) and isometric em-
beddings ιk : Xk → Z, ι∞ : X∞ → Z with respect to which dH(Xk,X∞) → 0.

23
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Condition (A) is very convenient if one wishes to construct the Gromov-Hausdorff limit of
a sequence of metric spaces. Condition (C) is useful to formalize the concept of Gromov-
Hausdorff convergence: it enables us to endow the space Xcp of isometry classes of compact
metric spaces1 with a metric under which convergence is equivalent to Gromov-Hausdorff
convergence. It also immediately gives us that the Gromov-Hausdorff limit of a sequence
of compact metric spaces is unique. Conditions (B) and (D) are often used for proving
that certain geometric properties of the spaces in the sequence carry over to the limit.
Moreover, observe that (B) and (D) give a tool to fix a particular “way of convergence”
that may be worked with lateron. So for example after fixing the sequence (Φk) of εk-
isometries or the embeddings (ιk) and ι∞ we can define what it means to say that a
sequence of points yk ∈ Xk or a sequence of maps ϕk : Xk → A,A → Xk or Xk → Xk (for
a metric space A) converges to a point y∞ ∈ X∞ resp. a map ϕ∞ : X∞ → A,A → X∞ or
X∞ → X∞. For example, if γk : I → Xk for I ⊂ R an interval are minimizing geodesics
converging to some map γ∞ : I → X∞, then γ∞ is itself a minimizing geodesic.

For an arbitrary metric space A denote by NA
ε ∈ N0 ∪ {∞} the minimal cardinality of

closed ε-nets that is to say subsets T ⊂ A such that any point a ∈ A has distance ≤ ε to
a point t ∈ T (we could also define NA

ε to be the minimal cardinality of ε-nets, but this is
not a closed condition). Note that NA

ε < ∞ if A is totally bounded.

Choose a function Ñ· : R+ → N, a constant D̃ < ∞ and set

X eN, eD := {X ∈ Xcp : NX
ε ≤ Ñε for all ε > 0 and diamX ≤ D̃}

The following fact is known as Gromov-Hausdorff compactness

Theorem 3.1.1 (Gromov-Hausdorff compactness for compact metric spaces).
The space (X eN, eD

, dGH) is compact. In other words, any sequence (Xk) of compact metric
spaces satisfying

(i) NXk
ε ≤ Ñε for all ε > 0 and

(ii) diam Xk ≤ D̃

for all k has a subsequence (Xkj
) that converges to a compact metric space X∞ with the

same properties (i) and (ii).

If a sequence of metric spaces (Xk) satisfies property (i) then we also say that Xk

is uniformly totally bounded. Note that by the following Proposition for any sequence
of compact n dimensional Riemannian manifolds (Mk, gk) with Rick ≥ (n − 1)κ and
diam Mk ≤ D̃ (for any n ∈ N, κ ∈ R and D̃ < ∞) there is a subsequence (Mki

) that
converges to some compact metric space. Here we consider the Mki

as metric spaces
equipped with the path metric.

Proposition 3.1.2. For any n ∈ N and κ ∈ R there is a function Ñ· : R+×R+ → N such
that if (M,g) is an n dimensional Riemannian manifold with Ric ≥ (n− 1)κ, x ∈ M and

B2r+ε/2(x) is relatively compact, we have N
Br(x)
ε ≤ Ñε(r) for all ε, r > 0.

Proof. Fix ε, r > 0. Choose k ∈ N maximal with the property that there are points
y1, . . . , yk ∈ Br(x) such that the balls Bε/2(y1), . . . , Bε/2(yk) are pairwise disjoint. It is

easy to see that {y1, . . . , yk} is an ε-net for Br(x) and N
Br(x)
ε ≤ k. We want to estimate

k from above. By the Bishop-Gromov Theorem 1.4.2 we have for all 1 ≤ i ≤ k

vol Bε/2(yi)

vol B
Mn

κ

ε/2 (x0)
≥

vol B2r+ε/2(yi)

vol B
Mn

κ

2r+ε/2(x0)
≥

vol Br+ε/2(x)

vol B
Mn

κ

2r+ε/2(x0)

1Note that we may in fact speak of the set Xcp since every metric space satisfying the above conditions
has cardinality ≤ ℵ1. However, this is not important in the following theory.
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where Mn
κ denotes the n dimensional model space of constant curvature κ and x0 ∈ Mn

κ

a basepoint. So

vol Bε/2(yi)

vol Br+ε/2(x)
≥

vol B
Mn

κ

ε/2 (x0)

vol B
Mn

κ

2r+ε/2(x0)
.

Summing this inequality over i yields

1 ≥
∑k

i=1 vol Bε/2(yi)

vol Br+ε/2(x)
≥ k

vol B
Mn

κ

ε/2 (x0)

vol B
Mn

κ

2r+ε/2(x0)

hence k ≤ vol B
Mn

κ
2r+ε/2

(x0)

B
Mn

κ
ε/2

(x0)
and the Proposition follows.

3.1.2 The noncompact case

We now relax the condition that the Xk are compact but still assume completeness and
properness. In order to assure uniqueness of the limit we have to choose basepoints
xk ∈ Xk. Now, we say that the sequence (Xk, xk) of pointed metric spaces converges to
a (complete and proper) pointed metric space (X∞, x∞) if one of the following equivalent
conditions is satisfied:

(A′) For any r and any ε > 0 there are N = N(r, ε) and ε-nets {xk = x
(0)
k , x

(1)
k , . . . , x

(m)
k } ⊂

BXk
r (xk), {x∞ = x

(0)
∞ , x

(1)
∞ , . . . , x

(m)
∞ } ⊂ BX∞

r such that
∣∣∣d
(
x

(i)
k , x

(j)
k

)
− d

(
x(i)
∞ , x(j)

∞
)∣∣∣ < ε for all 0 ≤ i, j ≤ m.

(B′) There are sequences rk → ∞, εk → 0 and εk-isometries Φk : BX∞

rk
(x∞) → BXk

rk
(xk)

such that Bεk
(Im Φk) ⊃ BXk

rk
(xk) and dk(Φk(x∞), xk) < εk.

(D′) There is a metric space Z (not necessarily complete or proper) and isometric embed-
dings ιk : Xk → Z, ι∞ : X∞ → Z such that ιk(xk) → ι∞(x∞) and dH(Xk ∩U,X∞ ∩
U) → 0 for any bounded open set U ⊂ Z.

It is easy to see that the limit (X∞, x∞) of a sequence of pointed metric spaces (Xk, xk)
is unique if we require completeness.

Let (A, a) be an arbitrary pointed metric space. For ε, r > 0 we write N
(A,a)
ε (r) :=

N
BA

r (a)
ε . Choose a function Ñ·(·) : R+×R+ → N. Now the Gromov-Hausdorff compactness

statement reads as follows:

Theorem 3.1.3 (Gromov-Hausdorff compactness for pointed metric spaces).

Any sequence (Xk, xk) of complete and proper pointed metric spaces satisfying N
(Xk ,xk)
ε (r) ≤

Ñε(r) for all ε, r > 0 and k ∈ N has a subsequence that converges to some complete and
proper pointed metric space (X∞, x∞).

Again by Proposition 3.1.2 we conclude that any sequence (Mk, xk) of complete pointed
Riemannian manifolds with Rick ≥ (n− 1)κ (for some κ ∈ R) subconverges to a complete
and proper metric space (X∞, x∞). We can even be more general: If there is a function
κ : [0,∞) → R such that Rick(x) ≥ (n − 1)κ(dist(x, xk)) for all k and x ∈ Mk, then
(Mk, xk) subconverges to a pointed metric space (X∞, x∞).

For completeness we mention the following easy fact: If (Xk, xk) Gromov-Hausdorff
converges to some metric space (X∞, x∞) and if γk : [ak, bk] → Xk (ak ≤ 0 ≤ bk) are
minimizing geodesics such that yk := γk(0) → y∞ ∈ X∞ and ak → a∞ ∈ [−∞, 0] resp.
bk → b∞ ∈ [0,∞], then the γk subconverge to some minimizing geodesic γ∞ : [a∞, b∞] →
X∞ with γ∞(0) = y∞ where we have to replace [a∞, b∞] by (−∞, b∞], [a∞,∞) or R if
a∞ = −∞ or b∞ = ∞.
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3.2 Smooth convergence

3.2.1 Definition

Let ((Mk, gk), xk) be a sequence of pointed complete n dimensional Riemannian mani-
folds. Assume that their path metric Gromov-Hausdorff converges to some metric space
(X∞, x∞). It may happen that X∞ or parts of X∞ come from the structure of a smooth
Riemannian manifold of the same dimension. So assume that there is some open set
M∞ ⊂ X∞ that is locally isometric to the path metric of a Riemannian manifold. Hence,
M∞ is itself a smooth Riemannian manifold (M∞, g∞). We now want to establish a
stronger notion of convergence: Assume that the Mk and X∞ are embedded into a met-
ric space Z as described in (D′). We say that the ((Mk, gk), xk) smoothly converge to
(X∞, x∞) on M∞ in the above embedding if there are an exhaustion of M∞ by open sets
Uk and diffeomorphisms onto their image Φk : Uk → Mk such that Φk → idM∞

pointwise
and

Φ∗
kgk → g∞ smoothly for k → ∞.

Hereby we mean that we have pointwise convergence Φ∗
kgk → g∞ and ∇lΦ∗

kgk → 0 for all
l, where ∇ denotes the Levi-Civita connection on (M∞, g∞). Observe that it may depend
on the embeddings of the Mk and X∞ into Z whether we have smooth convergence on
M∞ or not.

In order to quantify smooth closeness, we introduce the notion of smooth ε-isometries:
We call a diffeomorphism onto its image Φ : (N, gN ) → (M,gM ) a smooth ε-isometry if

‖Φ∗gM − gN‖
C[ε−1] < ε

Notice the analogy to (B). If there is no chance of confusion, we simply call a smooth ε-
isometry an ε-isometry. Moreover, we call Φ an ε-homothety if it is an ε-isometry between
(N, gN ) and (M,λ−2gN ) for some λ > 0 which we call the scaling factor of Φ.

3.2.2 Regularity of the limit

We want to find conditions under which we can ensure local smoothness of the limit space
X∞ at certain points. Observe that intuitively there may occur two different processes
leading to nonsmoothness in the limit:

In the first case, necks pinch down to diameter 0. As a consequence the dimension
drops when passing to the limit. The standard example is the family of 2-tori T 2 = S1×S1

that shrink down in one factor but stay constant in the other. However, it is also possible
that neckpinches occur just at certain areas. In all these cases the injectivity radius can
not be uniformly bounded from below by a certain positive constant.

In the second case, nonsmooth edges or corners develop: For example we could produce
a 2 dimensional cylinder with a lid or a cylinder capped by a round hemisphere as a limit.
Observe that near the nonsmooth point ‖R‖ resp. ‖∇R‖ does not stay bounded in the
approximating sequence.

This motivates the following definition: Consider the functions

inj, ‖R‖, ‖∇R‖, ‖∇2R‖, . . . :
⋃

k

Mk ⊂ Z −→ [0,∞).

Call a point y ∈ X∞ regular if there is a neighborhood U ⊂ Z and constants ρ > 0 and
C0, C1, . . . < ∞ such that for large k we have inj ≥ ρ and ‖∇lR‖ ≤ Cl for all l on U ∩Mk.
Let M∞ be the set of all regular points.

We first mention a technical result, namely that we can bound the derivatives of the
metric in exponential coordinates in terms of the derivatives of the curvature. A proof can
be found in [LB2]. Note that this result can be improved in harmonic coordinates (see
[DK] and [JK]). However, we will not need this fact here.
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Lemma 3.2.1. For any r < ∞, l, n ∈ N and any constants D0, . . . ,Dl < ∞ we can find
constants D′

0, . . . ,D
′
l < ∞ such that the following holds:

Let (M,g) be a Riemannian manifold and x ∈ M . Consider a starlike subset U ⊂ TxM
(with center 0) on which the exponential map exp is defined and that lies in Br(0). Suppose
that ‖∇iR‖ < Di for all 0 ≤ i ≤ k. Then ‖di exp∗ g‖ < D′

i on U for all 0 ≤ i ≤ k.

Theorem 3.2.2. M∞ is locally isometric to a smooth Riemannian manifold.

Proof. Let y ∈ M∞. Then we have bounds for inj, ‖∇lR‖ on some neighborhood U of y.
It is enough to show that the metric d∞ restricted to some neighborhood of y is isometric
to the path metric of a Riemannian manifold. Let yk ∈ Mk ∩U (for large k) be a sequence

with yk → y. Choose 0 < r < min(ρ
2 ,

π
√

n(n−1)

4
√

C0
) and such that B

Mk

2r (yk) ⊂ U for large k.

Then we have pointed Gromov-Hausdorff convergence

(
B

Mk

2r (yk), yk

)
−−−−→
k→∞

(
B

X∞

2r (y), y
)
.

Let
expk : Rn ⊃ B2r(0) → BMk

2r (yk), 0 7→ yk

be exponential maps ((d expk)0 may be chosen arbitrarily) which are diffeomorphisms
since r < inj(yk). Set hk := exp∗

k gk. By Lemma 3.2.1 we may bound the hk and their
derivatives in terms of the (Cl) uniformly on B2r(0) and in k. Applying Arzelà-Ascoli’s
theorem we get that after passing to a subsequence

hk −→ h∞ smoothly (3.1)

for some smooth h∞ ∈ Sym2 T ∗B2r(0). h∞ is a Riemannian metric since 2r <
π
√

n(n−1)

2
√

C0
,

so we can exclude conjugate points for 0.
This result implies that the expk : (B2r(0), h∞) → (B2r(yk), gk) are uniformly lipschitz.

So again (by Arzelà-Ascoli) after passing to a subsequence we get

expk −→ exp∞ uniformly (3.2)

for some exp∞ : B2r(0) → BM∞

2r (y).
It is easy to see that d′k :=

(
expk |Br(0)

)∗
dk is equal to the restriction of the path

metric of (B2r(0), hk) to Br(0). From (3.1) we get that d′k converges to the restriction of
the path metric of (B2r(0), h∞) to Br(0). On the other hand, we conclude from (3.2) that
d′k converges to d′∞ :=

(
exp∞ |Br(0)

)∗
d∞ on Br(0). This gives us the desired result.

Now define Φk : BM∞

r (y) → BMk
r (yk) by

Φk :=
(
expk |Br(0)

)
◦
(
exp∞ |Br(0)

)−1
.

We have Φk(y) = yk. From (3.2) we get that Φk → id
BM∞

r (y)
uniformly. Furthermore, by

the Lemma at the end of this subsection (applied to BM∞

2r (0)) we conclude that Φ∗
kgk →

g∞|
BM∞

r (y)
in the smooth uniform sense

It is important to observe that although every regular point in X∞ is smooth, a smooth
point in X∞ does not necessarily have to be regular.

Lemma 3.2.3. Let E → M be a vector bundle with two connections ∇ and ∇̃. If a
sequence of sections sk ∈ ΓE smoothly converges to some section s∞ ∈ ΓE with respect to
∇, i.e.

∇lsk −→ ∇ls∞ in (T ∗M)⊗l ⊗ E for all l ≥ 0

then it also converges smoothly with respect to ∇̃.
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Proof. Without loss of generality we may assume that s∞ = 0. Let

A := ∇̃ − ∇ ∈ Γ(T ∗M ⊗ EndE)

We want to show
∇̃lsk −→ 0.

We proceed by induction on l. For l = 0 there is nothing to show. Let the hypothesis be
true for l. We will show that it also holds for l+1. Obviously, we have ∇sk → 0 smoothly
in ΓT ∗M ⊗ E with respect to ∇. So by the induction hypothesis we get

∇̃l∇sk −→ 0.

Again by the induction hypothesis we have

∇̃l
v1,...,vl

(
∇̃sk −∇sk

)
= ∇̃l

v1,...,vl
A(sk) =

l∑

i=0

∑

σ∈Sl

∇̃i
vσ1,...,vσi

A(∇̃l−i
vσ(i+1),...,vσl

sk) −→ 0.

Combining the two convergence results we get ∇̃l+1sk −→ 0.

3.2.3 Establishing smooth convergence

Now we want to show that we have smooth convergence on M∞ for a subsequence of the
(Mk). Choose an exhaustion of M∞ by open and in M∞ relatively compact sets Ul ⊂ M∞.
It suffices to show that for any l there is a subsequence such that there are smooth maps
Φk : Ul → Mk with the property that Φk → idUl

pointwise and Φ∗
kgk → g∞|Ul

smoothly.
An application of a diagonal argument yields the desired result. For this reason we will
discard the index l in the following steps.

The result after Theorem 3.2.2 implies that after passing to a subsequence there is
an r > 0 (less than the injectivity radius of M∞ on U) and a finite number of points
y(1), . . . , y(m) ∈ U that represent an r

64 -net for U as well as diffeomorphisms

Φ
(i)
k : BM∞

r (y(i)) −→ BMk
r (y

(i)
k ) where y

(i)
k := Φk(y

(i))

such that Φ
(i)
k → id

BM∞
r (y(i))

uniformly and (Φ
(i)
k )∗gk → g∞|

BM∞
r (y(i))

uniformly smoothly.

For two indices i, j ∈ {1, . . . ,m} write i ≺ j if B
M∞

r/4 (y(i)) ⊂ BM∞

r (y(j)). Then, for

sufficiently large k, we also have B
Mk

r/4(y
(i)
k ) ⊂ BMk

r (y
(j)
k ). By passing to a subsequence we

may assume that this is always implied by i ≺ j.

For arbitrary i, j we have dk(Φ
(i)
k ,Φ

(j)
k ) → 0 uniformly on BM∞

r (y(i)) ∩ BM∞

r (y(j)). In

order to express an analogous statement for the derivatives of Φ
(i)
k resp. Φ

(j)
k , we define

Ψ
(ji)
k : BM∞

r/4 (y(i)) −→ BM∞

r (y(j)) by Ψ
(ji)
k :=

(
Φ

(j)
k

)−1
◦ Φ

(i)
k

if i ≺ j. The previous result gives us that

Ψ
(ji)
k −→ id

BM∞

r/4
(y(i))

uniformly.

We wish to make this a smooth convergence by choosing a suitable subsequence.

The differential (dΨ
(ji)
k )y(i) : Ty(i)M∞ → T

Ψ
(ji)
k (y(i))

M∞ is uniformly bounded in k with

respect to h∞ since it is orthogonal with respect to the metric (Φ
(i)
k )∗gk which is close to

h∞. This and the fact that Ψ
(ji)
k (y(i)) → y(i) implies that we can choose a subsequence

such that (
dΨ

(ji)
k

)
y(i)

−→ ϕ(ji) for all i ≺ j
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where ϕ(ji) : (Ty(i)M∞, (h∞)y(i)) → (Ty(i)M∞, (h∞)y(i)) is some isometry. We are in the
following situation:

BM∞

r/4 (y(i)) �

expy(i)

Br/4(0)
exp

y
(i)
k- BMk

r/4 (y
(i)
k )

exp
(ji)
k := exp

(Φ
(j)
k )∗gk

Ψ
(ji)
k (y(i))

BM∞

r (y(j))

Ψ
(ji)
k

?

Φ
(j)
k

-

�

BMk
r (y

(j)
k )

?

∩

where exp
(ji)
k is the exponential map on BM∞

r equipped with the metric (Φ
(j)
k )∗gk. We

have exp
(ji)
k (0) = Ψ

(ji)
k (y(i)) → y(i) and

(
d exp

(ji)
k

)
0

=
(
dΨ

(ji)
k

)
y(i)

◦
(
d expy(i)

)
0
−→ ϕ(ji) ◦

(
d expy(i)

)
0
.

Since (Φ
(j)
k )∗gk → g∞ smoothly, we have smooth uniform convergence

exp
(ji)
k −→ exp(ji)

where exp(ji) : Br/4(0) → BM∞

r (y(j)) is an exponential map with exp(ji)(0) = y(i) and

(d exp(ji))0 = ϕ(ji)◦(d expyi)0. Since Ψ
(ji)
k converges uniformly to id

BM∞

r/4
(yi)

we get expji =

expy(i) . So we must have ϕ(ji) = idT
y(i)M and thus

Ψ
(ji)
k −→ id

BM∞

r/4
(y(i))

smoothly uniformly.

We have found out that the maps Φ
(i)
k |

BM∞

r/4
(y(i) get arbitrarily close to each other on

their overlaps even in the smooth sense. Now, we will interpolate between them (actually
we will interpolate between their inverses).

Let Vk :=
⋃

i Φ
(i)
k (BM∞

r/4 (y(i))) =
⋃

i B
Mk

r/4 (y
(i)
k ) ⊂ Mk and V :=

⋃
i B

M∞

r/4 (y(i)) ⊂ M∞.
Assume that we have constructed maps Λk : Vk → M∞ such that

Λk ◦ Φ
(i)
k |

BM∞

r/4
(y(i))

−→ id
BM∞

r/4
(y(i))

smoothly uniformly (3.3)

for each i. We will show that this gives us the desired result. Since for large k the map

Λk ◦Φ
(i)
k |

BM∞

r/16
(y(i))

is bilipschitz with a Lipschitz constant that is arbitrarily close to 1, we

know that its image contains BM∞

r/64(y
(i)) for large k. So for large k we have Λk(V

′
k) ⊃ U

for V ′
k :=

⋃
i BMk

r/16(y
(i)) .

Furthermore, we can assume that the Λ′
k := Λk|V ′

k
are injective for large k for the

following reason: If k is large we can assume injectivity for each Λk|BMk
r/4

(y
(i)
k )

. Suppose

there are two points z1, z2 ∈ V ′
k with Λk(z1) = Λk(z2). Then for large k the points z1 or

z2 never lie in the same BMk

r/4(y
(i)
k ), hence dk(z1, z2) ≥ 3

16r. But because of (3.3) the Λk

converge pointwise to idV . So we get a contradiction for large k.

We have deduced that Λ′
k : V ′

k → Λ′
k(V

′
k) is invertible and (Λk ◦ Φ

(i)
k )(BM∞

r/16(y
(i))) ⊃

BM∞

r/64(y
(i)) for large k. From (3.3) we conclude that

(
Λk ◦ Φ

(i)
k

)−1
∣∣∣∣
BM∞

r/64
(y(i))

−→ id
BM∞

r/64
(y(i))
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smoothly uniformly for any i and thus we have smooth convergence

(
(Λ′

k)
−1
)∗

gk

∣∣∣
BM∞

r/64
(y(i))

=

(
(Λ′

k ◦ Φ
(i)
k )−1

∣∣∣
BM∞

r/64
(y(i))

)∗

︸ ︷︷ ︸
→ idBM∞

r/64
(y(i))

(
Φ

(i)
k

)∗
gk

︸ ︷︷ ︸
→ g∞

−→ g∞

for any i. Moreover, since Φ
(i)
k → Φ(i) for each i we get that (Λ′

k)
−1 → idU uniformly

on U . Now set Λ′′
k := Λ′

k|(Λ′)−1(U) : (Λ′)−1(U) → U . This map is invertible and we have
((Λ′′

k)
−1)∗gk → g∞ smoothly uniformly and (Λ′′

k)
−1 → idU uniformly.

This proves the hypothesis.

It remains to construct the Λk. Let ∆̃ ⊂ Mm be an open neighborhood of the diagonal
∆ ⊂ Mm. We call a function

∑
: {(s1, . . . , sm) ∈ [0, 1]m : s1 + . . . + sm = 1} × ∆̃ −→ M∞

an averaging function if the following holds (we will write
∑

sizi instead of
∑

(s1, . . . , sm, z1,
. . . , zm)):

(i)
∑

sizi =
∑

siz
′
i if si = 0 or zi = z′i for each i,

(ii)
∑

sizi = zj if si = δij and
(iii)

∑
siz = z.

Clearly such a function exists. Fix an averaging function
∑

and choose a partition of

unity (λi) on (B
M∞

r/4 (y(i))). Define

Λk :=
∑ λi ◦ (Φ

(i)
k )−1

∑
λs ◦ (Φ

(s)
k )−1

(
Φ

(i)
k

)−1
∣∣∣∣∣
Vk

Since Ψ
(ji)
k = (Φ

(j)
k )−1 ◦ Φ

(i)
k |

BM∞

r/4
→ id

BM∞

r/4
if i ≺ j and λj ◦ (Φ

(j)
k )−1 → 0 on BMk

r/4(y
(i)
k ) if

i 6≺ j, we get (3.3). This completes the proof.

Finally, we mention a special case of what we have proven so far.

Theorem 3.2.4. Let (Mk, xk) be a sequence of pointed complete n dimensional manifolds
that satisfy inj ≥ ρ and ‖∇lR‖ ≤ Cl for all l ≥ 0. Then there is a subsequence (Mki

, xki
)

that smoothly converges to some pointed complete n dimensional Riemannian manifold
(M∞, x∞).

Observe that from Proposition 3.4.1 and 3.4.2 we can deduce that it already suffices
to assume inj(xk) ≥ ρ instead of inj ≥ ρ.

3.3 Compactness of Ricci flows

Let (Mk, (g0)k) be a sequence of complete Riemannian manifolds and xk ∈ Mk. Assume
that we have Gromov-Hausdorff convergence of the Mk resp. (Mk, xk) (if not all Mk are
compact) to a metric space X∞ such that the convergence is smooth on M∞. Fix this
convergence, e.g. by embedding the spaces Mk and X∞ into an ambient metric space
Z as in (D) resp. (D′) in subsection 3.1.1 resp. 3.1.2. Let g∞ be the metric on M∞
and M ′

∞ ⊂ M∞ be open. Consider Ricci flows (gt)k on Mk × Ik (we claim 0 ∈ Ik) such
that (g0)k = gk. Let I∞ be an interval (open, half open or closed) and assume that the
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endpoints of Ik converge to the endpoints of I∞. We say that the Ricci flows (gt)k converge
to a Ricci flow (gt)∞ on M ′

∞ × I∞ if there are an exhaustion Uk of M ′
∞ of open sets, an

ascending sequence of intervals J1 ⊂ J2 ⊂ · · · whose union is I∞ and diffeomorphisms
Φk : Uk → Mk such that Φk → idM ′

∞
pointwise and (Φ∗

k(g·)k) |Uk×Jk
→ (g·)∞ smoothly

for k → ∞.
We will now prove a compactness result for Ricci flows. Consider a sequence of Ricci

flows Mk × Ik with complete time slices and assume that the endpoints of Ik converge
to the endpoints of some interval I∞ = (T∞

1 , T∞
2 ) or (T∞

1 , T∞
2 ] if T∞

2 ∈ Ik for large k.
Furthermore, we claim that T∞

1 < 0. Let xk ∈ Mk. Assume that for the time 0 slices
Mk(0) we have Gromov-Hausdorff convergence

(Mk(0), xk) −−−−→
k→∞

(X∞, x∞) (3.4)

where (X∞, x∞) denotes some pointed metric space. Imagine the Mk and X∞ to be
embedded into an ambient space Z. If the Mk are compact we can discard the basepoints.
Note that (3.4) always holds for a subsequence if there is a uniform lower bound for Rick

that may depend on the distance to xk.
Let M ′

∞ ⊂ X∞ be open. Assume that for any point x ∈ M ′
∞ and any compact interval

K ⊂ I∞ there is a neighborhood U ⊂ Z around x and constants C0 < ∞, ρ > 0 such that
‖R‖ ≤ C0 on (U ∩ Mk) × K and inj ≥ ρ on U ∩ Mk for large k. Observe that we do not
control higher curvature derivatives.

Using Shi’s estimates, we conclude that for any x ∈ M ′
∞ and any compact interval

K ⊂ I∞ there are a neighborhood U ⊂ Z and constants C1, C2, . . . < ∞ such that
‖∇lR‖ ≤ Cl on (U ∩ Mk) × K for large k. By the result of section 3.2 we conclude that
after passing to a subsequence the convergence (3.4) is smooth on M ′

∞. Let g∞ be the
limit metric.

We will now show that after passing to a subsequence the Ricci flows M × Ik converge
to a Ricci flow M ′

∞ × I∞ on M ′
∞. By the last paragraph there are an exhaustion Uk of

M ′
∞ and diffeomorphisms Φk : Uk → Mk such that Φk → idM ′

∞
pointwise and Φ∗

kgk → g∞
smoothly for k → ∞. We can assume the Uk to be relatively compact. Observe that for
any j and any compact interval K ⊂ I∞ there are constants C1, C2, . . . < ∞ such that for
all l ≥ 0 we have ‖Φ∗

k(∇lR)‖ ≤ Cl on Uj × K for large k. Let | · | be the norm and ∇̃ the
Levi-Civita connection coming from g∞. Using Lemma 3.3.2 at the end of this section, we
conclude that for any j, l and any compact interval K ⊂ I∞ there is a uniform bound for
|∇̃l(g·)k| on Uj ×K for large k. By the Ricci flow equation these bounds imply bounds on
derivatives of (gt)k that also involve the time direction. We can now use Arzelà-Ascoli’s
Theorem to conclude that there is a subsequence such that Φ∗

k(g·)k smoothly converges to
some limit flow (g·)∞ on Ui × K. By a diagonal argument we get that after passing to a
subsequence we have smooth convergence of the Φ∗

k(g·)k to a limit flow (g·)∞ on M∞×I∞.
Obviously (g0)∞ = g∞. This completes the proof.

As a special case we mention the following Theorem

Theorem 3.3.1. Let M × Ik be a sequence of Ricci flows with complete time slices and
xk ∈ M . Assume that the endpoints of Ik converge to the endpoints of some interval
I∞ = (T∞

1 , T∞
2 ) or (T∞

1 , T∞
2 ] if T∞

2 ∈ Ik for large k. Moreover, assume that T∞
1 < 0 and

that we have a uniform lower bound ρ > 0 for inj0 (i.e. the injectivity radius of M(0))
and an upper bound for ‖R‖ on all Mk × Ik.

Then there is a subsequence (Mki
(0), xki

) that Gromov-Hausdorff converges to a pointed
complete Riemannian manifold (M∞(0), x∞) that is smooth everywhere and the Ricci flows
M × Ik converge to a Ricci flow M∞ × I∞ on M∞.

Observe again that by the remarks after Theorem 3.2.4 it suffices to assume that
inj0(xk) ≥ ρ rather than inj0 ≥ ρ. In the situation of the Theorem we also say that the se-
quence (Mki

×Iki
, (xki

, 0)) of pointed Ricci flows converges smoothly to (M∞×I∞, (x∞, 0)).
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Lateron we will sometimes say that a sequence (Mk × Ik, (xk, tk)) of pointed Ricci flows
smoothly converges to some Ricci flow (M∞× I∞, (x∞, t∞)) if we have convergence of the
Ricci flows that are shifted in time by −tk resp. −t∞.

Lemma 3.3.2. Let l ∈ N. For any −∞ < T1 ≤ 0, 0 ≤ T2 < ∞ and C ′, C0, . . . , Cl < ∞
we find constants D0, . . . ,Dl < ∞ such that the following statement holds:
Let M × [T1, T2] be a Ricci flow with ‖∇iR‖ < Ci everywhere for 0 ≤ i ≤ l. Consider a
metric g̃ on M that is C ′-bilipschitz to g0 and denote by | · | := ‖ · ‖0 and ∇̃ the induced
norm resp. Levi-Civita connection. Then |∇̃igt| < Ci for all t ∈ [T1, T2] and 0 ≤ i ≤ l.

Proof. We first prove that the norms 〈·, ·〉t are D′-Bilipschitz for a universal constant D′.
For any v ∈ TM we have

d

dt
‖v‖2

t = −2Rict(v, v)

and |Rict(v, v)| ≤ ‖Rict ‖t‖v‖2
t ≤

√
n − 1‖Rt‖t‖v‖2

t . So

−2
√

n − 1C0‖v‖2
t ≤ d

dt
‖v‖2

t ≤ 2
√

n − 1C0‖v‖2
t .

Hence D′ = C ′ max{exp(−2
√

n − 1C0T1), exp(2
√

n − 1C0T2)} is an appropriate constant.

Next, we prove a refined version of Lemma 3.2.3. We claim that any tensor s ∈ ΓT p
q M

satisfies

‖∇̃ks −∇ks‖ ≤ E
∑

i0 + . . . + im = k,
i0 < k, m ≥ 0

‖∇̃i0s‖‖∇̃i1g‖ · · · ‖∇̃img‖ (3.5)

at any time t ∈ [T1, T2] where E depends only on n, p, q and k (g denotes the metric and
‖ · ‖ the norm at time t). The proof is by induction. For k = 0 there is nothing to show.
Assume that (3.5) holds for k. Then after replacing s by ∇̃s we get

‖∇̃k+1s −∇k∇̃s‖ ≤ E1

∑

i0 + . . . + im = k,
i0 < k, m ≥ 0

‖∇̃i0+1s‖‖∇̃i1g‖ · · · ‖∇̃img‖. (3.6)

Moreover, the Koszul formula implies

∇̃s −∇s = ∇̃g ∗g s =: s′.

Here ∇̃g ∗g s denotes an O(g) equivariant contraction of ∇̃g ⊗ s. An application of (3.5)
for s′ gives

‖∇ks′‖ ≤ ‖∇̃ks′‖ + E2

∑

i0 + . . . + im = k,
i0 < k, m ≥ 0

‖∇̃i0s′‖‖∇̃i1g‖ · · · ‖∇̃img‖. (3.7)

Observe that

‖∇̃is′‖ = ‖∇̃i(∇̃g ∗g s)‖ = E3

∑

i0+. . .+im = i+1,
i0 < i + 1, m ≥ 0

‖∇̃i0s‖‖∇̃i1g‖ · · · ‖∇̃img‖. (3.8)

Combining (3.6), (3.7) and (3.8) gives

‖∇̃k+1s −∇k+1s‖ ≤ ‖∇̃k+1s −∇k∇̃s‖ + ‖∇k∇̃s −∇k+1s‖
≤ E4

∑

i0+. . .+im = k+1,
i0 < k + 1, m ≥ 0

‖∇̃i0s‖‖∇̃i1g‖ · · · ‖∇̃img‖
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as desired.
In the first part of the proof we showed that the assertion holds for l = 0. Now assume

that it is true for l. We will show that it also holds for l + 1. First observe that by
successive application of (3.5) we can show that there are constants F0, . . . , Fl < ∞ that
only depend on n,C1, . . . , Cl,D1, . . . ,Dl such that ‖∇̃j Rict ‖ < Fj for all 0 ≤ j ≤ l. Next,
we calculate

d

dt

∣∣∣∇̃l+1gt

∣∣∣
2

= 2

〈
d

dt
∇̃l+1gt, gt

〉

0

= −4
〈
∇̃l+1 Rict, gt

〉
0

and

∣∣∣
〈
∇̃l+1 Rict, gt

〉
0

∣∣∣ ≤
∣∣∣∇̃l+1 Rict

∣∣∣ · |gt| ≤
√

D′
∥∥∥∇̃l+1 Rict

∥∥∥
t
· |gt|

≤
√

D′‖∇l+1 Rict ‖t · |gt| +
√

D′E
∑

i0+. . .+im = l+1,
i0 < l + 1, m ≥ 0

‖∇̃i0 Rict ‖t‖∇̃i1gt‖t · · · ‖∇̃imgt‖t

≤
√

nD′D′Cl+1 +
√

D′E
∑

i0+. . .+im = l+1,
i0 < l + 1, m ≥ 0

(D′)(i1/2+1)+...+(im/2+1)Fi0 |∇̃i1gt| · · · |∇̃imgt|

We can bound all terms on the right hand side except |∇̃l+1gt|. Thus
∣∣∣∣
d

dt

∣∣∣∇̃l+1gt

∣∣∣
2
∣∣∣∣ ≤ A|∇̃l+1gt| + B|∇̃l+1gt|2

for some constants A,B. Integrating this inequality gives the desired result.

3.4 A lower bound on the injectivity radius

We now introduce a tool that will later help us to bound injectivity radii by more convie-
nient quantities.

Proposition 3.4.1. For any n ∈ N, κ, r < ∞ and µ > 0 there is a constant α(n, κr2, µ
rn ) >

0 such that the following holds:
Let (M,g) be a Riemannian manifold, x ∈ M such that Br(x) is relatively compact
and −(n − 1)κ ≤ Ric as well as for the sectional curvature K ≤ κ on Br(x). Then if
vol Br(x) ≥ µ, we have inj(x) ≥ rα.

Proof. See [CGT, Thm 4.3]. Observe that the lower sectional curvature bound can be
replaced by the lower bound on the Ricci curvature without modifications of the proof.
Moreover, by the Bishop-Gromov Theorem 1.4.2 we may replace the lower bound on the
volume of a smaller ball Bs(p) ⊂ Br(p) by a lower bound on the volume of the ball Br(x)
itself.

The reverse can be shown easily

Proposition 3.4.2. For any n ∈ N, ρ > 0 and κ < ∞ there is a constant µ′(n, κρ2) such
that if (M,g) is a Riemannian manifold, inj(x) ≥ ρ for some x ∈ M and the sectional
curvature on Bρ(x) satisfies K ≤ κ, then vol Bρ(x) > µ′ρn.

3.5 Tangential cones

Proposition 3.5.1. Let (X, dX ) be a metric space that is locally Alexandrov of curvature

≥ 0 in p ∈ X. Assume that for any ε > 0 the quantity N
(X,p)
λε (λ) is uniformly bounded

for λ → 0. Denote by 1
λX the rescaled space (X, 1

λdX). Then ( 1
λX, p) Gromov-Hausdorff

converges as λ → 0 to a metric cone (C, p∞) which an Alexandrov space of curvature ≥ 0.
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We call (C, p∞) the tangential cone of X in p. Note that the Proposition is still true if
we just require (X, d) to be Alexandrov of curvature ≥ κ in p. However, we will not need
this fact subsequently.

Proof. We just consider the case in which (X, d) is globally an Alexandrov space of curva-
ture ≥ 0. It will be clear how to manage the local case. In the following we will consider
all minimizing geodesics to be parameterized by arclength. Consider the quotient

N := {σ : [0, δ] → X : δ > 0, σ minimizing geodesic, σ(0) = p}/ ∼

where σ1 ∼ σ2 if σ1|[0,δ2] = σ2 or σ1 = σ2|[0,δ1] for two minimizing geodesics σ1/2 :
[0, δ1/2] → X (recall that geodesics in Alexandrov spaces do not branch). Define a metric
on N via

dN ([σ1], [σ2]) := ∢p(σ1, σ2) = lim
t,s→0

∢̃σ1(s1)pσ2(s2).

Observe that by property (B) in the definition of Alexandrov spaces, this limit exists and
is positive if [σ1] 6= [σ2]. Moreover, diam N ≤ π.

We show that N is totally bounded: Assume not. Then for some ε > 0 there is
sequence [σ1], [σ2], . . . ∈ N (where the σi : [0, δi] → X are minimizing geodesics starting
in p) such that dN (σi, σj) ≥ ε for all i 6= j. This implies that for ε′ = sin( ε

2 ) any two
balls Bλε′(σi(λ)) and Bλε′(σj(λ)) are disjoint for i 6= j and λ ∈ [0, δi] ∩ [0, δj ]. Now pick
an arbitrary number k ∈ N. Choose λ > 0 so small that λ < δ1, . . . , δk. Then the balls
Bλε′(σi(λ)) are pairwise disjoint for i = 1, . . . , k. Choose a λε′-net {x1, . . . , xm} of Bλ(p).
It is easy to see that m ≥ k since otherwise there would be two points σi(λ), σj(λ) that
lie within a λε′ distance to some xl contradicting the disjointness mentioned above. So for

any k we have N
(X,p)
λε′ (λ) ≥ k for small λ contradicting the assumption of the Proposition.

Let N be the completion of N . Obviously N is compact. Denote by (C, p∞) the metric
cone over (N, dN ). It is clear that

dC ((t1, [σ1]), (t1, [σ1])) =
√

t21 + t22 − 2t1t2 cos lim
λ→0

∢̃σ1(λt1)pσ2(λt2)

= lim
λ→0

1

λ
dX (σ2(λt1), σ2(λt2))

(3.9)

Recall that 1
λdX (σ2(λt1), σ2(λt2)) is nonincreasing in λ.

We will now show that we have Gromov-Hausdorff convergence of the ( 1
λX, p) to

(C, p∞) for λ → 0. For this we will check property (A′) of subsection 3.1.2. Let ε > 0
and r < ∞. Choose an ε-net {x0 = p∞, x1, . . . , xm} of BC

r (p∞) where xi = (ti, [σi]).
Let 0 < λ ≤ 1 be so small that we can assume all σi to be defined on [0, λ] and set
xλ

i := σi(λti).

We first show that {xλ
0 = p, xλ

1 , . . . , xλ
m} is an ε-net of B

1
λ

X
r (p) or equivalently a λε-net

of BX
λr(p): Let y ∈ BX

λr(p) and choose a minimizing geodesic γ : [0, l] → X between p and
y. Then y′ := (l, [γ]) ∈ BC

r (p∞) and thus dC(y′, xi) < ε for some 0 ≤ i ≤ m. By (3.9) we
have dX(γ(λl), σi(λti)) ≤ λdC(y′, xi) < λε.

Furthermore, (3.9) implies that for small λ we have

∣∣∣∣
1

λ
dX(xλ

i , xλ
j ) − dC(xi, xj)

∣∣∣∣ < ε for any 0 ≤ i, j ≤ m.

Using property (C) in the Definition of Alexandrov spaces, we conclude that (C, p∞) is an
Alexandrov space of curvature ≥ 0.
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3.6 The asymptotic cone

Proposition 3.6.1. Let (X, dX ) be an Alexandrov space of curvature ≥ 0 and p ∈ X.
Then (λX, p) Gromov-Hausdorff converges as λ → 0 to a metric cone (C, p∞) which is
also an Alexandrov space of curvature ≥ 0. Moreover, the isometry class of C does not
depend on the choice of p.

If there is an isometric embedding of the Euclidean space Rn →֒ C for some n, then
there is also an isometric embedding Rn →֒ X.

We call (C, p∞) the asymptotic cone of X.

Proof. We define a pseudometric on the set

N ′ := {σ : [0,∞) → X : σ ray, σ(0) = p}

by
dN ′(σ1, σ2) := lim

s,t→∞
∢̃σ1(s)pσ2(t)

Observe that the limit is well defined (by property (B) in the definition of Alexandrov
spaces) and that dN ′ is a pseudometric with dN ′ ≤ π. Let (N, dN ) be the metric space
obtained by quotienting out points whose distance is 0. Since closed distance balls around
p are compact and by property (B) in the definition of Alexandrov spaces, we conclude that
N is compact. Let (C, p∞) be the metric cone over N . Then for (t1, [σ1]), (t2, [σ2]) ∈ C
we have

dC ((t1, [σ1]), (t2, [σ2])) = lim
λ→0

λdX

(
σ1(

t1
λ ), σ2(

t2
λ )
)

(3.10)

and λd(σ1(
t1
λ ), σ2(

t2
λ )) is nondecreasing in λ.

Now we want to show using property (A′) from subsection 3.1.2, that the pointed
metric spaces (λX, p) converge to (C, p∞) as λ → 0. Fix some ε > 0 and r < ∞. Since
BC

r (p∞) is totally bounded, we may choose an ε
2 -net {x0 = p∞, x1, . . . , xm} of BC

r (p∞).
Write xi = (ti, [σi]). For any λ > 0 set xλ

i := σi(
ti
λ ).

We first show that {xλ
0 = p, xλ

1 , . . . , xλ
m} is an ε-net of BλX

r (p) or equivalently a ε
λ -net

of BX
r (p) for small λ. Assume that this is not the case. Then there are a sequence λk → 0

and a sequence yk ∈ BX
r/λk

(p) such that dX(yk, x
λk
i ) ≥ ε

λk
for any 0 ≤ i ≤ m. Let γk be

minimizing geodesics between p and yk. Since lk := dX(yk, p) = dX(yk, x
λk
0 ) ≥ ε

λk
→ ∞,

we may assume after passing to a subsequence that the minimizing geodesics γk converge
to some ray γ with γ(0) = p (note that bounded subsets of X are relatively compact).
Now observe that ε ≤ λklk < r, so after passing to a subsequence we may also assume

that λklk → t ∈ [2ε, r]. Set y′ := (t, [γ]) ∈ B
C
r (p) and choose i such that dC(y′, xi) ≤ ε

2 .
Then for all k

ε ≤ dλkX(yk, x
λk
i ) ≤ λkdX

(
yk, γ( t

λk
)
)

+ λkdX

(
γ( t

λk
), σi(

ti
λk

)
)

. (3.11)

Since λklk → t, we conclude that for small λk we have λkdX(yk, γ( t
λk

)) = λkdX(γk(lk), γ( t
λk

)) ≤
λklkdX(γk(1), γ( t

λk lk
)) → 0. So by (3.10) we conclude that the right hand side of (3.11)

becomes < ε for large k. A contradiction. So {xλ
0 , . . . , xλ

m} is indeed an ε-net of BλX
r (p)

for small λ.
In addition, equation (3.10) gives us that for small λ we have

∣∣∣d(xi, xj) − d(xλ
i , xλ

j )
∣∣∣ < ε for all 0 ≤ i, j ≤ m.

So in fact, we have pointed Gromov-Hausdorff convergence.
The fact that the asymptotic cone is independend of the base point p and the last

assertion of the Proposition are clear.
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Chapter 4

No local collapsing

In this chapterr we prove the No Local Collapsing Theorem that will later give us a usefull
lower bound on the injectivity radius in a Ricci flow. We will give a brief overview over the
arguments developed in [Per1, Sec 7]. For detailed computations and technical issues see
[KL, Sec 14ff], [MT, Chp 6], [Top], [Mül]. Note that [Per1, Sec 9] gives an interpretation
of these arguments.

4.1 L-geometry

Let M × [0, T ] be a Ricci flow. Choose a basepoint (x0, t0) ∈ M × [0, T ]. Depending
on t0 we introduce a new (backward time) parameter τ := t0 − t on M × [0, T ]. In the
following we will most often parameterize geometric quantities by τ rather than t if there
is no chance of confusion, so e.g. S(x, τ) denotes the scalar curvature at x at time t0 − τ ,
〈·, ·〉τ the metric, ∇τ the Levi-Civita connection etc.

Definition 4.1.1. Let γ : [τ1, τ2] → M be a piecewise smooth curve (where 0 ≤ τ1 < τ2 ≤
t0). Imagine γ parameterized in space-time and define the L-length of γ by

L(γ) :=

∫ τ2

τ1

√
τ

(∥∥∥∥
dγ

dτ

∥∥∥∥
2

τ

+ S(γ(τ), τ)

)
dτ.

We want to minimize the L functional. Associate to γ the velocity vector field X ∈
Γγ(TM) via X := dγ

dτ = −γ̇. At the non-smooth points we denote by X− resp. X+ the
left resp. right derivatives. Choose a vector field Y ∈ ΓγTM along γ and a variation
γ· : (−δ, δ)× [τ1, τ2] → M with γ0 = γ and ∂

∂s |s=0γs(τ) = Y (τ). We can extend the vector

fields X and Y along γ to vector fields along γ· by X(s, τ) = ∂
∂τ γs(τ) and Y (s, τ) = ∂

∂sγs(τ).
A straight forward calculation gives

Lemma 4.1.2 (first variation). Assume that γ has breaking points τ ′
0 = τ1 < τ ′

2 < . . . <
τ ′
k = τ2. Then

d

ds
L(γs) =

∫ τ2

τ1

√
τ

〈
∇S − 2∇XX − 4Ric(X) − 1

τ
X, Y

〉
dτ

+ 2
√

τ〈X,Y 〉τ
∣∣τ2
τ1

+
k−1∑

i=2

2
√

τ ′
i

〈
X−(τ ′

i) − X+(τ ′
i), Y (τ ′

i)
〉
τ ′

i

where the geometric quantities under the integral sign are taken at time τ .

So the Euler-Lagrange equations for L are (we will always consider the geometric
quantities at time τ)

∇XX − 1

2
∇S + 2Ric(X) +

1

2τ
X = 0. (4.1)

37



38 CHAPTER 4. NO LOCAL COLLAPSING

Via X = dγ
dτ equation (4.1) becomes an ODE of second order which we call the L-geodesic

equation. If γ satisfies (4.1), we call γ an L-geodesic. If γ has the property that L(γ) ≤
L(γ′) for any γ′ : [τ1, τ2] → M with γ′(τ1) = γ(τ1) and γ′(τ2) = γ(τ2), we say that γ
is L-minimizing. The first variation formula implies that any L-minimizing curve is also
L-geodesic.

A reparameterization via τ = s2 yields for X ′ := dγ
ds = 2sX

∇X′X ′ − 2s2∇S + 4s Ric(X ′) = 0. (4.2)

This implies that given any time 0 < τ ≤ τ0 and any vector X(τ) ∈ TM we can solve
(4.1) forwards and backwards in time and obtain a smooth L-geodesic γ : [0, t0] → M .
Furthermore, the limit v := limτ→0

√
τX(τ) ∈ Tx0M exists and for any v ∈ Tx0M there is

exactly one L-geodesic γv with this property. We can now define the L-exponential map:
For any v ∈ Tx0M and τ > 0 set L expτ

x0,t0(v) := γv(τ). Note that in view of (4.2) we have
the convergence

L expτ
x0,t0

(
v

2
√

τ

)
−−−−→

τ→0
expx0,t0(v)

which is smooth in v. Here expx0,t0 denotes the exponential map in x0 at time t0.

Finally, we mention that we can compute the L-length of γ under the reparameteriza-
tion τ = s2 by

L(γ) =

∫ √
τ2

√
τ1

(
1

2
‖X ′‖2 + 2s2S(γ(s2), s2)

)
ds. (4.3)

Let

Dτ
x0,t0 :=

{
v ∈ Tx0M :

γv : [0, τ + δ] → M
is L-minimizing for some δ > 0

}
(4.4)

be the domain of L exp. It is easy to see that Dτ
x0,t0 is open and Dτ1

x0,t0 ⊃ Dτ2
x0,t0 for τ1 < τ2.

Using the results devoloped so far we are able to prove

Lemma 4.1.3. L-geodesics γ : [τ1, τ2] → M are locally minimizing (also at time 0), i.e.
for any τ ∈ [τ1, τ2] there is a closed interval I ⊂ [τ1, τ2] which is a neighborhood of τ such
that γ|I is a minimizing L-geodesic.

Moreover, if the time slices of M × [0, T ] are complete and the curvature on M × [0, T ]
is uniformly bounded, then for any two points x1, x2 ∈ M and any 0 ≤ τ1 < τ2 ≤ t0 there
is a minimizing L-geodesic γ : [τ1, τ2] → M with γ(τ1) = x1 and γ(τ2) = x2.

Assume from now on that M is connected, the time slices of M × [0, T ] are complete
and the curvature on M × [0, T ] is uniformly bounded. In this case L expτ

x0,t0 is surjective
for all τ . Furthermore, we can show that M \ expτ

x0,t0 Dτ
x0,t0 is a set of measure zero.

For any point x ∈ M and any time τ ∈ [0, t0] we set

L(x, τ) := inf

{
L(γ) :

γ : [0, τ ] → M piecewise smooth
γ(0) = x0, γ(τ) = x

}
.

Observe that this infimum is realized.

Put L̄(x, τ) := 2
√

τL(x, τ) and l(x, τ) := 1
2
√

τ
L(x, τ). Note that l is invariant under

parabolic rescaling and L̄(x, τ) → dist20(x0, x) for τ → 0 by (4.3). Moreover by (4.3) we
conclude l(γv(τ), τ) → ‖v‖2 for τ → 0.

For on any time slice M(t0 − τ) and any two local vector fields A,B put

Hτ (A,B) := −∇2
B,BS + 2〈R(A,B)B,A〉 − 4(∇A Ric)(B,B) + 4(∇B Ric)(A,B)

+ 2(∇T Ric)(B,B) − 2‖Ric(B)‖2 − 1

τ
Ric(B,B)
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where all geometric quantities on the right hand side are taken at time τ . Observe that
(∇T Ric)(B,B) = − ∂

∂τ Ric(B,B) + 4‖Ric(B)‖2. For a local orthonormal frame (ei) set

Hτ (A) :=
∑

i

Hτ (A, ei) = −△S + 2Ric(A,A) − 2〈∇S,A〉 − 2
∂

∂τ
S − 2‖Ric ‖2 − 1

τ
S

= − ∂

∂τ
S + 2Ric(A,A) − 2〈∇S,A〉 − 1

τ
S.

Let now 0 < τ ≤ t0 and consider an L-geodesic γ : [0, τ ] → M (γ = γv for some v ∈ Tx0M)
with associated velocity vector field X. We can compute

d

dτ̃

(
‖X(τ̃ )‖2

τ̃ + S(γ(τ̃ ), τ̃)
)

= −Hτ̃ (X(τ̃ )) − 1

τ̃

(
S(γ(τ̃ ), τ̃) + ‖X(τ̃ )‖2

τ̃

)
.

Integrating this equation gives

τ3/2
(
‖X(τ)‖2

τ + S(γ(τ), τ)
)

= −Kτ +
1

2
L(γ) (4.5)

where we put

Kτ :=

∫ τ

0
τ̃3/2Hτ̃ (X(τ̃ ))dτ̃ .

We can now compute using (4.5) and the first variation formula that in the barrier sense

∂

∂τ
L̄(x, τ) ≤ 4τS(x, τ) +

2√
τ
Kτ . (4.6)

Equality holds if v ∈ Dτ
x0,t0 . Furthermore, again by (4.5) we have for v ∈ Dτ

x0,t0

d

dτ̃

∣∣∣∣
τ̃=τ

l(γ(τ̃), τ̃ ) = − 1

2τ3/2
Kτ . (4.7)

Consider a variation γ. : (−δ, δ)× [0, τ ] → M of an L-geodesic γ and the associated vector
fields X and Y along γ· as above. Note that for any vector field along γ we can find a
variation γ. such that (∇Y Y )(·, τ̃ ) = 0 for all τ̃ ∈ [0, τ ].

Lemma 4.1.4 (second variation). If (∇Y Y )(0, τ) = 0 (only at τ), we have

d2

ds2

∣∣∣∣
s=0

L(γs) = 2
√

τ〈∇Y X,Y 〉(0, τ) =

∫ τ

0

√
τ̃
[
∇2

Y,Y S − 2〈R(X,Y )Y,X〉

+2‖∇XY ‖2 + 2(∇X Ric)(Y, Y ) − 4(∇Y Ric)(X,Y )
]
dτ̃

where we consider all geometric quantities under the integral sign at time τ̃ .

Choose first Y along γ such that

(∇∂τ+XY )(τ̃ ) =
1

2τ̃
Y (τ̃) (4.8)

(this is also often expressed by ∇XY = −Ric(Y )+ 1
2τ̃ Y ). Note that this implies ‖Y (τ̃ )‖2 =

τ̃
τ ‖Y (τ̃)‖2. Consider a variation γ· of Y such that (∇Y Y )(0, τ) = 0. Plugging the defining
equation for Y into the second variation formula and integrating by parts gives

HessL(Y (τ), Y (τ)) ≤ ‖Y (τ)‖2

τ
− 2

√
τ Ric(Y (τ), Y (τ)) −

∫ τ

0

√
τ̃Hτ̃ (X(τ̃ ), Y (τ̃))dτ (4.9)
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in the barrier sense. Now for an orthonormal frame in TxM at time τ solve (4.8) for
Y (τ) = ei and sum (4.9) over all i. We conclude that in the barrier sense

△L(x, τ) ≤ n√
τ
− 2

√
τS(x, τ) − 1

τ
Kτ , (4.10)

so together with (4.6)
∂

∂τ
L̄ + △L̄ ≤ 2n. (4.11)

Now let v ∈ Dτ
x0,t0, choose σ : (−δ, δ) → Tx0M such that L expτ

x0,t0 ◦σ is a time t0 − τ

geodesic and set Y (τ̃) = d
dsL expτ̃

x0,t0(v + σ(s)). We call Y an L-Jacobi field along γ = γv.
Using the second variation formula, we get

d

dτ

∣∣∣∣
τ̃=τ

‖Y (τ̃ )‖2 = 2Ric(Y, Y ) + 2〈∇XY, Y 〉(τ)

= 2Ric(Y, Y ) + 2〈∇Y X,Y 〉(τ) = 2Ric(Y, Y ) +
1

τ
Hess(Y (τ), Y (τ)). (4.12)

For any v′ ∈ Tx0M let Jτ (v
′) be the Jacobian for the map L expτ

x0,t0 : Tx0M → M(t0 − τ̃)
where we equip Tx0M with the time (τ =)0 metric. From (4.2) we get

τ−n/2Jτ (v
′) −−−−→

τ→0
2n.

Using (4.12) and (4.10) it is easy to see that

d

dτ
log Jτ (v) ≤ n

2τ
− 1

2τ3/2
K.

So if we define lτ (v) := l(L expτ
x0,t0(v), τ), we get from (4.7)

d

dτ
τ−n/2e−lτ (v)Jτ (v) ≤ 0 for all v ∈ Dτ

x0,t0 .

Since lτ (v) → ‖v‖2 for τ → 0, we conclude

τ−n/2e−lτ (v)Jτ (v) ր 2ne−‖v‖2
for τ ց 0. (4.13)

In particular, the reduced volume

Ṽ (τ) :=

∫

M
τ−n/2e−l(·,τ)dµτ (4.14)

is nonincreasing in τ .

4.2 The No Local Collapsing Theorem

We will not be able to derive uniform lower bounds on the evolution of the injectivity radius
in a Ricci flow. However, we will observe the following noncollapsedness phenomenon: If
there is an upper bound for the curvature on some parabolic neighborhood around a point,
then there is a certain lower bound on the injectivity radius at that point. Paraphrasing,
we can say that we have a lower bound on the injectivity radius on a local scale.

Note that by Proposition 3.4.1 we can make this behaviour precise in the following

Definition 4.2.1 (κ-noncollapsedness). Let, κ, ρ > 0, M × I be a Ricci flow on an n
dimensional manifold M and (x0, t0) ∈ M × I. We say that M × I is κ-noncollapsed on
scales < ρ at (x0, t0) if for all 0 < r < ρ for which
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(i) the ball Br(x0, t0) is relatively compact in M
(ii) the interval [t0 − r2, t0] is contained in I and
(iii) ‖R‖ < 1

r2 on P (x0, t0, r,−r2)

we have volt0 Br(x0, t0) ≥ κrn. In the case ρ = ∞ we say that M × I is κ-noncollapsed
(on all scales) at x0.

Observe that the κ-noncollapsedness on all scales property is invariant under parabolic
rescaling. On manifolds we define

Definition 4.2.2. Let, κ, ρ > 0, (M,g) be an n dimensional Riemannian manifold and
x0 ∈ M . We say that M is κ-noncollapsed on scales < ρ at x0 if for all 0 < r < ρ for
which

(i) the ball Br(x0) is relatively compact in M
(ii) ‖R‖ < 1

r2 on Br(x0)

we have vol Br(x0) ≥ κrn. In the case ρ = ∞ we say that M is κ-noncollapsed (on all
scales) at x0.

We first show that a lower bound on the reduced volume implies a lower bound on the
noncollapsedness:

Lemma 4.2.3. For any V > 0 and n ∈ N there is a κn(V ) > 0 such that the following
holds:
Let M × [0, T ] be a Ricci flow on an n dimensional manifold M with complete time slices
and bounded curvature and (x0, t0) ∈ M × [0, T ] a basepoint. Assume that for r > 0
we have r2 ≤ t0 and ‖R‖ ≤ 1

r2 on P (x0, t0, r,−r2). Then if Ṽ (−r2) > V we have
volt0 Br(x0, t0) ≥ κ.

Proof. We follow the lines of [KL, Sec 25]. There is a universal constant C1 > 1 such that
for all 0 ≤ τ ≤ r2 the time t0 − τ metric on Br(x0, t0) is eC1τ -bilipschitz to the time t0
metric. By Shi’s estimates we also find a universal constant C2 such that ‖∇S‖ ≤ C2

r3 on
P (x0, t0,

1
2r,−1

4r2).

Choose 0 < α ≤ 1 such that

2n

∫

Rn\B 1
10α

(0)
e−‖v‖2

dv ≤ V

2

and

eC1α2

(
1

5α
+

αC2√
n − 1

)
exp

(
2α2

√
n − 1

)
≤ 1

2α
.

Observe that both inequalities become true for α → 0.

We first show that for all v ∈ Tx0M with ‖v‖0 < 1
10α the L-geodesic γv stays in

Br/2(x0, t0) for times [0, α2r2] and that l(γv(τ), τ) ≥ −α
√

n(n − 1) for all 0 ≤ τ ≤ α2r2.

Let γ := γv|[0,α2r2] with ‖v‖0 < 1
10α . Reparameterize γ via τ = s2 and let X ′(s) := d

dsγ(s2)
be the corresponding velocity vector field. Observe that X ′(0) = 2v. (4.2) yields

d

ds
‖X ′(s)‖2

s2 = 4s2〈∇S,X ′(s)〉s2 − 8s Rics2(X ′(s),X ′(s)) + 4s Rics2(X ′(s),X ′(s))

≤ 4s2 C2

r3
‖X ′(s)‖s2 + 4s

√
n − 1

r2
‖X ′(s)‖2

s2

as long as γ(s2) ∈ Br/2(x0, t0). So together with s ≤ αr

d

ds
‖X ′(s)‖s2 ≤ 2α2 C2

r
+ 2α

√
n − 1

r
‖X ′(s)‖s2 .
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Using the Gronwall Lemma we get

‖X ′(s)‖s2 ≤
(

2‖v‖0 +
αC2√
n − 1

)
exp

(
2α2

√
n − 1

)
− αC2√

n − 1

and thus

‖X ′(s)‖0 ≤ eC1s2

(
1

5α
+

αC2√
n − 1

)
exp

(
2α2

√
n − 1

)
≤ 1

2α
.

This gives us

dist0(γ(s2), x0) ≤
∫ αr

0
‖X ′(s)‖ds ≤ 1

2
r.

So γ ⊂ Br/2(x0, t0). Moreover, for 0 < τ ≤ α2r2

l(γ(τ), τ) =
1

2
√

τ

∫ √
τ

0

(
1

2
‖X ′(s)‖2 + 2s2S(γ(s2), s2)

)
ds

≥ − 1

2
√

τ

∫ √
τ

0
2s2

√
n(n − 1)

r2
ds ≥ −α2

√
n(n − 1) =: −F

Now observe that for τ = α2r2

V ≤ Ṽ (r2) ≤ Ṽ (τ) =

∫

Dτ
x0,t0

τ−n/2e−lτ (v)Jτ (v)dv

=

∫

Dτ
x0,t0

\B 1
10α

(0)
τ−n/2e−lτ (v)Jτ (v)dv +

∫

Dτ
x0,t0

∩B 1
10α

(0)
τ−n/2e−lτ (v)Jτ (v)dv

Using (4.13) we conclude

V ≤
∫

Tx0M\B 1
10α

(0)
2ne−‖v‖2

dv + τ−n/2eF volτ Br/2(x0, t0)

and thus

vol0 Br/2(x0, t0) ≥ e−
n
2

C1α2
volτ Br/2(x0, t0) ≥

V

2
αne−F−n

2
C1α2

rn =: κ(V )rn.

We can now prove our final result

Theorem 4.2.4 (No Local Collapsing Theorem). For any κ1, ρ1, t
′ > 0, T,K < ∞

and n ∈ N there is a κ2(κ1, ρ1, t
′, T,K, n) > 0 such that the following holds:

Let M × [0, T ] be a Ricci flow on an n dimensional manifold with complete time slices and
uniformly bounded curvature. Assume that

(i) M(0) is κ1-noncollapsed on scales < ρ1 and
(ii) ‖R‖ < K on M × [0, t′]

Then M × [0, T ] is κ2-noncollapsed everywhere.

Proof. Let (x0, t0) ∈ M×[0, T ] and r > 0 such that t0 ≥ r2 and ‖R‖ < 1
r2 on P (x0, t0, r,−r2).

We want to find a universal constant κ2 > 0 such that volt0 Br(x0, t0) ≥ κ2r
n. If t0 ≤ t′

we can easily find κ2 since we have a universal bound for the distortion of the metric on
M × [0, t′]. So assume now that t0 > t′. Consider the reduced volume function Ṽ (τ) with
respect to (x0, t0). In view of Lemma 4.2.3 and the fact that Ṽ (τ) is nonincreasing in τ ,
it suffices to give a universal lower bound on Ṽ (t0).
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Set τ ′ := t0 − t′. Assume that we have l(·, τ ′) ≥ n
2 + ε on M for some ε > 0. This

implies L̄(·, τ ′) ≥ 2nτ ′ + 4ετ ′. Applying the weak maximum principle1 to (4.11) we find
L̄(·, τ ′) ≥ 2nτ + 4ετ ′ for all 0 < τ ≤ τ ′ and thus

l(·, τ ′) ≥ 2n +
ετ ′

τ
→ ∞ for τ → 0,

a contradiction. So there is a point x ∈ M with l(x, τ ′) ≤ n
2 and thus L(x, τ ′) ≤ n

√
t0 − t′.

Consider the ball B := Br1(x, 0) with r1 := min{K−1/2, 1
2ρ1}. Assumptions (i) and (ii)

imply vol0 B ≥ κ1r
n
1 . Moreover, by assumption (ii) there is a bound C < ∞ depending only

on t′,K, κ1 and r1 such that L(σ) < C for all minimizing time 0 geodesics σ : [τ ′, t0] → M
between x and a point y ∈ B. Concatenation of a minimizing L-geodesic between (x0, t0)
and (x, t′) with these curves σ yields L(·, t0) ≤ n

√
t0 − t′ + C on B and thus

l(·, t0) ≤
1

2
√

t′

(
n
√

t0 − t′ + C
)

=: F on B.

So

Ṽ (t0) =

∫

M
t
−n/2
0 e−l(·,τ)dµt0 ≥

∫

B
T−n/2e−F dµt0 ≥ T−n/2e−F κ1r

n
1 .

1We have to be careful since the manifold M need not be compact. Observe that since L(x, τ ) → ∞
for dist0(x, x0) → ∞, we can apply the weak maximum principle for manifolds with boundary.
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Chapter 5

κ-solutions

In order to understand the geometry of singularities in a Ricci flow we have to analyze
certain model solutions that arise in the limit when we look closer and closer at a singu-
larity and normalize curvature by parabolic rescaling. For example, we have the following
theorem which we will refine in chapter 6.

Theorem 5.0.1. Let M × [0, T ) (T < ∞) be a Ricci flow on a compact 3 dimensional
manifold defined on a maximal time interval [0, T ). Then there is a sequence of times
tk ր T and points xk ∈ M such that for λk := S1/2(xk, tk) the sequence of pointed
parabolically rescaled Ricci flows (λk(M × [0, tk]), (xk, tk)) converges to a Ricci flow (M∞×
(−∞, 0], (x∞, 0)) that has the following properties:

(a) The metric on every time slice is complete and has nonnegative sectional curvature.
(b) The scalar curvature at time 0 is positive.
(c) The scalar curvature is everywhere bounded from above by 1.
(d) M × (−∞, T ] is κ-noncollapsed on all scales for some κ > 0.

Proof. Choose ϕ > 0 so small that M × [0, T ) satisifies the property of the Hamilton-
Ivey pinching (see Theorem 2.9.1) at time 0. Then this property holds everywhere on
M × [0, T ). We can now make conclusions of the following type: If we have an upper
bound S0 on the scalar curvature at some point (x, t) ∈ M × [0, T ), then there is a lower
bound −X0 for the sectional curvature at that point which only depends on S0 in such
a way that X0

S0
→ 0 for S0 → ∞. So there is also an upper bound Y0 on the sectional

curvature at (x, t) with the property that Y0
S0

→ 1 for S0 → ∞.

Since T < ∞, the scalar curvature on M × [0, T ) must be unbounded. Using the result
from the preceding paragraph, this implies that also the scalar curvature is unbounded.
We find a sequence tk ր T such that maxM S(·, tk) → ∞ and

max
M×[0,tk]

S = max
M

S(·, tk).

Let xk ∈ M be the sequence of points where the maxima are attained at time tk. Again
by the preceding paragraph we get that for large k the sectional curvature on M × [0, tk] is
bounded from above by 2S(xk, tk) for large k and from below by −δkS(xk, tk) for δk → 0.

By the No Local Collapsing Theorem 4.2.4 we can find a κ > 0 such that M×[0, T ) is κ-
noncollapsed. Consider the parabolically rescaled solutions Mk×[0, λ2

ktk] := λk(M×[0, tk])
where λk := S1/2(xk, tk). Obviously, S ≤ 1 on Mk × [0, λ2

ktk] and the sectional curvature is
bounded from below by −δk and from above by 2 for large k. Moreover, Mk×[0, λ2

ktk] is also
κ-noncollapsed. Since we have a uniform bound for the curvature, we can use Proposition
3.4.1 to obtain a uniform lower bound on the injectivty radii. Thus the sequence of pointed
Ricci flows (Mk × [0, λ2

ktk], (xk, tk)) subconverges to Ricci flow (M∞ × (−∞, 0], (x∞, 0))
that satisfies properties (a), (c), (d) and S(x∞, 0) = 1.
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For property (b) note that the scalar curvature is nonnegative on (M∞×(−∞, 0], (x∞, 0)).
So if there was a point y ∈ M∞ with S(y, 0) = 0, we could conclude by the strong maxi-
mum principle that S ≡ 0 on M∞ × (−∞, 0) hence S(x, 0) = 0 by continuity.

We will express the properties of the model solutions M∞ × (−∞, 0] in the following

Definition 5.0.2 (κ-solution). Let κ > 0. A Ricci flow defined on M × (−∞, T ] (for a
connected manifold M) is called a κ-solution if
(a) The metric on every time slice is complete and has nonnegative curvature operator.
(b) The scalar curvature at time 0 is positive.
(c) For any compact time interval I ⊂ (−∞, T ] the Riemannian curvature R is bounded

on M × I.
(d) M × (−∞, T ] is κ-noncollapsed on all scales.

Obviously there are no 1 dimensional κ-solutions.
For simplicity we will assume in the following that T = 0. By the Harnack inequality

for the Ricci flow (see Theorem 2.8.2) we can estimate the scalar curvatures at two points
(x1, t1), (x2, t2) ∈ M × (−∞, 0] with t1 < t2 against each other by

S(x2, t2) ≥ S(x1, t1) exp

(
−dist2t1(x1, x2)

2(t2 − t1)

)
.

In particular, the scalar curvature is nondecreasing pointwise.

In the following it will be helpful to deal with a slightly more general type of solution
that will prove to be equivalent to the notion of a κ-solution in dimensions 2 and 3. We
fix some κ > 0 for the rest of this chapter.

(∗)





Suppose M × (−∞, 0] is a Ricci flow on a connected manifold Mn such that
(a) The metric on every time slice is complete and has nonnegative curvature

operator.
(b) The scalar curvature at time 0 is positive.
(c) At every point the scalar curvature is nondecreasing in time.
(d) M × (−∞, 0] is κ-noncollapsed on all scales.

Observe that if we have a bound on the scalar curvature on M(0), then M × (−∞, 0] is
already a κ-solution.

Obviously, if M × (−∞, 0] satisfies (∗), so do the parabolic rescalings λ(M × (−∞, 0])
of M × (−∞, 0] (for the same κ). The analogous result holds for κ-solutions.

Another useful property of the noncollapsedness assumption is that we can easily form
limits: Let Mk×(−∞, 0] be a sequence of solutions satisfying (∗) and let xk ∈ Mk. Assume
that there is a function C : [0,∞) → R such that for every A we can bound the scalar
curvature S(·, 0) of the time 0 slice on BMk

A (xk, 0) by C(A) for large k. Since the scalar
curvature is pointwise nondecreasing and the sectional curvatures are nonnegative on the
Mk×(−∞, 0], we can uniformly bound the Riemannian curvature on BMk

A (xk, 0)×(−∞, 0]
for any A. The κ-noncollapsedness assumption gives us a tool to uniformly bound the
injectivity radii at xk. So by the results of section 3.3 there is a subsequence of the (Mk ×
(−∞, 0], (xk, 0)) that converges to some Ricci flow (M∞× (−∞, 0], (x∞, 0)) satisfying (a),
(c) and (d) of (∗). Now by the strong maximum principle there are two possibilities: Either
S ≡ 0 on M∞ × (−∞, 0] or S(·, 0) > 0 on M . So, for example, if lim infk→∞ S(xk, 0) > 0
we know that M∞ × (−∞, 0] satisfies (∗). If moreover C(A) < C ′ for all A, we get that
M∞ × (−∞, 0] is even a κ-solution.

Another method that we will use subsequently is the splitting principle: Assume that
M × (−∞, 0] satisfies (∗) and assume that M(0) contains a line. By the Ricci splitting
Theorem 1.4.3 there is a complete Riemannian manifold of nonnegative Ricci curvature
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(N(0), g) such that M(0) = N(0) × R. From Corollary 2.5.7 we get that M × (−∞, 0] is
of the form (N × R) × (−∞, 0] where N × (−∞, 0] is a Ricci flow satisfying (∗) for 1

2κ
instead of κ. Moreover, if M × (−∞, 0] is a κ-solution, then N × (−∞, 0] is a 1

2κ-solution.

5.1 The asymptotic geometry

Let M × (−∞, 0] satisfy (∗). Before we can say anything about the asymptotic geometry
of M × (−∞, 0] we need to analyze the asymptotic behaviour of the scalar curvature.

Definition 5.1.1 (asymptotic curvature ratio). Let N be a noncompact complete
Riemannian manifold. The asymptotic curvature of N is defined by

R(N) := lim sup
d(x0,x)→∞

S(x)d2(x0, x),

where x0 ∈ N denotes an arbitrary basepoint. Obviously, R(N) is independent of the
choice of x0.

Another quantity we wish to analyze is the asymptotic volume ratio.

Definition 5.1.2 (asymptotic volume ratio). If Nn is a complete Riemannian mani-
fold of nonnegative Ricci curvature and x0 ∈ N a basepoint, the asymptotic volume ratio
is defined by

V(N) = lim
r→∞

vol Br(x0)

rn

Again, V(N) is independent of the choice of the basepoint x0.

Observe that the limit always exists since the quantity vol Br(x0)
rn is nonincreasing in

r by the Bishop-Gromov Theorem 1.4.2. Moreover, R and V are scale invariant. The
following discussion is based on 11.3 and 11.4 in [Per1] resp. Sec 39ff in [KL].

Proposition 5.1.3. If M×(−∞, 0] satisfies (∗) and M is noncompact, we have R(M(0)) =
∞.

Proof. We may assume that M×(−∞, 0] is a κ-solution, because otherwise the hypothesis
would be obvious. Since there are no 1-dimensional κ-solutions we have n ≥ 2.

Choose a basepoint x0 ∈ M . Since M(0) has nonnegative sectional curvature, Propo-
sition 3.6.1 implies that we have Gromov-Hausdorff convergence

(λM(0), x0) −−−−→
λ→0

(C, x∞) (5.1)

to the asymptotic cone.
Now, assume that R < ∞. Then (C, x∞) is smooth: For r large enough we may

bound the scalar curvature on M(0)\Br(x0) by R+1
r2 . So for any r we get for small λ that

S(·, 0) < 1
λ2

R+1
(r/λ)2

= R+1
r2 on λM(0) \ BλM

r (x0, 0). By the results of section 3.3 (observe

that the scalar curvature is pointwise nondecreasing) we conclude that (C, x∞) is a smooth
cone and there is a sequence λk → 0 for which the convergence in (5.1) is smooth on C0.
Moreover, we can even extend the smooth convergence to the corresponding Ricci flows for
a subsequence: There is a Ricci flow on C0 × (−∞, 0] such that the time 0 slice coincides
with the metric on C0 and after passing to a subsequence of (λk) we have for the Ricci
flows Mk × (−∞, 0] := λk (M × (−∞, 0]):

(Mk \ {x0}) × (−∞, 0] −−−−→
k→∞

C0 × (−∞, 0]. (5.2)

Observe that the curvature operator is nonnegative on C0 × (−∞, 0]. Thus we may apply
Lemma 2.10.1 and get that the cone C is locally flat away from its tip x∞ (so actually
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R = 0). Moreover, the Riemannian metric on the limiting Ricci flow C0 × (−∞, 0] is
everywhere flat and the Ricci flow itself is stationary.

We want to show that the pointed manifolds (Mk(−1), x0) Gromov-Hausdorff converge
to (C, x∞) in the same sense as in (5.1). It suffices to check that for every r we have
‖dist0 − dist−1 ‖∞ → 0 on BMk

r (x0, 0) for k → ∞. By a compactness argument we find
that we only have to prove the following fact: If yk, zk ∈ Mk are sequences such that for
y∞, z∞ ∈ C we have yk → y∞ and zk → z∞ in (5.1), then dist−1(yk, zk)−dist0(yk, zk) → 0.

Observe that dist0(yk, zk) → distC(y∞, z∞) and dist−1(yk, zk) ≥ dist0(yk, zk). Let γ∞
be a minimizing geodesic connecting y∞ and z∞ in C. If γ∞ does not hit x∞, we get
from (5.2) and the fact that C0 × (−∞, 0] is stationary that the length of curves γk ⊂ Mk

approximating γ∞ are arbitrarily little distorted under the Ricci flow. So dist−1(yk, zk)−
dist0(yk, zk) → 0. Now consider the case in which γ∞ hits x∞. We may assume that
y∞ = x∞ (otherwise we cut γ∞ into two pieces and use the triangle inequality). Assume
first that z∞ 6= x∞. Let δ > 0 be small and consider a point y′∞ on γ∞ whose distance
to x∞ is less than δ. Choose a sequence of points y′k ∈ Mk such that y′k → y′∞ in
(5.1). Then dist0(x0, y

′
k) < δ for large k. Moreover by the preceding conclusion we find

dist−1(y
′
k, zk) − dist0(y

′
k, zk) → 0. In the following paragraphs we will show that for any

δ > 0 we have BMk
δ (x0, 0) ⊂ BMk

20δ (x0,−1) for large k. Using this result and the triangle
inequality, we get

dist−1(yk, zk) − dist0(yk, zk) ≤ dist−1(yk, y
′
k) + dist−1(y

′
k, zk)

− dist0(yk, y
′
k) − dist−1(y

′
k, zk) < 40δ + dist−1(y

′
k, zk) − dist−1(y

′
k, zk)

for large k. In the case z∞ = x∞ we immediately get dist−1(yk, zk)−dist0(yk, zk) < 40δ for
large k. Now choose δ smaller and smaller. It follows that dist−1(yk, zk)−dist0(yk, zk) → 0
and we have Gromov-Hausdorff convergence

(λM(−1), x0) −−−−→
λ→0

(C, x∞) . (5.3)

We have to show that for any δ > 0 we have BMk
δ (x0, 0) ⊂ BMk

20δ (x0,−1) for large k.
Let A := A0.1δ,3δ(x∞, 0) ⊂ C. By (5.2) for any ε > 0 there are, for large enough k, smooth
maps

Φk : A → Mk

that are ε-isometries for times [−1, 0] and that converge to idA in (5.1). Let Σ ⊂ r−1(2δ) ⊂
A be a connected component of the distance sphere of radius 2δ. Consider the metric space
(N, dN ) with the property C = Cone(N) (see Definition 1.5.1). By Proposition 1.5.2 is a
Riemannian manifold and it is easy to see that a connected component of N is isometric
to Σ in the Riemannian sense. So diam Σ ≤ 2πδ where we consider the path metric of
the induced metric on Σ. Thus Σ is a compact hypersurface and using Proposition 1.5.2
we can compute its shape operator W : Note that 1

2δ r∂r is a normal vector field. For any
x ∈ Σ and any vector v ∈ TxΣ we have

W (v) =
1

2δ
(∇v(r∂r))x =

1

2δ
v =⇒ W =

1

2δ
idTΣ .

Now consider the images Σk := Φk(Σ) ⊂ Mk. For ε sufficiently small and large k we can
assume that on Σk the shape operator satisfies WΣk ≥ 1

4δ in Mk(−1). Let N ∈ ΓΣkMk be
the time −1 unit normal vector field pointing outward and choose a curve σ : [0, 1] → Mk

from x0 to x ∈ Σk such that σ|[0,1) does not intersect Σk and 〈σ′(1), Nσ(1)〉−1 > 0.

Fix some large k for the moment. Consider the universal cover M̃k of Mk and choose a
lift x̃0 of x0. Lift the curve σ starting in x̃0 to get σ̃ and denote by Σ̃ ⊂ M̃k the connected
component of the preimage of Σk that contains σ̃(1) under the universal covering projection

π : M̃k → Mk (observe that Σ̃ is not necessarily the universal cover of Σk). Choose a time
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−1 minimizing geodesic γ̃ : [0, l] → M̃k parameterized by arclength from x̃0 to Σ̃ that
realizes the distance dist−1(x̃0, Σ̃) and consider its projection γ = π ◦ γ̃. By the first
variation formula (see [dCa, Chp 9]) we get that γ is perpendicular to Σk in γ(l) at time
−1, i.e. 〈γ′(l), Nγ(l)〉−1 = ±1. Assume that 〈γ′(l), Nγ(l)〉−1 = −1. Then there would be

a loop b : S1 → M̃k intersecting Σ̃ exactly once. This would imply that the intersection
number of b and Σ̃ was nonzero. A contradiction to the fact that M̃k is simply connected.
So 〈γ′(l), Nγ(l)〉−1 = 1.

We want to estimate l from above. Choose a time −1 parallel unit vector field V (s)
along γ that is perpendicular to γ. Consider a variation γ· : (−θ, θ) × [0, l] → Mk such
that d

du

∣∣
u=0

γu(s) = sV (s) and γu(l) ∈ Σk for all u ∈ (−θ, θ). Denote by E(u) the energy

of γu in Mk(−1). Since the variation of γ corresponds to a variation of γ̃ along Σ̃ we have
(see [dCa, Chp 9])

0 ≤ E′′(0) =

∫ l

0

[
〈V (s), V (s)〉−1 − K−1

(
dγ

ds
∧ tV (s)

)]
ds−〈S−1(V (l)), V (l)〉−1 ≤ l− 1

4δ
l2

So dist−1(x0,Σk) ≤ l ≤ 4δ. We conclude that for small ε and large k the ball BMk

(4+4π)δ
(x0,−1)

covers the inner boundary of Φk(A2δ,3δ(x∞, 0)) and thus

BMk
20δ (x0,−1) ∪ Φk(A2δ,3δ(x∞, 0)) ⊃ BMk

δ (x0, 0).

Since Φk(A2δ,3δ(x∞, 0)) and BMk
δ (x0, 0) are disjoint, this implies BMk

δ (x0, 0) ⊂ BMk
20δ (x0,−1).

Now we apply the Harnack inequality for the Ricci flow (see Theorem 2.8.2) to show
that C is actually isometric to Euclidean space. Fix z∞ ∈ C0 with r(z∞) < 1 and choose
zk ∈ Mk converging to z∞ with respect to the Gromov-Hausdorff convergence (5.1) resp.
(5.3). Let A be an arbitrary constant. For every x ∈ BMk

A (x0,−1) we have for large
enough k

S(x,−1) ≤ S(zk, 0)

︸ ︷︷ ︸
→0

· exp

(
dist−1(x, zk)

2

)

︸ ︷︷ ︸
≤exp(A+1

2 )

−→ 0.

So after choosing a subsequence the convergence (5.3) is everywhere smooth and the limit
is a flat cone hence isometric to Euclidean space.

By Proposition 3.6.1 we get that M(0) itself is isometric to the Euclidean space Rn

(in the metric sense, hence also in the Riemannian sense). This contradicts the fact that
M × (∞, 0] is a κ-solution.

Let M ×(−∞, 0] be again a solution satisfying (∗) and x0 ∈ M a basepoint. By Propo-
sition 5.1.3 we know that there is a sequence xk ∈ M such that S(xk, 0) dist2

0(xk, x0) → ∞.
We want to take a smooth limit of parabolically rescaled copies of M × (−∞, 0] with base-
point (xk, 0) such that the scalar curvature at (xk, 0) is normalized to 1. In order to do
this, we need a bound C such that S(·, 0) < CS(xk, 0) on balls Bdk/S1/2(xk,0)(xk, 0) with

dk → ∞. Observe that all geometric quantities are considered relatively to S−1/2(xk, 0)
which is called the scale at xk. We say that we need a uniform bound for the scalar
curvature on larger and larger balls around xk on the scale at xk.

Of course, a priorily we cannot assume this bound. However, if some bound is violated
at certain points for certain k, we can replace the xk by these points and decrease the
scale on which the curvature is to be bounded along the way. An iteration of this process
is called point-picking and will be explained in the following

Lemma 5.1.4 (point-picking). Let M be a complete Riemannian manifold and f : M →
R+ a continuous scalar function. Let x ∈ M and d > 0. Then there is a y ∈ B

2d/
√

f(x)
(x)

such that
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(i) f(y) ≥ f(x) and
(ii) f < 4f(y) on B

d/
√

f(y)
(y).

Proof. We describe an algorithm on how to find y. Set y0 := x and F0 := f(y0). Succes-
sively apply the following step for i = 0, 1, 2, . . .:

If f < 4Fi on Bd/
√

Fi
(yi), we are done. If not, choose yi+1 ∈ Bd/

√
Fi

(yi) with
f(yi+1) ≥ 4Fi and set Fi+1 := f(yi+1).

Observe that we have Fi ≥ 4iF0 and

dist (x, yi) ≤ dist (y0, y1) + dist (y1, y2) + . . . + dist (yi−1, yi)

<
d√
F0

+
d√
F1

+ . . . +
d√
Fi−1

<

(
1 +

1

2
+ . . . +

1

2i−1

)
d√
F0

<
2d√
f(x)

.

Since f is bounded on B
2d/

√
f(x)

(x), the process has to terminate after a finite number of

steps.

Set dk := 1
4 dist0(x0, xk)S

1/2(xk, 0) → ∞. Lemma 5.1.4 gives us a sequence yk ∈
B2dk

(yk, 0) such that we have the estimate S(·, 0) < 4S(yk, 0) on Bdk/S1/2(yk ,0)(yk, 0).
Moreover, by the triangle inequality

dist0(x0, yk)S
1/2(yk, 0) ≥

1

2
dist0(x0, xk)S

1/2(xk, 0) → ∞. (5.4)

Set y0 := x0 and apply the following

Lemma 5.1.5. Let (M,g) be a complete Riemannian manifold of nonnegative sectional
curvature and yk ∈ M , (k ≥ 0) a sequence with yk → ∞. Then for a subsequence of the
(yk)k>0 there is a ray σ : [0,∞) → M starting in y0 and a sequence sk → ∞ such that
dist(yk, σ(sk)) = dist(y0, yk) and ∢̃y0ykσ(sk) → π.
Furthermore, σ|[sk,∞) doesn’t hit B 1

2
dist(y0,yk)(yk).

Proof. Choose minimizing geodesics σk between y0 and yk. Since ℓ(σk) → ∞ we may
assume, after passing to a subsequence, that the σk converge to a ray σ : [0,∞) → M
starting in y0. So ∢y0(σk, σ) → 0 and thus for large k we get by Toponogov’s Theorem
1.3.1 for lk := dist(y0, yk)

dist(yk, σ(lk)) <
1

2
lk. (5.5)

So for large k we can find an sk > lk such that dist(yk, σ(sk)) = lk. Toponogov’s Theorem
yields

∢̃σ(sk)y0yk ≤ ∢y0(σk, σ) → 0.

Since the comparison triangle △ỹ0σ̃(sk)ỹk is isosceles, this implies ∢̃y0ykσ(sk) → π. It is
easy to see that from (5.5) we get that σ|[sk,∞) does not hit B 1

2
lk

(yk) for large k.

Now parabolically rescale the solution M × (−∞, 0] by the factor λk = S1/2(yk, 0) and
call the resulting flow Mk × (−∞, 0]. On Mk × (−∞, 0] we have S(yk, 0) = 1 and

S(·, 0) < 4 on BMk
dk

(yk, 0).

So after passing to a subsequence we have convergence of pointed Ricci flows

(Mk × (−∞, 0], yk) −−−−→
k→∞

(M∞ × (−∞, 0], y∞) (5.6)

for a κ-solution M∞ × (−∞, 0] with S(y∞, 0) = 1.



5.1. THE ASYMPTOTIC GEOMETRY 51

Connect the points yk, y0 resp. yk, σ(sk) ∈ Mk by minimizing geodesics γk resp. γ′
k :

[0, lk] → Mk(0) starting in yk. From (5.4) we find lk → ∞ and Toponogov’s Theorem
implies that for any l > 0 we have ∢̃γk(l)ykγ

′
k(l) → π. As a consequence the geodesics

γk resp. γ′
k subconverge on the final time slice of (5.6) to rays γ∞ resp. γ′

∞ ⊂ M∞(0)
which connect to a whole line. The splitting principle implies that M∞ × (−∞, 0] =
(N × R) × (−∞, 0] where N × (−∞, 0] is an n − 1 dimensional 1

2κ-solution.
We have proved the following statement on the asymptotic geometry of M × (−∞, 0]:

Proposition 5.1.6. If M × (−∞, 0] satisfies (∗) and M is noncompact, then there is
a sequence of points yk ∈ M and a sequence of numbers λk = S1/2(yk, 0) > 0 such
that the sequence of parabolically rescaled solutions (λk(M × (−∞, 0]), (yk , 0)) converges
to a κ-solution of the form ((N × R) × (−∞, 0], (y∞, 0)) where N × (−∞, 0] is an n − 1
dimensional 1

2κ-solution.

This Proposition has some important consequences.

Corollary 5.1.7. Every 2-dimensional solution M × (−∞, 0] satisfying (∗) is compact.

Proof. Otherwise Proposition 5.1.6 would give us a 1-dimensional κ-solution. But there
are no 1 dimensional κ-solutions.

Corollary 5.1.8. Let M × (−∞, 0] satisfy (∗). Then V(M(0)) = 0.

Proof. We will use induction on the dimension n. If n = 2, the manifold M is compact and
the hypothesis applies. Now assume that M is noncompact. By Proposition 5.1.6 there
is a sequence yk ∈ M such that for λk = S1/2(yk, 0) the parabolically rescaled pointed
solutions (Mk × (−∞, 0], (yk, 0)) = (λk(Mλk

× (−∞, 0]), (yk , 0)) converge to a κ-solution
((N × R) × (−∞, 0], (y∞, 0)) where N × (−∞, 0] is an n− 1 dimensional 1

2κ-solution. By
the induction hypothesis, V(N(0)) = 0, so

V(N(0) × R) = lim
r→∞

vol B
N(0)×R

r (y∞)

rn
≤ lim

r→∞
vol B

N(0)
r (y∞) · 2r

rn
= V(N) = 0.

There is a sequence rk → ∞ such that for any ε > 0 there are ε-isometries

Φk :
(
B

N(0)×R

2rk
(y∞), y∞

)
−→ (Mk(0), yk)

for large k. So for ε small enough we may conclude from the Bishop-Gromov Theorem
1.4.2

V(M(0)) = V(Mk(0)) ≤
vol B

Mk(0)
rk (yk)

rn
k

≤
2 vol B

N(0)×R

2rk
(yk)

rn
k

−→ 0.

Corollary 5.1.9. Let M × (−∞, 0] be a 2 or 3 dimensional solution satisfying (∗). Then
M(0) has bounded curvature, hence M × (−∞, 0] is already a κ-solution.

Proof. We just have to show that the scalar curvature is bounded on M(0). In view of
Corollary 5.1.7 the case n = 2 is trivial. So let n = 3. After passing to the universal cover,
we may assume that M is simply connected.

Assume that M(0) does not have bounded curvature. Then there is a sequence xk ∈ M
with S(xk, 0) → ∞. Let x0 ∈ M be a basepoint. Obviously dist0(x0, xk) → ∞, so
S(xk, 0) dist2

0(x0, xk) → ∞. Apply the preceding discussion for the points xk to get points
yk ∈ M , a ray σ : [0,∞) → M(0), a sequence sk → ∞ and minimizing geodesics γk and γ′

k.
We have S(yk, 0) ≥ S(xk, 0) → ∞ and for the by λk := S1/2(yk, 0) → ∞ rescaled pointed
solutions (Mk × (−∞, 0], (yk, 0)) we proved smooth Gromov-Hausdorff convergence

(Mk(0), yk) −−−−→
k→∞

(N(0) × R, y∞)
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where N(0) is the final time slice of a 2 dimensional 1
2κ-solution N × (−∞, 0] hence

compact. Set d := diam0 N(0).
So for any ε > 0 there are ε-isometries

Φk : N(0) × (−2d, 2d) → λkM(0) with y∞ 7→ yk

for large k. The sets Uk := ImΦk are relatively compact. Assume that for some k, the
set Uk does not separate M(0). Then we can find a map b : S1 → M that intersects
N ′ := Φk(N × {0}) ⊂ M exactly once and transversely. But this implies that b and N ′

have nonzero intersection numer contradicting the fact that M(0) is simply connected. So
Uk separates M for every k, i.e. M \ Uk has two components.

It is easy to see that for large k the points y0 and σ(sk), being endpoints of an almost
straight broken line, lie in different components of M \ Uk. Since the ray σ|[sk,∞) does
not hit Uk ⊂ B 1

2
dist0(y0,yk)(yk) (for large k), the component in which σ(sk) lies has to

be noncompact for large k. If the other part was noncompact as well, M(0) would have
two ends, M × (−∞, 0] would geometrically split as (N × R) × (−∞, 0] and N would be
compact. This would contradict the assumption of unbounded curvature.

Now call Lk the noncompact part of M(0) \ Uk. Since M \ Lk is compact and the
scalar curvatures on Uj go to ∞ for j → ∞, there can only be a finite number of j’s with
the property that Uj 6⊂ Lk. So by passing to a subsequence we may assume that

M ⊃ L1 ⊃ L2 ⊃ . . . .

and y0 ∈ M \ L1. Choose y′0 ∈ M(0) \ L1 near y0 such that any minimizing geodesic
between y0 and y′0 encloses an angle > 0 and < π with σ at y0.

Fix some large k. Let r be so large that Uk ⊂ Br(y0, 0) and Uk ⊂ Br(y
′
0, 0). Choose s′

such that for u := σ(s′) we have u ∈ Lk and dist0(u,Uk) > r. Let γ : [0, 1] → M(0) be the
geodesic σ|[0,s′] parameterized by constant speed in the reverse direction (i.e. γ(0) = u and
γ(1) = y0). Furthermore, choose a constant speed minimizing geodesic γ′ : [0, 1] → M(0)
from u to y′0. We know that γ and γ′ have to pass Uk. Choose t, t′ ∈ [0, 1] such that
z := γ(t) resp. z′ := γ′(t′) lie in Uk. By the choice of u we know t, t′ > 1

2 . Now there are
two cases: If t ≤ t′, Toponogov’s Theorem 1.3.1 yields for w := γ( t

t′ )

dist0(γ, y′0) ≤ dist0(w, y′0) ≤
1

t′
dist0(z, z′) ≤ 2 diam0 Uk.

Analogously if t ≥ t′, we get for w′ := γ′( t′

t )

dist0(y0, γ
′) ≤ dist0(y0, w

′) ≤ 1

t
dist0(z, z′) ≤ 2 diam0 Uk.

From the assumptions on y′0 we have 2 diam0 Uk ≥ dist0(γ, y′0) = dist0(σ, y′0) > 0 and using
the triangle inequality we deduce

0 < dist0(y
′
0, y0) + dist0(y0, σ(1)) − dist0(y

′
0, σ(1)) ≤

dist0(y
′
0, y0) + dist0(y0, u) − dist0(y

′
0, u) ≤ 2 dist0(y0, γ

′) ≤ 4 diam0 Uk.

But this contradicts the fact that diam0 Uk → 0 for k → ∞.

5.2 Controlling curvature by local collapsedness and vice

versa

The fact that the asymptotic volume ratio of any κ-solution is 0 is now useful to show
that we can bound the curvature at a point by the local collapsedness.
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Lemma 5.2.1 (volume controls curvature). For any α > 0 there is a Cκ,n(α) < ∞
such that the following holds:
Suppose that Mn × (−∞, 0] is a Ricci flow satisfying (∗), (x, t) ∈ M × (−∞, 0] and r > 0.
If vol0 Br(x, 0) > αrn then S(x, 0) < C

r2

Proof. Fix some α, κ > 0 and n ∈ N. Suppose that there wasn’t such C. Then we can find
a sequence of n dimensional Ricci flows Mk × (−∞, 0] satisfying (∗) for κ and a sequence
of points xk ∈ Mk as well as a sequence rk such that

vol0 B(xk, 0, rk) > αrn
k but r2

kS(xk, 0) → ∞.

Now we apply the point-picking Lemma 5.1.4 with dk = 1
2rkS

1/2(xk, 0) → ∞ in order
to get curvature control near xk. We find that there are points yk ∈ BMk

rk
(xk) such that

for Qk := S(yk, 0)
S(·, 0) < 4Qk on BMk

dk/Q
1/2
k

(yk, 0).

The fact that the distance between xk and yk is bounded by rk implies

vol0 BMk
2rk

(yk, 0) ≥ αrn
k . (5.7)

By parabolic rescaling we can now assume that Qk = S(yk, 0) = 1, so

S(·, 0) < 4 on BMk
dk

(yk, 0).

So after passing to a subsequence we have convergence of pointed Ricci flows

(Mk × (−∞, 0], (xk, 0)) −−−−→
k→∞

(M∞ × (−∞, 0], (x∞, 0)) (5.8)

where M∞ × (−∞, 0] is a κ-solution, hence V(M∞(0)) = 0. This implies that we can
choose a radius r > 0 such that

vol0 BM∞

r (x∞, 0)

rn
<

α

2n
.

From (5.8) one can easily deduce

vol0 BMk
r (yk, 0)

rn
−→ vol0 BM∞

r (y∞, 0)

rn
<

α

2n
for k −→ ∞

On the other hand, we can assume 2rk > r since rk → ∞ and Bishop-Gromov’s Theorem
1.4.2 gives us a contradiction:

vol0 BMk
r (yk, 0)

rn
≥

vol0 BMk
2rk

(yk, 0)

(2rk)n
≥ α

2n
.

Corollary 5.2.2. For any α > 0 and A < ∞ there is a C ′
κ,n(α,A) < ∞ such that the

following holds:
Suppose that (x, 0) is a point on an n dimensional Ricci flow M × (−∞, 0] satisfying the
assumptions of (∗) such that vol0 B1(x, t) > α. Then we have S(·, t) < C ′ on BA(x, t).

Proof. For any point y ∈ B(x, t,A) we have

vol0 B(y, t, A + 1)

(A + 1)n
≥ α

(A + 1)n

So by Lemma 5.2.1

S(y, 0) <
Cκ,n

(
α

(A+1)n

)

(A + 1)2
.
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Corollary 5.2.3. Let (Mk × (−∞, 0], (xk , 0)) be a sequence of n dimensional Ricci flows
satisfying the assumptions in (∗) for a certain κ such that vol0 B1(xk, 0) > α > 0. Then
there is a subsequence (Mki

× (−∞, 0], (xki
, 0)) that smoothly converges for i → ∞ to a

Ricci flow (M∞ × (−∞, 0], (x∞, 0)).
Moreover, vol0 B1(x∞, 0) = limi→∞ vol0 BMk

1 (xki
, 0) and S(x∞, 0) = limi→∞ S(xi, 0)

and if S(x∞, 0) > 0 the Ricci flow M∞ × (−∞, 0] satisfies (∗).

Proof. Obvious.

The κ-noncollapsedness gives us a tool to bound the local collapsedness by a local
bound on the curvature. We will show that we can even control the local collapsedness by
the curvature at just a single point.

Lemma 5.2.4 (curvature controls volume). There is a βn > 0 such that the following
holds:
If (x, t) is a point on a Ricci flow Mn × (∞, 0] satisfying (∗) and r = S−1/2(x, 0), then

vol0 Br(x, 0)

rn
> β

Proof. Observe that the hypothesis of the Lemma is scale-invariant. Assume that there
was no such βn. Then there is a sequence (Mk × (−∞, 0], (xk, 0)) of pointed n dimensional
Ricci flows satisfying (∗) such that for rk := S−1/2(xk, t) we have

vol0 BMk
rk

(xk, 0)

rn
k

−→ 0. (5.9)

By Bishop-Gromov’s Theorem 1.4.2 we get that vol0 B(xk ,0,s)
sn ր ωn for s ց 0 where ωn

denotes the volume of the unit ball in n dimensional Euclidean space. So for large k we
find sk < rk such that

vol0 BMk
sk

(xk, 0)

sn
k

=
ωn

2
.

By rescaling, we may assume that sk = 1. Since vol0 BMk
rk

(xk, 0) ≥ vol0 BMk
1 (xk, 0) = ωn

2
the convergence (5.9) implies rk → ∞. By Corollary 5.2.3 we get smooth convergence of
pointed Ricci flows after passing to a subsequence

(Mk × (−∞, 0], (xk, 0)) −−−−→
k→∞

(M∞ × (−∞, 0], (x∞, 0))

where M∞ × (−∞, 0] is an ancient κ-noncollapsed Ricci flow with

vol0 B1(x∞, 0) =
ωn

2
and S(x∞, 0) = lim

i→∞
1

r2
ki

= 0. (5.10)

So by the strong maximum principle we may conclude S ≡ 0 on M∞ × (−∞, 0], thus
M∞(0) is flat, and M∞(0) ∼= Rn/Γ for a discrete subgroup Γ ⊳ Isom(Rn) acting freely
on Rn. Because of (5.10), M∞(0) can not be isometric to Rn, hence Γ 6= 1. But by
Bieberbach’s Theorem 1.4.6 there is a Riemannian covering T k×Rn−k → Rn/Γ with k > 0
where T k is a k-dimensional flat torus. Using the κ-noncollapsedness of M∞ × (−∞, 0],
we find κ ≤ V(M∞) ≤ V(T k × Rn−k) = 0, a contradiction.

Corollary 5.2.5. For any A < ∞ there is a Cκ,n(A) < ∞ such that the following holds:
Let M × (−∞, 0] be an n dimensional Ricci flow satisfying (∗) and x ∈ M . Then

1

C
S(x, 0) < S(·, 0) < CS(x, 0) on BAS−1/2(x,0)(x, 0).
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Proof. Observe that the hypothesis is scale invariant. Thus we may assume that S(x, 0) =
1. Applying Lemma 5.2.4 we get vol0 B1(x, 0) > β. So Corollary 5.2.2 gives S <
C ′

κ,n(β,C1) on BAS−1/2(x,0)(x, 0). We have established the upper bound.

For the lower bound choose y ∈ BAS−1/2(x,0)(x, 0). If S(y, 0) > S(x, 0), there is nothing
to show. If S(y, 0) ≤ S(x, 0) we have x ∈ BAS−1/2(y,0)(y, 0) and we can apply the Corollary
for y.

As a special case we formulate the following Corollary which compares the distance
between two points on the scale of each point.

Corollary 5.2.6. For any C1 < ∞ there is a C2(C1, κ, n) < ∞ such that the following
holds:
If M × (−∞, 0] is an n dimensional Ricci flow satisfying (∗) and x, y ∈ M , we have

S(x, 0) dist2
0(x, y) < C1 =⇒ S(y, 0) dist2

0(x, y) < C2

Corollary 5.2.7. Let (Mk × (−∞, 0], (xk, 0)) be a sequence of pointed solutions satisfying
(∗) for a certain κ > 0 such that S(xk, 0) → ρ∞. Then there is a subsequence (Mki

×
(−∞, 0], (xki

, 0)) that smoothly converges to either an ancient flat solution if ρ∞ = 0 or if
ρ∞ > 0 to an ancient solution M∞ × (−∞, 0] satisfying (∗) with S(x∞, 0) = ρ∞.

In other words: The set of n dimensional pointed solutions satisfying (∗) is compact
modulo scaling.

Proof. Use Lemma 5.2.4 and Corollary 5.2.3.

Especially in dimension 2 and 3 this gives (see Corollary 5.1.9):

Proposition 5.2.8 (Compactness of the space of 2 or 3 dimensional pointed
κ-solutions modulo scaling). Let (Mk × (−∞, 0], (xk , 0)) be a sequence of pointed 2 or
3 dimensional κ-solutions such that S(xk, 0) → ρ∞. Then there is a subsequence (Mki

×
(−∞, 0], (xki

, 0)) that smoothly converges to either an ancient flat solution if ρ∞ = 0 or a
κ-solution M∞ × (−∞, 0] with S(x∞, 0) = ρ∞ if ρ∞ > 0.

Finally, we mention a simple application of Corollary 5.2.7. Observe that the quantities
in the hypothesis are invariant under parabolic rescaling.

Corollary 5.2.9. There is a constant ηκ,n < ∞ such that for any n dimensional Ricci
flow M × (−∞, 0] satisfying (∗) and any point x ∈ M we have

‖∇S−1/2(x, 0)‖ <
η

2
and |∂tS

−1(x, 0)| <
(η

2

)2
.

The factor 1
2 is chosen in order to simplify future computations.

5.3 Classification of 2 dimensional κ-solutions

From Corollary 5.1.7 we already know that every 2 dimensional solution M × (−∞, 0]
satisfying (∗) is a compact κ-solution and thus is diffeomorphic to either S2 or RP 2. As
for the geometry, Proposition 5.2.8 gives us the following statement.

Lemma 5.3.1. Let (Mk × (−∞, 0]) be a sequence of 2 dimensional κ-solutions on S2

whose volume is normalized, i.e. vol0 Mk = 4π. Then the sequence subconverges to a
volume normalized κ-solution M∞ × (−∞, 0] on S2
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Proof. Choose basepoints xk ∈ Mk and consider the sequence pointed rescales solutions
(λk(Mk × (−∞, 0]), (xk , 0)) with λk = S1/2(xk, 0). On the rescaled solutions S(xk, 0) =
1, so by Proposition 5.2.8 we have convergence to a pointed 2 dimensional κ-solution
(M∞ × (−∞, 0], (x∞, 0)) for a subsequence of indices (ki). By Corollary 5.1.7 the manifold
M∞ must be compact and thus also diffeomorphic to S2. For the volume we have

vol0 Mki
= 4πλ2

ki
−−−−→
i→∞

vol0 M∞.

Thus the λki
converge and by Proposition 5.2.8 again we already have subconvergence of

the pointed κ-solutions (Mk × (−∞, 0], (xk , 0)) to a pointed κ-solution (M ′
∞ × (−∞, 0], (x∞, 0))

(which is indeed equal to M∞ × (−∞, 0]). By the same argument, as above M ′
∞ is diffeo-

morphic to S2 and we have vol0 M ′
∞ = 4π.

In order deduce some exact geometric statements we need to introduce a scale invariant
quantity for Riemannian metrics on S2 which will turn out to be monotone under the Ricci
flow.

Definition 5.3.2. Let M be a surface of positive (scalar) curvature diffeomorphic to S2

and denote V := vol(M) its volume. The entropy of M is defined by

N(M) := −
∫

M
S log

(
SV

8π

)
dµ.

Lemma 5.3.3. If M is diffeomorphic to S2 and has positive curvature, then N ≤ 0 and
N = 0 if and only if M is homothetic to the round S2.

Proof. Since the function f : x 7→ −V x log
(

V x
8π

)
is concave, we obtain by Jensen’s inequal-

ity and the Gauß-Bonnet Theorem 1.4.4

N(M) =
1

V

∫

M
f(S)dµ ≤ f

(
1

V

∫

M
Sdµ

)
= f

(
8π

V

)
= 0.

The rest follows easily.

Recall that for the Ricci flow on a surface the scalar curvature S satisfies the following
evolution equation:

Ṡ = △S + S2.

Moreover, if we form the Riemannian measure µt at time t, we have d
dtµt = −Sµt.

Lemma 5.3.4. Let M × [0, T ] be a Ricci flow on a surface M diffeomorphic to S2 such
that the curvature is everywhere positive. Then Ṅ(M) ≥ 0. Furthermore, if Ṅt(M) = 0
for some t ∈ [0, T ], then M(t) is homothetic to the round S2.

Proof. Without loss of generality we assume that V = 4π. In the following we will always
integrate over M and denote the Riemannian measure at time t by dµ. The Gauß-Bonnet
Theorem gives us that V̇ = −8π and

Ṅ = −
∫ (

△S + S2
)
log

(
SV

8π

)
dµ−

∫ (
△S + S2

)
dµ + 2

∫
Sdµ +

∫
S2 log

(
SV

8π

)
dµ

=

∫ ‖∇S‖2

S
dµ −

∫
S2dµ + 2

∫
Sdµ =

∫ ‖∇S‖2

S
dµ −

∫
(S − 2)2dµ.

The scalar function S − 2 has integral 0. So we find an f ∈ C∞(M) with △f = S − 2. Set

H := ∇2f − 1

2
△f〈·, ·〉 = (∇2f)0 ∈ Γ(Sym2T

∗M) and X := ∇S + S∇f ∈ Γ(TM).
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(Note that 1
2X = div H =

∑
i ∇EiH(Ei, ·) for an orthonormal frame (Ei). If f is the

potential of a gradient shrinking 2-dimensional soliton we have H ≡ 0.) Using Stokes’
theorem ∫ ‖X‖2

S
dµ =

∫ ‖∇S‖2

S
dµ +

∫
S‖∇f‖2dµ + 2

∫
〈∇S,∇f〉dµ

︸ ︷︷ ︸
−2

∫
S(S − 2)dµ = −2

∫
(S − 2)2dµ

This gives us

Ṅ =

∫ ‖X‖2

S
dµ −

∫
S‖∇f‖2dµ +

∫
(S − 2)2dµ.

Observe that we have

‖H‖2 = ‖∇2f‖2 −△f
〈
∇2f, 〈·, ·〉

〉
+

1

2
(△f)2 = ‖∇2f‖2 − 1

2
(△f)2 .

So using Stokes’ theorem again we get

2

∫
‖H‖2dµ = 2

∫
‖∇2f‖2dµ − 2

∫
(△f)2 dµ +

∫
(S − 2)2dµ

= −2

∫
〈∇f,△∇f〉dµ + 2

∫
〈∇f,∇△f〉dµ +

∫
(S − 2)2dµ

= −
∫

S‖∇f‖2dµ +

∫
(S − 2)2dµ

We conclude

Ṅ =

∫

M

‖X‖2

S
dµ + 2

∫

M
‖H‖2dµ ≥ 0.

Now suppose Ṅ = 0 but S 6≡ const. It follows H = ∇2f − 1
2△f〈·, ·〉 =

(
∇2f

)
0

= 0. Since

∇2f =
1

2
△f〈·, ·, 〉 = Ric−〈·, ·, 〉,

the M is a gradient shrinking soliton. Following [CLT] we will show that there is no
gradient shrinking soliton on S2 other than the round solution.

Assume that S 6≡ const and thus f 6≡ const. Consider the vector field Y := J∇f where
J denotes the counterclockwise rotation by π

2 on TM . Since ∇·Y = J∇·∇f = 1
2△fJ is

a skew symmetric endomorphism, Y is Killing and M is rotationally symmetric. So f
has exactly two critical points xmin / max ∈ M where it assumes its extrema fmin / max. Let
γ : [0, a] → M be a geodesic between xmin and xmax parameterized by arclength. We can
choose polar coordinate (r, θ) on M \ {xmin / max} around xmin such that we have for the
metric g = dr2 + h2(r)dθ2 with h = u‖∇f‖ for some u 6= 0 and γ is the line θ ≡ 0. Then
∇f = df

dr ∂r. We get

h′ = u
〈∇∂r∇f,∇f〉

‖∇f‖ = u∇2
∂r ,∂r

f = u
1

2
S − u = −u

h′′

h
− u.

Multiplying by hh′ and integrating gives

∫ a

0
h
(
h′)2 dr = −u

2

(
h′)2∣∣∣

a

0
− u

2
h2
∣∣∣
a

0
.

Obviously h(0) = h(a) = 0, so the second term on the right hand side vanishes. Fur-
thermore, we must have h′(0) = −h′(a) = 1. Thus also the first term vanishes and we
conclude h (h′)2 ≡ 0, but this is impossible.
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Now we are able to prove the final statement

Theorem 5.3.5. Every 2-dimensional κ-solution is homothetic to the round shrinking
S2 × (−∞, 0] or RP 2 × (−∞].

Proof. Let Svol be the set of all normalized (i.e. vol0 = 4π) 2 dimensional κ-solutions
diffeomorphic to S2. It will be enough to show that Svol just contains the round shrinking
S2×(−∞, 0]. As follows easily from Proposition 5.2.8, Svol is compact, i.e. every sequence
of Ricci flows of Svol subconverges to a Ricci flow in Svol.

Next observe that the entropy of the final time slice N0 : Svol → (−∞, 0] is a continuous
function, i.e. for every convergent sequence of Ricci flows Mk × (−∞, 0] ∈ Svol the time 0
entropies N0(Mk) converge to the time 0 entropy if its limit. It is easy to conclude that
the image I of N0 is compact and by Lemma 5.3.3 we have I ⊂ (−∞, 0]. Let Nmin be the
minimum of I and M × (−∞, 0] be a κ-solution with N0(M) = Nmin. By Lemma 5.3.4
the entropy Nt(M) has to be constant in t. So M × (−∞, 0] is isometric to the round
shrinking S2 and thus Nmin = 0. This implies that any M × (−∞, 0] ∈ Svol has N = 0
and thus is isometric to the round shrinking S2.

5.4 Classification of 3 dimensional κ-solutions

We will now classify the geometry of 3 dimensional κ-solutions. As explained in section 1.4,
every 3 dimensional nonflat complete Riemannian manifold M of nonnegative curvature
is isometric to a quotient of N ×R, where N is diffeomorphic to R3, or M is diffeomorphic
to a spherical space form, to R3, or to one of the following manifolds:

S2 × R, RP 2 × R, S2×̃R, S2 × S1, RP 2 × S1, S2×̃S1, RP 3#RP 3.

(Here S2×̃R = S2 × R/(a, b) ∼ (−a,−b) and S2×̃S2 = S2 × S1/(a, b) ∼ (−a,−b).) By
the splitting principle and Corollary 5.1.7, the final time slice of a κ-solution cannot be
isometric to a quotient of N × R with N ≈ R2. Again using the splitting principle and
Theorem 5.3.5, it is furthermore easy to conclude that if a κ-solution is diffeomorphic to
one of the latter 7 manifolds, then it is actually homothetic to the corresponding quotient
of the round shrinking cylinder. In the latter 4 cases (the compact ones) this puts us into
trouble concerning the noncollapsedness condition:

Lemma 5.4.1. There is no κ-solution diffeomorphic to a compact metric quotient of the
round cylinder S2 × R. Hence all compact κ-solutions are spherical space forms.

Proof. Assume that M×(−∞, 0] is a κ-solution on a compact metric quotient of the round
cylinder S2 × R. Then M × (−∞, 0] is homothetic to the corresponding quotient of the
standard round shrinking cylinder (S2 × R) × (−∞, 0]. Assume that it is even isometric
to this quotient. Consider the covering map π : S2 × R → M . The scalar curvature S on
M satisfies St = S(·, t) ≡ 1

1−t . Obviously, there is an A such that π(S2 × (−A,A)) = M .
So

volt M ≤ volt S2 × (−A,A) = 16Aπ(1 − t). (5.11)

Set r2
t := 1/‖Rt‖ =

√
2

St
=

√
2(1 − t). Then for any point x ∈ M we have volt M ≥

volt B(x, t, rt) ≥ κr3
t = 23/4κ(1 − t)3/2, contradicting (5.11) for t → −∞.

So any 3 dimensional κ-solution M × (−∞, 0] is either diffeomorphic to a spherical
space form, to R3 or is homothetic to one of the following quotients of the round shrinking
cylinder:

S2 × R, RP 2 × R or S2×̃R.

In the case in which a M × (−∞, 0] is a higher spherical space form (hereby we mean
a spherical space form that is not S3 or RP 3), we will show that M × (−∞, 0] is already
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homothetic to the corresponding quotient of the round shrinking S3 × (−∞, 0]. However,
this result will not be needed in the subsequent chapters.

If a κ-solution is diffeomorphic to S3, RP 3 or R3, we cannot give a precise classification
of its geometry. For example, it is not known if the round shrinking S3 is the only κ-
solution diffeomorphic to S3. It is very reasonable that there is also a solution that looks
more and more like an ellipsoid and approaches the geometry of a round cylinder around
its center or a bowl-shaped solution on R3 around its tips for t → −∞. The analogon
can be conjectured for RP 3. Note that there is a κ-solution on R3 that is rotationally
symmetric and asymptotically cylindrical in its end, called Bryant’s soliton (see [Cho2, Ch
1] or [CLN, Sec 4.6]). Moreover, this solution is a steady gradient soliton. It is unknown
if this is the only κ-solution on R3 up to homothety.

However, in the two unknown cases we will still be able to give give an approximate
classification. At first, we have to analyze the global structure of 3 dimensional κ-solutions.

5.4.1 The asymptotic cone of a 3 dimensional κ-solution

In the proof of Proposition 5.1.3 we have already seen that the blow downs of a κ-solution
do not smoothly converge to a smooth metric cone of the same dimension away from its
tip. In dimension 3 even more is true:

Proposition 5.4.2. Let M ×(−∞, 0] be a 3 dimensional κ-solution. Then the asymptotic
cone of M(0) is either a point, a ray or a line. If it is a point, the solution is compact.
If it is a line, the solution is either homothetic to the round

(
S2 × R

)
× (−∞, 0] or to the

round
(
RP 2 × R

)
× (−∞, 0].

Proof. Let p ∈ M and (C, p∞) be the asymptotic cone of M(0). If C is just a single point,
M(0) doesn’t have rays hence it is compact (recall the construction of the asymptotic cone
in the proof of Proposition 3.6.1).

Assume that (C, p∞) is not just a ray starting in p∞. We want to show that M×(−∞, 0]
is homothetic to the standard

(
S2 × R

)
× (−∞, 0] or to

(
RP 2 × R

)
× (−∞, 0]. This will

then imply that (C, p∞) is a line. We can find two rays γ, σ : [0,∞) → M(0) parameterized
by arclength and starting in p such that

lim
s,t→∞

∢̃γ(t)pσ(s) = α > 0. (5.12)

Consider the universal covering κ-solution M̃ × (−∞, 0]. Lift p to get p̃ and, starting in
p̃, lift γ and σ to get γ̃ resp. σ̃. Obviously the above identity is also true for γ̃ and σ̃,
possibly for a different α̃ > α. If we could show that M̃ × (−∞, 0] is homothetic to the
round (S2 × R) × (−∞, 0] then M × (−∞, 0] is homothetic to the standard Ricci flow on
one of its quotients, i.e.

S2 × R, RP 2 × R, S2×̃R =
(
S2 × R

)
/(a, b) ∼ (−a,−b)

or some compact quotient of S2 × R. Since the asymptotic cone of M(0) is more than a
ray, we can exclude all cases except the the first two. This shows that it suffices to assume
M to be simply connected.

From (5.12) and the fact that ∢̃γ(t)pσ(s) is decreasing in s and t we conclude that

dist0(γ(t), σ) ≥ t sinα. (5.13)

Since t2S(p, 0) = dist20(p, γ(t))S(p, 0) → ∞ we get by Corollary 5.2.6 that

t2S(γ(t), 0) −→ ∞. (5.14)
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For every t ≥ 0 consider the rescaled pointed κ-solution

(Mt × (−∞, 0], (γ(t), 0)) = (λt(M × (−∞, 0]), (γ(t), 0)) where λt = S1/2(γ(t), 0).

On Mt × (−∞, 0] we have S(γ(t), 0) = 1 and so from (5.14) we get that dist0(p, γ(t)) =
λtt → ∞. By Proposition 5.2.8, there is a subsequence tk → ∞ such that we have smooth
convergence of the (Mtk × (−∞, 0], (γ(tk), 0)) to a κ-solution (M∞ × (−∞, 0], (x∞, 0)).
Since γ(tk) → x∞ and γ|[0,2tk] are minimizing segments whose length on Mtk × (−∞, 0]
diverges in k, the segments subconverge to a line γ∞ ⊂ M∞(0) and thus M∞× (−∞, 0] =
(N ×R)× (−∞, 0] where N × (−∞, 0] is a 2 dimensional 1

2κ-solution hence compact. Let
d := diam0 N .

We have shown that for any ε > 0 there are ε-isometries

Φk : N(0) × (−2d, 2d) −→ λtkM(0) with x∞ 7→ γ(tk)

for large k. Set Uk := ImΦk. Using the simply connectedness of M we get as in the proof
of Corollary 5.1.9 that Uk separates M into two components such that p and γ|(tk+3dλk,∞)

lie in different components for large k (if ε is chosen small enough). Thus the component
of M \ Uk that does not contain p, is noncompact for large k.

Since diam0 Uk ≤ 6d
λtk

= 6d
tkS1/2(γ(tk),0)

tk, we conclude from (5.14) and (5.13) that for

large k the ray σ does not hit Uk. Hence the component of M \ Uk containing p is
also noncompact. So M(0) has two ends and thus splits off an R factor. This implies
that M × (−∞, 0] = (N × R) × (−∞, 0] where N × (−∞, 0] is a simply connected 2
dimensional 1

2κ-solution. By Theorem 5.3.5, N × (−∞, 0] is homothetic to the round
shrinking S2 × (−∞, 0].

5.4.2 ε-necks and ε-caps

As will become apparent later, an important property of κ-solutions is that they look
locally either cylindrical with S2 or RP 2 as cross section or resemble a cap diffeomorphic

to B3 or RP 3 \ B
3
. We will make this precise:

Definition 5.4.3 (ε-neck). Let ε > 0, (M,g) be a Riemannian manifold and U ⊂ M be
an open subset. We call U an ε-neck if there is a bijective ε-homothety Φ : S2×(−1

ε , 1
ε ) →

U , where S2 × (−1
ε , 1

ε ) denotes the corresponding subset of the standard round cylinder.
Moreover, we call x ∈ U a center of U if x ∈ Φ(S2 × {0}) for such a Φ.

As for Ricci flows it will turn out to be useful to have control over the local geometry
at earlier times as well.

Definition 5.4.4 (strong ε-neck). Let ε > 0, M × I be a Ricci flow, U ⊂ M an open
subset and J = [t1, t2] ⊂ I a closed subinterval. We say that U × J is a strong ε-neck if
there is a scaling factor λ > 0 such that after parabolically rescaling the flow on U × J by
the factor λ−1, the time interval λ−2J = [λ−2t1, λ

−2t2] has length λ−2(t2 − t1) = ε−2 and
there is a (bijective) diffeomorphism Φ : S2 × (−1

ε , 1
ε ) → U that is an ε-isometry between

the time t metric of the standard round cylinder on S2 × (−1
ε , 1

ε ) and the time t + λ−2t2
metric on λ−1(M × J) for all t ∈ [−ε−2, 0].
Moreover, we call (x, t2) ∈ U × {t2} a center of U × J if x ∈ Φ(S2 × {0}) for such a Φ.

Observe that this definition differs slightly from the definition given in [Per1] since
we require λ−2(t2 − t1) to be equal to ε−2 rather than 1. Choosing this convention will
simplify the reasoning in subsection 6.1 and in the proof of Lemma 7.3.5.

Obviously, the final time slice of a strong ε-neck is an ε-neck. Particularly, every center
of a strong ε-neck is also the center of an ε-neck. If U is an ε-neck and ε′ > ε then there is
an open subset U ′ ⊂ U that is an ε′-neck. Moreover, for any center x ∈ U we can choose
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U ′ such that x is still a center of U ′. Analogous statements hold true for strong ε-necks.
If U ⊂ M is an ε-neck and λ the scaling factor of one of the ε-homotheties Φ in Definition
5.4.3, then we can estimate the scalar curvature S on U by 1

µ(ε)λ
−2 < S < µ(ε)λ−2 if ε

is small enough (e.g. smaller than 1
2). The constant µ depends only on ε and µ → 1 for

ε → 0. Again, we have analogous statements for strong ε-necks.
Let U ⊂ M and Φ : S2 × (A,B) → U be a (bijective) diffeomorphism. We call an

embedding ι : S2 → U parallel to Φ if the map pr1 ◦Φ−1 ◦ ι : S2 → S2 is a diffeomorphism
(here pr1 : S2 × (−1

ε , 1
ε ) → S2 denotes the projection onto the first factor). If U ⊂ M is

an ε-neck, we call ι parallel to the neck U if it is parallel to every Φ : S2 × (−1
ε , 1

ε ) → U
from Definition 5.4.3.

Now consider two maps Φ1/2 : S2 × (−A,A) → U1/2 and assume that the image of the
central cross-section Φ1(S

2 × {0}) lies in Φ2(S
2 × (0, A)) resp. Φ2(S

2 × (−A, 0)) and is
parallel to Φ2. Then it is easy to see that we can glue the maps Φ1 and Φ2 together to get
a surjective local diffeomorphism Φ3 : S2 × (B,C) → U1 ∪ U2 that coincides at its ends
with Φ1|S2×(−A,0) or Φ1|S2×(0,A) as well as Φ2|S2×(−A,0) or Φ2|S2×(0,A) up to translations
on S2 × R.

We will see that in the case in which U1 and U2 are ε-necks, the parallelity is already
implied if ε is small enough. For this we will introduce a constant ε0 that we will decrease
in the course of the exposition to allow conclusions involving ε-necks. Observe that ε0 is
independent of any other constant introduced subsequently.

Lemma 5.4.5. There is an ε0 > 0 such that for ε1, ε2 < ε0 the following holds:
If U1, U2 ⊂ M are two ε1- resp. ε2-necks in a Riemannian manifold (M,g), then for any
bijective ε1-homothety Φ1 : S2 × (− 1

ε1
, 1

ε1
) → U1 the cross-sections Φ1(S

2 × {a}) that lie
in U2 are parallel to the ε2-neck U2.

Proof. Let Φ2 : S2 × (− 1
ε2

, 1
ε2

) → U2 be a bijective ε2-homothety and a ∈ (− 1
ε1

, 1
ε1

) such

that Σ := Φ1(S
2 × {a}) ⊂ U2. Consider the corresponding embedding ι = Φ|S2×{a}.

Let X1 resp. X2 be unit vector fields on S2 × (− 1
ε1

, 1
ε1

) resp. S2 × (− 1
ε2

, 1
ε2

) in
the direction of the second factor. If ε0 is sufficiently small, we can apply the follow-
ing reasoning: For any x ∈ Σ the vectors ((Φ1)∗X1)x and ((Φ2)∗X2)x are close enough
to the eigenspaces of Ric corresponding to the smallest eigenvalue that we may assume
∢ (((Φ1)∗X1)x , ((Φ2)∗X2)x) < π

3 if we choose the orientations of X1 and X2 appropri-
ately. Moreover, we may assume that ∢ ((Φ1)∗X1, TΣ) ,∢ ((Φ2)∗X2, TΣ) < π

3 along Σ. So
Φ−1

2 Σ is transversal to X2 and we conclude that Φ−1
2 ◦ ι is a local diffeomorphism hence a

diffeomorphism.

Eventually, we explain what we mean by a cap. We will not need the “strong” version
here. Note that the main point in the following definition is that the part whose geometry
is not controlled by ε-isometries can be geometrically bounded.

Definition 5.4.6 ((ε,E)-cap). Let ε > 0, E < ∞ and (M,g) be a Riemannian manifold.
Consider an open set U ⊂ M and suppose that diam2 US(x) < E2 for any x ∈ U and
1

E2 S(x) ≤ S(y) ≤ E2S(x) for any x, y ∈ U . Furthermore, assume that U is either

diffeomorphic to B3 or RP 3 \ B3
and that there is a compact set K ⊂ U such that U \ K

is a ε-neck. Then U is called an (ε,E)-cap or if we don’t want to be so precise, an ε-cap.
If x ∈ K for such a K, then we say that x is a center of U .

Observe that every center of an (ε,E)-cap is also the center of an (ε′, E′)-cap if ε′ ≥ ε
and E′ ≥ E.

We will now use the results obtained so far to prove the following Proposition:

Proposition 5.4.7. There is an ε0 > 0 such that for ε < ε0 the following holds:
Let (M,g) be a Riemannian manifold and W ⊂ M such that any point w ∈ W is the center
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of an ε-neck or an ε-cap. Then W is covered by disjoint connected open sets Nk ⊂ M
diffeomorphic to

S2 × R, B3, RP 3 \ B
3
, S3, S2 × S1, S2×̃S1, RP 3 or RP 3#RP 3.

Moreover, the Nk are covered by the given ε-necks and -caps.

If every point w ∈ W is the center of an ε-neck, then the Nk are diffeomorphic to
S2 × R, S2 × S1 or S2×̃S1.

Proof. Let W ′ be the set of all centers of ε-necks in W plus the centers of the ε-necks
corresponding to the given ε-caps. Consider a collection N of pairs (U,w) of ε-necks
U ⊂ M and their centers w, such that for every w ∈ W ′ there is a U ⊂ M with (U,w) ∈ N .

Let (U0, w0), (U1, w1) ∈ N and assume that 1
10ε < dist(w0, w1) < 1

2ε . Choose Φ0/1 :

(−1
ε , 1

ε ) → U0/1 as in Definition 5.4.3. For ε0 sufficiently small this implies that the cross-
section Σ := Φ1(S

2 × {0}) of U1 lies in U0. Since we have a lower bound on the distance
between the points w0 and w1, we may assume (for small enough ε0) that Σ is contained
in Φ1(S

2 × (0, 1
ε )) (possibly after flipping Φ1 on its (−1

ε , 1
ε ) factor). Thus by Lemma 5.4.5

and the preceding discussion we can glue the maps Φ0 and Φ1 together to obtain a local
diffeomorphism Ψ : S2 × (A,B) → M that coincides at one end with Φ0|S2×(− 1

ε
,0) and at

the other with Φ1|S2×(0, 1
ε
) (if we choose the right orientation for Φ1) up to translations on

S2 × R.

Assume that there is an element (U2, w2) ∈ N with 1
10ε < dist(w1, w2) < 1

2ε and w2 ∈
Φ1(S

2 × (0, 1
ε )). Choose a corresponding Φ2 : (−1

ε , 1
ε ) → U2. Analogous to the discussion

in the preceding paragraph we may assume that Σ′ := Φ2(S
2 × {0}) ⊂ Φ1(S

2 × (0, 1
ε )).

Repeat the preceding argument with Φ0 resp. Φ1 replaced by Φ1 resp. Φ2. Since Ψ
coincides with Φ1|S2×(0, 1

ε
) at one end (up to a translation on S2 × R), we can glue Ψ and

Φ2 together to produce a local diffeomorphism Ψ′ : (A′, B′) → U0 ∪U1 ∪U2 that coincides
at its ends with Φ0|S2×(− 1

ε
,0) and Φ2|S2×(0, 1

ε
) (if Φ2 has the appropriate orientation) up to

translations on S2 × R.

We can repeat this process as long as we find (Ui, wi) ∈ N for i → ∞ with the claimed
properties and successively extend Ψ at one end. If the process stops, we decrease the
width of the last ε-neck such that the corresponding end is contained in a ball of radius
1
5ε around the last wi. Points of W ′ that have lain in the image of Ψ will then still be
covered. We proceed in an analogous way to extend Ψ at the other end.

We have constructed a local diffeomorphism Ψ : S2 × (A,B) → N that may still have
self intersections. But since the ends of Ψ (if they exist) are covered by balls of radius
1
5ε around some points w−i1 and wi2 ∈ W , we can make sure by analogous cutting and
glueing arguments that in this case the image of Ψ is diffeomorphic to S2 × S1 or S2×̃S1.
Set N ′ := Im Ψ.

We can apply the glueing process described so far for any starting point w0 ∈ W ′.
This way we produce a collection of sets N ′ each of diffeomorphism type S2 × R, S2 × S1

or S2×̃S1 that cover W ′. By the way we choped off ends, we can ensure that for any two
such N ′

1, N
′
2 either N ′

1∩W ′ = N ′
2∩W ′ or N ′

1∩N ′
2 = ∅. Hence we can choose a sequence N ′

k

of disjoint subsets that still cover W ′. Consider the points in W \ W ′. These are centers
of ε-caps whose corresponding ε-necks have centers that lie in

⋃
k N ′

k. It is easy to see
that we can now glue any ε-cap into a corresponding N ′

k and hereby produce Nk of the
claimed diffeomorphism types.

A useful property of ε-necks U ⊂ M is that there are geodesics (or hinges of large
angles) that cross U . This makes them distinguishable from ε-caps, a fact that will prove
to be useful for us lateron.



5.4. CLASSIFICATION OF 3 DIMENSIONAL κ-SOLUTIONS 63

Lemma 5.4.8. There is an ε0 > 0 and an α > 0 such that for ε < ε0 the following holds:
Let (M,g) be a Riemannian manifold and x ∈ M center of an ε-cap U . Then there is no
minimizing geodesic segment γ passing through x whose endpoints lie outside of U . If M
is complete and has nonnegative sectional curvature, then for any two points y1, y2 outside
of U we have ∢̃y1xy2 < π − α.

Proof. The first part is obvious. For the second part connect x and y1, y2 by minimizing
geodesics γ1 resp. γ2 and choose y′1/2 ∈ γ1/2 ∩ ∂U . By Toponogov’s Theorem 1.3.1 we

conclude that ∢̃y1xy2 ≤ ∢̃y′1xy′2. Let U ′ ⊂ U be an ε-neck as in the Definition 5.4.6 of
ε-caps and λ its scaling factor. Then (for small enough ε0) we have dist(y′1, y

′
2) < 3πλ

and dist(x, y′1),dist(x, y′2) > 1
ελ since x lies outside U ′. This gives us an upper bound for

∢̃y′1xy′2.

5.4.3 The geometry of 3 dimensional κ-solutions

We will now give the final classification result on 3 dimensional κ-solutions. Since the only
non-orientable κ-solution is homothetic to the round shrinking (RP 2 × R) × (−∞, 0], we
will restrict ourselves from now on to orientable κ-solutions. For an ε > 0 and a κ-solution
M × (−∞, 0] define Mε ⊂ M to be the set of points in M(0) that are centers of strong
ε-necks.

Lemma 5.4.9. For any angle ϕ ∈ (0, π] and any ε > 0 there is a Cκ(ϕ, ε) such that the
following holds:
If M × (−∞, 0] is an orientable 3 dimensional κ-solution and p, q, q′ ∈ M are points such
that

∢̃qpq′ ≥ ϕ and dist20(p, q)S(p, 0), dist20(p, q′)S(p, 0) ≥ C,

then p ∈ Mε.

Proof. The assumptions of the lemma are scale invariant, so we can assume that S(p, 0) =
1. Fix some ϕ, ε, κ > 0 and assume that there is no such C. Let Mk × (−∞, 0] and
pk, qk, q

′
k ∈ Mk be sequences of counterexamples satisfying S(pk, 0) = 1, ∢̃qkpkq

′
k ≥ ϕ and

dist0(pk, qk),dist0(pk, q
′
k) → ∞ but not pk ∈ (Mk)ε. Connect the pk with the qk resp. q′k by

time 0 minimizing geodesics γk resp. γ′
k parameterized by arclength. From Toponogov’s

Theorem 1.3.1 we get that

∢̃γk(s)pkγ
′
k(s

′) ≥ ϕ for any s, s′ > 0. (5.15)

By Proposition 5.2.8 a subsequence of the (Mk×(−∞, 0], (pk, 0)) converges to an orientable
κ-solution (M∞ × (−∞, 0], (p∞, 0)). Moreover, the geodesics γk resp. γ′

k subconverge to
rays γ∞ resp. γ′

∞. By (5.15) for any s, s′ > 0 we have ∢̃γ∞(s)pγ′
∞(s′) ≥ ϕ. So the

asymptotic cone of M∞ × (−∞, 0] consists of more than just one ray and by Proposition
5.4.2 the κ-solution M∞ × (−∞, 0] has to be isometric to the round shrinking cylinder
(S2 × R) × (−∞, 0]. This gives the desired contradiction.

Lemma 5.4.10. For any ε > 0 there is an ακ(ε) < ∞ such that the following holds:
Let M × (−∞, 0] be an orientable 3 dimensional κ-solution and x, y ∈ M \ Mε such that
dist20(x, y)S(x, 0) ≥ α. Let z ∈ M . Then

(i) dist20(x, z)S(x, 0) < α or
(ii) dist20(y, z)S(y, 0) < α or
(iii) dist0(x, z), dist0(y, z) < dist0(x, y) and z ∈ Mε.
As a consequence, M is compact.

Observe that the assumptions and the hypothesis of the lemma are scale invari-
ant and that there is a hidden symmetry when talking about the normalized distances
(compare Corollary 5.2.6), e.g. the lemma stays true if we replace dist20(x, y)S(x, 0) by
dist20(x, y)S(y, 0).
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Proof. Set ακ(ε) := max(C2(Cκ(π
3 , ε), κ), Cκ(π

3 , ε)) where we use C2 from Corollary 5.2.6
and C from Lemma 5.4.9. Assume that (i) and (ii) do not hold. Corollary 5.2.6 gives us

dist20(x, z)S(z, 0), dist20(y, z)S(z, 0), dist20(x, y)S(y, 0) ≥ Cκ

(π

3
, ε, κ

)
.

From Lemma 5.4.9 applied to x and y we conclude that ∢̃yxz, ∢̃zyx < π
3 and the first

part of (iii) follows. So we must have ∢̃yzx > π
3 and Lemma 5.4.9 applied to z yields the

second part of (iii).

Together with Proposition 5.4.7 this result implies that if we choose ε0 small enough,
then for 0 < ε < ε0 and α = ακ(ε) any orientable κ-solution M × (−∞, 0] falls in (at least)
one of the following categories:

(A) Mε = M , hence M is diffeomorphic to either S2 × R, S2 × S1 or S2×̃S1. By Lemma
5.4.1 the latter two cases are impossible. So M × (−∞, 0] is homothetic to the round
shrinking cylinder (S2 × R) × (−∞, 0].

(B) There is a point x ∈ M \ Mε and M = Mε ∪ B where B := BαS−1/2(x,0)(x, 0). So

M \B is covered by disjoint open sets Nk diffeomorphic to S2 ×R which are covered
by ε-necks themselves.

Assume that for some k the set Nk is bounded. Then Nk has two boundary compo-
nents which are both contained in B. Suppose first that there is an ε-neck U ⊂ Nk

that doesn’t hit B. Since B is connected, we can find a loop b : S1 → M that has
intersection number 1 with a cross-section Σ of U . So [b] ∈ π1M has infinite order

and thus any lift of Σ in the universal cover M̃ separates M̃ into two noncompact
parts. We conclude that in this case M̃ has two ends, so M̃ × (−∞, 0] is homothetic
to the round shrinking cylinder and by Lemma 5.4.1 M × (−∞, 0] must homothetic
to the round shrinking (S2×̃R) × (−∞, 0], contradicting the boundedness of Nk.

On the other hand, if every ε-neck U ⊂ Nk intersects B, we deduce that for any
y ∈ Nk there is some y′ ∈ B such that y and y′ lie in a common ε-neck. Hence by

Corollary 5.2.5 we get dist0(y, y′) < 3
εS−1/2(y′, 0) < 3

εC
1/2
κ,3 (α)S−1/2(x, 0) for ε0 small

enough. We conclude that Nk is contained in a ball B′ of radius C ′S−1/2(x, 0) :=

(α + 3
εC

1/2
κ,3 (α))S−1/2(x, 0) around x.

Thus, the Nk which are not contained in B′ are unbounded. It is easy to see that
there is not more than one such Nk since otherwise M would have two ends and
M × (−∞, 0] must be homothetic to round cylindrical flow. Analogously, such an Nk

cannot be unbounded in both directions.

Suppose first that M 6= B′, so there is exactly one unbounded Nk. By lifting Nk

to the universal cover, we get that if π1M 6= 1, the κ-solution M × (−∞, 0] must
be homothetic to the round (S2×̃R) × (−∞, 0]. If, however, π1M = 1, then M
can only be diffeomorphic to R3 and by Alexander’s Theorem (see [Hat, Ch 1]) the
cross-sections of Nk bound 3-balls containing x.

Finally, if M = B′, we have diam0 M < 2C ′S−1/2(x, 0). Observe that Corollary 5.2.5
implies for any x′ ∈ M that S(x′, 0) > C−1

κ,3S(x, 0). So for

C ′′ := 2C
1/2
κ,3 (C ′)C ′

we get diam0 M < C ′′S1/2(x′, 0).

(C) There are two points x1, x2 ∈ M \ Mε such that M = Mε ∪ B1 ∪ B2 with B1/2 :=
BαS−1/2(x1/2,0)(x1/2, 0) and M is compact. So M is a spherical space form.
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Set B′
1/2 := BC′S−1/2(x1/2,0)(x1/2, 0) where we use the constant C ′ from (B). Assume

for the moment without loss of generality that S(x1, 0) ≤ S(x2, 0). If B′
1 and B′

2

intersect, we conclude using Lemma 5.4.10 that diam0 M ≤ 3C ′S−1/2(x1, 0). So,
analogously to the last paragraph, for

C ′′′ := 3C
1/2
κ,3 (3C ′)C ′

we have diam0 M < C ′′′S−1/2(x′, 0) for any x′ ∈ M . Assume from now on B′
1 and B′

2

to be disjoint.

By Proposition 5.4.7 the manifold M(0) is covered by B1, B2 and disjoint open
sets Nk ⊂ M diffeomorphic to S2 × R which are covered by ε-necks themselves.
Analogously to the case (B) we conclude that either the two boundary components
of every Nk lie in one of the B1 resp. B2 each or Nk is contained in B′

1 ∪ B′
2.

Suppose that Nk1, Nk2 have the property that their boundary components lie in B1

resp. B2 each. Then as in case (B), there is a loop b : S1 → M that has intersection
number 1 with a cross-section Σ of Nk1 or Nk2 and the universal covering flow is
homothetic to round cylindrical flow contradicting the compactness of M .

So M is covered by B′
1, B

′
2 and exactly one open set N ⊂ M diffeomorphic to S2 ×R.

Let Σ ⊂ N be a cross-sectional 2-spheres of N . The preimage of Σ under the universal
covering map π : S3 → M consists of disjoint copies of 2-spheres. So one component
of π−1Σ bounds a closed imedded ball that is disjoint from the other components
(here we applied Alexander’s Theorem). Since the group of covering transformations
acts transitively on the components of π−1Σ, this has to be true for all components.
So Σ ⊂ M also bounds an embedded ball D ⊂ M . Without loss of generality we may
assume x1 ∈ D. Furthermore, after possibly enlarging D we can assume Σ ⊂ B′

2.
Then obviously, B′

1 ⊂ D.

Note that if M is diffeomorphic to S3, every cross-section of N bounds embedded
balls on both sides and if M is diffeomorphic to RP 3, then Σ bounds an embedded
ball on one side and an embedded RP 3 \ B3 on the other side.

Assume now that M is not diffeomorphic to S3 or RP 3, i.e. M is a higher spherical
space form. Then |π1M | > 2. Consider the points π−1x1 ⊂ π−1D. These points
cannot be centers of strong ε-necks in M since such necks have to lie in π−1B′

1 ⊂ π−1D
and the lifts of D are disjoint and project one-to-one to D under the covering map.
But this contradicts Lemma 5.4.10 applied to the covering flow M̃×(−∞, 0], since for
any two x̃1, x̃

′
1 ∈ π−1x1 we have dist20(x̃1, x̃

′
1)S(x̃1, 0) > α. So in the case B′

1 ∩B′
2 = ∅

the manifold M cannot be a higher spherical space form.

The preceding discussion implies:

Theorem 5.4.11. For any ε > 0 there is an Eκ(ε) such that for any orientable 3 dimen-
sional κ-solution M × (−∞, 0] and any x ∈ M one of the following cases applies:
(a) x is the center of a strong ε-neck
(b) x is the center of an (ε,E)-cap,
(c) M is a higher spherical space form
(d) M × (−∞, 0] is homothetic to the round shrinking (RP 2 × R) × (−∞, 0].
Moreover, whenever (c) applies, diam0 M < ES−1/2(x, 0).

In case (c) we even have more:

Theorem 5.4.12. Let M × (−∞, 0] be a compact 3 dimensional κ-solution that is not
diffeomorphic to S3 or RP 3. Then M × (−∞, 0] is homothetic to a quotient of the round
shrinking S3 × (−∞, 0].
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Proof. For a compact 3 dimensional Riemannian manifold (N, g) of positive Ricci curva-
ture denote

P (N) := max{c ∈ R : Ric ≥ cS}.
Obviously, P is scale-invariant and 0 < P (N) ≤ 1

3 . Furthermore, P (N) = 1
3 if and only if

N is homothetic to a quotient of the round sphere S3. As we know from Corollary 2.5.8,
the quantity P is nondecreasing under the Ricci flow and if it is locally constant, N is
homothetic to a quotient of the round sphere S3.

Now consider the collection F of all pointed compact κ-solutions (M × (−∞, 0], (x, 0))
with S(x, 0) = 1 that are not diffeomorphic to S3 or RP 3. These solutions must be
diffeomorphic to a spherical space form and by Theorem 5.4.11 we have diam0 M <
ES−1/2(x, 0). We will apply an analogous reasoning as in the proof of Theorem 5.3.5:
F is compact with respect to Gromov-Hausdorff limits and F0 : F → R is continuous.
Furthermore, any κ-solution in F has positive Ricci curvature since it is not diffeomorphic
to a metric quotient of S2 × R or R3 (recall the discussion in section 1.4). So there is a
κ-solution (M × (−∞, 0], (x, 0)) ∈ F for which P0 attains its mininum. But since P is
nondecreasing under the Ricci flow, Pt(M) has to be constant in time and thus P (M) ≡ 1

3 .
This implies that P0 = 1

3 on F and all elements of F are round.

5.4.4 A universal κ0

In dimension 3 we even have the following

Theorem 5.4.13. There is a κ0 > 0 such that any 3 dimensional κ-solution that is not
diffeomorphic to a higher spherical space form, is in fact a κ0-solution.

A proof can be found in [MT, Ch 9.5] or [KL, Proposition 49.1]. We will only give a
short sketch of the proof since some non-basic analytical tools are needed to carry out the
details:

Consider a 3-dimensional κ-solution M × (−∞, 0] not diffeomorphic to a higher spher-
ical space form and choose a basepoint (x0, t0). By the results of chapter 4 for any τ > 0
there is a point q(τ) ∈ M such that the l-distance between (x0, t0) and (q(τ), t0 − τ)
does not exceed 3

2 . Now, we can show that there is a sequence τk → ∞ such that the

pointed parabolically rescaled Ricci flows (τ
−1/2
k (M × [t0 − 2τk, t0 − τk]), (xk, t0 − τk)) con-

verge to a solution (M∞× [−2,−1], (x∞,−1)) that is a non-flat gradient shrinking soliton
with bounded curvature whose time slices are κ-noncollapsed. This soliton is called the
asymptotic soliton. Note that this is the technically most demanding part of the proof.

By the results of [Ham1] or a similar argument as in the proof of Theorem 5.4.12 we
can conclude that if M∞ × [−2,−1] is compact, it must be homothetic to the round S3 ×
[−2,−1] or RP 3× [−2,−1]. If it is noncompact, we can show (see [KL, Lemma 50.1]) that
M∞(−1) cannot have positive sectional curvature everywhere. So there must be a point
y ∈ M∞ and a plane π ⊂ TyM∞ such that K−1(π) = 0 and using the strong maximum

principle, it is possible to show that the universal covering solution M̃∞ × [−2,−1] splits
as (N × R) × [−2,−1] where N × [−2,−1] is a 2 dimensional gradient shrinking soliton
whose time slices are 1

2κ-noncollapsed. By Theorem 5.3.5 we can show that N × [−2,−1]
is homothetic to the round S2 × [−2,−1]. So M∞ × [−2,−1] is homothetic to one of the
following round solutions: (S2×R)× [−2,−1], (S2×̃R)× [−2,−1] or (RP 2×R)× [−2,−1].

We conclude that there is a universal κ′
0 > 0 such that M∞(0) is always κ′

0-noncollapsed.
Now we can use the methods developed in the proof of the No Local Collapsing Theorem
4.2.4 to show that M × (−∞, 0] is κ0-noncollapsed in (x0, t0) for a κ0 that only depends
on κ′

0.



Chapter 6

Canonical neighborhoods

In this chapter we will geometrically characterize regions of large curvature in arbitrary
3 dimensional Ricci flows. We will show that these regions are geometrically close to κ-
solutions and thus essentially strong necks or caps. Our aim is to prove the Canonical
Neighborhood Theorem 6.3.2 on page 73 which is a deeper result than Theorem 5.0.1 in
the sense that we can already characterize the local geometry if the scalar curvature S(x, t)
at some point (x, t) is large enough compared to some universal parameters. Previously,
we needed to make a very special choice for (x, t) in order to do this. In chapter 7 we will
use a somewhat generalized version of the Canonical Neighborhood Theorem to perform
surgeries in an appropriate way.

6.1 Definitions

Fix κ0 from Theorem 5.4.13 and accordingly choose η = ηκ0,3 from Corollary 5.2.9. In
the following we will frequently express that the neighborhood of some points of large
curvature carry a certain standardized approximate geometry on a local scale. For this we
introduce the following phrase:

Definition 6.1.1 (Canonical neighborhood assumptions). Let r, ε > 0 and E <
∞. A point (x, t) in a Ricci flow M × I is said to satisfy the canoncial neighborhood
assumptions CNA(r, ε,E) if either S(x, t) ≤ 1

r2 or

(A) ‖∇S−1/2(x, t)‖ < 1
2η + ε and |∂tS

−1(x, t)| <
(

1
2η + ε

)2
,

(B) M(t) is (κ0 − ε)-noncollapsed in x and
(C) (x, t) is the center of a strong ε-neck or an (ε,E)-cap.

Observe that we have chosen the definition such that if (x, t) ∈ M × [0, T ] satisfies
the canonical neighborhood assumptions CNA(r, ε,E) then there is a neighborhood U ⊂
M × I in spacetime around (x, t) whose points are CNA(1

2r, 2ε, 2E) (if ε is smaller than
a certain universal constant what we will always assume in the course of this exposition).
In addition, if (xk, tk) ∈ Mk × Ik is a sequence of points in a sequence of Ricci flows
which converges to some Ricci flow M∞ × I∞ such that (xk, tk) → (x∞, t∞), then we
can conclude: if all (xk, tk) satisfy the canonical neighborhood assumptions CNA(r, ε,E),
then (x∞, t∞) is CNA(1

2r, 2ε, 2E). And vice versa: If (x∞, t∞) satisfies the canonical
neighborhood assumptions CNA(r, ε,E) then (xk, tk) is CNA(1

2r, 2ε, 2E) for large k.

In order to control the extent to which negative sectional curvature can occur in a
Ricci flow, we define (compare the Hamilton-Ivey pinching in section 2.9)

Definition 6.1.2. Let M × [T1, T2] be a Ricci flow, (x, t) ∈ M × [T1, T2] and ϕ > 0. We
say that the curvature at (x, t) ∈ M × [T1, T2] (t > −ϕ−1) is ϕ-positive if there is an

67
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X > 0 such that the sectional curvature K(x, t) ≥ −X as well as

S(x, t) ≥ − 3

ϕ−1 + t
and S(x, t) ≥ X(log X + log(ϕ−1 + t) − 3).

We say that a Riemannian manifold M has ϕ-positive curvature at time t if M ×{t} has
ϕ-positive curvature. In the case t = 0 we simply say that M has ϕ-positive curvature.

Note that if the curvature at (x, t) is ϕ-positive and if ϕ′ > ϕ, then it is also ϕ′-
positive. Furthermore, if the curvature at (x, t) is ϕ-positive for all ϕ > 0, then the
sectional curvature at (x, t) is nonnegative. This fact implies that a limit of Ricci flows
with ϕk-positive curvature has nonnegative sectional curvature if ϕk → 0.

It is important to note that the property above depends on the time t. If the curvature
in (x, t) ∈ M × [T1, T2] is ϕ-positive, then the curvature of (x, t − t0) in the shifted Ricci
flow M × [T1 − t0, T2 − t0] is (ϕ−1 + t0)

−1-positive. In addition, if we parabolically rescale
M × [T1, T2] by the factor λ to get λ(M × [T1, T2]) = M ′ × [λ2T1, λ

2T2], the curvature at
the corresponding point (x′, λ2t) is λ−2ϕ-positive.

From the Hamilton-Ivey pinching (Theorem 2.9.1) we get that if M is compact and
the curvature is ϕ-positive at time T1, then this property is preserved by the Ricci flow,
i.e. the curvature is ϕ-positive on all time slices.

Only in this chapter we want to broaden the definition of strong ε-necks since we will
later have to deal with conventional Ricci flows that arise as time pieces of Ricci flows
with surgery: Let M × I be a Ricci flow, U ⊂ M and J = [t1, t2] ⊂ R a time interval so
that t2 ∈ I. We will say that U × J is a strong ε-neck if there is a Ricci flow on U × J
that coincides with the Ricci flow on M × I on U × J ∩ M × I which is a a strong ε-
neck. Note that for I = {t} we have defined strong ε-necks for Riemannian manifolds. By
the local Shi estimates (see Theorem 2.6.2) we immediately get bounds for the curvature
derivatives ∇lR on U ×J (note that these bounds deteriorate towards the boundary resp.
the first time slice). We say that U × J is a strong ε-neck with nonnegative sectional
curvature if we can choose the Ricci flow on U × J such that the sectional curvature is
nonnegative. Analogously we define strong ε-necks with ϕ-positive curvature. We also
adapt the definition of the canonical neighborhood assumptions in this way.

Consider Ricci flows Mk × Ik that smoothly converge to a limit flow M∞ × I∞ and
let (xk, tk) ∈ Mk × Ik be a sequence that converges to (x∞, t∞) ∈ M∞ × I∞ with
S(x∞, t∞) > 0. Assume that the (xk, tk) are centers of strong ε-necks in the sense
above. We want to make clear that then (x∞, t∞) is the center of a strong 2ε-neck if
ε is smaller than some universal constant. This fact is certainly true if we use the con-
ventional definition of strong 2ε-necks. Denote by Uk × [tk − τk, tk] strong ε-necks with
center (xk, tk). For small ε we have Bk := B0.9ε−1S−1/2(xk,tk)(xk, tk) ⊂ Uk for all k. From
the uniform estimates on the curvature derivatives and the noncollapsedness we find that
the sequence of pointed Ricci flows (Bk × [tk − τk, tk], (xk, tk)) smoothly subconverges to
some solution (B∞ × [t∞ − τ∞, t∞], (x∞, t∞)) whose final time slice can be identified with
the ball B0.9ε−1S−1/2(x∞,t∞)(x∞, t∞) ⊂ M∞(t∞) and whose metric coincides with the met-
ric of M∞ × I∞ on B∞ × [t∞ − τ∞, t∞] ∩ M∞ × I∞ via this identification. Obviously,
B∞ × [t∞ − τ∞, t∞] contains a strong 2ε-neck U∞ × [t∞ − τ ′, t∞] with center (x∞, t∞).

It is easy to see that U∞ × [t∞ − τ ′, t∞] has nonnegative sectional curvature if the
Uk × [tk − τk, tk] have ϕk-positive curvature with ϕk → 0. In a similar way we can also
show that if Mk is a sequence of Riemannian manifold that Gromov-Hausdorff converges
to some metric space X∞ and xk → x∞ are centers of strong ε-necks then the Gromov-
Hausdorff convergence is smooth in x∞ and x∞ is the center of a strong 2ε-neck.
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6.2 Bounded curvature at bounded distances

Lemma 6.2.1. Let η, r > 0, M be a Riemannian manifold and σ : [0, l] → M a curve
parameterized by arclength that connects two points x, y ∈ M . Assume that ‖∇S−1/2(z)‖ ≤
η at any point z ∈ σ for which S−1/2(z) < r (we set S−1/2(z) = ∞ if S(z) ≤ 0).
Now if S−1/2(x) or S−1/2(y) < r−ηl, then S−1/2 < r on σ and |S−1/2(x)−S−1/2(y)| ≤ ηl.

Proof. The second assertion is obvious. For the first assume that S−1/2(x) < r − ηl.
Let s ∈ [0, l] be maximal with the property that S−1/2(σ(s)) ≤ r. Then S−1/2(σ(s)) <
r − η(l − s). So we must have s = l and the assertion follows.

Analogously we prove

Lemma 6.2.2. Let η, r > 0, M × I be a Ricci flow, x ∈ M and [t1, t2] ⊂ I. Assume
that |∂tS

−1(x, t)| ≤ η2 at any time t ∈ [t1, t2] for which (S+)−1(x, t) < r2 (where S+ :=
max{0, S}).
Now if (S+)−1(x, t1) or (S+)−1(x, t2) < r − η2r2, then (S+)−1(x, ·) < r on [t1, t2] and
|(S+)−1(x, t1) − (S+)−1(x, t2)| < η2r2.

Lemma 6.2.3. There is an ε0 > 0 such that for all ε < ε0 the following holds:
Let κ, ρ, r > 0 and M be a 3 dimensional Riemannian manifold of nonnegative sectional
curvature that is κ-noncollapsed on scales < ρ. Furthermore, let γ : [0, s0) → M (where
s0 ∈ R+ ∪ {∞}) be a minimizing geodesic such that S(γ(s)) does not stay bounded for
s → s0 and assume that all points on γ are centers of strong ε-necks.
Then s0 = ∞.

Proof. Observe first that for ε0 sufficiently small we may assume that S > 0 and ‖∇S−1/2‖ <
1 on all ε-necks.

Assume that s0 < ∞. Integrating the estimate from the last paragraph, we conclude
that S−1/2(γ(s)) ≤ s0 − s for all s ∈ [0, s0) and thus S(γ(s)) → ∞ for s → s0.

From Proposition 5.4.7 we get that γ lies inside some open set N ⊂ M that can be
diffeomorphically identified with S2 × (0, 1) and which is covered by final time slices of
strong ε-necks. In this identification we may assume that lims→s0 pr2 ◦γ(s) = 1. Consider
the path metric induced by the Riemannian metric on N . Let p := lims→s0 γ(s) ∈ N where
N denotes the completion of N and set N ′ := N ∪ {p}. Since the widths of the ε-necks
that cover N approach 0 in the direction to p, any sequence (xk, sk) ∈ S2 × (0, 1) = N
with sk → 1 converges to p. This shows that for small d0 the closed d-balls Bd(p) ⊂ N ′

are complete for d < d0.

Obviously, the metric on N ′ is still a length metric. Furthermore, observe that any
curve σ that connects two points x, y ∈ N via p has to pass a whole ε-neck. So for ε0

sufficiently small, σ can be replaced by a shorter curve joining x and y. We conclude that
for sufficiently small d0 any two points x, y ∈ Bd0(p) \ {p} can be joined by a minimizing
(Riemannian) geodesic in N ′ and any such geodesic doesn’t hit p. Moreover, for any
x ∈ Bd0(p) there is a minimizing geodesic between x and p in N ′ realized as the limit of
minimizing geodesics between x and y for y → p.

The preceding conclusion enables us to deduce the Bishop-Gromov Theorem 1.4.2 in
the case Ric ≥ 0 for concentric balls contained in Bd0(p) whose center is not p. So by the
proof of Proposition 3.1.2, for any d the d-balls BλN ′

d (p) in the rescalings λN ′ of N ′ are
uniformly totally bounded for λ → ∞.

From Toponogov’s Theorem 1.3.1 and the remarks below it we find1 that for sufficiently
small d0 all quadruples of distinct points x0, x1, x2, x3 ∈ Bd0(p)\{p} satisfy the inequality

1There is a little subtlety since Bd0
(p) \ {p} is not complete. However by the preceding results, all

minimizing geodesics that are used in the proof of Toponogov’s Theorem do not hit p.
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in (C). By continuity this inequality is also fulfilled for all quadruples of distinct points
x0, x1, x2, x3 ∈ Bd0(p). So N ′ is locally Alexandrov in p.

Proposition 3.5.1 gives us that we have Gromov-Hausdorff convergence

(λN ′, p) −−−−→
λ→∞

(C, p∞) (6.1)

where (C, p∞) is the tangential cone of N ′ in p. We will show that this convergence is
actually smooth on C0.

We first deduce a lower estimate for S on Bd0(p). Let x ∈ Bd0(p)\{p} and s > 0 small.
By the inequality in the first paragraph we have S−1/2(x) ≤ S−1/2(γ(s)) + dist(x, γ(s)).
In the limit s → s0 this implies

S ≥ 1

dist2(p, ·) on Bd0(p). (6.2)

Now we want to estimate S from above. Choose a minimizing geodesic γ′ : [0, l] →
N ∪ {p} with γ′(l) = p such that the comparison angle α := ∢̃γ(0)pγ′(0) > 0. Suppose
that d0 < l. Let z ∈ Bd0(p) \ {p}. We know that z lies in some ε-neck U ⊂ N . Let λ
be the scaling factor of the corresponding ε-homothety. For sufficiently small ε0 we can
assume that 1

2λ−2 < S(z) < 2λ−2, that diam U < 3ε−1λ and that the cross-sections of U
have width < 3πλ. The geodesics γ and γ′ intersect a cross-section S of U in some points
q := γ(s) and q′ := γ′(s′). From property (B) of Definition 1.3.2 (the monotonicity of
the comparison angle) applied to γ and γ′ we get α̃ := ∢̃q′pq ≥ α. Consider the triangle
△qpq′ and its Euclidean comparison triangle △q̃p̃q̃′. Let γ̃ be the line throught p̃ and q̃.
Then dist(p̃, q̃) sin α̃ = dist(q̃′, γ̃) ≤ dist(q̃′, p̃), hence

(s0 − s) sinα ≤ dist(q, q′) < 3πλ.

By the triangle inequality dist(p, z) − 3ε−1λ < s0 − s and thus

S(z) < 2λ−2 <
18(π sin−1 α + ε−1)2

dist2(p, z)
.

The estimate implies together with the fact that the points in Bd0(p) lie in strong
ε-necks that the convergence (6.1) is smooth on C0. From (6.2) we deduce that C0 is
nowhere flat. Moreover, any point z ∈ C0 is the center of a strong 2ε-neck of nonnegative
sectional curvature. This however contradicts Lemma 2.10.1.

Proposition 6.2.4 (Bounded curvature at bounded distances). For ε0 sufficiently
small we have:
Let κ, ρ, r > 0, E,D < ∞ and ε < ε0. Then there are constants C(D,κ, ρ, r,E) < ∞ and
ϕ(D,κ, ρ, r,E) > 0 such that the following statement holds:
Let (M,g) be a 3 dimensional Riemannian manifold and p ∈ M such that

• the curvature is ϕ-positive,
• M is κ-noncollapsed on scales < ρ,
• the balls BD−δ(p) are relatively compact in M for any δ > 0,
• the canonical neighborhood assumptions CNA(r, ε,E) hold for all points in BD(p)

where we interpret strong ε-necks in the sense above and require that those also have
ϕ-positive curvature

Now if S(p) ≤ 1, then S ≤ C on BD(p).

Proof. Fix some constants κ, ρ, ε = ε0 and E. If the proposition is true for D ≥ 0 with
constants ρ and C > 1

r2 then it also holds for D + r
2η

√
C

and C replaced by 4C by Lemma

6.2.1. This shows that the set

Iκ,ρ,r,E := {D ∈ R+ : the proposition is true for D}
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is nonempty and open. Assume that Iκ,ρ,r,E 6= [0,∞) and let D := sup Iκ,ρ,r,E < ∞.
Choose a sequence ϕk → 0. We can find Riemannian manifolds (Mk, gk) with pk ∈ Mk that
satisfy the assumptions of the proposition (this includes that the Mk and the strong ε-necks
are ϕk-pinched towards positive curvature) but for which we can find points qk ∈ BMk

D (pk)
with S(qk) → ∞. So lk := dist(pk, qk) → D.

For any δ > 0 we have uniform bounds for S on BD−δ(pk). Since the Mk have ϕk-
positive curvature, these bounds give bounds for ‖R‖. Together with the κ-noncollapsedness
on scales < ρ this implies that after passing to a subsequence we have (metric) Gromov-
Hausdorff convergence (

B
Mk

D (pk), pk

)
−−−−→
k→∞

(X∞, p∞) . (6.3)

Here B
Mk

D (pk) denotes the metric completion of BMk
D (pk) which is compact. (There is a

little difficulty in showing that the B
Mk

D (pk) are uniformly totally bounded: For any δ > 0
the κ-noncollapsedness gives us a uniform lower bound on the volume of δ-balls contained
in BD(p∞). Furthermore, from Bishop-Gromov’s Theorem 1.4.2 we get uniform upper
bounds for the volume of the balls BMk

D−δ(pk). As in Proposition 3.1.2 both bounds give

upper bounds for the cardinality of minimal 2δ-nets of BMk
D−δ(pk). Such nets are 3δ-nets

for BMk
D (pk).)

Choose minimizing geodesics γk : [0, lk] → Mk parameterized by arclength between pk

and qk. After passing to a subsequence we may assume that we have convergence γk → γ∞
and qk → q∞ such that γ∞ : [0,D] → X∞ is a minimizing geodesic and γ∞(D) = q∞.
Since S−1/2(qk) → 0, Lemma 6.2.1 gives us that

lim sup
k→∞

S−1/2(γk(D − s)) ≤ ηs (6.4)

for 0 < s < r
η . Together with Lemma 5.4.8 this implies that for small s the points

γk(D − s) are eventually all centers of strong ε-necks. As we have uniform bounds for the
curvature on the balls BMk

D−δ(pk), there is a neighborhood U around γ∞|(D−s,D) for small
s on which the convergence (6.3) is smooth and the points on γ∞|(D−s,D) are centers of
strong 2ε-necks in U . Since ϕk → 0, the sectional curvature on U is nonnegative and the
strong 2ε-necks also have nonnegative sectional curvature. From (6.4) we conclude that
S(γ∞(D − s)) → ∞ for s → 0 contradicting Lemma 6.2.3.

6.3 The Canonical Neighborhood Theorem

Proposition 6.3.1. For ε0 > 0 sufficiently small, κ, ρ, r > 0, E < ∞ and ε < ε0 the
following statement holds:
Let Mk × [−Tk, 0] be a sequence of 3 dimensional Ricci flows such that

• the Mk × [−Tk, 0] have ϕk-positive curvature with ϕk → 0,
• the time slices of the Mk × [−Tk, 0] are κ-noncollapsed on scales < ρ
• the canonical neighborhood assumptions CNA(r, ε,E) hold on the Mk × [−Tk, 0] in

the sense explained in section 6.1 (where we assume that the strong ε-necks have
ϕk-positive curvature).

• there is a sequence dk → ∞ such that the balls BMk
dk

(pk, 0) are relatively compact in
Mk.

Let pk ∈ Mk with S(pk, 0) ≤ 1.
Now if 0 < T∞ := lim supk→∞ Tk ≤ ∞ and 0 ≤ T ≤ T∞, then the pointed Ricci flows
(Mk × (−T, 0], (pk, 0)) smoothly subconverge to some Ricci flow (M∞ × (−T, 0], (p∞, 0))
such that the time slices are complete and κ-noncollapsed on scales < ρ and the sectional
curvature is nonnegative. Moreover, the Riemannian curvature is bounded on M×(−T, 0].
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Observe that we require the time slices of the Mk × [−Tk, 0] to be κ-noncollapsed on
scales < ρ and not the Ricci flows itself. This is a slightly stronger condition. The power
of this Proposition lies in the fact that we neither assume the Mk to be complete nor the
curvature to satisfy any uniform curvature bound (except at (pk, 0)).

Proof. Proposition 6.2.4 gives us bounds C(D) for S(·, 0) on Mk for large k depending on
the distance D to pk. With the help of Lemma 6.2.2 we can extend these bounds to times
[− 1

2η2C(D) , 0] ∩ (−T, 0]. Since the Mk × [−Tk, 0] have ϕk-positive curvature, these bounds

imply bounds on ‖R‖ and Shi’s estimates give us bounds for the curvature derivatives
‖∇lR‖. Additionally, using the κ-noncollapsedness on scales < ρ, we conclude that after
passing to a subsequence we have smooth convergence

(Mk(0), pk) −−−−→
k→∞

(M∞(0), p∞) (6.5)

where M∞(0) is a complete Riemannian manifold of nonnegative sectional curvature. Ob-
serve that M∞(0) has the property that all points x ∈ M∞(0) with S(x, 0) > 1

r2 are centers
of 2ε-necks or (2ε, 2E)-caps.

Assume that M∞(0) doesn’t have bounded curvature, i.e. there is a sequence of points
yl ∈ M∞(0) with S(yl) → ∞. By passing to the universal cover we may assume M∞(0) to
be simply connected for the moment. From Lemma 5.1.5 we conclude after passing to a
subsequence that there is a ray σ : [0,∞) → M∞(0) starting in p∞ and a sequence sl → ∞
such that we have dist0(yl, σ(sl)) → ∞ and for the comparison angles ∢̃p∞ylσ(sl) → π. So
by Lemma 5.4.8 eventually all points yl are centers of 2ε-necks Ul that separate M∞(0) into
two parts. Furthermore, Lemma 5.1.5 asserts that σ|[sl,∞) doesn’t hit B 1

2
dist0(p∞,yl)

(yl, 0).

So the part of M∞(0) \Ul that doesn’t contain p∞ is noncompact. Now we can apply the
reasoning in the proof of Corollary 5.1.9 to get a contradiction. Thus S < Q on M∞(0)
for some constant Q.

We have just shown that the theorem is true for T = 0 (if we set (0, 0] = {0}). Assume
that it is true for T < T∞ with the bound Q, i.e. we can extend the smooth convergence
(6.5) for a subsequence to a convergence

(Mk × (−T, 0], pk) −−−−→
k→∞

(M∞ × (−T, 0], p∞) (6.6)

of Ricci flows such that S < Q on M∞ × (−T, 0]. Using Lemma 6.2.2 we can extend this
convergence for a subsequence to a convergence on (−T ′, 0] where T ′ = min(T + Q

η2 , T∞).

So the set I of times T for which we can extend the convergence (6.5) to Ricci flows on
the time interval (−T, 0] to get a Ricci flow M∞ × (−T, 0] of bounded curvature, is open
in [0, T∞].

Assume that I 6= [0, T∞] and set T := sup I. Consider first the case T∞ < ∞. After
passing to a subsequence we can extend the convergence (6.5) to a convergence (6.6). Now
the limit M∞×(−T, 0] must have complete time slices, nonnegative sectional curvature and
unbounded curvature but bounded curvature on M∞ × [−T ′, 0] for any T ′ < T . This fact
enables us to apply the Harnack inequality for the Ricci flow, Theorem 2.8.1. We get that
d
dt((t + T ′)S(·, t)) ≥ 0 for any T ′ < T and hence (t + T )S(·, t) is pointwise nondecreasing.
Let Q be a bound for S on M∞(0). We conclude

S(·, t) ≤ Q
T

t + T
on M∞ × (−T, 0].

By the distance distortion estimates of Theorem 2.3.2 there is a constant C ′ such that for

C := C ′ ∫ 0
−T

√
QT
t+T dt = 2C ′√QT we have

dist0(x, y) ≤ distt(x, y) ≤ dist0(x, y) + C (6.7)
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for any x, y ∈ M∞ and t ∈ (−T, 0].

If M∞ is compact, this result implies that the diameter diamt M∞ stays bounded in t.
Since minM∞

S(·, t) is nondecreasing, we can find a point xt ∈ M∞ for any time t ∈ (−T, 0]
such that S(xt, t) ≤ minM∞

S(·, 0). Apply Proposition 6.2.4 at xt to show that we have
bounded curvature on M∞ × (−T, 0] (Observe that M∞ × (−T, 0] satisfies the canonical
neighborhood assumptions CNA(1

2r, 2ε, 2E)).

Assume now that M∞ is noncompact and without loss of generality simply connected.
First we claim that there is a sequence (yl, tl) ∈ M∞× (−T, 0] such that S(yl, tl) → ∞ and
dist0(p∞, yl) → ∞. If not, the curvature would be bounded on (M \BD(p∞, 0))× (−T, 0]
for some D and we could apply (6.7) and Proposition 6.2.4 with basepoint in this set to
derive a contradiction. For large l the points (xl, tl) are centers of 2ε-necks or 2ε-caps.
Lemma 5.1.5 gives us after passing to a subsequence a time 0 ray σ : [0,∞) → M∞ starting
in p∞ and a sequence sl such that

dist0(yl, σ(sl)) → ∞ and ∢̃0p∞ylσ(sl) → π.

From (6.7) we conclude that we have uniform convergence

distt(yl, σ(sl)) → ∞ and ∢̃tp∞ylσ(sl) → π.

for all t ∈ (−T, 0]. So by Lemma 5.4.8 eventually all points (yl, tl) are centers of 2ε-necks
Ul that separate M∞ such that p∞ and σ(sl) lie in different parts of M∞\Ul. We conclude
that the part in which σ(sl) lies, is noncompact since Lemma 5.1.5 asserts that σ|[sl,∞)

does not hit B 1
2

dist0(p∞,yl)
(yl, 0). Since diam0 Ul ≤ diamtl Ul → 0 we can again apply the

reasoning of the proof of Corollary 5.1.9 to get a contradiction.
In the case T∞ = ∞ we get the required curvature bound directly from the integrated

Harnack inequality for the Ricci flow (see Theorem 2.8.2). Observe that the factor “ t1
t2

”
can be assumed to be equal to 1 since the flow is ancient.

In the following we switch back to the conventional definition of strong ε-necks.

Theorem 6.3.2 (Canonical Neighborhood Theorem). Let κ, ρ, τ, ϕ, ε > 0. Then
there are constants r(κ, ρ, τ, ϕ, ε) > 0 and E′(ε) < ∞ with the following property:
Let M × [−τ, 0] be a 3 dimensional, orientable Ricci flow

• with complete time slices,
• bounded curvature,
• ϕ-positive curvature (this implies in particular τ < ϕ−1)
• that is κ-noncollapsed on scales < ρ.

Then every point at time 0 satisfies the canonical neighborhood assumptions CNA(r, ε,E′)
or M is a higher spherical space form.

Proof. Fix constants κ, r, τ, ϕ, ε, assume ε < ε0 and set E′(ε) := 2Eκ0(
ε
2), where E denotes

the constant obtained in Theorem 5.4.11 and κ0 the constant from Theorem 5.4.13.
At first choose some r > 0 and consider a counterexample, i.e. a Ricci flow M × [−τ, 0]

that satisfies the assumptions of the theorem but violates the canonical neighborhood
assumptions CNA(r, ε,E′) at some point (x, 0) ∈ M×[−τ, 0]. By a point-picking argument
(compare also Lemma 5.1.4) we argue that we may assume the canonical neighborhood
assumptions CNA(1

2r, ε,E′) to hold on M × [− τ
4 , 0]: Assume that there is some point

(x1, t1) ∈ M × [− τ
4 , 0] violating CNA(1

2r, ε,E′). Shift the solution M × [− τ
4 , 0] by −t1,

parabolically rescale by 2 and restrict it to the time interval [−τ, 0]. The resulting flow M ′×
[−τ, 0] still satisfies the assumptions of the theorem (including the ϕ-positive curvature
condition since τ < ϕ−1). Observe that the point (x′, 0) ∈ M ′ × [−τ, 0] corresponding to
the point (x1, t1) violates CNA(r, ε,E′). So we have constructed another counterexample
for r. Repeat this step as long as not all points on M ′ × [− τ

4 , 0] satisfy CNA(2r, ε,E′).
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It is clear that the process has to stop after a finite number of steps since otherwise we
would produce a sequence (xl, tl) ∈ M × [− τ

3 , 0] with S(xl, tl) → ∞.
Assume that the conclusion of the theorem was wrong. Choose a sequence rk →

0. Then we find a sequence of counterexamples Mk × [−τ, 0] such that for some point
(xk, 0) ∈ Mk× [−τ, 0] the canonical neighborhood assumptions CNA(rk, ε, E

′) are violated
but CNA(1

2rk, ε, E
′) is satisfied on Mk × [− τ

4 , 0]. Assume furthermore that the Mk are not
higher spherical space forms. So Qk := S(xk, 0) ≥ r−2

k → ∞. Parabolically rescale the

Mk × [−τ, 0] by the factor λk := Q
1/2
k . This produces Ricci flows M ′

k × [−λ2
kτ, 0] that have

1
λ2

k
ρ-positive curvature, are κ-noncollapsed on scales < λkρ and that satisfy S(x′

k, 0) = 1

(here x′
k ∈ M ′

k denotes the point corresponding to xk ∈ Mk). Furthermore, CNA(1, ε, E′)
is violated at the point (x′

k, 0), but CNA(2, ε, E′) holds on M ′
k × [−1

4λ2
kτ, 0]. Using Lemma

6.2.2 and CNA(2, ε, E′), we conclude that there is a κ′ > 0 such that the time slices of
M ′

k × [−1
8λ2

kτ, 0] are κ′-noncollapsed on scales < ρ. Applying Proposition 6.3.1, we find
that we have smooth convergence

(
M ′

k × [−λ2
kτ, 0], (x

′
k , 0)

)
−−−−→
k→∞

(M∞ × (−∞, 0], (x∞, 0))

where M∞ × (−∞, 0] is an orientable, ancient solution of bounded nonnegative sectional
curvature that is κ′-noncollapsed on all scales and which is not a higher spherical space
form. Moreover S(x∞, 0) = 1, hence it is a κ′-solution.

But Theorems 5.4.11 and 5.4.13 give us now that M∞ × (−∞, 0] is κ0-noncollapsed
and (x∞, 0) is the center of a strong ε

2 -neck or an ( ε
2 , Eκ0(

ε
2 ))-cap. So for large k the point

(x′
k, 0) must be at least the center of a strong ε-neck or an (ε,E′)-cap and the (κ0 − ε)-

noncollapsedness assumption must apply on sclaes < 1 at (x′
k, 0). A contradiction.



Chapter 7

Construction of a Ricci flow with

surgery

7.1 Ricci flows with surgery

We will first give a definition for Ricci flows with surgery in general.
Consider a time interval I ⊂ R. Let T1 < T2 < . . . < Tk−1 be times in I and divide I

into the intervals

I1 := I ∩ (−∞, T1), I2 := I ∩ [T1, T2), I3 := I ∩ [T2, T3), . . . , Ik := I ∩ [Tk−1,∞).

Let (M1 × I1, g1), . . . , (Mk × Ik, gk) be Ricci flows and let Ωi ⊂ M i be open sets on which
the metric gi

t smoothly converges to some Riemannian metric gi
Ti

on Ωi for t ր Ti. Let
furthermore

U i
− ⊂ Ωi and U i

+ ⊂ M i+1 for i = 1, . . . , k − 1

be open subsets such that there are isometries

Φi : (U i
−, gi

Ti
) −→ (U i

+, gi+1
Ti

), (Φi)∗gi+1
Ti

|U i
+

= gi
Ti
|U i

−

.

Then we call M := ((M · × I ·, g·)), (U ·
±), (Φ·)) a Ricci flow with surgery and T1, . . . , Tk−1

the surgery times. Note that if we glue the Ricci flows on U i
− × Ii and U i

+ × Ii+1 together
via the isometry Φi, we obtain a (smooth) Ricci flow on U i

− × (Ii ∪ Ii+1).
If t ∈ Ii, then M(t) := (M i × {t}, gi

t) is called the time t slice of M. For t = Ti we
define the (presurgery) time T−

i slice to be M(T−
i ) := (Ωi×{Ti}, gi

Ti
) and the (postsurgery)

time T+
i slice to be M(T+

i ) := (M i+1 ×{Ti}, gi+1
Ti

). The points Ωi ×{Ti} \U i
− ×{Ti} are

called presurgery points and the points M i+1×{Ti}\U i
+ postsurgery points. In the course

of this chapter we will sometimes need to exclude the presurgery points. For this we call
a point that is not a presurgery point a non-presurgery point.

For (x, t) ∈ M consider a spatially constant line in M that starts in (x, t) and goes
forwards or backwards in time for some time ∆t ∈ R and that doesn’t hit any (pre-
or post-)surgery points. When crossing surgery times, we can continue the line via the
isometries Φi. We denote the endpoint of this line by (x, t + ∆t) ∈ M. Observe that
this point is only defined if there are no surgery points between (x, t) and (x, t + ∆t). We
say that a point (x, t) ∈ M survives until time t + ∆t if the point (x, t + ∆t) ∈ M is
well-defined.

Using this notion we can define parabolic neighborhoods in M. Let (x, t) ∈ M (pre-
or postsurgery points are allowed, in this case we have to replace t by either t− or t+),

d ≥ 0 and ∆t ∈ R. Consider the ball B := Bd(x, t) := B
M(t)
d (x, t). If t is a surgery

time, we have to distinguish between Bd(x, t−) and Bd(x, t+). For each (x′, t) ∈ Bd(x, t)
consider the union I∆t

x′,t of all points (x′, t + t′) for t′ ∈ [0,∆t] resp. [∆t, 0]. We say

75
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that I∆t
x′,t is non-singular if (x′, t + ∆t) ∈ I∆t

x′,t. Now define the parabolic neighborhood

P (x, t, d,∆t) :=
⋃

x′∈B I∆t
x′,t. We call P (x, t, d,∆t) non-singular if all the I∆t

x′,t are non-
singular.

We say that a smooth map Ψ : N × J → M from a Ricci flow into a Ricci flow
with surgery preserves time slices if for every t ∈ J there is some t′ ∈ I such that
Ψ(N ×{t}) ⊂ M(t′),M(t′−) or M(t′+). It is called time-equivariant if there is a ∆t such
that for every x ∈ N there is an x′ such that we have Ψ(x, t) = (x′, t + ∆t) for every t ∈ J
and if this definition makes sense (i.e. if Ψ doesn’t hit any surgery points in its interior).
Ψ is called an ε-isometry for some ε > 0 if it preserves time slices, is time equivariant
and Ψ|N(t) : N(t) → M(t′) is an ε-isometry for all t ∈ J and the corresponding t′ ∈ I.
Analogously we define ε-homotheties into Ricci flows with surgery.

Analogous to the Definition 4.2.1 of κ-noncollapsedness we say that M is κ-noncollapsed
on scales < ρ in (x, t) ∈ M if volt Br(x, t) ≥ κrn for all 0 < r < ρ for which

(i) the ball Br(x, t) is relatively compact in M(t)
(ii) the parabolic neighborhood P (x, t, r,−r2) is nonsingular and
(iii) ‖R‖ < 1

r2 on P (x, t, r,−r2).
We say that U×J ⊂ M is a strong ε-neck if {u}×J is is nonsingular and does not contain
surgery points for all u ∈ U and U × J is a conventional strong ε-neck with respect to the
restricted metric. Observe that strong ε-necks may cross surgery times as long as they
don’t cross surgery points. It is clear how to transfer notions like ϕ-positive curvature,
ε-necks, (ε,E)-caps or the canonical neighborhood assumptions to the case of Ricci flows
with surgery.

7.2 The surgery process

Let (M,g) = (M1, g1
0) be a (not necessarily connected) 3 dimensional Riemannian manifold

that

(i) is compact, orientable and has no component which is a higher spherical space form,

(ii) has scalar curvature S < 1 everywhere,

(iii) is 1-noncollapsed on scales < 1 and

(iv) satisfies the 1-positive curvature condition at time 0.

We will then say that M has normalized geometry. If M is the first time slice of a Ricci
flow with surgery M defined on some time interval [0, T ), we say that M has normalized
initial conditions. Observe that every Riemannian manifold satisfying (i) can be rescaled
to have normalized geometry.

We will now describe how to construct the Ricci flow with surgery starting with a
Riemannian manifold (M1, g1

0) of normalized geometry. By Hamilton’s existence results
(see Theorems 2.7.1 and 2.7.2) there is a Ricci flow (M1 × [0, T1), (g

0
· )) with start metric

g1
0 on a maximal time interval [0, T1) and maxM ‖R‖(·, t) is unbounded for t ր T1. By

property (ii) of the normalized initial conditions and Corollary 2.5.5 we know that T1 > 1
2 .

Now, consider a more general situation in which surgeries could have already been
performed. Let M be a Ricci flow with surgery and normalized initial conditions defined
on some time interval [0, T ) such that the curvature is everywhere 1-positive and let
Mk × [Tk−1, Tk) with Tk = T be the final Ricci flow in M. Assume that M × [Tk−1, Tk)
is defined on a maximal time interval. In order to explain the geometry at the singular
time Tk we assume that the canonical neighborhood assumptions CNA(r, ε,E) hold at all
non-presurgery times for some constants r > 0, ε < ε0 and E < ∞. This is a very crucial
assumption. The way the surgeries will be performed strongly depend on these parameters.
In the subsequent sections we will prove that the canonical neighborhood assumptions are
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always satisfied for certain parameters that are independent of M and just depend on time
in case alle preceding surgeries have been performed in the way described below.

step 1: Determination of the regions on which the metric converges.
Let Ωk ⊂ Mk be the set of points on which S(·, t) stays bounded for t ր T . Lemmas
6.2.1 and 6.2.2 imply that S(·, t) is locally bounded on Ωk, so Ωk is open. The 1-positive
curvature condition implies that ‖R‖(·, t) stays locally bounded for t ր T and Shi’s
estimates give local bounds for the curvature derivatives ‖∇lR‖ on Ωk. We conclude that
gk
t smoothly converges to some limit metric gk

T on Ωk. It is easy to see that S(x, T ) → ∞
for x → ∂Ωk. Thus the set

Ωk
0 :=

{
x ∈ Ω : S(x, T ) <

4

r2

}
⊂ Ωk

is relatively compact in Ωk. From Lemma 6.2.2 we conclude that S(·, t) → ∞ uniformly
on Mk \Ωk for t ր T . Observe that the points on Ωk satisfy the canonical neighborhood
assumptions CNA(1

2r, 2ε, 2E).
step 2: Characterization of the topology of Mk \ Ωk

0.
From Proposition 5.4.7 (applied to a time T ′ slightly smaller than T ) we know that Mk\Ωk

0

is covered by open sets Ni that are diffeomorphic to one of the following manifolds

S2 × R, B3, RP 3 \ B
3
, S3, S2 × S1, RP 3 or RP 3#RP 3 (7.1)

which are covered by ε-necks or ε-caps at time T ′ themselves. It is easy to see (e.g. by a
volume argument) that there are only finitely many Nl. We have ∂Ni ⊂ Ωk

0 for all i.
step 3: Characterization of the geometry of Ωk at the ends.

Consider the Riemannian manifold (Ωk, gk
T ). Applying Proposition 5.4.7 again, yields that

Ωk\Ωk
0 is also covered by a finite number of disjoint open sets N ′

i ⊂ Ωk diffeomorphic to one
of the manifolds in (7.1) which are covered by time T necks or caps themselves. Moreover,
by a volume argument, each boundary component of N ′

i is either contained in Ωk
0 or S(·, T )

diverges on N ′
i near this component. Let Ω̃k be the union of the connected components of

Ωk that are not completely covered by some N ′
i . The ends of Ω̃k are covered by N ′

i which
are diffeomorphic to S2 × R and that have the property that one boundary component
∂1N

′
i lies in Ωk

0 and the curvature becomes unbounded near the other component ∂2N
′
i .

We call these N ′
i horns. By the arguments of subsection 5.4.2 we conclude that for every

horn N ′
i′ there is a time T strong ε-neck such that one of its cross sectional 2-spheres Σ′

i

is parallel to some time T ′ ε-neck covering an Ni. (Choose a cross section Σ′
i of N ′

i′ close
to the boundary component ∂1N

′
i′ . If T ′ is close enough to T , we can assume that a time

T strong 2ε-neck having Σ′
i as cross section intersects with an ε-neck at time T ′.)

step 4: Topological description of the surgery process.
Now choose for each horn N ′

i a cross section Σi. We will later specify the position of Σi

more precisely. Observe that Σ′
i and Σi bound a set that is diffeomorphic to S2 × [0, 1].

Cut Ω̃k along the Σi, discard the part that does not contain ∂1N
′
i and glue in 3-balls (i.e.

identify the boundary ∂B3
of a closed ball B3

with the produced cutting surface). Perform
this cutting and gluing for all horns, discard all higher spherical space forms that arose
this way and denote the resulting manifold by Mk+1. Obviously, Mk+1 is compact. It
is easy to see that the original manifold Mk can be reconstructed from Mk+1 by adding
some components diffeomorphic to S2 × S1, RP 3, RP 3#RP 3 or spherical space forms and
performing a finite number of connected sums between some of the componentents of
Mk+1 and the additional ones. Note that a surgery that does not seperate the manifold
into two components corresponds to the inverse of a connected sum with S2 × S1.

step 5: Geometric description of the surgery process.
We now give a description of how to find the Σi and how to perform the cutting and gluing
geometrically. For this we need to find strong δ-necks inside of horns with δ even smaller
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than 2ε. Surprisingly, horns have the property that their geometry improves towards their
∂2-end. We quantify this in the following

Lemma 7.2.1. For ε0 sufficiently small and ε < ε0 we have:
For any δ > 0 there is an 0 < h(δ) < 1 (depending only on δ) such that if 0 < r < 1 and
we are in the above situation (this includes that the canonical neighborhood assumptions
CNA(r, ε,E) apply at all non-presurgery points), then every point x in a horn N ′

i with
S(x, T ) ≥ 1

h2r2 is the center of a strong δ-neck at time T .

Note that h does not depend on r.

Proof. Assume that x ∈ N ′
i =: N ′ with Q := S(x, T ) ≥ 1

h2r2 for some 0 < h < 1
2 . Shift

M in time by −T and parabolically rescale by Q > 1
h2 to get M′. Let (x′, 0) ∈ M′ be

the point corresponding to (x, T ) ∈ M. We have S(x′, 0) = 1. For simplicity denote
the set in M′ corresponding to N ′ also by N ′ and likewise for Ωk

0 . Note that M′ has
h2-positive curvature, the non-presurgery points satisfy CNA(r′, ε, E) and the points in
M′(0) satisfy CNA(1

2r′, 2ε, 2E) where r′ = Q1/2r ≥ 1
h > 2. In particular this implies that

M′(0) is 1
2κ0-noncollapsed in (x′, 0). Since the boundary component ∂1N

′ lies in Ωk
0 and

S−1/2 > r′

2 , Lemma 6.2.1 gives that

dist0(x
′, ∂1N

′) ≥ η−1

(
r′

2
− 1

)
≥ η−1

(
1

2h
− 1

)
. (7.2)

Now assume that the assertion of the Lemma was wrong for some δ > 0. Choose a
sequence hl → 0. We find counterexamples Ml for hl together with constants 0 < rl < 1,
εl < ε0, El, horns N ′

l , times Tl and points xl ∈ N ′
l with S(xl, Tl) = 1 that are not centers

of strong δ-necks. The preceding paragraph gives us Ricci flows with surgery M′
l together

with numbers r′l ≥ 1
hl

such that M′
l has h2

l -positive curvature and satisfies CNA(r′l, εl, El)

at all non-presurgery points and CNA(1
2r′l, 2εl, 2El) on M′

l(0). Moreover, there are points
(x′

l, 0) ∈ M′
l with S(x′

l, 0) = 1 that are not centers of δ-necks and in which M′
l(0) is

1
2κ0-noncollapsed. From (7.2) we get that dist0(x

′, ∂1N
′
l ) → ∞ for l → ∞. Assume

that D := lim inf l→∞ dist0(x
′, ∂2N

′
l ) < ∞. Then by the bounded curvature at bounded

distances result, Proposition 6.2.4, we have bounds for S(·, 0) on B
N ′

l
D (x′

l, 0) for sufficiently
large l. But this would contradict the fact that S(·, 0) diverges on N ′

l near ∂2N
′
l . So

dist0(x
′, ∂N ′

l ) → ∞.
Observe that again by Proposition 6.2.4 for any D < ∞ we have uniform bounds for

the curvature on the balls B
N ′

l
D (x′

l, 0). Since N ′
l is covered by strong 2ε-necks, these bounds

imply bounds on the cuvature derivatives ∇jR. So we have smooth convergence

(N ′
l × (−τ, 0], (x′

l, 0)) −−−−→
l→∞

(M∞(0) × (−τ, 0], (x∞, 0))

for a subsequence and a maximal τ ≥ 0 (we set (0, 0] = {0}). M∞ × (−τ, 0] has complete
time slices and nonnegative sectional curvature. Moreover, by the proof of Proposition
6.3.1, the curvature on M∞× (−τ, 0] is uniformly bounded. It is easy to see that M∞(0) is
covered by 4ε-necks, thus M∞(0) ≈ S2 × R and the splitting is also a geometric splitting
for all times (−τ, 0].

So there is a bound C < ∞ such that for any D < ∞ and τ ′ > 0 we have ‖R‖ < C on
the parabolic neighborhoods PN ′

l (x′
l, 0,D,−τ + τ ′) for large l. Since the scalar curvature

on M∞×(−τ, 0] must be positive (otherwise M∞ would be flat at some time by the strong
maximum principle, which is impossible in view of the topology), the scalar curvature on
PN ′

l (x′
l, 0,D,−τ +τ ′) can be bounded from below by for large l. Since r′l → ∞ we conclude

by the canonical neighborhood assumptions CNA(1
2r′l, 2ε, 2E) that for large l all points

on PN ′

l (x′
l, 0,D,−τ + τ ′) are centers of strong 2ε-necks or (2ε, 2E)-caps. Note that the

geometry of this parabolic neighborhood is a almost a product with a line. So we can use
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Lemma 5.4.8 to conclude that for large l the points in PN ′

l (x′
l, 0,D,−τ + τ ′) are centers of

strong ε-necks. Thus there is a τ ′′ > 0 such that we get a bound for the curvature on some
larger parabolic neighborhood PN ′

l (x′
l, 0,D,−τ − τ ′′) that does not depend on D and we

may exclude surgery points there. But this contradicts the maximality of τ .
We conclude τ = ∞. Observe again that the scalar curvature on M∞×(−∞, 0] must be

positive. By the canoncial neighborhood assumptions CNA(1
2r′l, 2ε, 2E) and the fact that

r′l → ∞ we conclude that M∞ × (−∞, 0] is 1
2κ0-noncollapsed. Hence it is a 1

2κ0-solution
and therefore isometric to the standard round shrinking cylinder (S2×R)× (−∞, 0]. This
gives the desired contradiction.

Before going into the surgery process, we have to describe the geometry that we are
going to put on the glued-in balls of step 4. For this we construct a Riemannian manifold
(Mstan, gstan) which we will refer to as the standard cap. We will later cut along carefully
chosen cross sections Σi of the horns and glue in a rescaled part of Mstan.

In [KL, Sec 72] it is shown that there are constants B > A > 0 and a metric on R3

such that if we identify R3 \ {0} with S2 × (−B,∞) (we assume that 0 lies at the −B end
of S2 × (−B,∞)), we have

(i) Mstan has nonnegative sectional curvature.

(ii) The metric gstan restricted to S2×(−A,∞) coincides with the standard round metric
on S2 × (−A,∞) ⊂ S2 × R.

(iii) The scalar curvature is bounded from below by 1 and attains its maximum S0 := S(0)
at the point pstan = 0 which we call the tip.

Consider again the Ricci flow with surgery M and the manifold (Ω̃k, gk
T ). For every

horn N ′
i ⊂ Ω̃k we find points xi ∈ Vi with S(xi, 0) = max{ 1

h2(δ)r2 , 1
δ2r2 }. By the preceding

Lemma these points are centers of strong δ-necks. Choose δ-homotheties with factors λi

Φi : S2 ×
(
−1

δ , 1
δ

)
→ N ′

i .

Set hi := λ−2
i Φ∗

i g
k
T . We assume 1

δ ≫ B. In [KL, Lemma 71.20] it is shown that we can
find metrics h′

i on {pstan} ∪ S2 × (−B, 1
δ ) ≈ B3 such that

(i) The λ2
i h

′
i satisfy the 1-positive curvature condition for time T .

(ii) h′
i coincides with hi on S2 × [0, 1

δ ).

(iii) The identity map ({pstan ∪ S2 × (−B, 1
δ ), gstan) → ({pstan ∪ S2 × (−B, 1

δ ), h′
i) is a

δ′-isometry for all i where δ′(δ) depends only on δ and δ′ → 0 for δ → 0.

(iv) The scalar curvature of h′
i is pointwise not less than the scalar curvature of hi on

S2 × (−B, 1
δ ).

We now cut along the cross sections Σi := Φi(S
2 × {0}), glue in balls and endow the

resulting manifold with the push forwards of the metrics λ2
i h

′
i under Φi on their images.

Outside of the images of the Φi the metric remains unchanged. From the arisen components
we discard all higher space forms and call the resulting manifold (Mk+1, gk+1

T ). It is clear
that Mk+1 satisfies the 1-positive curvature condition at time T . We will refer to this
procedure in the following as (r, δ)-cutoff.

Now consider the Ricci flow Mk+1× [Tk, Tk+1) with starting metric gk+1
Tk

on a maximal
time interval. Enlarge M by this solution and call the result M′. By Theorem 2.9.1,
M′ still has 1-positive curvature. If M′ satisfies the canoncial neighborhood assumptons
CNA(r′, ε′, E′) for some r′, ε′ and E′ at all non-presurgery points, we repeat the cutoff
process for r′, ε′ and E′.
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Note that after an (r, δ)-cutoff has taken place the manifold has lost a certain amount of
volume that depends only on r and δ. Since the derivative d

dt volt Mk of the volume during
the Ricci flow Mk × [Tk−1, Tk) is −

∫
Mk Sdµt ≥ − 3

1+t volt Mk (by the 1-positive curvature
condition), (r, δ)-cutoff times cannot accumulate (for constant r and δ). However, a priori
there might exist certain Ricci flows with surgery where we are forced to carry out (rk, δk)-
cutoffs at times tk where tk < T < ∞ for all k, but max{ 1

h2(δk)r2
k
, 1

δ2
kr2

k
} → ∞. In the

following sections we will show that we can control the parameters r, ε,E in the canonical
neighborhood assumptions sufficiently well to make this impossible.

7.3 The standard solution

In section 7.4 we will see that shortly after a surgery has taken place, the solution is close
to a solution whose start metric is the standard cap (Mstan, gstan). We will refer to these
solutions as standard solutions.

Definition 7.3.1 (standard solution). A Ricci flow (Mstan × I, gt) (where I = [0, T )
or I = [0, T ], T > 0) with start metric g0 = gstan is called a standard solution if

(i) the Riemannian curvature is bounded on compact time intervals
(ii) the sectional curvature is everywhere nonnegative and
(iii) Mstan × I cannot be extended to a larger time interval [0, T ′] % I such that properties

(i) and (ii) still hold.

Obviously, every solution Mstan × I with start metric Mstan that satisfies (i) and (ii),
can be extended to a standard solution.

We will now derive some useful properties of standard solutions. For this we basically
follow an idea of Bernhard Leeb as explained in [KL, Sec 59]. We mention that if we
require the standard cap (Mstan, gstan) to be rotationally symmetric in pstan, it is possible
to prove that there is only one standard solution (this is a nontrivial statement, see [MT,
Thm 12.5] or [KL, Sec 65]). However, the important properties of standard solutions can
be proven without using this result.

Theorem 7.3.2. (a) Every standard solution Mstan × I is defined on I = [0, 1).
(b) There is a c > 0 such that S(x, t) > c

1−t on any standard solution.
(c) Moreover, we have S ≥ 1 on every standard solution.
(d) For any t < 1 there is a C(t) < ∞ such that S < C(t) at times [0, t] on every standard

solution.
(e) For any A < ∞ and any δ, θ > 0 there is a B = B(A, δ, θ) such that for any x ∈

Mstan \ B(pstan, 0, B) on a standard solution Mstan × I there is a smooth map

S2 × (−A,A)
Φ−→ Mstan with Φ(S2 × {0}) ∋ x

which is a δ-isometry for times [0, 1 − θ) if we consider the standard round shrinking
cylinder metric on (S2 × (−A,A)) × [0, 1).

Proof. Let I0 = [0, T0) or [0, T0] (T0 ≥ 0) be the maximal interval such that any standard
solution is defined for times I0 and for any compact subinterval J ⊂ I0 there is a uniform
bound for the Riemannian curvature R at times J on all standard solutions Mstan× I. We
want to show that I0 = [0, 1).

step 1: For any standard solution Mstan × I there is a κ > 0 such that Mstan × I
is κ-noncollapsed at times I ∩ [0, 1]. If T0 > 0, then κ can be chosen independently of
Mstan × I.
This follows easily from the No Local Collapsing Theorem 4.2.4 since (Mstan, gstan) is κ′-
noncollapsed for some κ′ > 0. Observe that in order to apply Theorem 4.2.4 we need not
only curvature control on the first time slice but also for some time t′.
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step 2: Let Mstan × I be a standard solution. Then for any ε, τ > 0 there is a number
r > 0 and an E(ε) such that the canonical neighborhood assumptions CNA(r, ε,E) hold at
times I ∩ [τ, 1]. Again, if T0 > 0, then the constant r depends only on ε and τ .
This is an immediate consequence of step 1 and the Canonical Neighborhood Theorem
6.3.2.

step 3: Let Mstan × I be a standard solution. For any compact J ⊂ I and any l ∈ N0

there is a uniform bound for the curvature derivative ∇lR at times J . If T0 > 0, then
these bounds are independent of Mstan × I for all J ⊂ I0.
Assume J = [0, T ′]. Consider points x ∈ Mstan far enough from pstan such that B(x, 0, 1) ⊂
Mstan(0) is isometric to some ball B(x′, 0, 1) ⊂ S2 × R in the standard round cylinder.
We may extend the Ricci flow on B(x, 0, 1) backwards to a time interval (−τ, 0]. By
the local Shi estimates (see Theorem 2.6.2) we obtain a uniform bound for ∇lR(x, t)
at times t ∈ [0, T ′]. Hence outside some compact set K ⊂ Mstan we can establish the
required bound at times [0, T ′]. Now we apply the weak maximum principle on K to the
evolution equation of ‖∇lR‖2 (see (2.3)). This shows that we can uniformly bound ∇lR
on Mstan × [0, T ′].

step 4: Let Mstan × I be a standard solution and xk ∈ Mstan a sequence such that
dist0(pstan, xk) → ∞. Then a subsequence of the sequence of pointed Ricci flows (Mstan ×
I, (xk, 0)) smoothly converges to the standard round shrinking cylinder (S2×R)×I. More-
over, 1 6∈ I0 and any standard solution is at most defined for times [0, 1].
If T0 > 0 we have: Let Mk

stan × Ik be a sequence of standard solutions with tip pk
stan and

xk ∈ Mk
stan such that dist0(p

k
stan, xk) → ∞. Then a subsequence of the sequence of pointed

Ricci flows (Mk
stan × I0, (xk, 0)) smoothly converges to the standard round shrinking cylin-

der (S2 × R) × I0.
In the first case set Mk

stan×Ik := Mstan×I. Obviously we have smooth Gromov-Hausdorff
convergence of the (Mk

stan(0), xk) to the standard round cylinder S2 × R. By step 3 this
convergence extends to the convergence of Ricci flows with limit M∞ × I resp. M∞ × I0.
Since the limit is diffeomorphic to S2 ×R and has nonnegative sectional curvature, we get
by the Ricci splitting Theorem 1.4.3 and Corollary 2.5.7 that M∞× I = (N ×R)× I resp.
M∞× I0 = (N ×R)× I0 where N × I resp. N × I0 is a Ricci flow on the 2-sphere S2 with
the round starting metric hence N is round for all times I resp. I0.

step 5: If T0 < 1, then I0 = [0, T0].
Assume that I0 = [0, T0) and particularly T0 > 0. Observe that by step 1 there is a
universal κ > 0 such that all standard solutions are κ-noncollapsed. Using the canonical
neighborhood assumptions and Lemma 6.2.2, it is easy to conclude that there is a κ′ > 0
such that the time slices of all standard solutions are κ′-noncollapsed on scales < 1. We
will first show that there is a radius d such that we can uniformly bound the curvature
on balls (Mstan \ Bd(p, 0)) × I0 for all standard solutions Mstan × I. If this were not the
case, we could find a sequence of standard solutions Mk

stan × Ik with tips pk
stan and points

(xk, tk) ∈ Mk
stan × Ik such that dist0(p

k
stan, xk) → ∞ and S(xk, tk) → ∞ contradicting

step 4 and Lemma 6.2.2. Now by the bounded curvature at bounded distances result,
Proposition 6.2.4, and the fact that the metric shrinks we get global bounds on S. Thus
we can extend all standard solutions until time T0 and bound the curvature for all times
[0, T0].

step 6: I0 = [0, 1).
Assume not. By step 5 we must have I0 = [0, T0].

We first show that there is a τ > 0 such that we can uniformly control the curvature
at times [0, T0 + τ ] ∩ I for all all standard solutions Mstan × I. In the case T0 > 0 this
easily follows from step 2 and Lemma 6.2.2. If T0 = 0, we have to make some more effort:
Let Mstan × I be a standard solution. Using the first assertion of step 4, we conclude that
for some large d we have S(·, t) < 2 on (Mstan \ Bd(pstan, 0)) × [0, 1

8 ] (otherwise we could
find a sequence of points xk ∈ Mstan and times tk ∈ [0, 1

8 ] with dist(pstan, xk) → ∞ and
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S(xk, tk) ≥ 2). Now we can apply the weak maximum principle on Bd(pstan, 0) for times
[0, 1

4 ] and conclude analogously to Corollary 2.5.5 that S < 4 on Bd(pstan, 0) × [0, 1
8 ].

Let C be the bound for the scalar curvature corresponding to the time interval [0, T0 +
τ ]. Set τ ′ := min{τ, 1

4C−1}. We now show that any standard solution is defined for
at least the times [0, T0 + τ ′]. Let Mstan × I be a standard solution with tip pstan and
assume I & [0, T0 + τ ′]. Then I = [0, T ] for some T0 ≤ T ≤ 1. We want to extend
the Ricci flow past T . Take a divergent sequence xk ∈ Mk

stan. The sequence of pointed
Ricci flows (Mstan × [0, T ], (xk, 0)) subconverges by the results of step 4 to the standard
round shrinking cylinder solution (S2 × R) × [0, T ]. Thus (Mstan(T ), xk) subconverges to
((S2 ×R)(T ), x∞) and we find regions in Mstan(T ) that are arbitrarily close to arbitrarily
long cylinders of scalar curvature 1

1−T . By cutting along central 2-spheres of these cylinders
and gluing in a ball with standardized geometry, we can present (Mstan(T ), pstan) as a limit
of compact, pointed 3-manifolds (M ′

k, p
′
k) such that the curvature derivatives ∇lR are

uniformly bounded and the manifolds satisfy the ϕk-positive curvature condition at time
T with ϕk → 0. By Theorems 2.7.1, 2.7.2 and Corollary 2.5.5 we can evolve the metric on
the manifolds M ′

k to obtain Ricci flows M ′
k × [T, T + τ ′] such that the scalar curvature is

uniformly bounded by 2C. Moreover by Theorem 2.9.1 the curvature is ϕk-positive and
thus the Riemannian curvature is uniformly bounded on the M ′

k × [T, T + τ ′]. Applying
the weak maximum principle to the evolution equations of the ‖∇lR‖2 (see (2.3)), we can
uniformly bound the curvature derivatives on the M ′

k × [T, T + τ ′]. Thus the sequence
(M ′

k × [T, T + τ ′], (p′k, T )) subconverges to a Ricci flow (M∞ × [T, T + τ ′], (p′∞, T )) of
bounded nonnegative sectional curvature with starting metric M∞(T ) = Mstan(T ). But
this contradicts the fact that we cannot extend the Ricci flow Mstan × I.

step 7: On any standard solution Mstan × I the sectional curvature is pointwise un-
bounded for t ր 1 and thus I = [0, 1).
Assume that for some x ∈ Mstan the curvature S(x, ·) is bounded on I. By the bounded
curvature at bounded distances result, Proposition 6.2.4, we have pointwise bounds on S at
times I everywhere (recall from step 5 that the time slices of Mstan×I are κ′-noncollapsed
for some κ′ > 0). So we can extend Mstan × I to time 1. We will now analyze the time
1 metric on Mstan. The result of step 4 gives us that for any δ > 0 we find a sequence of
times tk and a divergent sequence points xk ∈ Mstan such the points (xk, tk) are centers of
δ-necks whose widths converge to 0. Since the metric on Mstan × [0, 1] shrinks, this gives
us subsets Uk ⊂ Mstan whose diameter at time 1 goes to 0 and which separate Mstan into
two pieces such that the part of Mstan \ Uk that does not contain pstan is noncompact.
Now we can deduce a contradiction as in the proof of Corollary 5.1.9.

Conclusion
Assertions (a) and (d) are now clear and (e) follows from step 4. In order to prove (c)
we observe first that for any δ, θ > 0 we must have S ≥ 1 − δ outside some compact set
K ⊂ Mstan at times [0, 1 − θ). Otherwise we could find a divergent sequence of points
xk ∈ Mstan with S(xk, tk) < 1 − δ for some tk contradicting (e). Applying the weak
maximum principle (see Theorem 2.5.1) to the evolution equation of S on K (see (2.2)),
we conclude that the lower bound 1− δ holds everywhere on Mstan at times [0, 1−θ]. Now
let δ, θ → 0.

Finally, assertion (b) can be proved with the result of step 7, step 2 and Lemma 6.2.2

for times t ∈ [1 − r2

η2 , 1) and (c) for times [0, 1 − r2

η2 ].

We will now classify the approximate geometry of neighborhoods around points in
standard solutions on a local scale. As in Theorem 5.4.11 we will be able to show that
neighborhoods essentially look like necks or caps. However, we cannot expect that the
necks are strong in the sense of Definition 5.4.4 since standard solutions are not ancient.
For this we define:
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Definition 7.3.3 (strong ε-neck until time t1). Let ε > 0, M × I be a Ricci flow,
U ⊂ M an open subset and J = [t1, t2] ⊂ I a closed subinterval. We say that U × J is a
strong ε-neck until time t1 if there is a scaling factor λ > 0 such that after parabolically
rescaling the flow on U × J by the factor λ−1, there is a (bijective) diffeomorphism Φ :
S2 × (−1

ε , 1
ε ) → U that is an ε-isometry between the time t metric of the standard round

shrinking cylinder on S2 × (−1
ε , 1

ε ) and the time t + λ−2t2 metric on λ−1(M × J) for all
t ∈ [−λ−2(t2 − t1), 0].
Moreover, we call (x, t2) ∈ U × {t2} a center of U × J if x ∈ Φ(S2 × {0}) for such a Φ.

Now we can formulate the result.

Theorem 7.3.4. There are η′ < ∞ and κ′
0 > 0 and for every ε > 0 there is an E′′(ε) < ∞

such that we have the following classification:
If (x, t) is a point in a standard solution Mstan × [0, 1), then
(a) (x, t) is the center of a strong ε-neck or
(b) (x, t) is the center of an (ε,E′′)-cap or
(c) (x, t) is the center of a strong ε-neck until time 0.
Moreover, Mstan(t) is κ′

0-noncollapsed and

‖∇S−1/2(x, t)‖ < 1
2η′ and |∂tS

−1(x, t)| <
(

1
2η′
)2

(7.3)

Proof. By the Canonical Neighborhood Theorem 6.3.2 and Theorem 7.3.2 (b) we know
that there is some θ(ε) > 0 such that for t > 1−θ case (a) or (b) applies. For times t ≤ 1−θ
we can use Lemma 7.3.2 (e) to conclude that cases (a) or (c) apply if dist0(pstan, x) is larger
than some constant depending only on ε. Since we have universal bounds on the geometry
K × [0, 1 − θ] for any compact set K ⊂ Mstan (this includes control over the curvature
derivatives, see step 3 in the proof of Lemma 7.3.2), we can choose E′′ so large that the
remaining points satisfy (b). The last two assertions follow immediately.

Observe that if we increase the constants η or η′ from Corollary 5.2.9 resp. Theorem
7.3.4, all preceding assertions involving one of these two constants still hold true. So at
this point, we may assume that η = η′. Analogously, we may assume that κ0 = κ′

0 and
that the theorems and lemmas involving these constants stay true.

In order to extend strong necks over a singularity time, we prove the following

Lemma 7.3.5. For any ε > 0 there is a 0 < ε(ε) < ε such that the following statement
holds:
Consider a Ricci flow with surgery M. Suppose that (x, t2) ∈ M is the center of a strong
ε-neck U2 × [t1, t2] until time t1 and (x, t1) is the center of a strong ε-neck U1 × [t0, t1].
Then (x, 0) is the center of a strong ε-neck.

Proof. Assume that this was wrong. Choose a sequence εk → 0 and find counterexamples
Uk

1 × [tk0, t
k
1 ], U

k
2 × [tk1 , t

k
2 ] ⊂ Mk and (xk, tk2) ∈ Mk. By shifting in time and parabolic

rescaling we may assume that tk2 = 0 and S(xk, 0) = 1. Since (xk, 0) is not the center of
a strong ε-neck, the tk1 are bounded from below. After choosing a subsequence, we may
assume that tk1 → t∞1 ≤ 0.

Since εk → 0, we have uniform bounds for the curvature and its derivatives on Uk
2 ×

[tk1 , 0]. So the scaling factor λk of the εk-neck Uk
1 × [tk0 , t

k
1 ] is bounded from below. This

implies that Bdk(xk, 0) ⊂ Uk
1 , Uk

2 for a certain sequence dk → ∞ and that tk0 → −∞.
Moreover, we have uniform time dependent bounds for the curvature and its derivatives
on P (xk, 0, dk, tk0).

So we have subconvergence of the (P (xk, 0, dk, tk0), (x
k, 0)) to a Ricci flow (M∞ ×

(−∞, 0], (x∞, 0)) that is isometric to the standard round shrinking cylinder at times
(−∞, t∞1 ] and [t∞1 , 0], hence it is isometric to the standard round shrinking cylinder
(S2 × R) × (−∞, 0]. A contradiction.
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7.4 Ricci flows with surgery under canonical neighborhood

assumptions

For the rest of this exposition we fix some constant ε < ε0 and set ε := ε( ε
2 ) < ε as in

Lemma 7.3.5. Furthermore set

E0 := max

{
4Eκ0

(ε

4

)
, 4E′′

(
ε

4

)}

where E denotes the constant from Theorem 5.4.11, κ0 the constant from Theorem 5.4.13
and E′′ the constant from Theorem 7.3.4.

Now let 0 < r < 1 and δ > 0 be arbitrary constants. In this section we study Ricci
flows with surgery M that satisfy the following properties:

(i) M is defined on some time interval I = [0, T ) or [0, T ] and has normalized initial
conditions.

(ii) At every surgery time the surgeries are performed by (r′(t), δ′(t))-cutoff, where r′(t)
and δ′(t) are constants depending on time such that 0 < r′ < 1 and 0 < δ′ < δ.
We assume furthermore, that for every surgery time t the canoncial neighborhood
assumptions CNA(r′(t), ε, E0) hold at all non-presurgery points on [0, t) to make the
surgery step possible.

(iii) The canonical neighborhood assumptions CNA(1
2r, 2ε, 2E0) hold at all non-presurgery

points.

The first Lemma gives a description of how neighborhoods near surgeries look like.

Lemma 7.4.1. Let (p, t) ∈ M be the tip of a surgery and A < ∞, θ, ϕ > 0. If δ <
δ1(A, θ, ϕ) then there is some 0 ≤ σ ≤ 1 − θ and a standard solution Mstan × [0, 1) (with
tip pstan) such that there is a ϕ-homothety

Mstan × [0, 1) ⊃ B(p, 0, A) × [0, σ)
Φ−→ M with (pstan, 0) 7→ (p, t)

whose image only meets surgery points at its first time slice.

Furthermore, if σ < 1 − θ, then no point of Φ(BA(p, 0) × {0}) survives past the final
time of ImΦ (this may be due to surgeries or to the fact that the final time of M is
reached).

Observe that δ1 does not depend on r.

Proof. Fix A, θ, ϕ. Assume that the assertion was wrong. Choose a sequence δk → 0 and
consider counterexamples Mk for each δk together with constants 0 < rk < 1 and tips of
surgeries (pk, tk) ∈ Mk. Observe that S(pk, tk) ≥ 1

δ2
kr2

k
→ ∞. Shift the Mk in time and

rescale to get M′
k such that for the corresponding tips of surgeries (p′k, 0) ∈ M′

k we have
S(p′k, 0) = S0. Then the M′

k have S0S
−1(pk, tk)-positive curvature.

Observe that the time 0− slices M′
k(0

−) contain the final time slices V ′
k of strong δk-

necks whose metric will be changed on one half during the cutoff process and remain the
same on the other. Let Vk ⊂ M′(0+) be the open sets that come out of the V ′

k after the
cutoff (i.e. the union of the half that has not been changed and the part that carries the
new metric). For large k we can assume B 1

2
δ−1
k

(p′k, 0) ⊂ Vk. Together with the remarks in

section 7.2, we find that the pointed manifolds (Vk, p
′
k) smoothly converge to the standard

cap (Mstan, pstan).
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Let σ0 ∈ [0, 1] be maximal with the property that after passing to a subsequence there
are sequences dk → ∞ and τk → 0 such that the parabolic neighborhoods P (p′k, 0, dk , σ0−
τk) are non-singular and we have convergence

(P (p′k, 0, dk, σ0 − τk), (p
′
k, 0)) −−−−→

k→∞
(M∞ × [0, σ0), (p∞, 0)) . (7.4)

Obviously, the sectional curvature on M∞ × [0, σ0) is nonnegative and M∞(0) = Mstan.
So M∞ × [0, σ0) is the restriction of a standard solution Mstan × [0, 1) to the time interval
[0, σ0). If σ0 > 1 − θ, then the Lemma follows immediately.

Suppose now that σ0 ≤ 1− θ. By Lemma 7.3.2 (d) we have a uniform bound C on the
scalar curvature of M∞ × [0, σ0). Let τ > 0 be a small constant that we will specify later.
Assume that for a subsequence there is a sequence d′k → ∞ such that P (p′k, 0, d

′
k, σ0 +τ) is

non-singular. We may assume d′k < 1
2δ−1

k . Then for sufficiently small τ we can use Lemma
6.2.2 to bound the curvature uniformly on these parabolic neighborhoods. Analogously to
the proof of step 3 in Theorem 7.3.2 this bound implies bounds for the curvature derivatives
∇lR: The local Shi estimates give bounds for the ∇lR on Vk \B 1

2
δ−1
k

(p′k, 0) since the metric

remained unchanged on this set during the surgery process. On B 1
2
δ−1
k

(p′k, 0) we can apply

the weak maximum principle to the evolution equations of the ‖∇lR‖2.

So we can find a subsequence such that the convergence (7.4) applies for σ0 replaced
by σ0 + τ , dk replaced by d′k and τk = 0. A contradiction to the maximality of σ0. Thus
we conclude that there is a d < ∞ such that P (p′k, 0, d, σ0 + τ) is singular for large k. Set
A′ := max{A, d}.

For any k let σk be supremal with the property that P (p′k, 0, A
′, σk) is non-singular.

Obviously, σk ≤ σ0 + τ for large k and lim infk→∞ σk ≥ σ0. So there are points xk ∈
BA′(p′k, 0) that do not survive past time σk. Assume that for some k there is a point
yk ∈ BA′(p′k, 0) that does. Then there is a point zk ∈ BA′(p′k, 0) that is the center of a
strong δk-neck at time σk at which a surgery is performed. If τ is small enough, we have
a uniform upper bound on the curvature in (zk, σk). So we can bound the length and the
living time of this strong δk-neck from below in terms of δk. But this implies that the
point (p′k, 0) must lie in the interior of this strong neck for large k. A contradiction. So
for large k no point in BA′(p′k, 0) survives past time σk.

Finally, we have to show that the solutions on P (p′k, 0, A, σk)\BA(p′k, σk) get arbitrarily
close to the solution on BA(pstan, 0)× [0, σk) ⊂ Mstan × [0, σk) if k is sufficiently large and
τ sufficiently small. This is clear, if σk ≤ σ0. If σk > σ0, observe that σk ≤ σ0 + τ for
large k and thus for τ sufficiently small, the metrics on P (p′k, 0, A, σk)\P (p′k, 0, A, σ0) and
BA(pstan, 0) × [σ0, σk) are sufficiently close to the metric on their first time slice (in the
smooth sense) to conclude the desired result. Recall hereby that we have uniform bounds
on the curvature derivatives ∇lR.

Let (x0, t0) ∈ M be a point such that t0 is larger than or equal to the last surgery
time. If t0 is equal to the last surgery time, we consider t0 as a postsurgery time. The
next Lemma asserts that if (x0, t0) has nearby surgeries, then it already has a canonical
neighborhood.

Lemma 7.4.2. For every θ > 0 and A < ∞ and if δ < δ2(A, θ), we have the following:
Assume that

(i) the point (x, t) ∈ M is a surgery point and let (p, t) ∈ M be the tip of the corre-
sponding surgery.

(ii) t0 − t ≤ (1 − θ)S0S
−1(p, t).

(iii) the point (x, t) survives (at least) until time t0.

(iv) distt0(x, x0) < AS
1/2
0 S−1/2(p, t).

Then (x0, t0) satisfies the canonical neighborhood assumptions CNA(2r, ε
2 , E0

2 ).
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Proof. Observe first that by the way the surgeries are performed there is a universal

constant d0 such that distt(p, x) < d0S
1/2
0 S−1/2(p, t). Let C be a universal bound for the

distance distortion on Mstan×[0, 1− θ
2 ] on any standard solution Mstan×[0, 1) (see Theorem

7.3.2 (d) and 2.3.1). That is to say 1
C distt1 ≤ distt2 ≤ C distt1 for any t1, t2 ∈ [0, 1 − θ

2 ].
Set A′ := 2d0 + 2AC + max{E2

0 , 2ε−1}C.

In the course of the proof we will choose δ2 smaller and smaller. It will be easy to check
that δ2 only depends on A and θ. Assume first that δ2 < δ1(A

′, 1
2θ, ϕ) where δ1 denotes the

constant from Lemma 7.4.1 and ϕ > 0 a constant that we will specify later. By Lemma
7.4.1 there is a standard solution Mstan × [0, 1) with tip pstan and a ϕ-homothety with
scaling factor λ

Mstan × [0, 1) ⊃ BA′(pstan, 0) × [0, σ)
Φ−→ M with (pstan, 0) 7→ (p, t)

for some 0 ≤ σ ≤ 1 − 1
2θ. For sufficiently small ϕ we can assume that λS

−1/2
0 S1/2(p, t)

is arbitrarily close to 1. Since x survives until time t0, we conclude from (ii) that if ϕ
is sufficiently small, t0 is not larger than the final time of ImΦ, i.e. t0 ≤ t + λ2σ. Let
(x′, t′) ∈ Mstan × [0, 1) be the point corresponding to (x0, t0) under Φ (if t′ = σ this
means lims→t′ Φ(x′, s) = (x0, t0)). Choosing ϕ sufficiently small, we may assume that
(x′, t′) ∈ P (pstan, 0, 2d0 + 2AC, 1 − θ

2).

Assume first that the balls BE2
0S−1/2(x0,t0)(x0, t0) and B4ε−1S−1/2(x0,t0)

(x0, t0) do not

contain any postsurgery points. By Theorem 7.3.4 the point (x′, t′) is the center of a
strong ε

4 -neck, an ( ε
4 , E0

4 )-cap or a strong ε
4 -neck until time 0. Since the scalar curvature

on Mstan × [0, 1) is uniformly bounded from below by 1, the scaling factor of these necks
can be assumed to be less than 2. Now we may conclude that if ϕ is smaller than some
universal constant, the point (x0, t0) must be the center of a strong ε

2 -neck, an ( ε
2 , E0

2 )-
cap or a strong ε

2 -neck until time t. Observe that here we have used the following fact:
For every ϕ2 and λ > 0 there is a ϕ1(ϕ2, λ) > 0 that is nonincreasing in λ such that if
Ψ : N1 → N2 is a ϕ1-isometry between two Riemannian manifolds (N1, g1) and (N2, g2)
then Ψ is a ϕ2-isometry between the rescaled manifolds λ−1N1 and λ−1N2.

Now suppose that BE2
0S−1/2(x0,t0)(x0, t0) or B4ε−1S−1/2(x0,t0)(x0, t0) does contain a post-

surgery point (x∗, t0). Denote by (p∗, t0) the tip of the corresponding surgery cap. Ob-
serve that by the fact that (x0, t0) ∈ ImΦ there is a (universal) C ′ such that S(p∗, t0) <

C ′S(x0, t0). Moreover, we can estimate distt0(x
∗, x0)S

−1/2
0 S1/2(p∗, t0) from above by a

universal constant. Now assume δ2 to be sufficiently small such that we can repeat the
preceding arguments for (x∗, t0) instead of (x, t) and (p∗, t0) instead of (p, t). Thus we can
still assume that in this case (x0, t0) is the center of an ( ε

2 , E0
2 )-cap or a strong ε

2 -neck until
time t0 (in the latter case the strong neck until time t0 is actually a neck).

In the case in which (x0, t0) is the center of a strong ε
2 -neck or an ( ε

2 , E0
2 )-cap, we are

done. Assume now that (x0, t0) is the center of a strong ε-neck until time t resp. t0. Now
consider the point (x0, t

−) ∈ M(t−) resp. (x0, t
−
0 ) ∈ M(t−0 ). Since (x0, t

+) lies close to
(p, t+) resp. (p∗, t+0 ), the point (x0, t

−) resp. (x0, t
−
0 ) has to lie close to the center of a

strong δ-neck. In particular for sufficiently small δ we get that (x0, t
−) resp. (x0, t

−
0 ) is

the center of a strong ε-neck and by Lemma 7.3.5 we conclude that (x0, t0) is the center
of a strong ε

2 -neck.

It is now easy to show that (x0, t0) also satisfies properties (A) and (B) of the canonical
neighborhood assumptions CNA(2r, ε

2 , E0
2 ) (use the last two assertions of Theorem 7.3.4).

Assume now, that (x0, t0) does not satisfy CNA(2r, ε
2 , E0

2 ). As a preparation for sub-
section 7.5 we discuss a tool that will help us to exclude surgery points in larger and larger
parabolic neighborhoods around (x0, t0).
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Lemma 7.4.3. There are numbers α, β > 0 such that under the above assumptions we
have:
Assume that (x0, t0) does not satisfy CNA(2r, ε

2 , E0
2 ). Let Q := S(x0, t0).

(i) For any a,K < ∞ there is a δ3(a,K) such that the following holds:
If δ < δ3 and S ≤ KQ on BaQ−1/2(x0, t0) and if the ball doesn’t contain surgery

points, then P (x0, t0, (a+αK−1/2)Q−1/2,−βK−1Q−1) doesn’t contain surgery points
either.

(ii) For any a, b,K < ∞ there is a δ4(a, b,K) such that the following holds:
If δ < δ4 and S ≤ KQ on P (x0, t0, aQ−1/2,−bQ−1) and if this parabolic neighbor-
hood doesn’t contain surgery points, then P (x0, t0, aQ−1/2,−(b + βK−1)Q−1) doesn’t
contain any surgery points either.

Proof. Observe that Q = S(x0, t0) > 1
4r2 . So the canonical neighborhood assumptions

CNA(1
4Q−1/2, 2ε, 2E0) hold at all non-presurgery points. Without loss of generality we

may assume that K ≥ 16. Set

α :=
1

2η
, β := min

{
1

8η2
,

1

32

}
.

(i) For A := 4(a
√

K + α) assume that δ4 < δ2(A, 1
2 ) where δ2 denotes the constant

obtained from Lemma 7.4.2. Moreover, assume δ4 to be so small such that for any
surgery point (x, t+) ∈ M and tip (p, t) of the corresponding surgery cap we have
S(p, t) < 2S0S(x, t+).

Assume that the hypothesis was wrong. Then there is a post-surgery point (x, t+) ∈
P (x0, t0, (a + αK−1/2)Q−1/2,−βK−1/2Q−1/2) that survives until time t0. Let (p, t)
be the tip of the corresponding surgery cap. We will first estimate S(p, t) from above.
From Lemma 6.2.1 we get

S−1/2(x, t0) > (KQ)−1/2 − ηα(KQ)−1/2 =
1

2
(KQ)−1/2

and Lemma 6.2.2 gives

S−1(x, t+) > S−1(x, t0) − η2β(KQ)−1 >
1

4
(KQ)−1 − η2β(KQ)−1 ≥ 1

8
(KQ)−1.

So S(p, t) < 16S0KQ.

Since t0 − t ≤ β(KQ)−1 ≤ 1
32 (KQ)−1 < 1

2S0S
−1(p, t+) and distt0(x, x0) < (a +

αK−1/2)Q−1/2 = A(16KQ)−1/2 < AS
−1/2
0 S−1/2(p, t) we may apply Lemma 7.4.2 to

find that (x0, t0) already has a canonical neighborhood. A contradiction.

(ii) Choose d0 so large that for any surgery point (x, t) ∈ M and tip of the corresponding

surgery (p, t) we have distt(x, p) < d0S
1/2
0 S−1/2(p, t). Set

θ1 :=
c

16(bK + β)
, θ2 := min

{
θ1

2
,
1

2

}
, µ := min

{
1 − θ2

1 − θ1
, 2

}
> 1,

A1 := 2d0, A2 := a
√

2K

and choose ϕ1 > 0 so small such that any ϕ1-isometry Φ : N → N ′ is 2-Lipschitz and
distorts the scalar curvature by a factor of at most µ, i.e. 1

µS < S ◦ Φ < µS. Now
set δ4(a, b,K) := min{δ1(A1, θ1, ϕ1), δ2(A2, θ2)} where δ1, δ2 denote the constants
obtained in Lemma 7.4.1 and 7.4.2.
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Choose 0 ≤ τ ≤ β(KQ)−1 maximal with the property that there are no surgeries in
the parabolic neighborhood P := P (x0, t0, aQ−1/2,−bQ−1 − τ) except maybe at its
time T − bQ−1 − τ slice. By Lemma 6.2.2 we have on P

S−1 ≥ (KQ)−1 − β(KQ)−1η2 >
1

2
(KQ)−1 =⇒ S < 2KQ.

Now assume that there is a surgery point (x, t) ∈ P with t = T − bQ−1− τ . Let (p, t)
be the tip of the corresponding surgery cap. We have S(p, t) ≤ 2KQ and thus

distt0(x, x0) < aQ−1/2 = A2(2KQ)−1/2 < A2S
−1/2
0 S−1/2(p, t).

An application of Lemma 7.4.1 with parameters A1, θ1 and ϕ1 to the point (p, t)
shows us that there is 0 ≤ σ ≤ 1 − θ1, a standard solution Mstan × [0, 1) and a
ϕ1-homothety with scaling factor λ

Mstan × [0, 1) ⊃ BA(pstan, 0) × [0, σ)
Φ−→ M with (pstan, 0) → (p, t).

By the choice of ϕ1 we have S0
λ2 > 1

µS(p, t).

Observe that the point (x, t+) survives until time t0. So if σ < 1− θ1, the final time
of Im Φ must be not less than t0 and

t0 − t ≤ σλ2 < (1 − θ1)µS0S
−1(p, t) ≤ (1 − θ2) S0S

−1(p, t).

Now Lemma 7.4.2 gives a contradiction.

On the other hand suppose that σ = 1 − θ1. By Theorem 7.3.2 (b) the scalar
curvature on Mstan × [0, 1) at the time 1 − θ1 slice is larger than c

θ1
= 16(bK + β).

So for t′ := t + λ2θ1 ∈ [t, t0] we get

1

µ
· 16(bK + β) · 1

λ2
< S(x, t′) < 2KQ =⇒ (b + βK−1)Q−1 <

1

4
λ2.

Hence

t0 − t ≤ (b + βK−1)Q−1 <
1

4
λ2 <

µ

4
S0S

−1(p, t)

<
1

2
S0S

−1(p, t) ≤ (1 − θ2) S0S
−1(p, t).

Applying Lemma 7.4.2 yields the desired contradiction.

7.5 Justification of the canonical neighborhood assumptions

Consider again Ricci flows with surgery M defined on [0, T ) that have normalized initial
conditions. Let I ⊂ [0,∞) be an interval. M is said to satisfy some canonical neighbor-
hood assumptions on I if these assumptions hold at all points at times I ∩ [0, T ). Analo-
gously we define what it means to say that M is κ-noncollapsed on I. Let δ, r : [0, T ) → R+

be functions. We say that M is a Ricci flow with (δ(t), r(t))-cutoff if at any surgery time
t the surgeries are performed by (δ(t), r(t))-cutoff.

We will now show that if we perform the (δ(t), r(t))-cutoff appropriately (this will mean
that r(t) and δ(t) is smaller than some time dependent constants), every non-presurgery
point satisfies some canonical neighborhood assumptions with constants that only depend
on time and neither on the initial metric nor the number of surgeries performed so far.
With this result it is clear that the construction of M as described in section 7.2 works
and that we can control the parameters r(t) and δ(t) sufficiently well to ensure that the
surgery times cannot accumulate.
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Theorem 7.5.1. There are sequences of positive numbers r1 > r2 > . . ., κ1 > κ2 > . . .
and δ1 > δ2 > . . . such that the following holds:
Let 0 < δ(t) ≤ δj and 0 < r(t) ≤ rj on [2j−1, 2j ] (resp. [0, 2] for j = 1). Assume that
M is a 3 dimensional Ricci flow with surgery defined on a time interval [0, T ) with the
following properties:

(i) M has normalized initial conditions,
(ii) the surgeries are performed by (δ(t), r(t))-cutoff and
(iii) for every surgery time t ∈ [0, T ) the canonical neighborhood assumptions CNA(r(t), ε, E0)

hold at all non-presurgery points on [0, t).
Then for all j ≥ 1
(a) M is κj-noncollapsed on [0, 2j ] and
(b) the canonical neighborhood assumptions CNA(rj , ε, E0) hold at all non-presurgery

points on [0, 2j ].

Lemma 7.5.2. Let i ≥ 0 and κ1 > . . . > κi > 0, r1 > . . . > ri+1 > 0 and δ1 > . . . >
δi−1 > 0. Then we can find some constants κi+1, δ > 0 such that:
Let δi, δi+1 ≤ δ (resp. δi+1 ≤ δ if i = 0), 0 < δ(t) ≤ δj and 0 < r(t) ≤ rj on [2j−1, 2j ]
(resp. [0, 2] for j = 1). Assume that M is a 3 dimensional Ricci flow surgery defined for
times [0, T ) with T ≤ 2i+1 that satisfies (i)-(iii) (in Theorem 7.5.1) and
(iv) M satisfies (a) and (b) for j = 1, . . . , i and
(v) the canonical neighborhood assumptions CNA(1

2ri+1, 2ε, 2E0) hold at all non-presurgery
points on [0, 2i+1].

Then M satisfies (a) for j = i + 1.

We will prove this Lemma later.

Proof of the theorem. By induction we may assume that we already have sequences r1 ≥
. . . ≥ ri, κ1 ≥ . . . ≥ κi and δ1 ≥ . . . ≥ δi for i ≥ 0 such that (a) and (b) apply for all
j = 1, . . . , i.

Choose first ri+1 < ri arbitrarily and determine κi+1 and δ for r1, . . . , ri, ri+1, κ1, . . . , κi

and δ1, . . . , δi−1 from Lemma 7.5.2. Set δi+1 := δ replace δi by min{δi, δ} (if i > 0). Let
δ(t), r(t) be functions with 0 < δ(t) ≤ δj and 0 < r(t) ≤ rj on [2j−1, 2j ] for all j > 1
(resp. [0, 2] for j = 1). Consider a 3 dimensional Ricci flow with surgery M defined on
some time interval [0, T ) ⊂ [0, 2i+1] that satisfies (i)-(iii). Recall that this implies that (a)
and (b) are satisfied for all j = 1, . . . , i. Let t0 ∈ [0, 2i+1] be maximal with the property
that the canonical neighborhood assumptions CNA(ri+1, ε, E0) hold at all non-presurgery
points on [0, t0). Then t0 ≥ 2i for i > 0 and in the case i = 0 we have t0 ≥ 1

4 if r1 < 1√
2

since by Corollary 2.5.5 the scalar curvature on M is bounded from above by 2 at times
[0, 1

4 ].
We will first show that all points on the time t0 slice (resp. t+0 slice if t0 is a surgery

time) satisfy the more general assumptions CNA(1
2ri+1, 2ε, 2E0) if δi+1 < δ′ (where δ′ > 0

denotes some universal constant). If t0 is not a surgery time, this is clear. So assume that
t0 is a surgery time. Let x ∈ M(t+0 ) with S(x, t+0 ) > 4

r2
i+1

. If x is a surgery point, we

get from Lemma 7.4.2 that (x, t+0 ) even satisfies the canonical neighborhood assumptions
CNA(2ri+1,

ε
2 , E0

2 ) (observe that we have a universal bound for the diameter of the glued-
in caps on the local scale). If x is not a surgery point, choose t′ < t0 sufficiently close to
t0 such that we can apply the following reasoning: We have S(x, t′) > 1

r2
i+1

, so (x, t′) is

the center of a strong ε-neck or an (ε,E0)-cap. If this neck or cap hits surgery points at
time t−0 we can again use Lemma 7.4.2 to conclude that (x, t+0 ) already has a canonical
neighborhood for δ′ sufficiently small (we have control over the curvature on the neck
or cap and its diameter on a local scale). If not, (x, t+0 ) is the center of a strong 2ε-
neck or a (2ε, 2E0)-neck. Property (A) of the canonical neighborhood assumptions follows
immediately For property (B) observe that in order to prove the required noncollapsedness
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we just have to consider the volumes of the balls that lie inside the time t+0 neck or cap
(the curvature can be controlled from below, so the radii can be controlled from above).

Observe that by the choice of δ, Lemma 7.5.2 asserts that M satisfies (a) for j = i + 1
on [0, t0].

Now assume that (b) does not hold for j = i + 1. By the choice of t0 this implies
that there is a non-presurgery point (x, t0) ∈ M (resp. (x, t+0 ) ∈ M) that does not satisfy
CNA(2ri+1,

1
2ε, 1

2E0) (otherwise we could conclude that CNA(ri+1, ε, E0) holds at all non-
presurgery points on [0, t0 + θ) for some θ > 0 contradicting the maximality of t0). We
will show that this leads to a contradiction for ri+1 small enough.

Assume that we cannot find an appropriate ri+1. Choose a sequence rk
i+1 → 0. For

every k we find δk as above and we may assume that δk → 0, particularly δk < min{δ′, δi}
(otherwise replace the δk by even smaller numbers). Set δk

1 := δ1, . . . , δ
k
i−1 := δi−1 and

δk
i = δk

i+1 := δk (if i = 0 we just set δk
1 := δk). We find a sequence of functions δk(t), rk(t)

with 0 < δk(t) ≤ δk
j , 0 < rk(t) ≤ rj (resp. rk

i+1 for j = i + 1) on [2j−1, 2j ] for j =
2, . . . , i + 1 resp. [0, 2] for j = 1 and Ricci flows with surgery Mk (defined on the time
interval [0, Tk)) that satisfy (i)-(iii) for δk(t) and rk(t). Moreover, we find points (xk, tk) ∈
Mk corresponding to the point (x, t0) in the preceding paragraphs that do not satisfy
CNA(2rk

i+1,
ε
2 , E0

2 ). However, CNA(1
2rk

i+1, 2ε, 2E0) holds on Mk at times [0, tk]. Observe
that tk ≤ min{2i+1, Tk} and tk ≥ 2i for i > 0 resp. tk ≥ 1

4 for large k and i = 0.
Let Qk := S(xk, tk) ≥ 1

(2rk
i+1)2

→ ∞, shift Mk in time by −tk, parabolically rescale by

Q
1/2
k and restrict to nonpositive times to get M′

k. Assume that M′
k is defined on [−T ′

k, 0].
For the points (x′

k, 0) ∈ M′
k corresponding to the (xk, tk) we have S(x′

k, 0) = 1. Further-
more, T ′

k → ∞ and the curvature on M′
k is ϕk-positive with ϕk → 0. Observe that since

Qk ≥ 1
(2rk

i+1)2
the M′

k satisfy the canonical neighborhood assumptions CNA(1
4 , 2ε, 2E0) at

all non-presurgery points, but (x′
k, 0) does not satisfy CNA(1, ε

2 , E0
2 ). Moreover, we have

κi+1-noncollapsedness everywhere.
By Lemma 7.4.3 (i) and Proposition 6.2.4 we can exclude surgery points on larger and

larger balls Bdk
(x′

k, 0) and even on times slightly before 0 (depending on the distance to
x′

k). So by Lemma 6.2.2 and Shi’s estimates we have smooth convergence

(Bdk
(x′

k, 0), (x
′
k, 0)) −−−−→

k→∞
(M∞(0), (x∞, 0)). (7.5)

Analogous to the proof of Proposition 6.3.1 we conclude that M∞(0) has bounded, nonneg-
ative sectional curvature. Let T ≥ 0 be maximal with the property that there are sequences
dk → ∞ and τk → T such that the P (x′

k, 0, dk,−τk) are non-singular and the Ricci flows
on these parabolic neighborhoods converge in (7.5) to some Ricci flow M∞ × (−T, 0]. By
Proposition 6.3.1, the scalar curvature on M∞× (−T, 0] can be bounded by some constant
K. Assume that T < ∞. Then for b := 1

4βK−1 and any a < ∞ we can bound the scalar
curvature on P (x′

k, 0, a,−T + b) by 2K for large k and we may exclude surgery points
there. Thus by Lemma 7.4.3 (ii) we can even exclude surgery points on the parabolic
neighborhoods P (x′

k, 0, a,−T − b) for large k (we first have to rescale back and work on
M) and by Proposition 6.3.1 we can extend the convergence (7.5) to a convergence of
Ricci flows on the interval (−T − b, 0] contradicting the maximality of T .

So there are sequences dk → ∞ and τk → ∞ such that

(P (x′
k, 0, dk, 0), (x′

k , 0)) −−−−→
k→∞

(M∞ × (−∞, 0], (x∞, 0)) .

It is easy to see, that M∞ × (−∞, 0] is an orientable κi+1-solution that is not a higher
spherical space form. Now use Theorems 5.4.13 and 5.4.11 to find that (x∞, 0) is the
center of a strong ε

4 -neck or ( ε
4 , E0

4 )-cap. Hence (x′
k, 0) and then also (xk, tk) must have

been the center of a strong ε
2 -neck or an ( ε

2 , E0
2 )-cap for large k (recall the definition of

E0). Moreover we conclude that property (A) by Corollary 5.2.9 and property (B) in
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the definition of the canonical neighborhood assumptions hold at (x′
k, 0) and thus also at

(xk, tk) for large k. This contradicts the choice of (xk, tk).

(x0, t0)

K
τ0

case 1
case 2

P

(p, t) (y, t) (x, t)

(x′, t′)
Q

2i−1

2i

2i+1

I0

5
3 · 2i−1

4
3 · 2i−1

λ2h

λ2h

(y, t − u2)

Proof of Lemma 7.5.2. We want to show noncollapsedness at some point (x0, t0) ∈ M
with 2i ≤ t0 ≤ 2i+1 resp. 0 ≤ t0 ≤ 2i+1 for i = 0. Let 0 < r ≤ √

t0 and assume that
P (x0, t0, r,−r2) is non-singular and we have ‖R‖ ≤ 1

r2 there. We will estimate the volume
of B(x0, t0, r) from below.

In order to carry out the argument, we will use the tools developed in chapter 4 and the
proof is similar to the proof of the No Local Collapsing Theorem 4.2.4. The difficulty here
is to take care that points in space-time may only be joined by broken L-geodesics that
hit surgery points. We have to analyze these geodesics and conclude that their L-length
can be assumed to be arbitrarily large if δ is chosen sufficiently small. On the other hand,
we are just able to control the δ-parameter on [2i−1, 2i+1] resp. [0, 2] for i = 0 and [0, 4]
for i = 1. So for i > 1 we are not able to use the noncollapsedness of the initial manifold.

At first, we consider the case in which S(x0, t0) is large.

Noncollapsedness for S(x0, t0) > 1
r2
i+1

. In this case the canonical neighborhood as-

sumptions CNA(ri+1, ε, E0) apply at (x0, t0). So M is 1
2κ0-noncollapsed in (x0, t0).

For the rest of this proof we will assume that

S(x0, t0) ≤
1

r2
i+1

.

Existence of L-geodesics. Consider (x0, t0) as a basepoint and introduce the time
parameter τ := t0 − t as in chapter 4. Let (y, t) ∈ M be some point with t < t0 that
is not a presurgery point. Denote the surgery times of M between t and t0 by t′1, . . . , t

′
l.

Consider piecewise smooth curves γ : [0, t0− t] → M in space-time (i.e. γ(τ̃ ) ∈ M(t0− τ̃))
joining (x0, t0) with (y, t) and let L(γ) be their L-length. Let L(y, t) be the infimum over
all those L-lengths.

If (t1, t2) ⊂ [0, t0] is a time interval that does not contain surgery times, we know that
for any two points (ya, ta), (yb, tb) ∈ M with t1 < ta < tb < t2 there is a minimizing
L-geodesic joining these points. So by a limiting argument we conclude that this is still
true if we require that t1 ≤ ta < tb ≤ t2 and that (ya, ta) is a non-presurgery and (yb, tb)
a non-postsurgery point. Moreover, the L-length of this minimizing L-geodesic varies
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continuously with its endpoints. Obviously, if we replace an arbitrary piecewise smooth
curve γ : [0, t0− t] → M in space-time that joins (x0, t0) with (y, t) by a broken L-geodesic
γ′ : [0, t0 − t] → M in space-time with breaking times t′1, . . . , t

′
l and γ′(t′i) = γ(t′i), we have

L(γ′) ≤ L(γ). By varying the breaking points we see that there is an L-minimizing
piecewise smooth curve γ : [0, t0 − t] → M between (x0, t0) and (y, t). Moreover, γ is a
broken L-geodesic and all breaking points (if there are any) lie on surgery points. If γ
does not hit any surgery points, we call γ admissible. Observe that any admissible broken
L-geodesic is smooth.

Estimates of L- and L+-length. For a broken curve γ : [0, τ ] → M in space time we
define

L+(γ) =

∫ τ

0

√
τ̃ (‖γ̇‖2 + S+(γ))dτ̃ ,

where S+ := max{0, S}. By the 1-positive curvature assumption S ≥ −3, so we get

L+ − 2τ3/2 = L+ − 3

∫ τ

0

√
τ̃dτ̃ ≤ L ≤ L+. (7.6)

Estimate of the L-lengths of non-admissible curves. From now on consider L-
geodesics with basepoint (x0, t0) that do not exist outside the time interval I0 := [2i−1, 2i+1]
for i > 1, I0 := [0, 2] for i = 0 or I0 := [0, 4] for i = 1. Let L0 < ∞ be a given constant.
We want to show that for δ sufficiently small (depending only on L0 and the parameters
ri) every such non-admissible L-geodesic γ has L(γ) ≥ L0.

Let ∆T be the length of I0. We have ∆T = 2i+1 − 2i−1 = 3 · 2i−1 for i > 1, ∆T = 2
for i = 0 and ∆T = 4 for i = 1. Set L+

0 := L0 + 2∆T 3/2. By (7.6) it suffices to prove that
L+(γ) ≥ L+

0 for sufficiently small δ.

Let γ : [0, τ ] → M in space-time be a non-admissible minimal broken L-geodesic joining
(x0, t0) with (y, t), t ∈ I0. Without loss of generality we may assume that (y, t) = γ(τ) is
the first surgery point on γ. Let (p, t) be the tip of the corresponding surgery.

Since S(x0, t0) ≤ 1
r2
i+1

, we get by Lemmas 6.2.1 and 6.2.2 that there is a universal

constant v > 0 such that S < 16
r2
i+1

on K := P (x0, t0, vri+1,−v2r2
i+1). So for sufficiently

small δ the parabolic neighborhood K is non-singular because surgery points at times
I0 can be assumed to have scalar curvature greater than 1

2δ2r2
i

or 1
2δ2r2

i
. The 1-positive

curvature condition gives us a bound for ‖R‖ on K. So there is a universal bilipschitz
bound C for the distortion of the metric on K.

Assume that γ leaves B(x0, t0, vri+1) before time τ0 := min
{

v4r4
i+1

4C2(L+
0 )2

, v2r2
i+1

}
. Then

we have

L+(γ) ≥
∫ τ0

0

√
τ̃‖γ̇‖2dτ̃ ≥

∫ τ0

0

√
τ̃C−1‖γ̇‖2

0dτ̃

Reparameterizing via τ̃ = s2 gives (see (4.3))

∫ τ0

0

√
τ̃C−1‖γ̇‖2

0dτ̃ =
1

2
C−1

∫ √
τ0

0

∥∥∥∥
dγ

ds

∥∥∥∥
2

0

ds ≥ 1

2
C−1 v2r2

i+1√
τ0

≥ L+
0 .

So assume now that γ|[0,τ0) ⊂ K. Since there are no surgery points in K, this implies
τ ≥ τ0.

Let A < ∞, θ, ϕ > 0 be constants that will be specified later. By Lemma 7.4.1 we
find that for δ sufficiently small there is some 0 ≤ σ ≤ 1− θ such that there is a standard
solution Mstan × [0, 1) with tip pstan and a ϕ-homothety with some scaling factor λ

Mstan × [0, 1) ⊃ BA(pstan, 0) × [0, σ)
Φ−−−−→ M with Φ(pstan, 0) = (p, t).
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Denote P := ImΦ. Furthermore, if σ < 1 − θ no point of P survives past time t + λ2σ.
For ϕ sufficiently small we have by Theorem 7.3.2 (c)

S >
1

2δ2r2
i+1

or S >
1

2δ2r2
i

on P.

So choosing δ sufficiently small, we may assume that P ∩ K = ∅.
Observe that this implies that γ has to enter P after time τ0. Let t + λ2h be the

smallest time in which γ enters P . Consider now γ to be parameterized by time t (rather
than backward time τ) and denote by γ′ : [0, h) → Mstan × [0, 1) the pullback of γ|[t,t+λ2h)

under Φ. We have for ϕ sufficiently small

L+(γ) ≥
∫ t+λ2h2

t

√
t0 − t̃

(
‖γ̇‖2 + S+(γ(t̃), t̃)

)
dt̃

≥ √
τ0

∫ t+λ2h2

t

(
‖γ̇‖2 + S+(γ(t̃), t̃)

)
dt̃ ≥

√
τ0

2

∫ h

0

(
‖γ̇′‖2 + S+(γ′(t̃), t̃)

)
dt̃

where the quantities under the last integral sign are taken on Mstan × [0, 1). Set θ :=
exp(− 2

c
√

τ0
L+

0 ) where c is the constant from Theorem 7.3.2 (b). There are two cases

case 1: γ enters P at its final time slice. Then we have h = σ = 1− θ. Furthermore
by Theorem 7.3.2 (b)

∫ 1−θ

0

(
‖γ̇′‖2 + S+(γ′(t̃), t̃)

)
dt̃ ≥

∫ 1−θ

0

c

1 − t̃
dt̃ = −c log θ =

2√
τ0
L+

0 .

case 2: γ enters P “before” its final time slice. Recall the surgery process. We find
that there is a universal d0 < ∞ such that dist0(pstan, γ′(0)) < d0. By Theorem 7.3.2
(d) there is a universal bound for the curvature on Mstan× [0, 1−θ) and thus we find
a bilipschitz bound C for the distortion of the metric (observe that C is independent

of the standard solution Mstan × [0, 1)). Let A :=
(

2hC2L+
0√

τ0

)1/2

+ d0. Then

∫ h

0
(‖γ̇′‖2

t̃
+ S+)dt̃ ≥

∫ h

0
‖γ̇′‖2

t̃
dt̃ ≥ 1

h

(∫ h

0
‖γ̇′‖t̃dt̃

)2

≥ 1

h

(∫ h

0
C−1‖γ̇′‖0dt̃

)2

≥ (A − d0)
2

hC2
≥ 2√

τ0
L+

0 .

So in both cases L+(γ) ≥ L+
0 .

Finding a point of low L-distance and low curvature Let (y, t) ∈ M with t < t0.
We say that (y, t) is admissible if there is a θ > 0 and an admissible minimizing L-
geodesic γ : [0, t0 − t + θ] → M in space-time (parameterized by backwards time) such
that γ(0) = (x0, t0) and γ(t0 − t) = (y, t). Let Madm ⊂ M be the (open) set of admissible
points.

Set L̄(y, t) := 2
√

t0 − tL(y, t) and l(y, t) := 1
2
√

t0−t
L(y, t). Recall from (4.11) that we

have in the barrier sense

− ∂

∂t
L̄ + △L̄ ≤ 6 (7.7)

at all admissible points.
Set t′ := 2i−1 + 1

32i−1 = 4
32i−1 for i > 1 or t′ := 1

4 for i = 0, 1. We will first show
that there is a point x′ ∈ Madm(t′) such that l(x′, t′) ≤ 3

2 . Choose δ so small that any
non-admissible L-geodesic that does not exist outside the time interval I0 has L-length
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> 5
√

∆T . We conclude that for any point (y, t) ∈ M \ Madm with t ∈ I0 we have
L̄(y, t) > 8(t0 − t) + 2

√
∆T

√
t0 − t. Assume that L̄ > (6 + ϕ)(t0 − t′) + ϕ

√
t0 − t′ on

Madm(t′) for some ϕ > 0. Let t̃ be the supremum over all times t̃ ∈ [t′, t0] such that

L̄ > (6 + ϕ)(t0 − t̃) + ϕ
√

t0 − t̃ on Madm(t̃). Then for ϕ < 2
√

∆T

L̄ ≥ (6 + ϕ)(t0 − t̃) + ϕ
√

t0 − t̃

on M(t̃). If t̃ < t0, there is a point x̃ ∈ M(t̃) where equality holds. So (x̃, t̃) must be
admissible and △L̄(x̃, t̃) ≥ 0. From (7.7) we find ∂

∂t̃
|t=t̃L̄(x̃, t) ≥ −6 contradicting the

choice of t̃. On the other hand t̃ = t0 implies L(x0, t
′′) > ϕ

2 for all t′′ < t0, a contradiction.
Thus, we conclude that for any ϕ > 0 there is a point x′′ ∈ M(t′) with L̄(x′′, t′) ≤
(6 + ϕ)(t0 − t′) + ϕ

√
t0 − t′. So there is also a point x′ ∈ M(t′) with L̄(x′, t′) ≤ 6(t0 − t′)

which has to be admissible then. The last inequality implies

l(x′, t′) ≤ 3

2
.

Let γ : [0, t0 − t′ + θ) → M in spacetime be an admissible minimizing L-geodesic with
γ(0) = (x0, t0) and γ(t0 − t′) = (x, t′) for some θ > 0. Note that all points on γ are
admissible points.

For i = 0, 1 we have S(x′, t′) < 2 by the normalized initial conditions and Corollary
2.5.5. In this case set (x, t) := (x′, t′). For the rest of this step assume i > 1.

Assume that at every point on γ|[t0− 5
3
2i−1,t0− 4

3
2i−1] we have S > 256. The 1-positive

curvature condition implies S > −3 everywhere. So we get

L(x′, t′) =

∫ t0− 4
3
·2i−1

0

√
τ
(
‖γ̇‖2 + S

)
dτ > −3

∫ t0− 5
3
2i−1

0

√
τdτ + 256

∫ t0− 4
3
2i−1

t0− 5
3
2i−1

√
τdτ

≥ −3

∫ 2i+1

0

√
τdτ + 28

∫ 2
3
2i−1

1
3
2i−1

√
τdτ > −2 · 2 3

2
(i+1) +

28

3
3
2

2
3
2
i− 3

2 ≥ −2 · 2 3
2
(i+1) + 28+ 3

2
i−4.

Combining this with the upper bound on L(x′, t′) we get

6 · 2 1
2
i > 3

√
2i+1 ≥ 3

√
t0 − t′ ≥ L(x′, t′) > −2

3
2
i+ 5

2 + 2
3
2
i+4.

So

6 > −2i+ 5
2 + 2i+5 > −32 + 64,

a contradiction.
Thus there is an admissible point (x, t) ∈ M with t ∈ [132i−1 + 2i−1, 2

32i−1 + 2i−1] that
has S(x, t) ≤ 256 and

L(x, t) =

∫ t0−t

0

√
τ
(
‖γ̇‖2 + S

)
dτ = L(γ|[0,t0−t′]) −

∫ t0−t′

t0−t

√
τ
(
‖γ̇‖2 + S

)
dτ

≤ 3
√

t0 − t′ −
∫ t0−t′

t0−t

√
τSdτ ≤ (3 + 3 · 2i−2)

√
t0 − t′ ≤ 2

3
2
i+2.

Estimating the reduced volume of the admissible points from below Analogous
to (4.14) we define

Ṽadm(τ) :=

∫

Madm(t0−τ)
τ−n/2e−l(·,τ)dµτ .

As in chapter 4 we can show that Ṽadm(τ) is nonincreasing in τ . We want to estimate
Ṽadm(r2) from below.
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Consider first the case i > 1. Replacing r by r√
12

we may assume that r2 ≤ 1
32i−1

(observe that r2 ≤ 2i+1). Since S(x, t) ≤ 256, we conclude by Lemmas 6.2.1, 6.2.2 and
the 1-positive curvature condition that

S <
1

u2
on Q := P (x, t, u,−u2)

for some universal 0 < u < 1. So if we assume δ to be sufficiently small, there are no
surgery points on Q. Thus by the κi-noncollapsedness we have volt Bu(x, t) ≥ κiu

3. Let
C be a bilipschitz bound for the distortion of the Riemannian metric on P . We find
volt−u2 Bu(x, t) ≥ C−3/2κiu

3. Now we want to bound l from above on Bu(x, t)×{t− u2}.
Observe that L(x, t) ≤ 2

3
2
i+2. For y ∈ Bu(x, t) choose a minimizing time t geodesic

γ′ : [t0 − t, t0 − t + u2] → Bu(x, t) between x and y. We have

L(y, t0 − t + u2) < L(x, t0 − t) + L(γ′) ≤ 2
3
2
i+2 +

∫ t0−t+u2

t0−t

√
τ(‖γ̇′‖2 + S)dτ

< 2
3
2
i+2 + u2

√
2i+1(Cu−2 + u−2).

So for sufficiently small δ the points on Bu(x, t) × {t − u2} are admissible. Furthermore,
since t0 − t + u2 ≥ 1

32i−1, we find

l(y, t0 − t + u2) <
1

2
√

2i−1/3

(
2

3
2
i+2 +

√
2i+1(C + 1)

)
=: E.

and thus
Ṽadm(r2) ≥ Ṽadm(t0 − t + u2) ≥ (2i+1)−3/2e−E · C−3/2κiu

3.

In the cases i = 0, 1 the estimation of Ṽadm(r2) is even easier. Observe that we have control
over the scalar curvature at times [0, t] = [0, 1

4 ] and that there are no surgery times before
time 1

2 . Moreover, M(0) is 1-noncollapsed on scales < 1. The reasoning is then almost
the same as in the proof of the No Local Collapsing Theorem 4.2.4.

Noncollapsedness at (x0, t0) Analogous to (4.4) let

Dτ
adm :=

{
v ∈ Tx0M :

γv : [0, τ + δ] → M is L-minimizing
and admissible for some δ > 0

}

be the admissible domain. It is easy to see that

Ṽadm(τ) =

∫

Dτ
adm

τ−n/2e−lτ (v)Jτ (v)dv.

Now we can go through the steps of the proof of Lemma 4.2.3 to find that the lower bound
on Ṽadm(r2) implies that there is a constant κi+1 > 0 such that volt0 Br(x0, t0) ≥ κi+1r

3

(we just have to consider the set of admissible points instead of the manifold resp. the
admissible domain instead of the domain).
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Chapter 8

Outlook

So far we have proven that a Ricci flow with surgery M can always be constructed in the
way described in section 7.2 if we start with a manifold M = M(0) having normalized
geometry such that surgery times do not accumulate. So in a finite time interval there are
only finitely many surgery times. It is now important to analyze the long time behaviour
of M.

If the manifold M(t) is empty for some large t, we say that the Ricci flow goes extinct
after finite time. In this case it is easy to see that M is a connected sum of space forms and
a certain number of copies of S2 ×S1. Using Corollary 2.5.5, we can show that extinction
in finite time is always guarateed if M has positive scalar curvature. Note hereby that
after a surgery the minimum of the scalar curvature does not decrease.

So we have proved

Theorem 8.0.1. Every compact orientable Riemannian 3-manifold of positive scalar cur-
vature is a connected sum of space forms and finitely many copies of S2 × S1.

We will now describe how the Poincaré Conjecture can be shown using Ricci flow with
surgery. Assume therefore M to be simply connected. Then M is already homotopy
equivalent to S3 (see [Hat, Prop. 3.7]). By Theorem 1.5 in [Hat] M admits a unique
decomposition M = P1# . . . #Pm as a connected sum of closed 3-manifolds P1, . . . , Pm

that are irreducible (i.e. every embedded 2-sphere bounds an embedded ball) such that
none of these manifolds is diffeomorphic to S3 if m > 1. From van Kampen’s Theorem
we conclude that all the manifolds P1, . . . , Pm are simply connected. If these manifolds
are 3-spheres, M is a 3-sphere as well. This shows that in order to prove the Poincaré
Conjecture, we may assume M to be irreducible. Note that under this assumption the
surgeries in M do not change the diffeomorphism type of the manifold. Looking closer
at the surgery process we find that at any surgery time for any ξ > 0 the metric on the
postsurgery time slice is at most 1 + ξ times the metric on the presurgery time slice for
an appropriate identification of the pre- and postsurgery time slice.

If we could prove that the Ricci flow M goes extinct after finite time, we would get
that M can only be a 3-sphere and this would prove the Poincaré conjecture. There are
two arguments for this extinction result known to the author:

(A) The first argument is due to Perelman. Let ΛM be the space of all loops in M . Since
M is a homotopy sphere, we have π3M ∼= Z. Observe now that π3M ∼= π(ΛM,M)
by the following reason: It is easy to see that S3 ≈ S1 × D2/ ∼ where (x, y) ∼ (x′, y)
if y ∈ ∂D2. So any map β : S3 → M can be seen as a map (D2, ∂D2) → (ΛM,M)
and vice versa. Fix a nontrivial class α ∈ π(ΛM,M). Now for any continuously
differentiable c ∈ ΛM define At(c) to be the infimum over the areas of all discs in
M(t) whose boundary is c. Furthermore, for any continuously differentiable map

97
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β : (D2, ∂D2) → (ΛM,M) set

At(β) := sup
x∈D2

At(β(x)).

Finally, define
At(α) := inf

β∈α
At(γ

′)

where the infimum is only taken over continuously differentiable β. In [Per3] it is
shown1 that

Ȧt(α) ≤ −2π − 1

2
min
M(t)

SAt(α). (8.1)

Moreover, if t > 0 is a surgery time, the fact that the metric shrinks after a surgery
implies At+(α) ≤ At−(α). Now observe that since S ≥ −3 on M(0) and since the
minimum of the scalar curvature in nondecreasing under a surgery, Corollary 2.5.5
gives S ≥ − 3

1+2t on M(t). Combining this with (8.1), we find

d

dt

(
At(α)

(1
2 + t)3/4

)
≤ − 2π

(1
2 + t)3/4

.

Since the right hand side is non-integrable at infinity, this implies that if M did not
go extinct after finite time, we must have At(α) < 0 for large t. A contradiction.

Note that the proof of (8.1) requires some non-basic analytical tools such as the
existence of minimal area disc with prescribed boundary, an analysis of their boundary
behaviour and the theory of the curve shortening flow.

(B) The second argument was developed by Colding and Minicozzi. Fix a nontrivial class
α ∈ π3M ∼= π1(C(S2,M),M). We understand this identification in the following
sense: any continuous map β : S3 → M can be seen as a map β : ([0, 1], ∂[0, 1]) →
(C(S2,M),M) that is a map β : [0, 1] × S2 → M with the property that β(0, ·) and
β(1, ·) are constant. Define now

Wt(α) := inf
β∈α

sup
s∈[0,1]

Et(β(s, ·))

where Et denotes the energy and the infimum is taken over all β such that β(s, ·) is
continuous and L2

1 for all s ∈ [0, 1]. It can now be shown that

Ẇt(α) ≤ −4π − 1

2
min
M(t)

SWt(α). (8.2)

Moreover it is easy to see that if t is a surgery time, we have Wt+(α) ≤ Wt−(α).
Analogous to (A) we can conclude extinction in finite time.

A proof of (8.2) can be found in [CM1]. However, the proof assumes a profound
knowledge about results in the theory of minimal surfaces and the construction of
so-called min-max surfaces. Recently, the authors of [CM1] have published an update
[CM2] which promises to explain these prerequisites.

In order to prove the Geometrization Conjecture, we have to analyze the behaviour of
M for t → ∞. Observe that if M is an arbitrary oriented closed 3-manifold, extinction
may not take place. In [Per2, Sec 6,7] and [KL, Sec 80ff] it is shown that for large t
the time slice M(t) is the union of two sets called the thick part Mthick(t) and the thin
part Mthin(t). The thick part gets closer and closer to a hyperbolic metric and points x

1Observe that in [Per3] Perelman proves the Elliptization Conjecture which is more general than the
Poincaré Conjecture.



99

in the thin part have the following property: there is a radius ρ < diamM(t) such that
K ≥ −ρ−2 on Bρ(x, t) and 1

ρ3 volt Bρ(x, t) is smaller than some constant that goes to 0 as

t → ∞. So Mthick(t) is a hyperbolic manifold for large t. Furthermore, it is possible to
show that its the cuspidal tori are incompressible in M(t).

Now it remains to prove that Mthin(t) is essentially a certain type of manifold which
admits a decomposition as required in the Geometrization Conjecture. Unfortunately,
there is no complete proof of this fact in the literature by now.
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soliton, 66
volume ratio, 47

averaging function, 30
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scalar, 8
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curvature tensor, 7

curve shortening flow, 98
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distance distortion, 16
domain of L exp, 38

ε-cap, 61
ε-homothety, 76

ε-isometry, 23, 76

smooth, 26
ε-neck, 60

strong, 60, 76
until some time, 82
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end, 11
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Euler-Lagrange equations for L, 37
evolution

curvature operator, 17

Ricci curvature, 17
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Riemannian measure, 17
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expanding gradient soliton, 16
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ϕ-positive curvature, 67

first variation formula, 37
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minimizing, 8
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Geometrization Conjecture, 5
global Shi estimates, 19

glueing of ε-necks, 61
gradient shrinking soliton, 16, 57
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gradient soliton, 15

Gromov-Hausdorff

compactness, 24, 25
convergence, 23, 25

distance, 23

Ricci flows, 30

smooth convergence, 26

Hamilton-Ivey pinching, 21

Harnack inequality, 20

Hausdorff distance, 23

higher spherical space form, 58

Hopf-Rinow Theorem, 8
horn, 77

injectivity radius, 33, 40

irreducible manifold, 97

κ-noncollapsedness, 40, 76
κ-solution, 5, 46

2-dimensional, 55

3-dimensional, 58

L
exponential map, 38

geodesic, 38

geometry, 37

Jacobi field, 40
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minimizing, 38

length, 8

length space, 8
Levi-Civita connection, 7

line, 8

local Shi estimates, 20

long time existence, 20

maximum principle, 18
metric, 7

metric connection, 7

min-max surfaces, 98
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model solution, 45

model space of constant sectional curva-
ture, 7

neck, 60
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non-singular, 76
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path metric, 8
Poincaré Conjecture, 5
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postsurgery, 75
preserving time slices, 76
presurgery, 75

ray, 8
(r, δ)-cutoff, 79
reduced volume, 40
regular point, 26
rescaling of geometric quantities, 16
Ricci curvature, 8
Ricci flow, 15

with surgery, 75
Ricci splitting Theorem, 11
Riemannian

curvature, 7
curvature operator, 7
manifold, 7
volume form, 7

round cylinder, 15
round metric, 15
round shrinking metric, 15

scalar curvature, 8
scale, 49
second variation formula, 39
sectional curvature, 7
Shi’s estimates, 19
short time existence, 20
singularity, 5, 45
smooth convergence, 26
smooth ε-isometry, 26
soliton, 15

gradient shrinking, 57
steady gradient, 59

solution, 15
Soul Theorem, 12
space-time connection, 17
spherical space form, 11

higher, 58
splitting principle, 46
standard cap, 79
standard round 2-sphere, 15
standard round shrinking metric, 15
standard round shrinking Sn, 15
standard solution, 80

classification of the geometry, 83
steady gradient soliton, 15, 59
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until some time, 82

strong maximum principle, 18
surgery, 5
surgery time, 75
surviving until a time, 75

tangential cone, 33
tensor bundle, 7
time interval, 15
time slice, 15, 75
time-equivariant, 76
tip

of a cone, 13
of the standard cap, 79

Toponogov’s Theorem, 9
torsion free, 7
triangle, 9

uniformly totally boundedness, 24
universal κ0, 66

variation formula
first, 37
second, 39

volume controls curvature, 53
volume form, Riemannian, 7

weak maximum principle, 18


