Points of Continuity of Real Functions on the Real Line

Qiuyu Ren
Oct. 29th, 2018

1 Introduction

Given a function \(f : \mathbb{R} \to \mathbb{R} \), we ask the following question: what can be the set of points of continuity, say \(A \), of \(f \)? In basic analysis courses, one might encounter many \(f \) with strange behavior. For example, if \(f \) is the Dirichlet function given by

\[
f(x) = \begin{cases}
1, & \text{if } x \in \mathbb{Q} \\
0, & \text{otherwise}
\end{cases}
\]

then \(A = \mathbb{R} \); if \(f \) is the Riemann function given by

\[
f(x) = \begin{cases}
1 \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ for some coprime } p, q \in \mathbb{Z}, q > 0 \\
0, & \text{otherwise}
\end{cases}
\]

then \(A = \mathbb{R} \setminus \mathbb{Q} \); moreover, if \(f \) is given by

\[
f(x) = \begin{cases}
x, & \text{if } x \in \mathbb{Q} \\
0, & \text{otherwise}
\end{cases}
\]

then \(A = \{0\} \).

At a glance, \(A \) seems to be rather arbitrary. What are the restrictions on \(A \)? How to define a function \(f \) for a given \(A \) that satisfies some specific properties? This article gives the necessary and sufficient condition for a set \(A \) to be the set of points of continuity of a real function \(f : \mathbb{R} \to \mathbb{R} \).

2 The amplitude function

For a function \(f : \mathbb{R} \to \mathbb{R} \), we define its amplitude function \(\omega : \mathbb{R} \to [0, \infty) \) by

\[
\omega(x) = \lim_{\delta \to 0} \sup \{|f(x_1) - f(x_2)| | x_1, x_2 \in (x - \delta, x + \delta)\}
\]

We shall prove a property about the function \(\omega \).

Lemma. For any \(t > 0 \), the set \(S = \omega^{-1}((0, t)) \) is open in \(\mathbb{R} \).

Proof. Let \(x \in S \). Then \(\omega(x) = c < d < t \) for some \(c, d \geq 0 \).

Choose \(\delta > 0 \) such that \(\sup \{|f(x_1) - f(x_2)| | x_1, x_2 \in (x - 2\delta, x + 2\delta)\} < d \).

Then for any \(y \in (x - \delta, x + \delta) \), \(x_1, x_2 \in (y - \delta, y + \delta) \), we have \(|f(x_1) - f(x_2)| < d \). Thus we readily have \(\omega(y) \leq d < t \), \(y \in S \). This means \((x - \delta, x + \delta) \subset S \). The lemma follows.

3 The main theorem

Now we state our necessary and sufficient condition:

Theorem. A set \(A \subset \mathbb{R} \) is the set of points of continuity for some function \(f : \mathbb{R} \to \mathbb{R} \) if and only if \(A \) is the countable intersection of some open sets \(A_1, A_2, \cdots \) in \(\mathbb{R} \).
Proof. We first begin with necessity. If $f : \mathbb{R} \to \mathbb{R}$ is a function with A being its set of points of continuity, denote the amplitude function of f by ω. By definition of ω we know that $A = \omega^{-1}(0)$. Thus

$$A = \omega^{-1}(0) = \bigcap_{n=1}^{\infty} \omega^{-1}\left((0, \frac{1}{n})\right)$$

is a countable intersection of open sets $\omega^{-1}\left([0, \frac{1}{n})\right)$, $n = 1, 2, \cdots$, by the above Lemma.

Now we prove sufficiency. Suppose $A = \bigcap_{n=1}^{\infty} A_n$, where A_n are open in \mathbb{R}. Define $B_n = \bigcap_{k=1}^{n} A_n$, $n \geq 1$, $B_0 = \mathbb{R}$. Then $B_0 \supset B_1 \supset \cdots$ are a series of open sets, and that $\bigcap_{n=1}^{\infty} B_n = A$.

Now we define

$$f(x) = \begin{cases}
0, & \text{if } x \in A \\
\frac{1}{n}, & \text{if } x \in (B_{n-1} \setminus B_n) \cap \mathbb{Q} \text{ for some } n \in \mathbb{N}_+ \\
\frac{2}{2n-1}, & \text{if } x \in (B_{n-1} \setminus B_n) \setminus \mathbb{Q} \text{ for some } n \in \mathbb{N}_+.
\end{cases}$$

We claim that the set of points of continuity of f is exactly A.

In fact, for any $x \in A$, $\epsilon > 0$, find $N > \frac{1}{\epsilon}$, then for any $y \in B_N$, we have $|f(y) - f(x)| \leq \frac{1}{N} < \epsilon$. Since ϵ is arbitrary, we conclude that f is continuous at x.

For any $x \notin A$, say $x \in B_{n-1} \setminus B_n$ and any neighborhood U of x, there exist some $y \in U$ such that x, y are not both rational or irrational. By definition we easily know that $f(x) \neq f(y)$, and thus $|f(y) - f(x)| \geq \max\{\sup\{|f(y) - \frac{1}{n} | f(y) \neq \frac{1}{n}\}, \sup\{|f(y) - \frac{2}{2n-1} | f(y) \neq \frac{2}{2n-1}\}\} = \frac{1}{n(2n+1)}$. We conclude that f is discontinuous at x. \qed