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Abstract
By using Fourier series, we show that the Laplace-Beltrami operator on a compact Lie group

equipped with a bi-invariant metric has a complete basis of eigenfunctions. We also explicitly
compute the spectrum of the Laplace operator.
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1 Introduction
The Laplacian

∆ =
n∑
i=1

∂2

∂x2
i

on Rn is an important operator for mathematicians and physicists. In physics, it arises naturally when
one consider the heat flow. In mathematics, it is indispensable in differential geometry and motivates
the study of elliptic PDE.
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Figure 1: Big picture of the argument

To study a differential operator, it is often useful to understand its spectral properties (eigenfunc-
tions, eigenvalues, and spectrum). We first define these terms in the following simplest case.

Consider the one-dimensional Laplacian ∆ = d2/dx2 on the real line R. For our purpose, we consider
its restriction to the linear operator ∆ acting on the space of 1-periodic complex valued smooth functions
on R.

Definition 1.1. An 1-periodic (complex valued) smooth function f is called an eigenfunction of ∆
with eigenvalue λ ∈ C if ∆f = λf . The spectrum of ∆, denoted σ(∆), is the set of all eigenvalues of ∆.

A 1-periodic function on R is the same as a function on the circle S1 = R/Z. By standard Fourier
series theory on the circle, it is not hard to write out all eigenfunctions and eigenvalues of ∆, as we
shall do in Section 2.1. We will explain that in some sense the set of eigenfunctions are complete.

We can generalize the problem by considering the Laplacian on doubly periodic functions on R2, or
even higher dimension analogs. Formally, we call a subgroup Γ ⊂ Rn a lattice in Rn if it is an additive
subgroup of Rn generated by n elements, such that the R-linear span of the n generators is Rn. (A
standard example is Γ = Zn.) A function f on Rn is Γ-periodic if f(x + k) = f(x) for all x ∈ Rn,
k ∈ Γ. We can consider the Laplace operator on the space of (complex valued) smooth Γ-periodic
functions on Rn, and ask for its spectral properties. The definitions of eigenfunction, eigenvalue, and
(in our situation) spectrum extend in the obvious way to ∆ on higher dimensional spaces. A Γ-periodic
function on Rn is the same as a function on the torus T = Rn/Γ, so we may rephrase our question as
determining the spectral properties of Laplacian on the torus T . In this more general setting, it turns
out that the Fourier series technique is still valid with mild modification, which immediately gives the
answer to our question.

Any torus is a compact Lie group. A natural generalization of the previous question is to examine
the spectral properties of Laplacian on an arbitrary compact Lie group G. In this case, the Laplacian ∆
is given by the Beltrami-Laplace operator on Riemannian manifolds (see Appendix A) for a prescribed
bi-invariant metric on G. By taking the identity component, we may without loss of generality assume
G is connected. Our main theorem is the following.

Theorem 1.2. Fix an ad-invariant inner product on B and equip G with the corresponding metric. For
each irreducible representation π : G→ GL(V ) of G, every matrix coefficient of π is an eigenfunction of
∆ with eigenvalue cπ(B). Every eigenvalue of ∆ is cπ(B) for some irreducible representation π. Here
cπ(B) is the image of the Casimir element of g with respect to B under π in gl(V ), identified with a
scalar.

In particular, the set of eigenfunctions of ∆ will still be complete, due to the Peter-Weyl Theorem 4.5.
This is expected, since a more general theorem says that the set of eigenfunctions of the Laplace-Beltrami
operator on any compact Riemannian manifold is complete [4, Theorem 10.4.19].
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The paper is structured as follows. In Section 2, we carefully carry out the Fourier series argument
for the torus case and determine σ(∆) in terms of the lattice Γ (Theorem 2.2). Before we go further, we
give a brief review to general facts we will need about Lie theory in Section 3. In Section 4, we describe
a generalization of Fourier series on torus to Fourier series on arbitrary compact Lie groups, called the
Peter-Weyl Theorem (Theorem 4.5). We will also do some spectral analysis of left invariant differential
operators. Finally, in Section 5 we show that the set of eigenfunctions of ∆ are complete and give the
expression of σ(∆) for an arbitrary compact connected Lie group G equipped with a bi-invariant metric
in terms of irreducible representations of G (Theorem 1.1).

2 Laplacian on Tori
2.1 Laplacian on the Circle
In this section we examine the spectral properties of the Laplacian on the circle S1 = R/Z. It serves as
a motivation to later generalizations.

By standard Fourier analysis, a (complex valued) smooth function f on S1 can be uniquely written
as a summation

f(x) =
∞∑

n=−∞
ane

2πinx

for some coefficients an ∈ C. This summation is known as the Fourier series of f . By smoothness of f ,
the coefficients an decay rapidly at infinity in the sense that

|n|k|an| → 0 as n→∞, for all k > 0. (1)

Conversely, any given sequence {an} in C satisfying (1) determines a smooth function f with period 1.
Explicitly, the coefficients an are determined by the Fourier inversion formula

an = f̂(n) =
∫
S1
f(x)e−2πinxdx.

By the rapid decay of an, differentiation commutes with summation. It follows that

∆f = −
∞∑

n=−∞
4π2n2ane

2πinx.

From this we deduce that (ae2πinx + be−2πinx,−4π2n2), a, b not all zero, n ∈ Z≥0 are all pairs of
eigenfunctions, eigenvalues of ∆ and that σ(∆) = {−4n2π2 : n ∈ Z}.

Moreover, the set of eigenfunctions are complete in the sense that every smooth functions on S1 is
a linear combination of some eigenfunctions.

2.2 Laplacian on General Tori
Let Γ ⊂ Rn be a lattice. Then T = Rn/Γ is a torus equipped with a metric inherited from the Euclidean
metric on Rn. Conversely, every torus arises in such way for some integer n and lattice Γ ⊂ Rn. The
usual Laplacian

∑n
i=1 ∂

2/∂x2
i on Rn descends to the Laplacian ∆ on T . We want to examine the

spectral properties of ∆ in terms of Γ.
Consider the space of square integrable functions on T , denoted L2(T ). It is equipped with inner

product
〈f, g〉 =

∫
T

fḡdx,

where dx is the volume element on T . It turns out that L2 spaces are more convenient for the Fourier
setup.
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Let Γ∗ ∈ Rn denote the dual lattice of Γ with respect to the Euclidean inner product on Rn.
Explicitly, choose a Z-basis v1, · · · , vn of Γ, and let v∗1 , · · · , v∗n ∈ Rn denote its dual basis with respect
to the Euclidean inner product. Then Γ∗ is defined to be the lattice spanned by v∗1 , · · · , v∗n. It is
straightforward to check that the definition is independent of the choice of basis.

For any ξ ∈ Γ∗, let eξ ∈ C∞(T ) ↪→ L2(T ) be defined by

eξ(x) = e2πiξ·x√
vol(T )

,

where vol(T ) denotes the volume of T .

Theorem 2.1. {eξ : ξ ∈ Γ∗} is an orthonormal basis of L2(T ).

Proof. We first show that eξ, ξ ∈ Γ∗ are orthonormal. For ξ, η ∈ Γ∗, we have

〈eξ, eη〉 = 1
vol(T )

∫
T

e2πi((ξ−η)·x)dx.

When ξ = η, the integrand is 1, thus 〈eξ, eξ〉 = 1. Suppose now ξ 6= η, then we can choose a basis
vector vk ∈ Γ such that (ξ − η) · vk = r ∈ Z\{0}. Then, for any fixed x ∈ Rn we have∫ 1

0
e2πi(ξ−η)·(x+tvk)dt = e2πi(ξ−η)·x

∫ 1

0
e2πirtdt = 0,

so 〈eξ, eη〉 = 0 by Fubini’s theorem (slicing the torus along the lines in direction vk).
It remain to show the basis {eξ} is complete. To show this we apply the Stone-Weierstrass theorem

(see [5, Theorem 7.33]). One readily check that {eξ} is closed under multiplication and conjugation,
vanishes at no point (i.e. for any x ∈ T , there exists ξ such that eξ(x) 6= 0), and separates points (i.e.
for x, y ∈ T , x 6= y, there exists ξ such that eξ(x) 6= eξ(y)). The conclusion is that the linear span of
{eξ} is dense in C0(T ), thus is in turn dense in L2(T ).

By Theorem 2.1, a function f ∈ L2(T ) can be uniquely written as f =
∑
ξ∈Γ∗ aξeξ for some aξ ∈ C.

This is called the Fourier series of f . The coefficients aξ are determined by the Fourier inversion formula

aξ = f̂(ξ) = 〈f, eξ〉 =
∫
T

fe−ξdx.

Theorem 2.2. In the notation as before, a complete basis of eigenfunctions for ∆ on L2(T ) is given
by {eξ}. The spectrum of ∆ on T is

σ(∆) = {−4π2|ξ|2 : ξ ∈ Γ∗}.

Proof. We compute that

∆eξ(x) =
n∑
k=1

∂2

∂x2
k

eξ(x) = −4π2
n∑
k=1

ξ2
keξ(x) = −4π2|ξ|2eξ(x).

Here ξk denotes the k-th coordinate of ξ. The statement now follows from Theorem 2.1.

3 Preliminary on Lie Groups
This section is a tranisitional section between our introductory case of the Laplacian acting on Tori and
the more general case of the Laplacian acting on compact Lie groups. Here, we provide the necessary
background on Lie theory for later sections.
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3.1 Topological and Lie groups
Definition 3.1. A topological group G is a topological space G with a group structure where multipli-
cation and inversion are continuous. Formally, there are continuous maps

m : G×G→ G,

i : G→ G,

and an identity element e ∈ G which satisfy the group axoims:

m(m(a, b), c) = m(a,m(b, c))
m(e, a) = a = m(a, e)

m(a, i(a)) = e = m(i(a), a).

A topological group has both topological and group theoretic properties. For instance, a topological
group G is compact (resp. locally compact) if the underlying topological space G is compact (resp.
locally compact). Similarly a topological group G is abelian if the group operation m is commutative
on the underlying set of G.

We will commonly use · instead of m to denote the group operation i.e.

a · b := m(a, b).

The particular example of topological groups we will be concerned with are Lie groups. Recall that
an n-dimensional manifold X is a topological space which for every point p ∈ X, there exists an open
set U containing p such that U is diffeomorphic to an open ball in Euclidean space Rn. For our purposes
the following definition of Lie group suffices:

Definition 3.2. A (real) Lie group G is a topological group where the underlying space G is a real
manifold and the group operations m and i are smooth maps (i.e. infinitely differential).

Since our main focus is compact Lie groups and every compact Lie group is diffeomorphic to a closed
subset of Rn, a reader not familar with manifolds should think of a manifold as simply a subspace of
Euclidean space Rn cut out by smooth equations (for instance a sphere). In such a space G the definition
of smooth maps from G×G to G or G to G is the familiar definition of smooth for Euclidean space.

Example 3.3. The general linear groups GLn(R) and GLn(C) are both Lie groups and as spaces are
isomorphic to open subsets of Rn2 and R4n2 respectively. The unitary subgroup

U(n) = {g ∈ GLn(C)|g · g∗ = I}

is a compact Lie group.

To fully define category of Lie (resp. topological) groups, we need to say what morphisms between Lie
(resp. topological) groups are. These need to respect both the group and manifold (resp. topological)
structure of G. Specifically, morphisms φ : G→ H are smooth (resp. continuous) maps which are also
group homomorphisms.

Since a (real) Lie group G’s underlying space is a (real) manifold, it is natural to talk about tangents,
vector fields and differentials.

Definition 3.4. For a manifold M , the tangent space at a point p ∈ M is the equivalence classes of
curves φ : (−1, 1)→M with φ(0) = p under the equivalence φ = φ′ if

d

dt
φ|0 = d

dt
φ′|0.

Since a manifold locally is Euclidean, we may glue these together locally and form a topological space
called the tangent bundle

TM = ∪p∈MTpM.
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For subsets
For Lie groups the group operations makes tangents, vector fields and differentials very tractable.

Proposition 3.5. The tangent bundle of a Lie group G is trivializable–it is diffeomorphic to

TeG×G.

Proof. We have a smooth map
TG→ TeG×G

sending an equivalence class [φ] ∈ TgG to ([g−1 · φ], g) which has a smooth inverse ([φ], g) 7→ [g · φ].

This motivates us to pay special attention to the tangent space at the identity element.
The tangent space has a natural projection pr : TM →M sending a tangent vector at p to p.

Definition 3.6. A vector field X for a manifold M is a section of the tangent bundle i.e. a smooth
map f : M → TM such that pr ◦f is the identity onM . The set of vector fields of M is denoted X(M).
For a Lie group G, a vector field X is left-invariant if X(g) = g ·X(e).

Notice that each left invariant vector field X is determined by its value X(e) and that each element
[φ] of TeM determines a unique left invariant vector by defining X(g) = [g ◦ φ]. Thus

Proposition 3.7. The left invariant vector fields of G are in bijection with elements of TeG.

For f ∈ C∞(M) (i.e. a smooth function on M , there is a directional derivative along a vector field
X which corresponds to at each point p taking the derivative

lim
t→0

f(X(p)(t))− f(p)
t

.

Lemma 3.8. Taking the direction derivative gives a bijection between vector fields and maps D :
C∞(M)→ C∞(M) satisfying

1. D is C-linear

2. D(fg) = fD(g) + gD(f) (this is called the Liebniz rule).

Such maps are called derivations.

As in the familiar Euclidean case, for general manifolds, we may compose vector fields and also
multiply them by elements of C∞(M).

Definition 3.9. Any action on C∞(M) which is a C∞(M)-linear combination of compositions of
derivations is called a partial differential operator. The set of partial differential operators of M forms
a C∞(M)-algebra under we adding partial differential operators and composing them. We denote this
algebra by PDO(M).

An alternate definition of partial differential operators that may be more intuitive for readers is
it is the module of C∞(M)-linear combination of compositions of derivations quotiented by the ideal
generated by elements which act in the same way on C∞(M).

3.2 Lie algebra and universal enveloping algebra
Definition 3.10. A Lie algebra over a the complex (resp. real) numbers is a complex (resp. real)-vector
space L equipped with bracket operation [−,−] : L× L→ L that

1. is bilinear,

2. [x, x] = 0 for all x ∈ L
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3. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

A morphism between Lie algebras L and L′ is a linear map φ : L→ L′ such that φ[v, w] = [φ(v), φ(w)].

Example 3.11. Let V be a complex vector space over the field and let gl(V ) denote the linear endo-
morphisms of V with the bracket structure

[T, S] = T ◦ S − S ◦ T.

Then gl(V ) is a complex Lie algebra over k.

The important example for us will be slightly more difficult

Proposition 3.12. Suppose M is a manifold. Then the vector fields on M form a real Lie algebra with
the bracket operation given by

[X,Y ](f) := X ◦ Y (f)− Y ◦X(f)

where we are explicitly identifying vector fields X, Y , and [X,Y ] with their associated derivation on
C∞(M).

As in the previous subsection, we pay special attention to the left-invariant vector fields:

Exercise 3.13. For a Lie group G, the left-invariant vector fields form a sub-Lie algebra of the vector
fields of G.

The solution to this exercise is entirely computational based on verifying the axoims of Lie algebras
and that [X,Y ] is in fact left-invariant when both X and Y are. From now on for a Lie group G, we
let g refer to the Lie algebra of left invariant vector fields on G. Importantly for us:

Example 3.14. For the Lie group GLn(C), the associated Lie algebra of left invariant differentials is
isomorphic to gl(Cn).

This follows from computing the tangent space at the identity which in Proposition 3.7 we showed
is isomoprhic to the space of left invariant vector fields.

Definition 3.15. For a vector space V over a field k. Then tensor algebra of V is defined as

T (V ) = k ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V ) . . .

where multiplication is defined by concatenating tensors (for instance (a ⊗ b) × (c) = a ⊗ b ⊗ c. For a
Lie algebra g over k = R or C, its enveloping algebra is the associated algebra U(g) = T (g)/I, where I
is the ideal generated by the relations a⊗ b− b⊗ a = [a, b], a, b ∈ g.

U(g) is an associative algebra which is universal in the sense that every Lie algebra homomorphism
g → A to an associative algebra factors as g → U(g) → A where the second map is an associative
algebra map.

In particular, the natural map
g 7→ X(G)→ PDO(G)

factors through U(g). Hence we get a map

U(g)→ PDO(G). (2)

whose image consists of left-invariant partial differential operators.
In a similar vein to how rings have anti-homomoprhisms which swap the order of multiplication, Lie

algebras have
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Definition 3.16. A lie algebra anti-homomorphism is a linear map φ : L→ L′ such that

φ[x, y] = [φ(y), φ(x)].

Example 3.17. For any Lie algebra L, the map φ(v) = −v is an anti-automorphism since

φ[v, w] = −[v, w] = [w, v] = [−w,−v].

This Lie algebra anti-automorphism extends to an algebra anti-automorphism T (L)→ T (L) sending

x1 ⊗ x2 . . . xn → (−1)nxn ⊗ xn−1 . . . x1.

This map sends the ideal I generated by the relations a⊗ b− b⊗ a = [a, b] to itself and hence extends
an anti-automorphism of U(L). We denote this anti-automorphism by w 7→ w∗.

3.3 Representations of Lie groups and Lie algebras
As in the theory of finite groups, an important tool to analyze Lie and topological groups is their
(complex) representations. In the finite groups case, a representation is a map G → GL(V ) for a
complex vector space V . In the Lie and topological groups case, we require this map to satisfy the
additional structure of the manifold.

Definition 3.18. A representation of a topological group G is a map of topological groups π : G →
GL(V ) (in other words π is continuous and a group homomorphism).
A representation of a Lie group G is a map of Lie groups π : G→ GL(V ) (in other words π is smooth
and a group homomorphism).
A representation of a Lie algebra L is a Lie algebra map π : L → gl(V ) (in other words π[x, y] =
π(x)π(y)− π(y)π(x)).

As in the case of Rn, for a locally compact topological group G, there is a unique nonzero (up
to scalar multiplication) left Haar measure dg, which we can integrate over defined by the following
properties:

1. It is left invariant in that for any subset S and any h ∈ G∫
G

1Sdg =
∫
G

1hSdg

2. For any compact set K ∫
G

1Kdg <∞

3. For any open set U , ∫
1Udg = inf

K⊇U

∫
1Kdg

where K is compact.

4. For any subset X which can be written as a countable sequence of unions and intersections of
open and closed sets, then ∫

1Xdg = inf
U⊆X

∫
1Udg.

For Lie groups, the measure is much more tangible since the measure arises from a measure on
Euclidean space. For compact groups, more is true about the measure: Let

V ol(G) =
∫
G

1Gdg

where here we made a choice of Haar measure dg on G.
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Proposition 3.19. If G is a compact group, then in fact dg is also right invariant i.e.∫
G

1Sdg =
∫
G

1Shdg.

A locally compact group where dg is also right invariant is called unimodular.

Proof. Define dgh to be the measure defined by∫
G

f(g)dgh =
∫
G

f(gh)dg.

Then dgh is a left invariant measure so by the uniqueness of the Haar measure of G, dgh is a constant
multiple of dg. To verify that this constant is 1, we compute∫

G

1Gdgh =
∫
G

1G(gh)dg = V ol(G) =
∫
G

1Gdg.

Notice when G is not compact the above argument does not work since
∫
G

1Gdg will be infinite.

Remark 3.20. For compact Lie groups, condition (2) guarantees that
∫
G

1Gdg < ∞. Thus for any
complex representation π : G→ GL(V ), there exists a positive definite bi-linear form 〈·, ·〉π on Vπ given
by choosing any positive definite bi-linear form 〈·, ·〉 on Vπ and defining

〈v, w〉π := 1
V ol(G)

∫
G

〈π(g)v, π(g)w〉dg.

Thus every representation of compact Lie groups is unitary. We will use this fact in computations in
Section 4.

Another important result we will need for Section 4 is Schur’s lemma: Given two representations
V,W of G, define

HomG(V,W ) := {C-linear maps V to W which commutes with the action of G}.

Lemma 3.21 (Schur’s Lemma). Let G be a finite dimensional Lie group and (π, Vπ), (τ, Vτ ) be irre-
ducible representations of G. Then

1. If τ 6= π, then HomG(Vτ , Vπ) = 0.

2. If τ ∼= π, then HomG(Vτ , Vπ) = C.

Given a Lie group representation π : G→ GL(V ), it induces a map on tangent space dπ : g→ gl(V )
(called the differential of π) which is a Lie algebra representation. It turns out that to a certain degree
the map dπ determines much of the map π and when G is in fact connected, dπ determines π. For
this reason, the representation theory of Lie groups is closely related to representation theory of Lie
algebras.

Notice that gl(V ) is a Lie algebra over C (since V is a complex vector space) and thus any Lie algebra
homomorphism dπ : g→ gl(V ) factors through the complexification of g which is the Lie algebra g⊗RC.

The representation theory of complex Lie algebras is well understood and is important to applications
of our results although we will not need the full strength of the theory to state our results. Since the
theory is rather involved, we just state the results without proof but do include some techniques and
motivation. A more thorough analysis of the representation theory of semisimple Lie algebras can be
found in [2].
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Lemma 3.22. Let h be an abelian complex Lie algebra (i.e. for all a, b ∈ h, [a, b] = 0). Then for any
representation π : h → gl(V ), the space V decomposes into 1-dimensional eigenspaces. In other words
for finite dimensional V , the image matrices π(h) are simultaneously diagonalizable.

A Lie algebra L is called simple if the the only subspaces W ⊆ L such that [L,W ] ⊆W are W = 0
and W = L. A Lie algebra L is called semisimple if it is a direct sum of simple Lie algebras. For a
general Lie algebra L, a Cartan subalgebra h is a maximal abelian subalgebra of L.

For a semisimple Lie algebra L and a representation π : L→ gl(V ), we may restrict π to a Cartan
subalgebra h. Then as a corollary of Lemma 3.22, V decomposes into h-eigenspaces.

Definition 3.23. For a representation π : L → gl(V ) and a Cartan subalgebra h of L. The λ-weight
space of V is the subspace of V where h acts as the character λ i.e. for all h ∈ h,

h · v = λ(h)v

Theorem 3.24 ([2] Section 20). The irreducible representations π : L → gl(V ) of a semisimple Lie
algebra are classified by their weight spaces. In particular

1. Each weight space is 1-dimensional.

2. There are finitely many h-eigenvalues and they lie on a lattice.

3. There is a unique “largest” h eigenvalue.

3.4 Bi-invariant Riemannian Metrics on Compact Lie Groups
For our purpose, we need to define the Laplace operator on Lie groups. The natural option is to give a
Riemannian metric on G and use the Laplace-Beltrami operator on G as a Riemannian manifold. For
the definition of Laplace-Beltrami operator, we refer readers to Appendix A. In this section we focus
on giving G a metric. Throughout this section G denotes a compact connected Lie group.

For g ∈ G, let `g, rg : G → G denote the left, right multiplication by g, respectively. A metric on
G is said to be left (resp. right) invariant if it is invariant under pullback by any `g (resp. rg) for all
g ∈ G. It is said to be bi-invariant if it is both left invariant and right invariant.

Left invariant metrics on G are easy to obtain, as shown by the following lemma.

Lemma 3.25. Under the identification g = TeG, the map

{left invariant metrics on G} → {inner products on g}, 〈·, ·〉 7→ B = 〈·, ·〉e (3)

is a bijection. Here an inner product means a positive definite symmetric bilinear form on a vector
space.

Proof. For an inner product B on g, define 〈·, ·〉g = `∗gB for all g ∈ G. Then B 7→ 〈·, ·〉 gives an inverse
to (3).

There is a natural Lie group representation G on g defined by

Ad : G→ GL(g), AdgX = r∗g−1`∗gX.

Its differential is the Lie algebra representation g on itself called the adjoint representation, defined by

ad : g→ gl(g), adXY = [X,Y ].

An bilinear form B on g is said to be ad-invariant if it is invariant under the adjoint representation. In
other word, B is ad-invariant if B([Z,X], Y ) +B(X, [Z, Y ]) = 0 for all X,Y, Z ∈ g.

Proposition 3.26. The map (3) restricts to a bijection between bi-invariant metrics on G and ad-
invariant metrics on g.
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Proof. In the domain of (3) bi-invariance is the same as right invariance. Therefore we have

〈·, ·〉 is bi-invariant
⇐⇒ r∗g−1〈·, ·〉 = 〈·, ·〉 for all g ∈ G
⇐⇒ r∗g−1`∗g〈·, ·〉 = 〈·, ·〉 for all g ∈ G
⇐⇒ Ad∗g〈·, ·〉 = 〈·, ·〉 for all g ∈ G
⇐⇒ (Ad∗g〈·, ·〉)e = 〈·, ·〉e for all g ∈ G (since both sides are left-invariant)
⇐⇒ (1⊗ ad∗X + ad∗X ⊗ 1)B = B for all X ∈ g (since G is connected)
⇐⇒ B is ad-invariant.

Proposition 3.26 allows us to identify the set of bi-invariant metrics on G to the set ad-invariant
inner product on g. Moreover these sets are nonempty (one can see this from our discussion below,
or to average a fixed left-invariant metric over its pullbacks by rg, g ∈ G, using the Haar measure on
G). The latter set can actually be written out explicitly. The rest of discussions in this section is less
important for understanding our main theorem, but is nevertheless interesting to include.

Lemma 3.27. The Lie algebra g is a direct sum of an abelian Lie algebra and a semisimple Lie algebra.

Proof. See [3, Corollary 4.25].

Lemma 3.28. Suppose a Lie algebra L is the direct sum of two Lie algebras L1, L2, where L2 is
semisimple. Then all ad-invariant inner product on L are given by B = B1 + B2, where Bi is an
ad-invariant inner product on Li (which is zero on the other direct component), i = 1, 2.

f

Proof. Clearly any B1 + B2 gives an ad-invariant inner product on L. Conversely, let B be any ad-
invariant inner product on g, we prove it has the desired form. It suffices to show for all X ∈ L1 that
B(X,L2) = 0.

For any Y1, Y2 ∈ L2, by ad-invariant ofB we have 0 = B([Y1, X], Y2)+B(X, [Y1, Y2]) = B(X, [Y1, Y2]).
It follows from semisimpleness of L2 that B(X,L2) = B(X, [L2, L2]) = 0, as desired.

Definition 3.29. The Killing form of a Lie algebra L is the bilinear form κ on L given by κ(X,Y ) =
tr(adXadY ). Here tr(·) denotes the trace operator on gl(g).

Lemma 3.30. All ad-invariant inner product on a simple Lie algebra L are given by a negative scalar
times the Killing form on L.

Proof. See [2, Theorem 5.1] for a proof that the Killing form κ on L is negative definite. By

κ([Z,X], Y ) + κ(X, [Z, Y ]) = tr((adZadXadY − adXadY adZ) + (adXadZadY − adZadY adX)) = 0

we see κ is ad-invariant. Therefore any λκ, λ < 0 is an ad-invariant inner product on L.
Conversely, suppose B is any ad-invariant inner product on L. By nondegeneracy of B and κ,

they induces isomorphisms B̂, κ̂ : L → L∗. Now ad-invariance shows that (κ̂)−1 ◦ B̂ : L → L is a map
of representations, where L on both sides denote the adjoint representation L → gl(L). By Schur’s
Lemma we conclude that (κ̂)−1 ◦ B̂ = λ · idL for some λ ∈ C. Hence B = λκ. By positive-definiteness
of B we have λ < 0.

By Lemma 3.27, Lemma 3.28 and Lemma 3.30 we deduce the following.

Corollary 3.31. We can write g = t⊕ (⊕ri=1si) for an abelian Lie algebra t and simple Lie algebras si.
All ad-invariant inner product on g are given by B0 + (

∑r
i=1 λiκi), where B0 is an inner product on t,

κi is the Killing form on si, and λi < 0, i = 1, · · · , r.
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4 Fourier Transform of Compact Groups
In this section we generalize the notion of Fourier series to compact Lie groups. In 4.1 we demonstrate
the Fourier series connection with the representation theory of compact Lie groups and in 4.2 we show
how left invariant differential operators act on Fourier series.

4.1 The Peter-Weyl Theorem
Let G be a compact connected Lie group and dg a Haar measure of G. Most of the results in the
section hold for general compact topological groups but for convenience we will treat G as a Lie group
throughout.

Definition 4.1. Given f ∈ C∞(G) and a finite dimensional unitary irreducible representation (π, Vπ)
of G, define

f̂(π) :=
∫
G

f(g)π(g)dg

which is an element of End(Vπ). The integrand here is a matrix and the intergal of a matrix is a matrix
of integrals.

The object f̂ is in a sense a “function” on irreducible representation π which takes values in Vπ.
When G is abelian, each irreducible representation is one-dimensional and f̂ is literally a function.

Example 4.2. Suppose that G = Rn/Γ. Then the irreducible representations are given by V ol(G)
multiples of functions eη which form the orthonormal basis of L2(G) from Theorem 2.1:√

V ol(G)eη(x+ Γ) = e2πiη·x

where η ∈ Γ∗. The function f̂ is given by

f̂(
√
V ol(G)eγ) = 〈f,

√
V ol(G)eγ〉.

In general, f̂ is the analog of the Fourier series for general compact groups. We will soon see a similar
decomposition of L2(G) into a direct sum of spaces associated to irreducible representations given by
f̂ . The orthonormal basis of L2(G) which arises via this decomposition consists of matrix coefficients:

Definition 4.3. For a representation (π, Vπ), let mv,λ : G→ C for v ∈ Vπ and λ ∈ V ∗π be defined as

mv,λ(g) := λ(π(g−1)v).

A matrix coefficient of π is a linear combination of mv,λs.

First we show that the matrix coefficients of different irreducible representations are orthogonal and
that there exists orthonormal matrix coefficients for each irreducible representation π.

Lemma 4.4 (Schur Orthogonality Relations). Letmv1,λ1 ,mv2,λ2 be two matrix coefficients of irreducible
dimensional representations π : G→ Gl(Vπ) and ρ : G→ Gl(Vρ) respectively. Then∫

G

mv1,λ1(g)mv2,λ2(g)dg =
{
V ol(G)λ1(v2)λ2(v1)

dim(π) if π = ρ

0 if π 6= ρ
(4)

Proof. Throughout this proof we use the fact that if ξ : G → Gl(V ) is irreducible so is its dual
representation ξ∗ : G → Gl(V ∗) defined by ξ∗(g)λ(v) = λ(ξ(g−1(v)). We also use the corollary of
Schur’s lemma that if ξ : H →W and ξ′ : H →W ′ are irreducible representations of H then

HomH(W ⊗W ′∗,C) ∼=

{
C if W ∼= W ′

0 if W 6= W ′.

12



When π 6= ρ, the map Vπ ⊗ V ∗ρ → C defined by linearly extending the map

(v, λ′) 7→
∫
G

mλ,v(g)mλ′,v′(g)dg

is G-equivariant. By Schur’s lemma it is 0.

Suppose π = ρ and let V = Vπ = Vρ. Define W := V ⊗V ∗ where V ∗ is the dual of V . Then W is an
irreducible G×G-representation where the first copy of G acts as π on V and the second acts as π∗ on
V ∗. Note that W ∗ ∼= W . The LHS and RHS of (4) are both G×G-equivariant linear homomorphisms
from (v1, λ1), (v2, λ2) ∈ W ×W ∗ to C. Thus the LHS of 4 is a constant multiple of the RHS of 4. It
therefore suffices to verify that (4) holds in the case that v1 = v2 = v and λ1(x) = λ2(x) = 〈v, x〉 where
v is a unit length vector i.e. 〈v, v〉 = 1. Here we are using that for compact groups, every representation
is unitary (see Remark 3.20). Then∫

G

〈v, g−1v〉〈v, g−1v〉dg = 〈v,
∫
G

g−1〈v, gv〉v dg〉.

Notice the map
w′ 7→

∫
G

g−1〈v, gw′〉v dg

is a G equivariant linear homomorphism V → V (here we use that G is unimodular). Hence by Schur’s
lemma it is a scalar multiple and furthermore we can compute its trace since: Let T be the linear map
V → V sending a vector s to 〈v, s〉v.

Tr(w′ 7→ g−1〈v, gw′〉v)
= Tr(w′ 7→ g−1T (gw′))
= Tr(T )
= 〈v, v〉
= 1.

Thus

Tr

(
w′ 7→

∫
G

g−1〈v, gw′〉v dg
)

=
∫
G

〈v, v〉dg

= V ol(G).

Therefore ∫
G

〈v, g−1v〉〈v, g−1v〉dg = 〈v,
∫
G

g−1〈v, gv〉v dg〉.

= V ol(G)
dim(V ) 〈v, v〉

= V ol(G)
dim(V ) .

Now we can prove the Peter-Weyl theorem which is the decomposition of L2(G) into matrix coeffi-
cients.

Theorem 4.5 (Peter-Weyl Theorem). For each irreducible representation of G, choose an orthonor-
mal basis for the space of its matrix coefficients. Then the union of these orthonormal bases over all
irreducible representations gives an orthonormal basis for L2(G).
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Proof. Since any two metric coefficients from different irreducible representations are orthogonal by
Lemma 4.4, it remains to show the union of all matrix coefficients of π, as π runs over all irreducible
representations of G, is complete in L2(G). We use the same argument as in the proof of Theorem 2.1.
It suffices to show this set of functions is closed under multiplication and conjugation, separates points,
and vanishes at no points. For a matrix coefficient e1 of π1 and e2 of π2, one easily check that e1e2
is a matrix coefficient of π1 ⊗ π2, that ē1 is a matrix coefficient of π∗1 (the dual representation of π1).
Moreover, the constant 1 function is a matrix coefficient for the trivial representation. It remains to
prove the set of matrix coefficients separates points.

Let V be a finite dimensional faithful unitary representation of G; in other words, V is complex
vector space equipped with a Hermitian inner product and a Lie group embedding G ↪→ U(V ), where
U(V ) denotes the unitary group of V (such representation always exists, see [1, Exercise 4.7.1]). The
Hermitian metric on V splits it into irreducible unitary representations V1⊕· · ·⊕Vk. For any g1, g2 ∈ G,
g1 6= g2, there is some i such that g1, g2 acts on Vi differently. Hence there exists a matrix coefficient
of Vi that has different values on g1, g2. This finishes the proof.

The Peter-Weyl theorem is an important foundational result in the representation theory of compact
groups. Notably the Peter-Weyl theorem implies in analogy to the abelian case (or the Rn and Rn/Γ
case), the Fourier transform has an inverse formula:

Corollary 4.6 (Fourier inversion formula). Suppose f ∈ C∞(G), then

f(g) =
∑

ρ∈Irr(G)

dim(ρ)
V ol(G)Tr(ρ(g−1f̂(ρ))

where V ol(G) =
∫
G

1dg wher Tr(ρ(g−1)f̂(ρ)) is the trace of ρ(g−1)f̂(ρ).

Proof. By the Peter-Weyl theorem, it is enough to show the Fourier inversion formula on a matrix
coefficient mλ,v for v ∈ Vπ and λ ∈ V ∗π with π irreducible. Fix any w ∈ Vρ with ρ irreducible and not
equivalent to π. Then the map from Vπ to Vρ defined by

v 7→ m̂λ,v(ρ)w

is G-equivariant. By Schur’s lemma, it is the 0 map. Now consider the integral

1
〈v, v〉

∫
G

mv,λ(g)〈v, π(g−1v)〉.

By the Schur orthogonality relations, for an orthonormal basis ei,

Tr(m̂v,λ(π)) =
∑
i

〈ei,
∫
G

mv,λ(g)π(g)ei dg〉

=
∑
i

∫
G

mv,λ(g)
∑
i

〈ei, π(g)ei〉dg

=
∑
i

V ol(G)
dim(π)λ(ei)〈ei, v〉

= V ol(G)
dim(π)λ(v)

= V ol(G)
dim(π)mv,λ(1).

This establishes the equality of the LHS and RHS of the Fourier inversion formula.
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4.2 Left Invariant Differential Operators Under Fourier Transform
In this subsection we use the Fourier transform to analyze the spectrum of differential operators. First,
a corollary of the Fourier inversion formula is

Corollary 4.7. For an operator D on C∞(G) and f ∈ C∞(G)

D̂(f)(π) = λf̂(π) for all π

if and only if f is an eigenfunction of D with eigenvalue λ.

Note here that the if direction is immediate from the definition of f̂ (Definition 4.1).
As suggested in Section 3, the partial differential operators on Lie groups which behave nicely with

respect to the group action are left-invariant differential operators. In particular, in Proposition 3.7 we
showed that left-invariant vector fields on G correspond to elements of g or the tangent space at the
identity of G. The spectrum of these operators is computable:

Lemma 4.8. Let X be a left-invariant vector field on G corresponding to x ∈ g. Then

X̂(f)(π) = f̂(π) ◦ −dπ(x)

where dπ : g→ End(Vπ) is the differential of π.

Proof. Using that we can swap limits and integrals when the domain of integration is compact:∫
G

X(f)(g)π(g)dg =
∫
G

lim
t→0

f(g · exp(tx))− f(g)
t

π(g)dg

= lim
t→0

∫
G

f(g · exp(tx))− f(g)
t

π(g)dg

= lim
t→0

∫
G

f(g)π(g · exp(−tx))− π(g)
t

dg

= −
∫
G

f(g)X(π)(g)dg

where
X(π)(g) = lim

t→0

π(g · exp(tx))− π(g)
t

.

Notice that

X(π)(gx) = π(g)X(π)(x)

and

X(π)(1) = lim
t→0

π(exp(x))t − 1Vπ
t

= log(π(exp(x))).

Thus

X̂(f)(π) =
∫
G

X(f)(g)π(g)dg

= −
∫
G

f(g)X(π)(g)dg

= f̂(π) ◦ (− log(π(exp(x)))).
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Recall the anit-automorphism of U(g) given by w 7→ w∗ in example 3.17. By successively applying
Lemma 4.8,
Corollary 4.9. For any left-invariant differential operator D ∈ PDO(G) corresponding to w in U(g)
via (2) and any f ∈ C∞(G)

D̂(f)(π) = f̂(π) ◦ dπ(w∗).
Proof. For any composition of left invariant derivations X1 ◦ X2 . . . ◦ Xr corresponding to elements
x1, x2 . . . xn ∈ g, by successively applying Lemma 4.8,

̂(X1 ◦X2 . . . ◦Xr(f))(π) = ̂(X2 ◦X3 . . . ◦Xr(f))(π) ◦ −dπ(x1)

= ̂(X3 ◦X4 . . . ◦Xr(f))(π) ◦ −dπ(x2) ◦ −dπ(x1)
= . . .

= f̂(π) ◦ (−dπ(x1) . . . ◦ −dπ(x2) ◦ −dπ(x1))

Now for arbitrary D =
∑
ai · (Xi,1 ◦Xi,2 . . . ◦Xi,ir ) where each Xi,1 is left invariant corresponding

to xi,1 ∈ g and as elements of U(g),

w =
∑

aixi,1 · xi2 . . . xi,ir .

Then

D̂(f)(π) = ̂(∑
ai · (Xi,1 ◦Xi,2 . . . ◦Xi,ir )(f)

)
(π)

=
∑
i

aif̂(π) ◦ (−dπ(xi,ir ) . . . ◦ −dπ(xi,2) ◦ −dπ(xi,1))

= f̂(π) ◦
(∑

i

ai · −dπ(xi,ir ) . . . ◦ −dπ(xi,2) ◦ −dπ(xi,1)
)

= f̂(π) ◦ dπ(w∗).

Finally, this allows us to completely determine the spectrum of differential operators corresponding
to w in the center of U(g).
Theorem 4.10. For a compact Lie group G and a differential operator D on C∞(G) corresponding
to an element w in the center of U(g), the matrix coefficients mv,λ of π are eigenfunctions of D with
eigenvalue dπ(w∗) (as a scalar in C). Every eigenvalue of D is dπ(w∗) for some irreducible π.
Proof. Note that any anti-automorphism preserves the center of U(g).

By Corollary 4.7, if for every irreducible representation ρ 6= π, m̂λ,v(ρ) = 0, then mλ,v is an
eigenvector with eigenvalue c if

D̂(mλ,v)(π) = c · m̂λ,v(π).
Fix any w ∈ Vρ, then the map from Vπ to Vρ defined by

v 7→ m̂λ,v(ρ)v′

is G-equivariant. By Schur’s lemma, it is the 0 map. Since v′ was arbitrary in Vρ, m̂λ,v(ρ) = 0.
Since w∗ is in the center of U(g), the map dπ(w∗) : Vπ → Vπ is a G-equivariant homomorphism. By
Schur’s lemma it is a constant. By Corollary 4.9, this implies

D̂(mλ,v)(π) = dπ(w∗) · m̂λ,v(π).

We conclude that mλ,v is an eigenfuction with eigenvalue dπ(w∗).
Now suppose that f is an eigenfunction of D. By the Peter-Weyl theorem, there exists some π such
that f̂(π) 6= 0. By Corollary 4.7 and Corollary 4.9 λ = dπ(w∗).
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5 Laplacian on Compact Lie Groups
As before, let G denote a compact connected Lie group and g denote its Lie algebra. Let B denote an
ad-invariant inner product on g and let G be equipped with the induced bi-invariant metric (Proposi-
tion 3.26).

5.1 Casimir Elements
Let K be a fixed nondegenerate symmetric bilinear form on g. It determines an identification K̂ : g

∼=−→
g∗.

Definition 5.1. The Casimir element of g with respect to the symmetric bilinear form K, denoted
c(K), is the image of idg ∈ g⊗ g∗ under the composite map g⊗ g∗

1⊗(K̂)−1

−−−−−−→ g⊗ g→ T (g)→ U(g).

We care about the Casimir element because of the following proposition.

Proposition 5.2. Under (2), the Casimir element c(B) is mapped to the Laplacian ∆ on G.

Proof. See Appendix A.

We continue to give some nice properties of the Casimir element.

Proposition 5.3. Suppose K is ad-invariant. Then the Casimir element c(K) lies in the center of
U(g).

Proof. Let X1, · · · , Xn be an orthonormal basis of g with respect to K. Write [Xi, Xj ] = ckijXk for some
structural constants ckij ∈ R. Then ckij = −ckji by anti-communtativeness of Lie bracket and cjki+cikj = 0
by ad-invariance of K. It follows that for all j, we have

Xj ⊗ c(K) =
∑
i

(Xj ⊗Xi ⊗Xi) =
∑
i,k

ckjiXk ⊗Xi +
∑
i

Xi ⊗Xj ⊗Xi

=
∑
i,k

ckijXi ⊗Xk +
∑
i

Xi ⊗Xj ⊗Xi =
∑
i

Xi ⊗Xi ⊗Xj = c(K)⊗Xj .

Let ϕ : g → gl(V ) be an irreducible representation of g. Since gl(V ) is an associative algebra, the
universal property of U(g) implies that ϕ extends to an (associative) algebra homomorphism U(g) →
gl(V ), which we still denote as ϕ.

Corollary 5.4. Suppose K is ad-invariant. Let ϕ be an irreducible representation of g. Then ϕ(c(K)) =
cϕ(K)idV is some scalar cϕ(K) ∈ C times the identity.

Proof. By Proposition 5.3 we know that ϕ(c(K)) commutes with the g-action on V . The statement
now follows from Schur’s lemma.

Remark 5.5. As in Corollary 3.31, write g = t⊕ (⊕ri=1si) and B = B0 + (
∑r
i=1 λiκi). Then under the

natural inclusions U(t), U(si) ↪→ U(g), one can write c(B) = c(B0) +
∑r
i=1 λic(κi).

5.2 Spectral Properties of the Laplacian
Since G is connected, the differential of an irreducible representation π of G is an irreducible repre-
sentation dπ of g. For notational convenience, we still use cπ(B) to denote the constant cdπ(B) as in
Corollary 5.4.

Theorem 1.1. For each irreducible representation π of G, every matrix coefficient of π is an eigenfunc-
tion of ∆ with eigenvalue cπ(B). In particular, the set of eigenfunctions is complete, and the spectrum
of the Laplacian on G is σ(∆) = {cπ(B) : π is an irreducible representation of G}.
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Proof. Notice that cπ(B)∗ = cπ(B). Now this follows from the Proposition 5.2, Theorem 4.10 and the
Peter-Weyl Theorem 4.5.

Below are three examples. The first two recover the spectral properties of tori as we explicitly
computed in Section 2. The third one is an nonabelian example.

Example 5.6. Let G = U(1) = S1 = R/Z be equipped with the metric inherited from the Euclidean
metric on R. Then g = R is an abelian Lie algebra. The inner product on g corresponding to the
metric on G agrees with the usual Euclidean inner product, denoted B. The Casimir element of g = R
is c(B) = 1⊗ 1 ∈ U(R).

All irreducible representations of G are given by, for each n ∈ Z,

πn : R/Z→ GL(C) = C\{0}, x 7→ e2πinx.

The corresponding Lie algebra representations are

dπn : R→ gl(C) = C, v 7→ 2πinv.

The image of c(B) under the induced map U(R)→ gl(C) is (2πin)·(2πin) = −4π2n2 ∈ gl(C). Therefore
cπn(B) = −4π2n2.

For each πn, a matrix coefficient is a multiple of e2πinx, and is an eigenfunction of ∆ with eigenvalue
cπn(B) = −4π2n2 by Theorem 1.1. This recovers the result in Section 2.1.

Example 5.7. More generally, let G = T = Rn/Γ be a torus equipped with the metric inherited from
the Euclidean metric Rn. Then g = Rn is an abelian Lie algebra with corresponding inner product B
being the Euclidean inner product. Let ε1, · · · , εn denotes the standard basis of Rn, then the Casimir
element of g = Rn is c(B) =

∑n
k=1 εk ⊗ εk.

All irreducible representations of T are given by, for each ξ ∈ Γ∗,

eξ : T → GL(C) = C\{0}, x 7→ e2πiξ·x.

The corresponding Lie algebra representations are

deξ : Rn → gl(C) = C, v 7→ 2πiξ · v.

The image of c(B) under the induced map is
∑n
k=1(2πiξ · εk)2 = −4π2|ξ|2 ∈ gl(C). Therefore ceξ(B) =

−4π2|ξ|2.
For each eξ, a matrix coefficient is a multiple of e2πiξ·x, and is an eigenfunction of ∆ with eigenvalue

ceξ(B) = −4π2|ξ|2 by Theorem 1.1. This recovers Theorem 2.2 in Section 2.2.

Example 5.8. Let G = SU(2) = {A ∈ C2×2 : AA∗ = 1, det(A) = 1}, the special unitary group of size
2. One can write

SU(2) = {
(
α −β
β̄ ᾱ

)
: α, β ∈ C, |α|2 + |β2| = 1}.

Let H = {a+bi+cj+dk : a, b, c, d ∈ R} denotes the skew field of quaternions, where i2 = j2 = k2 = −1,
ij = k, jk = i, ki = j. Then the map (

α −β
β ᾱ

)
7→ α+ βj

gives a Lie group isomorphism SU(2) → Sp(1), where Sp(1) is the group of unit quaternions. It is
also clear that Sp(1) = S3 in the natural way. Moreover, under these identifications, the left or right
multiplication of SU(2) on SU(2) = Sp(1) = S3 preserves the round metric g on S3 (i.e. the metric
induced from R4). Therefore, the round metric g gives a bi-invariant metric on SU(2). Below we shall
always assume SU(2) to be equipped with this metric and let B denote the corresponding ad-invariant
inner product on the Lie algebra su(2). (In fact, by Corollary 3.31 and simpleness of su(2), g is up to
scalar the unique bi-invariant metric on SU(2).)
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We want to calculate the spectrum of ∆ on S3 = SU(2). By Theorem 1.1, we need to calculate
cπ(B) for all irreducible representation π of SU(2).

Since SU(2) is simply connected, its irreducible representations are in one-one correspondence with
irreducible Lie algebra representations of su(2). Below we recall the representation theory of su(2). Let

U =
(
i 0
0 −i

)
, V = ( 0 i

i 0 ) , W =
( 0 −1

1 0
)

be a basis of su(2). Given an irreducible representation su(2) → gl(V ), we can complexify it to an
irreducible representation sl(2,C) = su(2) ⊗ C → gl(V ). Conversely an irreducible representation of
sl(2,C) restricts to one of su(2). Thus it suffices to describe irreducible representations of sl(2,C). Let

H = −iU =
( 1 0

0 −1
)
, X = − 1

2 (W + iV ) = ( 0 1
0 0 ) , Y = 1

2 (W − iV ) = ( 0 0
1 0 )

be a (complex) basis of sl(2,C). Then for each nonnegative integer m, there is exactly one irreducible
representation πm : sl(2,C) → gl(Vm) of sl(2,C) with dimension m + 1. Furthermore, one can find a
basis {vm, vm−2, vm−4 · · · , v−m} of Vm such that

πm(H)vm−2i = (m− 2i)vm−2i, πm(X)vm−2i = (m− i+ 1)vm−2i+2, πm(Y )vm−2i = (i+ 1)vm−2i−2.

Here vm+2 = v−m−2 = 0. For a proof of this classical result one can consult [2, Section 7.2].
Since under the identification su(2) = sp(1), U, V,W corresponds to i, j, k, respectively, we know

they form an orthonormal basis with respect to B. Therefore c(B) = U ⊗ U + V ⊗ V + W ⊗W =
−(H ⊗H + 2X ⊗ Y + 2Y ⊗X). By definition, we have

cπm(B)vm = − (πm(H)πm(H) + 2πm(X)πm(Y ) + 2πm(Y )πm(X))vm
= − πm(H)(mvm)− 2πm(X)vm−2 − 0 = −(m2 + 2m)vm.

Since vm is nonzero, we conclude that cπm(B) = −m(m+ 2).
By Theorem 1.1, σ(∆) = {−m(m + 2): m ∈ Z≥0}. Moreover, for each m, the space of matrix

coefficients of πm gives all eigenfunctions of ∆ with eigenvalue −m(m+ 2).

Remark 5.9. By writing out the irreducible representations of SU(2) in terms of action on homo-
geneous polynomials one can actually show that the eigenfunctions for the eigenvalue −m(m + 2) are
homogeneous polynomials of degree m (with respect to coordinates in R4 ⊃ S3). These polynomials
are called spherical harmonics in R4. Similarly one has spherical harmonics in any Rk, but our method
here only works for k = 2, 4, 8.
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A The Laplace-Beltrami Operator
In this appendix we define the Laplace-Beltrami operator on a Riemannian manifold and prove Propo-
sition 5.2. We assume readers have some differential geometry background.

Definition A.1. The Laplace-Beltrami operator ∆ on a Riemannian manifold M is defined by ∆f =
div(∇f) for all f ∈ C∞(M). Here div(X) denotes the divergence of a vector field X on M .

In particular, let B denotes an ad-invariant inner product on B and let G be equipped with the
induced bi-invariant metric. Then ∆ is defined on G. Let ∇ be the Levi-Civita connection on G.

For X ∈ g, let XL denote the left invariant vector field on G whose value at e is X.

Lemma A.2. For X,Y ∈ g, we have ∇XLY L = 1
2 [X,Y ]L.

Proof. Let X1, · · · , Xn be an orthonormal basis of g. Write [Xi, Xj ] = ckijXk, ckij ∈ R. Since each
∇XL

i
XL
j is left-invariant, it is of the form bkijX

L
k for some constants bkij ∈ R. Torsion-freeness of ∇

yields bkij − bkji = ckij . Metric compatibility of ∇ yields bkij + bjik = 0. It follows that bkij = 1
2c
k
ij , as

desired.

Proof of Proposition 5.2. Let X1, · · · , Xn be an orthonormal basis of g. Then as vector fields on G,
X1, · · · , Xn are orthonormal at every point a ∈ G. For any function f on G, we compute that

∆f = div(∇f) =
n∑
i=1
〈XL

i ,∇XLi ∇f〉 =
n∑
i=1

XL
i 〈XL

i ,∇f〉 −
n∑
i=1
〈∇XL

i
XL
i ,∇f〉 =

n∑
i=1

(XL
i (XL

i f)),

where in the last step we applied Lemma A.2. The statement follows.

Work Distribution
Qiuyu wrote Section 1, Section 2, Section 3.4, Theorem 4.5, Section 5, Apprendix A. Calvin wrote
Section 3 and Section 4 with the exception of Section 3.4 and Theorem 4.5.
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