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1. Introduction

In algebraic geometry, toric varieties form a special family of algebraic varieties. In
symplectic geometry, toric manifolds form a special family of symplectic manifolds. In
both aspects, toric varieties (manifolds) can be constructed combinatorially, thus are
easy to work with, and provide a testing ground for abstract theories. The algebraic
construction is more general. For our purpose, when we say toric varieties, we mean
normal toric varieties over C.

In more details, toric varieties can be constructed from fans via the fan construction,
which we will introduce in Section 2. We will concentrate more on the special case when
when the fan arises from a rational polytope, in which case the resulting toric variety
is equivariantly projective. On the symplectic side, toric manifolds can be constructed
from Delzant polytopes (a special kind of rational polytopes) via the Delzant construc-
tion, which we will present without proof in Section 3. On the symplectic side there is
an inverse to the Delzant construction by taking the image of the moment map. On
the algebraic side, if the rational polytope is latticial, then the polytope can also be
recovered by taking the image of the (algebraic) moment map. Moreover, in Section 4
we prove that the algebraic and symplectic constructions agree on the overlap.

The relation between the constructions can be summarized as follows.{
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It should be pointed out that there is essentially nothing original in this note. The
algebraic part credits to [6] and the symplectic part to [1]. See also [2].

2. Algebraic perspective

2.1. The fan construction. We begin with an abstract definition of toric varieties.
However, it will turn out that all toric varieties can be constructed via the fan construc-
tion, which we will explain in a moment.

Definition 2.1. A toric variety of dimension n is a triple (X,T, ρ) where X is a
normal algebraic variety over C, T ∼= (C∗)n is an algebraic n-torus contained in X as
a dense open subscheme, and ρ is a T -action on X that extends the T -action on itself.
A toric morphism between toric varieties (X,T, ρ) and (X ′, T ′, ρ′) is a morphism of
schemes ϕ : X → X ′ such that ϕ(T ) ⊂ T ′ and ϕ|T : T → T ′ is a morphism of algebraic
groups.

In particular, a morphism of toric varieties is equivariant with respect to the toric
actions (equivariance when restricting to the torus T ⊂ X is clear, and the general
statement follows from the denseness of T ).

Let N be a lattice of dimension n and M be its dual lattice. A (strongly convex,
rational) cone σ in N is a subset of NR = N ⊗Z R that is the R+-span of some lattice
points, such that it does not contain any nonzero subspace of NR. A face of a cone is
either the cone itself, or the intersection of the it with one of its supporting hyperplane.
In particular it is a cone itself. A (nonempty, finite) fan in N is a nonempty finite set
of cones in N closed under taking faces and intersections.

For a cone σ in N , its dual cone in M is defined to be

σ∨ := {u ∈MR : ⟨u, v⟩ ≥ 0 for all v ∈ σ}.
(Note this need not be a cone by our definition because it contains a subspace of NR of
dimension n − dimσ, where dimσ = dim spanR(σ).) Define the affine toric variety
of σ to be Uσ = SpecC[σ∨ ∩M ].

If σ′ is a face of σ, then σ∨ ⊂ σ′∨. This inclusion induces a ring homomorphism
C[σ∨ ∩M ]→ C[σ′∨ ∩M ], which then induces a morphism of schemes Uσ′ → Uσ. This
is in fact an inclusion of a distinguished open subscheme: write σ′ = σ ∩ u⊥ for some
u ∈ σ∨ such that u⊥ is a supporting hyperplane of σ, then C[σ′ ∩M ] = C[σ ∩M ]u,
so Uσ′ → Uσ is the inclusion of D(u) ⊂ Uσ. Moreover, from the naturality of this
construction we see if ∆ is a fan in N , then all affine varieties Uσ, σ ∈ ∆ glue to a
scheme, which we denote as X(∆), called the toric variety of ∆.

We shall check X(∆) is a toric variety in the sense of Definition 2.1. Since {0} is
always a cone in ∆, we see U{0} = SpecC[M ] = TN ⊂ X(∆) is a dense n-torus. Its
action on each Uσ, σ ∈ ∆ is defined by Uσ × TN → Uσ induced by C[σ∨ ∩ M ] →
C[σ∨∩M ]⊗C[M ], χ 7→ χ⊗χ. These glue to an action on X(∆) that extends the usual
TN -action on itself. Finally, X(∆) is reduced because on each affine it is; it is irreducible
because it contains the dense open torus TN ; it is separated because for each σ, σ′ ∈ ∆,
Uσ∩σ′ → Uσ×Uσ′ is a closed embedding as C[σ∨∩M ]⊗C[(σ′)∨∩M ]→ C[(σ∩σ′)∨∩M ]
is surjective (c.f. [6, Section 1.2]).

The construction ∆ 7→ X(∆), known as the fan construction, is natural in the fan
∆ in the following sense: if ∆′ is a fan in another lattice N ′, f : N → N ′ is a lattice
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map such that for every cone σ ∈ ∆ we have f(σ) ⊂ σ′ for some cone σ′ ∈ ∆′, then f
induces a map f∗ : X(∆) → X(∆′) of schemes that restricts to a morphism TN → TN ′

of algebraic tori, thus is a toric morphism. This can be first seen on affines, and the
gluing is straightforward. See Example 2.2 for an illustration.

Theorem 2.2. Every toric variety of dimension n is X(∆) for some fan ∆ in N .

Proof. See [3, Theorem 1.3.5]. □

Example 2.1. Let N = M = Zn+1 with the natural pairing and ∆ = {σI : I ⫋
{0, 1, · · · , n}} where σI = {(x0, · · · , xn) ∈ Rn+1 : xi ≥ 0 for i ∈ I, xj = 0 for j ̸∈ I}.
Then ∆ is a fan in N . For each I, σ∨I = {(t0, · · · , tn) ∈ Rn+1 : ti ≥ 0 for i ∈ I}, σ∨I ∩M
is the submonoid of Zn+1 generated by e∨i , i ∈ I, ±e∨j , j ̸∈ I, where e∨0 , · · · , e∨n is

the dual basis of the standard basis in Zn+1. Therefore UI := UσI = SpecC[Zi : i ∈
I;Z±

j : j ̸∈ I], which can be realized as the distinguished open subset D(
∏
j ̸∈I Zj) of

An+1
C = SpecC[Z0, · · · , Zn]. For I, J , σI is a face of σJ if and only if I ⊂ J , in which

case the open embedding UI ⊂ UJ is compatible with the above inclusion into An+1
C . It

follows that X(∆) = ∪ID(
∏
j ̸∈I Zj) = An+1

C \{0}. In this case, the dense open torus is

U∅ = (A1
C\{0})n+1 and the toric action is the usual multiplication.

Example 2.2. Let N be any n-dimensional lattice and let v0, · · · , vn ∈ N be a gen-
erating set with

∑
i vi = 0. Let ∆ = {σI : I ⫋ {0, 1, · · · , n}} where σI ⊂ NR is

the R+-span of vi, i ∈ I. We claim that X(∆) = PnC = ProjC[T0, · · · , Tn]. For

each subset {i}c ⊂ {0, 1, · · · , n}, vj , j ̸= i form a basis for N . Let u
(i)
j ∈ M ,

j ̸= i be the dual basis. Then σ∨{i}c is the R+-span of u
(i)
j , j ̸= i. Write UI for

UσI , then U{i}c = SpecC[Z0/i, · · · , Zn/i] = AnC. For i ̸= i′, U{i,i′}c ⊂ U{i}c can be
realized as the open subscheme D(Zi′/i). Therefore the gluing of U{i}c and U{i′}c
on the overlap U{i,i′}c = SpecC[Z0/i, · · · , Zn/i]Zi′/i

∼= SpecC[Z0/i′ , · · · , Zn/i′ ]Zi/i′ is

given by Zj/i′ 7→ Zj/iZ
−1
i′/i, Z

−1
i/i′ 7→ Zi′/i. It follows that we can identify U{i}c as

D+(Ti) ⊂ PnC by Tj/i 7→ Zj/i, compatibly in i, meaning that we obtain an isomor-
phism X(∆) ∼= PnC. In general, UI = D+(

∏
j ̸∈I Tj), so in particular the dense open

torus is D+(T0 · · ·Tn) = SpecC[T±
0 , · · · , T±

n ]0, whose closed points are exactly those
[z0 : · · · : zn] with zi ̸= 0 for all i. The toric action is by multiplication.

Let ∆′, σ′I ’s be the ∆, σI ’s in the previous example for the lattice Zn+1. Then the
lattice map f : Zn+1 → N , ei 7→ vi maps each σI bijectively onto σ′I . In particular
it induces a toric morphism f∗ : X(∆′) → X(∆). This is nothing but the quotient
map An+1

C \{0} → PnC, because each Uσ′
I
→ UσI is the map An+1

C ⊃ D(
∏
j ̸∈I Zj) →

D+(
∏
j ̸∈I Tj) ⊂ PnC induced by Ti/j 7→ ZiZ

−1
j , j ̸∈ I.

2.2. Fans from polytopes. Let N,M be as before. For our purpose, all polytopes are
assumed to be convex, and not contained in a hyperplane. A rational polytope in
MR is a polytope P ⊂ MR, satisfying the rationality condition: at each vertex p ∈ P ,
all edges of P has the form p+ tv, t ∈ [0, ℓ] for some v ∈M . A face of such a polytope
is either the cone itself, or the intersection of it with one of its supporting hyperplanes.
A lattice polytope in MR is a polytope whose vertices lie in M , which is in particular
a rational polytope.
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Let P be a rational polytope in M . It associates a fan in N

∆P := {σQ : Q is a face of P}
where σQ = {v ∈ NR : ⟨u, v⟩ ≤ ⟨u′, v⟩ for all u ∈ Q, u′ ∈ P} is a cone with codimension
dimQ. Then the fan construction gives a toric variety X(∆P ), which we call the toric
variety of P . So far we have explained diagram (1) (except the Delzant polytope part,
which will be clear from its definition in Section 3).

Recall that in Example 2.2 we realized Pn as a toric variety. In general, a toric variety
is equivariantly projective if it admits a toric embedding (i.e. a toric morphism that
is an embedding) into some PN .

Theorem 2.3. A toric variety is equivariantly projective if and only if it is X(∆P ) for
some rational polytope P .

Proof. See [5, Theorem VII.3.11]. The backward direction is also proved in Remark 2.9.
□

Example 2.3. The toric variety X(∆) = An+1\{0} in Example 2.1 is not proper
over C, so it is not projective, or equivariantly projective. We can also see this using
Theorem 2.3 and noting the fan ∆ is not of the form ∆P for any P because it does not
contain a cone of full dimension.

Example 2.4. The toric variety X(∆) = Pn in Example 2.2 is trivially equivariantly
projective. We can also see this by noting the fan ∆ equals ∆P for P = K0 where K ⊂
NR is the convex hull of v0, · · · , vn and K0 := {u ∈ MR : ⟨u, v⟩ ≥ −1 for all v ∈ K},
which is an n-simplex. In fact, the faces of P are

QI := {u ∈MR : ⟨u, vi⟩ = −1 for all i ∈ I}, I ⫋ {0, · · · , n},
and σQI

= σI .

2.3. Orbit decomposition; Divisors. In this section we present a few more algebraic
geometric aspects of toric varieties that enable us to define the moment map in the next
section.

Let ∆ be a fan in M and let X = X(∆) be the corresponding toric variety. For each
affine σ ∈ ∆ the affine Uσ ⊂ X has a distinguished closed point xσ, defined by the
C-algebra map C[σ∨ ∩M ]→ C induced by the monoid map

σ∨ ∩M → C, u 7→

{
1, u ∈ σ⊥

0, u ̸∈ σ⊥
.

The TN -orbit containing it is denoted Oσ, whose closure is denoted V (σ). For example,
for Example 2.1, xσI is the point whose i-th coordinate is 0 if i ∈ I and 1 if i ̸∈ I; OσI
is the set of points whose i-th coordinate is 0 if i ∈ I and nonzero if i ̸∈ I; V (σ) is the
set of points whose i-th coordinate is 0 if i ∈ I. For Example 2.2 we have a completely
similar description, using projective coordinate instead of the Euclidean one. In general,
Oσ ∼= SpecC[M(σ)] = TN(σ) where M(σ) = σ⊥ ∩M is a lattice of codimension dimσ
in M and N(σ) = N/(span(σ) ∩ N) is its dual, so dimOσ = dimV (σ) = n − dimσ.
Moreover, X is the disjoint union of the Oσ’s, and this gives a stratification of X (c.f.
[6, Section 3.1]).
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Next we consider Weil divisors and Cartier divisors. In our toric setup, we are
naturally interested in those divisors that are T = TN -invariant; we call them T -Weil
divisors and T -Cartier divisors, respectively. By the orbit decomposition, all T -Weil
divisors are linear combinations of the Di := V (σi)’s, where σi run over all rays (i.e.
1-dimensional cones) in ∆. Since X is integral, noetherian, and normal, the Cartier
divisor group embeds into the Weil divisor group.

Fix σ ∈ ∆, let u ∈ M and let χu ∈ C[M ] = K(X) be the element defined by
u. Then div(χu) is a T -Weil divisor that corresponds to a T -Cartier divisor. Also,

div(χu) = div(χu
′
) if and only if u−u′ ∈ σ⊥ ∩M =M(σ) because O×(Uσ) = C[M(σ)].

Conversely, we have the following.

Lemma 2.4. A T -Cartier divisor on Uσ is div(χu) for some u ∈M/M(σ).

Proof. Let I ⊂ K(X) = C[M ] denote the fractional ideal of a Cartier divisor D. By

T -invariance, the map C[M ]
1⊗1−−→ C[M ] ⊗ C[M ]

∆◦(1⊗xv)−−−−−−→ C[M ] maps I to itself for
all v ∈ N , where xv : C[M ] → C is induced by v ∈ N = HomZ(M,Z). It follows that
I is a direct sum of some C · χu, u ∈ M . Let m denote the maximal ideal at the
distinguished point xσ ∈ Uσ. Since I is locally principal, localizing at xσ shows that
I/mI is a 1-dimensional complex vector space, which implies I is generated by a single
χu as a C[σ∨ ∩M ]-algebra. This generator u is uniquely determined up to M(σ). □

Therefore by a usual gluing argument we see the following.

Proposition 2.5. A T -Cartier divisor on X(∆) is the same as an element (u(σ)) ∈
lim←−
σ∈∆

M/M(σ). More explicitly, given such an element, the corresponding T -Cartier di-

visor over Uσ is div(χ−u(σ)) (minus sign is to match the convention). □

Explicitly, the T -Weil divisor corresponding to the T -Cartier divisor defined by (u(σ))
is given by

D = −
∑
i

⟨u(σi), vi⟩Di, (3)

where vi is the primitive lattice point on the ray σi. To see this, it suffices to check
on each Uσi . By a choice of basis we may assume M = N = Zn and vi = e1 is the
first basis vector. Then Uσi = SpecC[Z1, Z

±
2 , · · · , Z±

n ], Di = V (Z1), and the order of

vanishing χ−u(σi) along V (Z1) is −⟨u(σi), e1⟩ = −⟨u(σi), vi⟩.
The support function of a Cartier divisor D = (u(σ)) is

ψ = ψD : |∆| → R, v 7→ ⟨u(σ), v⟩, v ∈ σ ∈ ∆.

Here |∆| = ∪σ∈∆σ. The support function is linear on each cone in ∆, and satisfies
the integrability condition that ψ(|∆|) ⊂ Z. Conversely, given such a function, we can
recover the T -Cartier divisor from it by

D = Dψ = −
∑
i

ψ(vi)Di.

These two constructions are inverses to each other.
From now on, for our purpose, we restrict ourselves to the special case ∆ = ∆P for

some lattice polytope P ⊂ MR, so that |∆| = NR and X is proper ([6, Section 2.4]).
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The associated polytope of a T -Cartier divisor D is

PD := {u ∈MR : u ≥ ψD as functions on NR}. (4)

Under our assumption it is a rational polytope.

Lemma 2.6.
Γ(X,O(D)) =

⊕
u∈PD∩M

C · χu.

Proof. By T -invariance as in the proof of Lemma 2.4, we can deduce Γ(X,O(D)) is the
direct sum of some C · χu, u ∈ M . Now that χu ∈ Γ(O(D)) ⇐⇒ div(χu) ≥ −D ⇐⇒
⟨u, vi⟩ ≥ ψD(vi) for all i ⇐⇒ u ≥ ψD ⇐⇒ u ∈ PD ∩M , the statement follows. □

There is a distinguished T -Cartier divisorDP onX = X(∆P ), whose support function
is defined by

ψP := min
u∈P∩M

⟨u, ·⟩ : NR → R.

Its associated polytope is exactly P , i.e. we have

Lemma 2.7. PDP
= P.

Proof. We have u ∈ PDP
⇐⇒ u ≥ ψP ⇐⇒ ⟨u, v⟩ ≥ minu′∈P∩M ⟨u′, v⟩ for all v ∈

NR ⇐⇒ u ∈ P , because P is convex. □

Proposition 2.8. The line bundle O(DP ) is globally generated and ample.

Proof. We first prove globally generation. It suffices to show for each n-dimensional
σ ∈ ∆P there exists a global section χu, u ∈ P ∩M , that is nonvanishing at the closed
point V (σ), because by T -invariance and the topology of stratification, such a section is
also nonvanishing on any orbit closure V (τ) containing V (σ). Since V (σ) = ∩σi⊂σV (σi),
it suffices to check χu is nonvanishing on each V (σi) for those rays σi ⊂ σ. By (3), this is
equivalent to ⟨u, vi⟩ = ⟨u(σi), vi⟩ for those i. This always has a unique solution, namely
u = u(σ), since P is convex and σ is n-dimensional. Note also u(σ) is a vertex for P
and

σ∨ = {u′ ∈MR : u(σ) + tu′ ∈ P for some t > 0}. (5)

Next we prove ampleness. Globally generation gives us a map ϕ : X → Pr−1 defined
by sections χu, u ∈ P ∩M , where r = #(P ∩M). For each σ ∈ ∆ as above, we have

shown χu(σ) is nonvanishing on Uσ, thus we get a map ϕ|Uσ : Uσ → D+(χ
u(σ)) ∼= Ar−1

induced by the ring map C[x1, · · · , xr−1] → C[σ∨ ∩M ], xi 7→ χui−u(σ) where ui runs
over P ∩M\{u(σ)}. If this were surjective for all σ, then ϕ would be an embedding,
proving very-ampleness. In general, this need not be true, but is true upon replacing
P by mP for some m ∈ Z+, in view of (5). Finally, note by definition we can check
ψmP = mψP , thus DmP = mDP . This shows mDP is very ample for some m ∈ Z+,
proving the statement. □

Remark 2.9. We can now prove the backward direction of Theorem 2.3. Pick an em-
bedding i : X ↪→ PN defined by some very ample mDP . Its restriction to TN is given
by SpecC[M ]→ SpecC[T±

0 , · · · , T
±
N ]0 induced by the lattice map

{(k0, · · · , kN ) ∈ ZN+1 :
∑

ki = 0} →M, ei − ej 7→ ui − uj ,

thus is a morphism of algebraic tori. Here u0, · · · , uN denote the elements in mP ∩M .
Therefore, i is a toric embedding.
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2.4. The moment map. Let the notations be as in the previous section. Upon choos-
ing a basis, the globally generated line bundleO(DP ) defines a mapX = X(∆P )→ Pr−1

where r = #(P ∩M). The (algebraic) moment map of X is defined to be

µ : X(C)→MR, x 7→
1∑

u∈P∩M |χu(x)|2
∑

u∈P∩M
|χu(x)|2u. (6)

This is independent of the choice of O(D)x ∼= Ox used to define χu(x) ∈ C.

Proposition 2.10. The image of µ is P .

Proof. For each face Q of P , we show that µ maps the orbit OσQ onto Q. First, for
x ∈ OσQ(C), we have χu ∈ Γ(X,O(DP )) is nonvanishing at x if and only if u ∈
Q ∩ M , as shown in the proof of Proposition 2.8. In such case, its value at x up
to a scalar is χu−u(σ)(x). Thus µ|OσQ

(C) maps into Q. Note by the identification

OσQ = SpecC[M(σQ)] whereM(σQ) = span(Q−u(σ))∩M , a closed point x ∈ OσQ can
be regarded as a character ofM(σQ), or alternatively an element [v(x)] ∈ N(σQ)C/N(σ)
via the exponential map e2πi·. Now the surjectivity of the map

µ|OσQ
(C) : N(σQ)C/N(σ)→ Q, [v] 7→ 1∑

u∈Q∩M |e2πi⟨u−u(σ),v⟩|2
∑

u∈Q∩M
|e2πi⟨u−u(σ),v⟩|2u

is elementary. See e.g. [6, Section 4.2]. □

We have now established the first row of diagram (2).

3. Symplectic perspective

Definition 3.1. A symplectic toric manifold of dimension 2n is a tuple (X,ω, T, ρ, µ)
where (X,ω) is a compact connected 2n-dimensional symplectic manifold, T ∼= (S1)n

is an n-torus, ρ is an effective Hamiltonian T -action on (X,ω) with a moment map
µ : X → t∗, where t is the Lie algebra of T and t∗ is its dual.

Explicitly, the Hamiltonian action and moment map conditions require that

• for any X ∈ t, let ξ# be the associated vector field on X of the T -action and let
µξ = ⟨µ(·), ξ⟩ : X → R, then ιξ#ω = −dµξ;
• µ is T -invariant.

Definition 3.2. For a lattice M , a Delzant polytope P in MR is a polytope in MR
satisfying:

• Rationality: at each vertex p ∈ P , all edges has the form p + tv, t ∈ [0, ℓ] for
some v ∈M .
• Simplicity: at each vertex of P there are exactly n edges.
• Smoothness: at each vertex of P , write the n edges as p+ tvi, t ∈ [0, ℓi], vi ∈M
primitive, i = 1, · · · , n. Then v1, · · · , vn form a Z-basis for M .

Let T be an n-torus, then the kernel of exp : t→ T is an n-dimensional lattice N ⊂ t,
so that t = NR and t∗ = MR where M is the dual of N . With this natural choice of
M,N , we can talk about Delzant polytopes in t∗.

Toric manifolds are classified by the following theorem, which explains the third row
of diagram (2).
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Theorem 3.3 (Delzant). Let (X,ω, T, ρ, µ) be a toric manifold. Then µ(X) ⊂ t∗ is a
Delzant polytope. Moreover, for fixed T , the map

{toric manifolds, torus = T} → {Delzant polytopes in t∗},
(M,ω, T, ρ, µ) 7→ µ(M)

is bijective.

Proof. See [4]. □

Example 3.1. Let CPn be equipped with the Fubini-Study symplectic form ωFS =
i
2π∂∂̄ log |z|

2 (z = (z0, · · · , zn) is any local lift into Cn+1). The torus T = (S1)n+1/S1

(S1 acts diagonally on (S1)n+1) acts on CPn effectively by [λ0 : · · · : λn] · [z0 : · · · :
zn] = [λ0z0 : · · · : λnzn]. Identify s1 = R by writing S1 = R/Z. Then t = Rn+1/R and
t∗ = {(x0, · · · , xn) ∈ Rn+1 : x0 + · · ·+ xn = 0} =: Rn+1

0 .
We claim the T -action is Hamiltonian, and a moment map is given by µ : CPn →

Rn+1
0 , [z0 : · · · : zn] 7→

(
|z0|2
|z|2 −

1
n+1 , · · · ,

|zn|2
|z|2 −

1
n+1

)
. The map µ is clearly T -invariant,

so it remains to check
ι
ξ#j
ωFS = −dµξj (7)

for j = 0, 1, · · · , n, where ξj is the image of the i-th coordinate vector in (s1)n+1 in t.
Let p : Cn+1\{0} → CPn denote the projection map, then it suffices to check (7) after

pullingback to Cn+1\{0}. A lift of ξ#j is given by ξ̃#j = 2πi(zj∂zj − z̄j∂z̄j ). The pullback
of ωFS and the pullback of µ have the same expressions as given above, respectively.
Therefore we only need to check

2πiιzj∂zj−z̄j∂z̄j

(
i

2π
∂∂̄ log |z|2

)
= −d

(
|zj |2

|z|2

)
,

which is a straightforward verification. The corresponding Delzant polytope for the
toric manifold CPn is thus {(x0, · · · , xn) ∈ Rn+1

0 : xi ≥ − 1
n+1 for all i} ⊂ Rn+1

0 .

4. Two constructions agree

Lemma 4.1. If P is Delzant, then X(∆P ) is smooth.

Proof. All maximal cones in ∆P has the form σu for some vertex u ∈ P , thus equals the
dual cone of {u′ ∈ MR : u + tu′ ∈ P for some t > 0}. By the Delzant assumption, we
see σu is spanned by a basis of N . By a change of coordinate we can assume N = Zn
and σu is spanned by the basis vectors e1, · · · , en. It follows that Uσu

∼= An. Since
smoothness is local this proves the lemma. □

Remark 4.2. The converse is also true: if X(∆P ) is smooth, then P is Delzant. Since
we don’t need this fact, we refer readers to Section 2 of [6]. In view of the agreement
of algebraic geometric and symplectic geometric constructions, the Delzant condition
on polytopes in symplectic geometry is really a smoothness condition. For general ra-
tional polytopes, one can still expect a Delzant construction, yielding some symplectic
toric manifolds with singularities. In fact, by a translation and rescaling of the poly-
tope (which, under the Delzant correspondence, corresponds to adding a constant to
the moment map, and scaling the symplectic form and moment map by the same con-
stant), we may restrict ourselves to lattice polytopes, and we may further assume the
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T -Cartier divisor associated to this polytope is very ample (c.f. Proposition 2.8). Then
Theorem 4.3 exactly gives such a generalized Delzant construction.

From now on, let P be a Delzant lattice polytope. We show that the Delzant con-
struction and the fan construction for P agree, finishing the diagram (2). For simplicity
assume M = N = Zn, and write X for the underlying complex manifold constructed
from P via the fan construction (i.e. X = X(∆P )(C)). Under our Delzant assumption,
in the proof of Proposition 2.8 we may choose m = 1. In other words DP is very ample,
thus defines an equivariant embedding i : X ↪→ CPr−1 (see Remark 2.9 for equivariance),
which is an embedding of complex manifolds. Therefore i∗ωFS is nondegenerate, thus
defines a symplectic structure on X. The toric action on X restricts to a T = (S1)n-
action. Now the agreement of the two constructions is a consequence of the following
theorem together with Proposition 2.10.

Theorem 4.3. The T -action on (X, i∗ωFS) is Hamiltonian. Moreover, the algebraic
moment map µalg for X as in (6) is also a moment map in the symplectic sense for
this Hamiltonian action.

We need the following symplectic geometric lemma whose proof is straightforward.

Lemma 4.4. If f : (X, f∗ω) → (Y, ω) is a map of symplectic manifolds, equivariant
with respect to a G-action on X, a Hamiltonian H-action on Y with moment map
µ : Y → h∗, and a Lie group homomorphism α : G → H, then the G-action on X is
Hamiltonian with a moment map ν = α∗ ◦ µ ◦ f . □

Proof of Theorem 4.3. In view of the argument in Proposition 2.10, the restriction of
the toric embedding i to the dense open torus of X is a map

i|T1 : T1 ↪→ T2, x 7→ [e2πi⟨u1,v⟩ : · · · : e2πi⟨ur,v⟩]
of algebraic tori, where T1, T2 are the dense open tori of X,CPr, respectively, and [v] =
[v](x) ∈ Cn/Zn ∼= (C∗)n = T1 via e2πi·. Identify T1 ∼= Cn/Zn and T2 ∼= (Cr/Zr)/(C/Z),
the map i|T1 restricts to maximal compact tori:

i|Rn/Zn : (R/Z)r → (R/Z)r/(R/Z), [v] 7→ [⟨u1, v⟩, · · · , ⟨ur, v⟩].
Ther corresponding Lie algebra map is i∗ : Rn → Rr/R, v 7→ [⟨u1, v⟩, · · · , ⟨un, v⟩], and
the dual Lie algebra map is i∗ : Rr0 → Rn, (x1, · · · , xr) 7→

∑r
i=1 xiui.

Now by Lemma 4.4 and Example 3.1, the T = (R/Z)r-action on X is Hamiltonian
with a moment map

µ : X → Rn, x 7→
r∑
i=1

(
|χui(x)|2∑r
j=1 |χuj (x)|2

− 1

r

)
ui = µalg(x)−

∑r
i=1 ui
r

.

Since the moment map for a Hamiltonian toric action is unique up to an additive
constant, µalg = µ+

∑
u∈P∩M u/r is also a moment map. □
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Birkhäuser, Basel, 2003, pp. 85–173.

[3] D. A. Cox, J. B. Little, and H. K. Schenck. Toric varieties. Vol. 124. Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2011,
pp. xxiv+841. isbn: 978-0-8218-4819-7. doi: 10.1090/gsm/124.

[4] T. Delzant. “Hamiltoniens périodiques et images convexes de l’application mo-
ment”. In: Bull. Soc. Math. France 116.3 (1988), pp. 315–339. issn: 0037-9484.
url: http://www.numdam.org/item?id=BSMF_1988__116_3_315_0.

[5] G. Ewald. Combinatorial convexity and algebraic geometry. Vol. 168. Graduate
Texts in Mathematics. Springer-Verlag, New York, 1996, pp. xiv+372. isbn: 0-387-
94755-8. doi: 10.1007/978-1-4612-4044-0.

[6] W. Fulton. Introduction to toric varieties. Vol. 131. Annals of Mathematics Studies.
The William H. Roever Lectures in Geometry. Princeton University Press, Prince-
ton, NJ, 1993, pp. xii+157. isbn: 0-691-00049-2. doi: 10.1515/9781400882526.

Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720
Email address: qiuyu ren@berkeley.edu

https://doi.org/10.1090/gsm/124
http://www.numdam.org/item?id=BSMF_1988__116_3_315_0
https://doi.org/10.1007/978-1-4612-4044-0
https://doi.org/10.1515/9781400882526

	1. Introduction
	2. Algebraic perspective
	2.1. The fan construction
	2.2. Fans from polytopes
	2.3. Orbit decomposition; Divisors
	2.4. The moment map

	3. Symplectic perspective
	4. Two constructions agree
	References

