# Points of Continuity of Real Functions on the Real Line 

Qiuyu Ren

Oct. 29th, 2018

## 1 Introduction

Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, we ask the following question: what can be the set of points of continuity, say $A$, of $f$ ? In basic analysis courses, one might encounter many $f$ with strange behavior. For example, if $f$ is the Dirichlet function given by

$$
f(x)=\left\{\begin{array}{l}
1, \text { if } x \in \mathbb{Q} \\
0, \text { otherwise }
\end{array}\right.
$$

then $A=\mathbb{R}$; if $f$ is the Riemann function given by

$$
f(x)= \begin{cases}\frac{1}{q}, & \text { if } x=\frac{p}{q} \text { for some coprime } p, q \in \mathbb{Z}, q>0 \\ 0, & \text { otherwise }\end{cases}
$$

then $A=\mathbb{R} \backslash \mathbb{Q}$; moreover, if $f$ is given by

$$
f(x)=\left\{\begin{array}{l}
x, \text { if } x \in \mathbb{Q} \\
0, \text { otherwise }
\end{array}\right.
$$

then $A=\{0\}$.
At a glance, $A$ seems to be rather arbitrary. What are the restrictions on $A$ ? How to define a function $f$ for a given $A$ that satisfies some specific properties? This article gives the necessary and sufficient condition for a set $A$ to be the set of points of continuity of a real function $f: \mathbb{R} \rightarrow \mathbb{R}$.

## 2 The amplitude function

For a function $f: \mathbb{R} \rightarrow \mathbb{R}$, we define its amplitude function $\omega: \mathbb{R} \rightarrow[0, \infty]$ by $\omega(x)=\lim _{\delta \rightarrow 0} \sup \left\{\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \mid\right.$ $\left.x_{1}, x_{2} \in(x-\delta, x+\delta)\right\}$. We shall prove a property about the function $\omega$.

Lemma. For any $t>0$, the set $S=\omega^{-1}([0, t))$ is open in $\mathbb{R}$.
Proof. Let $x \in S$. Then $\omega(x)=c<d<t$ for some $c, d \geq 0$.
Choose $\delta>0$ such that $\sup \left\{\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \mid x_{1}, x_{2} \in(x-2 \delta, x+2 \delta)\right\}<d$.
Then for any $y \in(x-\delta, x+\delta), x_{1}, x_{2} \in(y-\delta, y+\delta)$, we have $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<d$. Thus we readily have $\omega(y) \leq d<t, y \in S$. This means $(x-\delta, x+\delta) \subset S$. The lemma follows.

## 3 The main theorem

Now we state our necessary and sufficient condition:
Theorem. A set $A \subset \mathbb{R}$ is the set of points of continuity for some function $f: \mathbb{R} \rightarrow \mathbb{R}$ if and only if $A$ is the countable intersection of some open sets $A_{1}, A_{2}, \cdots$ in $\mathbb{R}$.

Proof. We first begin with necessity.
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function with $A$ being its set of points of continuity, denote the amplitude function of $f$ by $\omega$. By definition of $\omega$ we know that $A=\omega^{-1}(0)$. Thus

$$
A=\omega^{-1}(0)=\bigcap_{n=1}^{\infty} \omega^{-1}\left(\left[0, \frac{1}{n}\right)\right)
$$

is a countable intersection of open sets $\omega^{-1}\left(\left[0, \frac{1}{n}\right)\right), n=1,2, \cdots$, by the above Lemma.
Now we prove sufficiency. Suppose $A=\cap_{n=1}^{\infty}$ where $A_{n}$ are open in $\mathbb{R}$.
Define $B_{n}=\cap_{k=1}^{n} A_{n}, n \geq 1, B_{0}=\mathbb{R}$. Then $B_{0} \supset B_{1} \supset \cdots$ are a series of open sets, and that $\cap_{n=1}^{\infty} B_{n}=A$. Now we define

$$
f(x)=\left\{\begin{array}{l}
0, \text { if } x \in A \\
\frac{1}{n}, \text { if } x \in\left(B_{n-1} \backslash B_{n}\right) \cap \mathbb{Q} \text { for some } n \in \mathbb{N}_{+} \\
\frac{2}{2 n-1}, \text { if } x \in\left(B_{n-1} \backslash B_{n}\right) \backslash \mathbb{Q} \text { for some } n \in \mathbb{N}_{+}
\end{array}\right.
$$

We claim that the set of points of continuity of $f$ is exactly $A$.
In fact, for any $x \in A, \epsilon>0$, find $N>\frac{1}{\epsilon}$, then for any $y \in B_{N}$, we have $|f(y)-f(x)| \leq \frac{1}{N}<\epsilon$. Since $\epsilon$ is arbitrary, we conclude that $f$ is continuous at $x$.
For any $x \notin A$, say $x \in B_{n-1} \backslash B_{n}$ and any neighborhood $U$ of $x$, there exist some $y \in U$ such that $x, y$ are not both rational or irrational. By definition we easily know that $f(x) \neq f(y)$, and thus $|f(y)-f(x)| \geq$ $\max \left\{\sup \left\{\left.\left|f(y)-\frac{1}{n}\right| \right\rvert\, f(y) \neq \frac{1}{n}\right\}, \sup \left\{\left.\left|f(y)-\frac{2}{2 n-1}\right| \right\rvert\, f(y) \neq \frac{2}{2 n-1}\right\}\right\}=\frac{1}{n(2 n+1)}$. We conclude that $f$ is discontinuous at $x$.

