Uniqueness of Weak Solutions to the Ricci Flow and Topological Applications

Richard H Bamler (joint work with Bruce Kleiner, NYU)

October 2020

Richard H Bamler (joint work with Bruce Kleiner, NUniqueness of Weak Solutions to the Ricci Flow and

Richard H Bamler (joint work with Bruce Kleiner, NUniqueness of Weak Solutions to the Ricci Flow and

Structure of Talk

- Part I: Topological Results
- Part II: Ricci flow, Weak solutions, Uniqueness, Continuous dependence
- Part III: Applications to Topology

Part I: Topological Results

< 口 > < 同 >

M (mostly) 3-dimensional, compact, orientable manifold

Recall: The topology of 3-manifolds is sufficiently well understood due to the resolution of the Poincaré and Geometrization Conjectures by Perelman, using Ricci flow.

Main objects of study:

- Met(M): space of Riemannian metrics on M
- $Met_{PSC}(M) \subset Met(M)$: subset of metrics with positive scalar curvature
- Diff(M): space of diffeomorphisms $\phi: M \to M$

...each equipped with the C^∞ -topology.

Goal: Classify these spaces up to homotopy (using Ricci flow)!

Met(M) is contractible

< ロ > < 同 > < 回 > < 回 > < 回 > <

Space of PSC-metrics

Main Result 1:

Ba., Kleiner 2019

 $Met_{PSC}(M)$ is either contractible or empty.

History:

- true in dimension 2 (via Uniformization Theorem or Ricci flow (see later))
- Hitchin 1974; Gromov, Lawson 1984; Botvinnik, Hanke, Schick, Walsh 2010: Further examples with $\pi_i(\text{Met}_{PSC}(M^n)) \neq 1$ for certain (large) *i*, *n*.
- Marques 2011 (using Ricci flow with surgery): Met_{PSC}(M³)/Diff(M³) is path-connected Met_{PSC}(S³) is path-connected,

< D > < P > < P > < P >

Diffeomorphism groups

Smale 1958: $O(3) \simeq \text{Diff}(S^2)$

Smale Conjecture: $O(4) \simeq \text{Diff}(S^3)$ proven by Hatcher in 1983

For a general spherical space form $M = S^3/\Gamma$ consider the inclusion map

 $\mathsf{Isom}(M) \longrightarrow \mathsf{Diff}(M)$

Generalized Smale Conjecture

This map is a homotopy equivalence.

- Verified for a handful of other spherical space forms, but open e.g. for $\mathbb{R}P^3$.
- All proofs so far are purely topological and technical. No uniform treatment.

・ロッ ・雪 ・ ・ ヨ ・ ・

Main Result 2:

Theorem (Ba., Kleiner 2019)

The Generalized Smale Conjecture is true.

Remarks:

- Proof via Ricci flow (first purely topological application of Ricci flow since Perelman's work \sim 15 years ago).
- Uniform treatment of all cases.
- Alternative proof in the S³-case (Smale Conjecture).
- There are two proofs:
 - "Short" proof (Ba., Kleiner 2017): GSC if $M \not\approx S^3$, $\mathbb{R}P^3$, M hyperbolic
 - Long proof (Ba., Kleiner 2019): full GSC and $S^2 imes \mathbb{R}$ -cases

Image: A mage: A ma

Similar techniques imply results in non-spherical case:

- If M is closed and hyperbolic, then Isom(M) ≃ Diff(M). (topological proof by Gabai 2001)
- If (M,g) is aspherical and geometric and g has maximal symmetry, then $Isom(M) \simeq Diff(M)$.

(new in non-Haken infranil case.)

•
$$\text{Diff}(S^2 \times S^1) \simeq O(2) \times O(3) \times \Omega O(3)$$

(topological proof by Hatcher)

•
$$\mathsf{Diff}(\mathbb{R}P^3 \# \mathbb{R}P^3) \simeq O(1) \times O(3)$$

(topological proof by Hatcher)

< □ > < 同 > < 三 > .

Connection to Ricci flow

Lemma

$$\begin{array}{ll} \text{For any }g\in \operatorname{Met}_{{\mathcal K}\equiv\pm1}(M)\colon\\ & \text{Isom}(M,g)\simeq \operatorname{Diff}(M) & \Longleftrightarrow & \operatorname{Met}_{{\mathcal K}\equiv\pm1}(M) \text{ contractible} \end{array}$$

Proof: Fiber bundle

$$\mathsf{Isom}(M,g) \longrightarrow \mathsf{Diff}(M) \longrightarrow \mathsf{Met}_{K\equiv \pm 1}(M)$$

$$\phi \longmapsto \phi^* g$$

Apply long exact homotopy sequence.

This reduces both results to:

Theorem (Ba., Kleiner 2019)

 $Met_{PSC}(M)$ and $Met_{K \equiv 1}(M)$ are each either contractible or empty.

or equivalently:

$$\pi_k(\operatorname{Met}(M), \operatorname{Met}_{PSC/K \equiv 1}(M)) = 1.$$

Market

Part II: Ricci flow, Weak solutions, Uniqueness, Continuous dependence

Ricci flow

Ricci flow: $(M, g(t)), t \in [0, T)$

$$\partial_t g(t) = -2\operatorname{Ric}_{g(t)}, \qquad g(0) = g_0 \qquad (*)$$

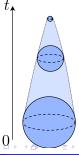
Short-time existence (Hamilton):

- For every initial condition g₀ the initial value problem (*) has a unique solution for maximal T ∈ (0,∞].
- If $T < \infty$, then "singularity at time T". Curvature $|\mathsf{Rm}|$ blows up as $t \nearrow T$.

Example: Round shrinking sphere

 $M = S^n$

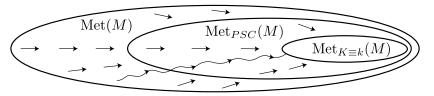
$$g(t) = (1 - 2(n - 1)t)g_{S^n}.$$



Ricci flow in 2D

Hamilton, Chow: On S^2 for any initial condition g_0 we have $T = rac{\operatorname{vol}(S^2, g_0)}{8\pi}, \qquad (T - t)^{-1}g(t) \longrightarrow g_{\text{round}}$

Interpretation on the space of metrics:



• Preservation of positive scalar curvature (in all dimensions)

• \rightsquigarrow deformation retractions from Met(S²) and Met_{PSC}(S²) onto Met_{K=1}(S²)

Theorem

$$\operatorname{Met}_{PSC}(S^2) \simeq \operatorname{Met}_{K \equiv 1}(S^2) \simeq \operatorname{Met}(S^2) \simeq *$$

Therefore $\operatorname{Diff}(S^2) \simeq O(3)$.

Ricci flow in 3D

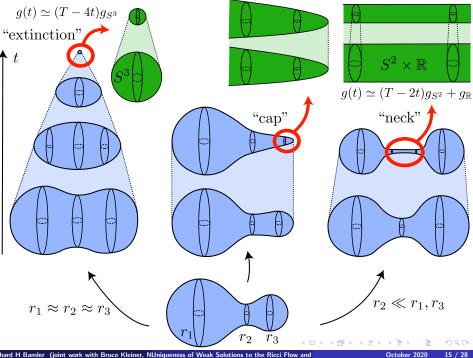
Difficulties:

- Flow may incur non-round and non-global singularities.
- Necessary to extend the flow past the first singular time (surgeries).
- Continuous dependence on initial data?

Results:

- Perelman: Qualitative classification of singularity models (κ -solutions)
- Brendle 2018 / Ba., Kleiner 2019: Further classification / rotational symmetry of $\kappa\text{-solutions}$

Example: rotationally symmetric dumbbell



Richard H Bamler (joint work with Bruce Kleiner, NUniqueness of Weak Solutions to the Ricci Flow and

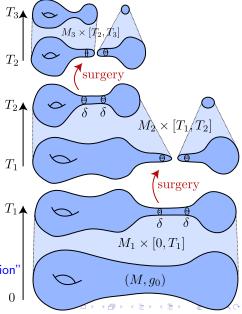
Ricci flow with surgery

Given (M, g_0) construct Ricci flow with surgery:

$$egin{aligned} &(\mathcal{M}_1,g_1(t)),t\in[0,\,\mathcal{T}_1],\ &&(\mathcal{M}_2,g_2(t)),t\in[\mathcal{T}_1,\,\mathcal{T}_2],\ &&(\mathcal{M}_3,g_3(t)),t\in[\mathcal{T}_2,\,\mathcal{T}_3], \end{aligned}$$

Observations:

- surgery scale $pprox \delta \ll 1$
- high curvature regions are *ɛ*-close to singularity models from before: "*ɛ*-canonical neighborhood assumption"



October 2020

16 / 28

. . .

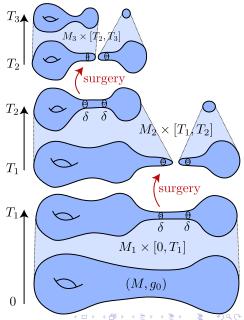
RF with surgery was used to prove Poincaré & Geometrization Conjectures

Drawback:

surgery process is not canonical (depends on surgery parameters)

Perelman:

- It is likely that [...] one would get a canonically defined Ricci flow through singularities, but at the moment I don't have a proof of that.
- Our approach [...] is aimed at eventually constructing a canonical Ricci flow, [...] - a goal, that has not been achieved yet in the present work.



Theorem (Ba., Kleiner, Lott)

Perelman's "conjecture" is true:

- There is a notion of a weak Ricci flow "through singularities" and we have existence and uniqueness within this class.
- This weak flow is a limit of Ricci flows with surgery, where surgery scale $\delta \rightarrow 0.$

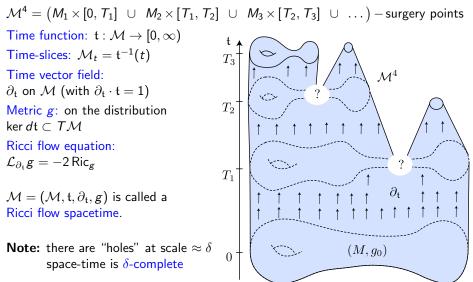
Comparison with Mean Curvature Flow:

- Notions of weak flows: Level Set Flow, Brakke flow
- \bullet General case: fattening \cong non-uniqueness
- Mean convex case: non-fattening \cong uniqueness
- $\bullet\,$ 2-convex case: uniqueness + weak flow is limit of MCF with surgery as surgery scale $\delta\to 0$

How to take limits of sequences of Ricci flows with surgery?

Space-time picture

Space-time 4-manifold:



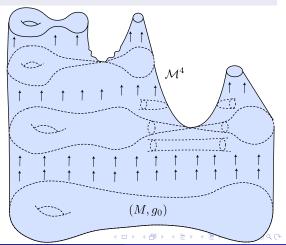
Kleiner, Lott 2014: Compactness theorem and $\delta_i \rightarrow 0$ \implies existence of singular Ricci flow starting from any (M,g)

Singular Ricci flow: Ricci flow spacetime \mathcal{M} that:

- is 0-complete (i.e. "surgery scale $\delta = 0$ ")
- satisfies the ε -canonical neighborhood assumption for small ε .

Remarks:

- *M* is smooth everywhere and not defined at singularities
- singular times may accummulate



Theorem (Ba., Kleiner 2016)

 ${\mathcal M}$ is uniquely determined by its initial time-slice $({\mathcal M}_0,g_0)$ up to isometry.

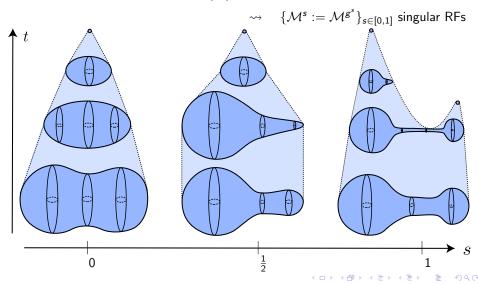
So for any (M,g) there is (up to isometry) a canonical singular Ricci flow \mathcal{M} with initial time-slice $(\mathcal{M}_0, g_0) \cong (M, g)$.

Write: \mathcal{M}^{g} .

< □ > < 同 > < 三 >

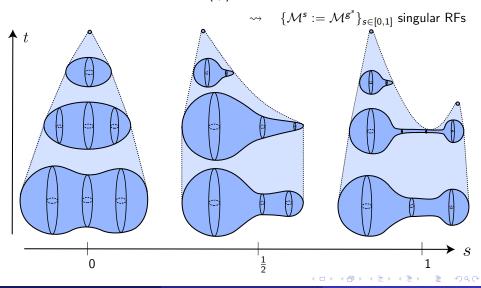
${\sf Uniqueness} \quad \longrightarrow \quad {\sf Continuous \ dependence}$

continuous family of metrics $(g^s)_{s \in [0,1]}$ on M



${\sf Uniqueness} \quad \longrightarrow \quad {\sf Continuous \ dependence}$

continuous family of metrics $(g^s)_{s\in[0,1]}$ on M



Richard H Bamler (joint work with Bruce Kleiner, NUniqueness of Weak Solutions to the Ricci Flow and

\mathcal{M}^{g} depends continuously on its initial metric g.

Precise statement:

Theorem (Ba., Kleiner 2019)

Given a continuous family $(g^s)_{s \in X}$ of Riemannian metrics on M over some topological space X, there is a continuous family of singular RFs $(\mathcal{M}^s = \mathcal{M}^{g^s})_{s \in X}$. That is:

• A topology on $\sqcup_{s\in X}\mathcal{M}^s$ such that the projection

$$\bigsqcup_{s\in X}\mathcal{M}^{g^s}\longrightarrow X$$

is a topological submersion.

 A compatible lamination structure on ⊔_{s∈X} M^s with leaves M^s with respect to which all objects t^s, ∂^s_t, g^s are transversely continuous.

< ロ > < 同 > < 回 > < 回 >

Part III: Applications to Topology

Setup

Theorem (Ba., Kleiner 2019)

 $\pi_k(\mathsf{Met}(M), \mathsf{Met}_{PSC/K\equiv 1}(M)) = 1$

Meaning (PSC-case): For any family of metrics $(h_{s,0})_{s \in D^k}$ on M, where $h_{s,0}$ has PSC for $s \in \partial D^k$, there is a homotopy $(h_{s,t})_{s \in D^k \times [0,1]}$, s.t. $h_{s,1}$ has PSC for $s \in D^k$ $h_{s,t}$ has PSC for $s \in \partial D^k$, $t \in [0,1]$ **Previous results:** $(h_{s,0})_{s \in D^k} \rightsquigarrow \text{ cont. family of singular RFs } (\mathcal{M}^s = \mathcal{M}^{g^s})_{s \in D^k}$ Remaining Conversion Problem: Convert continuous family of sing. RFs $(\mathcal{M}^s)_{s \in X}$ with initial time-slice $\mathcal{M}^s_0 = M$ to $(h_{s,t})_{s \in X, t \in [0,1]}$ with:

- $(M, h_{s,0}) \cong (\mathcal{M}_0^s, g_0^s).$
- **2** $h_{s,1}$ has PSC.
- **3** If \mathcal{M}^s has PSC, then so does $h_{s,t}$ for all $t \in [0,1]$.

Conversion Problem: Given $(\mathcal{M}^s)_{s \in X}$, find $(h_{s,t})_{s \in X, t \in [0,1]}$ s.t.:

- $(M, h_{s,0}) \cong (\mathcal{M}_0^s, g_0^s)$
- 2 $h_{s,1}$ has PSC
- **3** If \mathcal{M}^s has PSC, then so does $h_{s,t}$ for all $t \in [0,1]$.

- Rounding procedure: perturb metrics on (M^s)_{s∈X} so that they are round or rotationally symmetric in high curvature regions (this works because κ-solutions are round or rot. symmetric)
- Strategy: Construct $(h_{s,t})$ by backwards induction over time.
- Problem: For any fixed T ≥ 0 the family s → M^s_T of time-T-slices is a "continuous family of Riemannian manifolds" whose topology may vary.
- New notion: "Partial homotopy at time T"

< □ > < 同 > < 三 > .

Conversion Problem: Given $(\mathcal{M}^s)_{s \in X}$, find $(h_{s,t})_{s \in X, t \in [0,1]}$ s.t.: ($M, h_{s,0}$) $\cong (\mathcal{M}_0^s, g_0^s)$ ($h_{s,1}$ has PSC ($h_{s,1}$ has PSC, then so does $h_{s,t}$ for all $t \in [0,1]$.

Partial homotopy at time T:

Notion involving families of metrics $(h_{s,t})$ as in **1**-**3**, but with

$$\mathfrak{M}^{s}(M,h_{s,0})\cong (\mathcal{M}^{s}_{T},g^{s}_{T})$$
",

defined where $|\text{Rm}| \lesssim r^{-2}$ over a simplicial decomposition of X.

Lemma

- If $T \gg 0$, then there is an (empty) partial homotopy at time T for $(\mathcal{M}^s)_{s \in X}$.
- A partial homotopy at time T for (M^s)_{s∈X}, can be transformed into a partial homotopy at time T − ε, where ε > 0 is uniform, through certain modification moves.
- If there is a partial homotopy at time T = 0 for (M^s)_{s∈X}, then there is a family (h_{s,t}) satisfying **1**-**3**

Partial homotopy at time T:

Fix a simplicial decomposition of X. For each simplex $\sigma \subset X$ choose:

- a continuous family of compact domains $(Z_s^{\sigma} \subset \mathcal{M}_T^s)_{s \in \sigma}$. (roughly: $Z_s^{\sigma} \approx \{|\operatorname{Rm}| \leq r_{\dim \sigma}^{-2}\}$ for $r_0 \ll \ldots \ll r_n$.)
- a continuous family of Riemannian metrics $(h_{s,t}^{\sigma})_{s \in \sigma, t \in [0,1]}$ on (Z_s^{σ}) .

such that 1-3 hold starting at time T and:

- Compatibility: If $s \in \tau \subset \sigma$, then $Z_s^{\sigma} \subset Z_s^{\tau}$ and $h_{s,t}^{\sigma} = h_{s,t}^{\tau}|_{Z_s^{\sigma}}$.
- Largeness of the domains: $|\text{Rm}| \gtrsim r_{\dim \sigma}^{-2}$ on $\mathcal{M}_T^s \setminus Z_s^{\sigma}$ (\Rightarrow round or rot. symmetric)
- "Contractible ambiguity": $h_{s,t}^{\tau}$ is round or rot. symmetric on any $Z_s^{\tau} \setminus Z_s^{\sigma}$.

Modification Moves:

- Reducing T to $T \varepsilon$ if (Z_s^{σ}) stay away from high curvature regions.
- Passing to a simplicial refinement.
- Enlarging some (Z_s^{σ}) by a family of round or rot. symmetric subsets.
- Shrinking some (Z_s^{σ}) by removing a family of disks.

(日) (四) (日) (日)