Algorithms for Mumford Curves (Part II)

Ralph Morrison (joint work with Qingchun Ren)
UC Berkeley

JMM 1/16/2014
Set-up

Recall from Qingchun’s talk:

- The field K is algebraically closed with a complete non-Archimedean valuation, like \mathbb{C}_p.
 - $B = B(a, r) = \{ z \in K : |z - a| < r \}$
 - $B^+ := \{ z \in K : |z - a| \leq r \}$

- **Schottky groups** $\Gamma = \langle \gamma_1, \ldots, \gamma_g \rangle \leq PGL(2, K)$ act on \mathbb{P}^1 by
 \[
 \begin{bmatrix} a & b \\ c & d \end{bmatrix} : z \mapsto \frac{az + b}{cz + d}.
 \]

- If $\Sigma \subset \mathbb{P}^1$ is the set of “bad points” for Γ, then
 \[
 (\mathbb{P}^1 \setminus \Sigma)/\Gamma \cong C,
 \]
 where C is a smooth curve of genus g called a **Mumford curve**.
Good starting data for algorithms

Recall our algorithms:

<table>
<thead>
<tr>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A set of generators of a Schottky group.</td>
</tr>
<tr>
<td>Output:</td>
</tr>
<tr>
<td>(1) The minimal skeleton of the Mumford curve.</td>
</tr>
<tr>
<td>(2) The period matrix of its Jacobian.</td>
</tr>
<tr>
<td>(3) Points in the image of the canonical embedding.</td>
</tr>
</tbody>
</table>

These goals are more feasible if we have more information than an arbitrary set of generators.

Our algorithms need generators in good position, together with a good fundamental domain.
Good fundamental domains

Definition

The generators $\gamma_1, \ldots, \gamma_g$ of Γ are in **good position** if there exist $2g$ open balls $B_1, \ldots, B_g, B'_1, \ldots, B'_g$ in \mathbb{P}^1 such that

- the corresponding closed balls are pairwise disjoint, and
- $\gamma_i(\mathbb{P}^1 \setminus B'_i) = B_i^+$ and $\gamma_i^{-1}(\mathbb{P}^1 \setminus B_i) = B'_i^+$.

The set $\mathbb{P}^1 \setminus (B_1 \cup \ldots \cup B_g \cup B'_1 \cup \ldots \cup B'_g)$ is called a **good fundamental domain** for Γ.

The curve $(\mathbb{P}^1 \setminus \Sigma)/\Gamma$ can be obtained from a good fundamental domain by gluing boundaries together.

Key fact: Every Schottky group has a set of generators in good position.
Good fundamental domains

The picture for a genus 2 Mumford curve:

We remove $2g$ open balls from \mathbb{P}^1.

Ralph Morrison (joint work with Qingchun Ren) UC Berkeley ()

Algorithms for Mumford Curves (Part II)

JMM 1/16/2014 5 / 15
Good fundamental domains

The picture for a genus 2 Mumford curve:

The good fundamental domain is shown in blue.
Good fundamental domains

The picture for a genus 2 Mumford curve:

The matrix γ_1 maps $\mathbb{P}^1 \setminus B'_1$
Good fundamental domains

The picture for a genus 2 Mumford curve:

The matrix γ_1 maps $\mathbb{P}^1 \setminus B'_1$ into B_1^+.
Good fundamental domains for trees

Schottky groups also act on the tree $(\mathbb{P}^1)^{an}$.

There is a corresponding notion of good fundamental domains for trees.
Example: a genus 2 Mumford curve

Let \(K = \mathbb{C}_3 \), \(\Gamma = \langle \gamma_1, \gamma_2 \rangle \).

<table>
<thead>
<tr>
<th>Matrices:</th>
<th>(\gamma_1 = \begin{pmatrix} -5 & 32 \ -8 & 35 \end{pmatrix})</th>
<th>(\gamma_2 = \begin{pmatrix} -13 & 80 \ -8 & 43 \end{pmatrix})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvectors:</td>
<td>((1 : 1), (4 : 1))</td>
<td>((2 : 1), (5 : 1))</td>
</tr>
<tr>
<td>Eigenvalues:</td>
<td>(27, 3)</td>
<td>(27, 3)</td>
</tr>
</tbody>
</table>

These matrices are in good position.

\[
B_1 = B(4, 1/9), B'_1 = B(1, 1/9)
\]

\[
B_2 = B(5, 1/9), B'_2 = B(2, 1/9)
\]

So \(\gamma_1(\mathbb{P}^1 \setminus B'_1) = B_1^+ \), as well as three similar statements.
Example: a genus 2 Mumford curve

\[B_1 = B(4, 1/9), \quad B_1' = B(1, 1/9), \quad B_2 = B(5, 1/9), \quad B_2' = B(2, 1/9) \]

Each open ball \(B \) has a corresponding closed ball \(B^+ \), which has a corresponding point \(P \) in \((\mathbb{P}^1)^{an}\). Those points span a subtree:

Write \(c \) for the smallest distance between distinct endpoints. In this case, \(c = 2 \).
Role of good fundamental domains

Compute skeleta by gluing:

\[
\begin{array}{c}
\begin{array}{c}
1 \\
1 \\
1
\end{array}
\end{array}
\]

To approximate formulas like

\[
\prod_{\gamma \in \Gamma} \frac{(z - \gamma a)(\gamma_j z - \gamma \gamma_i a)}{(z - \gamma \gamma_i a)(\gamma_j z - \gamma a)}
\]

with error term \(O(p^n)\), let \(m \geq n/c\) and only multiply over \(\Gamma_m\), the set of words of length at most \(m\) in the generators.
Finding good fundamental domains

We start with matrices $\gamma_1, \ldots, \gamma_g \in PGL(2, \mathbb{Q}_p)$, generating a group Γ. Let $m = 1$, and as m increases compute Γ_m and run three processes:

1. Check if the identity matrix shows up more than once.
2. Check if any non-identity matrices have eigenvalues with the same valuation.
3. Let a be a fixed point of some γ_i, and look at the subtree T of $(\mathbb{P}^1)^{an}$ spanned by $\Gamma_m a$. See if T contains a tree good fundamental domain, and find a corresponding set A of generators.

Eventually one process will terminate.

- If (1), then $\gamma_1, \ldots, \gamma_g$ are not free generators of Γ.
- If (2), then Γ is not Schottky.
- If (3), then Γ is Schottky, A is a set of generators in good position, and B_i, B_i^+ can be found from T.
Given Γ with $(\mathbb{P}^1 \setminus \Sigma)/\Gamma$ hyperelliptic, what are the ramification points?

Schottky groups for genus g hyperelliptic Mumford curves arise in this way:

- Let $a_0, \ldots, a_g, b_0, \ldots b_g \in K$, with a_i and b_i in a closed ball containing no other a_j or b_j.
- Let $s_i = \begin{bmatrix} a_i & b_i \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a_i & b_i \\ 1 & 1 \end{bmatrix}$.
- Let $\Gamma = \langle s_0s_1, s_0s_2, \ldots, s_0s_g \rangle$.

The group Γ is Schottky, $(\mathbb{P}^1 \setminus \Sigma)/\Gamma$ is hyperelliptic, and the $2g + 2$ ramification points are $\Theta(a_i)$ and $\Theta(b_i)$, where Θ is a certain analytic function.
Thanks for your attention!

For more information, check out *Algorithms for Mumford curves*, available at http://arxiv.org/abs/1309.5243