
NONNEGATIVELY CURVED sl2(R)-CONNECTIONS ON SURFACES

QIUYU REN AND ZHUOFAN XIE

Abstract. We study the space of nonnegatively curved sl2(R)-connections on an ori-
ented surface (possibly with boundary) with prescribed hyperbolic boundary holonomies
and a nonzero (relative) euler number. When the euler number is no less than the
genus of the surface, we show that the embedding of the space of nonnegatively curved
connections into the space of all connections is a homotopy equivalence. When the
euler number is no more than the negative of the genus of the surface, we show that
the embedding of the space of flat connections into the space of nonnegatively curved
connections is a homotopy equivalence.

1. Introduction

Throughout this paper, let G denote PSL2(R). Let G̃ be its universal cover, and
g = sl2(R) be its Lie algebra.

There is a faithful G-action on RP 1 arises in the natural way, namely by left multi-
plication. An element in g is said to be nonnegative (resp. nonpositive) if its associated
vector field on RP 1 does not point in the clockwise (resp. counterclockwise) direction
anywhere.

Let S be an oriented surface (with or without boundary). A g-connection A on S
with curvature FA is said to be nonnegatively curved if FA(v1, v2) ∈ g is nonnegative
for all oriented (v1, v2) ∈ TpS, p ∈ S. Equivalently, A is nonnegatively curved if at
any point in S, the infinitesimal parallel transport counterclockwisely gives rises to a
nonpositive element in g.

For a closed surface S with genus g, let A(S)e (resp. A≥0(S)e,Aflat(S)e) denote the
space of all (resp. nonnegatively curved, flat) g-connections on S with euler number e.
More explicitly, we are considering connections on the principle G-bundle over S whose
associated RP 1-bundle has euler number e.

For an open surface S with genus g and b > 0 boundary components ∂S1, · · · , ∂Sb,
every G-bundle over it is trivializable since H2(S) = 0. We shall put constraint on
the boundary holonomies to obtain nontrivial results. Explicitly, for given hyperbolic
conjugacy classes Ci of G, i = 1, · · · , b, let A(S, {Ci})e (resp. A≥0(S, {Ci})e,Aflat(S,
{Ci})e) denote the space of all (resp. nonnegatively curved, flat) g-connections on S
whose boundary holonomy along ∂Si belongs to Ci for all i, and whose relative euler
number is e (see [Gol88, Section 3] for more discussions about relative euler numbers).
In general we just write A•(S, {Ci})e to denote both closed and open cases, with the
understanding that in the closed case the set {Ci} is empty. Here A• denotes any of
A,A≥0,Aflat. In the rest of the introduction section only, we will further abbreviate
the notation by writing A• to denote A•(S, {Ci})e.
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In various settings described above, we will be interested in how the space of non-
negatively curved connections fits into the following sequence up to weak equivalence:

Aflat ↪→ A≥0 ↪→ A (1)

or perhaps the sequence module gauge equivalence:

Aflat/G ↪→ A≥0/G ↪→ A/G (2)

where G denotes the gauge group on the corresponding G-bundle, which for our con-
venience is defined to act on A on the left by pushforward. Note that G acts freely
provided e 6= 0.

Here, our convention for weak equivalence follows [Sei19, Section 3]. All spaces of con-
nections and spaces of paths (which will arise later) are always assumed to be smooth.
Under this setting, weak equivalence is with respect to smooth maps from finite di-
mensional compact smooth manifolds (possibly with corners). For example, a space P
with some smooth structure is said to be weakly contractible if for every smooth map
f : M → P from a smooth manifold M , there is a smooth homotopy M × [0, 1] → P
from f to a constant map. Note that between finite dimensional smooth manifolds, the
notion of weak equivalence coincide with the usual homotopy equivalence (by Whitney
approximation theorem and Whitehead theorem).

Under this convention, however, it does not make much sense to talk about weak
homotopy type of moduli spaces A•/G. We will therefore refrain from such discussion,
and whenever we do so, the purpose is only to be pedantic.

The space of all connections is easy to understand. In the closed case, A is contractible
and G 'Map(S,S1) ' S1 × Z2g, so

A/G ' BG ' CP∞ × T2g = Sym∞(S),

where Tm is the m-dimensional torus and Sym∞(S) = lim−→Symk(S) is the infinite

symmetric product of S (for basic properties of symmetric products one may consult
[BGZ04]). In the surface with boundary case, evaluation on boundary yields a weak
equivalence

A '−→ (S1)b × Zb−1 = Tb × Zb−1,

Note here hyperbolicity of Ci is used. Moreover, let A′ ⊂ A denote the space of g-
connections with certain fixed boundary values, and G′ ⊆ G be the group of gauge
transformations that fix the boundary values of connections in A′. Then A′ is con-
tractible and G′ ' Map((S, ∂S), (S1, ∗)) ' H1(S, ∂S) = Z2g+b−1 (hyperbolicity is used
again), so

A/G ' A′/G′ ' BG′ ' T2g+b−1 = Sym∞(S).

The space of flat connections is also well understood. The horizontal tangent spaces
in the relevant G-bundle with respect to a flat connection integrate to a foliation, and
by looking at parallel transport we obtain the following description:

Aflat/G ' {ρ : π1(S)op → G | ρ(∂Si) ∈ Ci, e(ρ) = e}/G , Rep(S, {Ci})e/G,
where e(ρ) is the euler number or relative euler number of the G-bundle given by ρ,
and G acts by conjugation. The space on the right has been examined by many people
including Goldman [Gol88], Hitchin [Hit87]. We refer to Mondello [Mon16] where the
following summary for both closed and open cases is available:
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Proposition 1.1 (Mondello). Suppose e 6= 0, then Rep(S, {Ci})e/G ' Sym−χ(S)−|e|(S).
Here it is understood that Symk(−) = ∅ for k < 0.

We want to understand how does A≥0 fits in (1). Here is our main theorem which
answers this question partially, leaving some gaps for g ≥ 2 cases.

Main Theorem. Let S be an oriented surface with genus g and b boundary compo-
nents. Let C1, · · · , Cb be hyperbolic conjugacy classes of G.

(a) Suppose e ≥ max{g, 1}. Then the inclusion A≥0(S, {Ci})e ↪→ A(S, {Ci})e is a weak
equivalence.

(b) Suppose e ≤ −max{g, 1}. Then the inclusion Aflat(S, {Ci})e ↪→ A≥0(S, {Ci})e is a
weak equivalence.

In this paper, we first introduce some basic notions and properties for the Lie group
G in Section 2. In particular, we prove that the space of nonnegative path in G̃ with
given endpoints is weakly contractible, if not empty.

In Section 3, following [Sei19, Section 4], we establish weak equivalences from spaces

of nonnegative curved connections to some particular subsets of some Gm or G̃m which
we call nonpositive representation spaces.

In Section 4 we give two tricks to deform the terms appearing in the expression of
nonpositive representation spaces in the positive direction. Finally, in Section 5, using
these tricks, we deform relevant nonpositive representation spaces and prove our main
theorem. We also calculate the homotopy type of nonpositive representation spaces in
the genus zero case using an independent elementary method. This can be used to give
a nice way understanding the map in Proposition 1.1 in the genus zero case.

2. Preliminary

We begin with some basic properties and notions about G, G̃. Whenever we write
elements in G in the form of a matrix, we are writing down one of its lift in SL2(R).

All elements in G except the identity I are classified into three types: elliptic, para-
bolic, and hyperbolic. An elliptic element is conjugate to exactly one of

rθ =
(

cos θ − sin θ
sin θ cos θ

)
, θ ∈ (0, π). (3)

A hyperbolic element is conjugate to exactly one of(
λ 0
0 λ−1

)
, λ ∈ (1,∞).

A parabolic element is conjugate to exactly one of

( 1 ε
0 1 ) , ε = ±1,

and according to ε = −1, 1, this parabolic element is said to be nonnegative, nonpositive,
respectively. The distinction of different type of elements is the clearest when one looks
at their action on RP 1.

Accordingly, we have the notion of elliptic, nonnegative/nonpositive parabolic, hy-

perbolic elements in G̃.

A smooth path p(t) in G is said to be nonnegative if for any ξ ∈ RP 1, p(t)(ξ),
treated as a path in RP 1, does not move in the clockwise direction anywhere. It is
said to be positive if p(t)(ξ) moves in strictly counterclockwise direction everywhere.
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An equivalent condition for p to be nonnegative is that p′(t)p(t)−1 is a nonnegative
element in g for any t; a sufficient condition for p to be positive is that p′(t)p(t)−1 is a
positive element in g for any t. Here, nonnegative elements in g are defined as in the
introduction (i.e. those whose associated vector field on RP 1 point nonclockwisely),
and positive elements are defined to be the elements in the interior of the solid cone of
nonnegative elements (equivalently, those whose associated vector field on RP 1 point
strictly counterclockwisely). Explicitly, an element in g is nonnegative (resp. positive)
if and only if it can be written as(

a b−c
b+c −a

)
, c ≥

√
a2 + b2 (resp. c >

√
a2 + b2). (4)

By definition it is clear that nonnegative/positive paths are invariant under conjuga-
tion. Multiplication of several nonnegative paths is nonnegative, and is positive if one
of the factors is. A path in G̃ is said to be nonnegative/positive if its image in G is.

Likewise we have the notion of nonpositive/negative paths in G or G̃.
If there exists a nonnegative path from g̃0 to g̃1, then we write g̃0 ≤ g̃1. Clearly, ≤

is a partial order on G̃. Moreover, for fixed g̃ ∈ G̃, the space of g̃′ ∈ G̃ with g̃′ ≤ g̃ is a
closed subspace of G̃ (this will become clearer later in light of Corollary 2.4).

The lift from g ∈ G to g̃ ∈ G̃ is equivalent to a lift of its action on RP 1 to an action
on R (viewed as the universal cover of R/πZ = RP 1). Any g̃ ∈ G̃ has a rotation number,
formally defined as

rot(g̃) = lim
n→∞

g̃n(x)− x
πn

for any x ∈ R. (5)

Specifically, if g̃ is not elliptic, then its image g ∈ G has an eigenvector ξ ∈ RP 1 which
lifts to some x ∈ R and we have rot(g̃) = (g̃(x) − x)/π ∈ Z. If g̃ is elliptic, then it is
conjugate to an element whose action on R is the translation by some θ, and we have
rot(g̃) = θ/π 6∈ Z.

We shall always use Ĩk ∈ G̃ to denote the lift of the identity element I ∈ G with
rotation number k ∈ Z.

Some general properties of rotation numbers are: they are continuous, nondecreasing
along nonnegative paths, increasing along positive paths inside the elliptic locus, and
satisfy the quasimorphism property

|rot(g̃1g̃2)− rot(g̃1)− rot(g̃2)| ≤ 1.

We refer our readers to [Sei19, Section 3] and [LM97] for more details.

In general there is no canonical lift from G to G̃, but in the following two situations
there is such a lift:
(1) The commutator of g0, g1 ∈ G has a canonical lift to G̃: take any lift g̃0, g̃1 of g0, g1,

then [g̃0, g̃1] ∈ G̃ is independent of the choice of g̃0, g̃1. Later we shall sometimes abuse
the notation and write [g0, g1] to denote this canonical lift.
(2) If g ∈ G is not elliptic, then there is a unique lift of g with rotation number zero.
Later we shall sometimes write g̃ to denote this preferred lift.

We end this section by proving the following result about nonnegative paths, which
generalizes some discussions in Seidel [Sei19, Section 3].
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Proposition 2.1. Let g̃0, g̃1 ∈ G̃ be arbitrary. Then the space of nonnegative paths
from g̃0 to g̃1 is either empty or weakly contractible.

Before proving this proposition, it is beneficial for us to establish a new parametriza-
tion of G̃. For any θ ∈ R, let r̃θ be the lift of rθ (which is defined by (3)) with rotation

number θ/π. We also define the displacement function for g̃ ∈ G̃ to be

ϕg̃ : R→ R, x 7→ g̃(x)− x. (6)

For example, ϕr̃θ ≡ θ.

The following lemma is immediate.

Lemma 2.2. If ϕg̃ is nonnegative and ϕg̃(0) = 0, then g̃ is the identity or a nonnegative
parabolic element with rotation number 0. Furthermore, one can parametrize all such g̃
by

Φ(λ) =
(̃

1 −λ
0 1

)
, λ ∈ [0,∞). �

One can easily check ϕr̃θ g̃(x) = ϕg̃(x) + θ and ϕr̃θ g̃r̃−θ(x) = ϕg̃(x + θ). Since ϕg̃ is
π-periodic, inf ϕg̃ := h is achieved by some θ∗ ∈ [0, π). By checking that ϕr̃−hr̃−θ∗ g̃r̃θ∗
do satisfy the conditions of Lemma 2.2, we immediately see g̃ = r̃θ∗+hΦ(λ)r̃−θ∗ for
some unique λ ∈ R≥0. With a little bit abuse of notation, denote it by g̃ = Φ(λ, θ∗, h).
Furthermore, this decomposition is unique as long as λ 6= 0, since the graph of ϕΦ(λ,θ∗,h)

being a translation of ϕΦ(λ) implies arg minϕg̃ is unique mod π. We summarize this as
below.

Lemma 2.3. {Φ(λ, θ, h)}(λ,θ)∈R≥0×RP 1/∼,h∈R is a global parametrization of G̃, where

(λ1, θ1) ∼ (λ2, θ2) if and only if λ1 = λ2 = 0 or (λ1, θ1) = (λ2, θ2). �

Proof of Proposition 2.1. Replacing g̃1 by g̃−1
0 g̃1 if necessary, we may assume g̃0 = Ĩ0 =

Φ(0, 0, 0).

We denote by G̃≥0 the set {g̃ ∈ G̃ | Ĩ0 ≤ g̃}. Observe that when we fix θ and increase
λ and/or h, ϕΦ(λ,θ,h) is increasing and thus g̃ is moving in the nonnegative direction.
This implies, whenever h ≥ 0, we have a nonnegative path t 7→ Φ(tλ, θ, th), t ∈ [0, 1]

from Φ(0, θ, 0) = Φ(0, 0, 0) to Φ(λ, θ, h), and therefore Φ(λ, θ, h) ∈ G̃≥0. We denote

this “canonical path” from Φ(0, 0, 0) to g̃ ∈ G̃≥0 by pg̃. One can check that in fact pg̃
depends smoothly on g̃.

Now for fixed g̃1 ∈ G̃≥0, let P denote the space of nonnegative paths from Ĩ0 to g̃1.
We have the following deformation retract

H : [0, 1]× P → P,

Hs(p̃)(t) = p̃((1− s)t)pp̃(1−s)−1g̃1(t)

from P onto the one point space {pg̃1}. �

The proof above also shows the following corollary.

Corollary 2.4. Let g̃0, g̃1 ∈ G̃. Then g̃0 ≤ g̃1 if and only if ϕg̃0 ≤ ϕg̃1. �
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3. Nonnegatively Curved Connections and Nonnegative Paths

For a connection A ∈ Ω1(S; g) on the trivial G-bundle S × G → S and a loop
γ : [0, 1] → S, parallel transport along γ gives a map τγ : G → G. The element
holA(γ) := τγ(I) ∈ G is called the holonomy of A along γ. In general, in an arbi-
trary G-bundle without a prescribed trivialization, the holonomy of a connection along
a loop is defined only up to conjugacy. When we speak of a holonomy without specify-
ing the trivialization, it is always understood that we are working on the trivial bundle
S ×G→ S over S.

Let γ1γ2 denote the concatenation of loops γ1 and γ2. Then the right G-equivariance
of parallel transport yields

holA(γ1γ2) = holA(γ2)holA(γ1). (7)

Assuming a fixed trivialization, any holonomy holA(γ) has a canonical lift to G̃,

denoted h̃olA(γ). We still call this the holonomy of A along γ and this abuse of notation

should not cause any confusion. Note (7) still holds with hol replaced by h̃ol.
As remarked in the introduction, a connection is nonnegatively curved if and only

if the infinitesimal holonomy is a nonpositive element in g everywhere. On a larger
scale, we will soon see a correspondence between nonnegatively curved connections and
nonnegative path in G̃ (Lemma 3.1).

Equip the cylinder S1× [0, 1] with the orientation opposite to the product orientation.
Fix a basepoint ∗ ∈ S1. Let cs denote the loop consisting of the segment from (∗, 0) to
(∗, s), the loop around S1 × {s} with the usual (counterclockwise) orientation, and the
segment from (∗, s) to (∗, 0), concatenated in this order.

For the next two lemmas, we essentially follow Seidel [Sei19, Section 4]. With Propo-
sition 2.1 in hand, some results are generalized. Let A≥0(S1 × [0, 1]) denote the space
of nonnegatively curved connections on S1 × [0, 1] and A≥0(S1 × [0, 1], ·, ·) denote its
subspace with prescribed boundary behaviors (orientation for S1 × {0} is taken to be
counterclockwise, as opposed to the induced one). Here · denotes a connection on S1,

an element in G̃, or a conjugacy class of G̃. For the unit disk D we similarly define
A≥0(D, ·). Here we always work on the trivial bundle.

Lemma 3.1. For any A ∈ A≥0(S1 × [0, 1]), the path p̃(s) = h̃olA(cs) is nonpositive.
Moreover, for a fixed a ∈ Ω1(S1; g) with holonomy g̃0 (with respect to the basepoint ∗) and

a nonpositive path p̃ : [0, 1] → G̃ with p̃(0) = g̃0, then the space of A ∈ A≥0(S1 × [0, 1])

with A|S1×{0} = a, h̃olA(cs) = p̃(s) is weakly contractible.

Proof. See Seidel [Sei19, Lemma 4.16]. �

Lemma 3.2. Fix a connection a ∈ Ω1(S1; g) with holonomy g̃ ∈ G̃. Then A≥0(D, a) is

weakly contractible if g̃ ≤ Ĩ0 and empty otherwise.

Proof. (See also [Sei19, Proposition 4.21])
Let φt : D → D be a smooth family of smooth maps with φ0 = id, φt|S1 = id,

det(Dφt) ≥ 0, and such that φ1 retracts a neighborhood of 0 to 0. Then pulling-back
by φt shows that A≥0(D, a) is weak equivalent to its subspace consisting of connections
that are trivial near 0. Equivalently, it is weak equivalent to the space of connections
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in A≥0(S1 × [0, 1]) that restrict to a on S1 × {1} and restrict to zero on S1 × [0, 1/2].
Applying a similar pullback argument again, we see this space is in turn weak equivalent
to A≥0(S1 × [0, 1], 0, a).

Let C̃ denote the conjugacy class of g̃. Lemma 3.1 gives a weak equivalence A≥0(S1×
[0, 1], 0, C̃) → P, where P denotes the space of nonpositve path in G̃ from Ĩ0 to some

point in C̃, which is empty if g̃ 6≤ Ĩ0.
Assume now g̃ ≤ Ĩ0, then by Proposition 2.1, evaluating at the endpoint 1 yields

a homotopy equivalence P → C̃. Composition of the two maps above yields a weak
equivalence

A≥0(S1 × [0, 1], 0, C̃)→ C̃, A 7→ h̃olA(c1). (8)

By applying a family of gauge transformations that are constant along each S1 ×
{s} and trivial along S1 × {1}, we can retract A≥0(S1 × [0, 1], 0, C̃) onto its subspace

A′≥0(S1 × [0, 1], 0, C̃), where the prime indicate the subspace of connections that are

trivial when restricting to {∗} × [0, 1]. Then, replacing A≥0 by A′≥0 in (8), we get a

weak equivalence whose fiber A′≥0(S1 × [0, 1], 0, g̃) is weakly contractible.

Finally, the space A′≥0(S1×[0, 1], 0, g̃) retracts onto A′≥0(S1×[0, 1], 0, a) via a family of

gauge transfromations that are trivial on S1×{0}∪{∗}× [0, 1] and A≥0(S1× [0, 1], 0, a)
retracts onto A′≥0(S1 × [0, 1], 0, a) via the previous family of gauge transformations.

Therefore A≥0(S1× [0, 1], 0, a) is also weakly contractible and the statement follows. �

Now we begin to analyze our problem in hand.
First let us consider the closed case. Let S be a closed surface with genus g > 0.

Choose a basepoint ∗ ∈ S and loops αi, βi at ∗ generating π1(S). Furthermore assume
all these loops do not meet each other except at ∗. Then S can be regard as a 4g-
gon with edges β−1

g , α−1
g , βg, αg, · · · , β1, α1 with the usual identifications. We may also

assume that this order of edges represents the positive orientation of S.
If ht is a family of loops in the 4g-gon based at ∗ that shrinks the boundary loop

to some loop ττ−1 where τ is any path with τ((0, 1]) disjoint from the boundary loop,
then, thinking as loops in S, Lemma 3.1 implies that p(t) = holA(ht) is a nonnegative
path in G from holA(h0) to holA(h1) = I, for any A ∈ A≥0(S)e. The condition e on

euler number says precisely that p(t) lifts to a path in G̃ from

h̃olA(h0) = [h̃olA(α1), h̃olA(β1)] · · · [h̃olA(αg), h̃olA(βg)]

to Ĩe. Here, when defining hol, h̃ol, we made a spherical blowup of S at τ(1) and fixed
a trivialization of the pullbacked bundle over the blown-up surface (and adjusted h1

accordingly; it is assumed that all ht avoided τ(1) for t < 1).

Proposition 3.3. The map

A≥0(S)e → G̃2g, A 7→ (h̃olA(α1), h̃olA(β1), · · · , h̃olA(αg), h̃olA(βg))

is a weak equivalence onto its image, which is given by

R̃ep≤0(S)e = {(X̃1, Ỹ1, · · · , X̃g, Ỹg) ∈ G̃2g | [X̃1, Ỹ1] · · · [X̃g, Ỹg] ≤ Ĩe}.

Proof. Like in the proof of Lemma 3.2, we choose a family of self maps φt on S that
shrinks a neighborhood of the boundary of our 4g-gon to the boundary. Pulling-back by
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these maps yields a map φ∗1 which is a weak equivalence onto its the subspace consisting
of connections that are flat in a neighborhood U of the boundary loop β−1

g α−1
g · · ·β1α1.

We may assume that S\U is diffeomorphic to a disk. Also note that the pullback
preserves holonomy along the boundary loop. Now Lemma 3.2 applying to S\U implies

that the image of the given map is R̃ep≤0(S)e, and that the fiber above each point in
the image is weakly contractible. The desired result follows. �

Next we consider the case where S has genus g with b > 0 boundaries ∂S1, · · · ∂Sb,
and let Ci be fixed hyperbolic conjugacy class of G. Choose a basepoint ∗ ∈ S\∂S
and loops α1, β1, · · · , αg, βg, γ1, · · · , γb at ∗ generating π1(S), such that all these paths

do not meet each other except at endpoints, and that γi = σiτiσ
−1
i where σi is a path

from ∗ to a point on ∂Si and τi is a loop around ∂Si. Then S can be regarded as a
(4g + 3b)-gon with edges σ−1

b , τb, σb, · · ·β−1
1 , α−1

1 , β1, α1 with the usual identifications.
We may also assume that this order of edges represents the positive orientation of S.

If ht is a family of loops in the (4g+3b)-gon based at ∗ that shrinks the boundary loop

to some loop ττ−1, then, thinking as loops in S, Lemma 3.1 implies that p̃(t) = h̃olA(ht)

is a nonnegative path in G from h̃olA(h0) to h̃olA(h1) = Ĩ0, for any A ∈ A≥0(S, {Ci})e.
Here we are working on the trivial bundle over S. This time, the condition e on relative
euler number says precisely that

e = −
b∑
i=1

rot(h̃olA(γi)),

which is a gauge invariant integer.
Let π : G̃→ G denote the covering map and let

C =
b∏
i=1

Ci;

C̃ = {(Z̃1, · · · , Z̃b) ∈
b∏
i=1

π−1(Ci) |
b∑
i=1

rot(Z̃i) = 0}.

Proposition 3.4. The map

A≥0(S, {Ci})e → G̃2g × C̃, A 7→ (h̃olA(α1), h̃olA(β1), · · · , h̃olA(αg), h̃olA(βg),

h̃olA(γ1), · · · , h̃olA(γb−1), h̃olA(γb)Ĩe)

is a weak equivalence onto its image, which is given by

R̃ep≤0(S, {Ci})e = {(X̃1, Ỹ1, · · · , Z̃b) ∈ G̃2g × C̃ | [X̃1, Ỹ1] · · · [X̃g, Ỹg]Z̃1 · · · Z̃b ≤ Ĩe}.

The proof is similar to the closed case and we skip. Note that the formula here
contains the closed case as a special situation where b = 0. Moreover, although we have
excluded the case S = S2 in our previous discussion, the same conclusions hold for this
case as well, namely that A≥0(S2)e is contractible if e ≥ 0 and is empty otherwise. To
see this, one trivialize a neighborhood of some point in S2 by the same pullback trick
as before, then Lemma 3.2 yields the desired result. Therefore, for later use we shall
simply refer to Proposition 3.4 for the result for any surface S.
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Remark 3.5. One may also want to conclude that the map

A≥0(S, {Ci})e/G → Rep≤0(S, {Ci})e/G, [A] 7→ [(holA(α1), holA(β1), · · · , holA(γb))]

is a weak equivalence. Here

Rep≤0(S, {Ci})e = {(X1, Y1, · · · , Zb) ∈ G2g ×C | [X1, Y1] · · · [Xg, Yg]Z̃1 · · · Z̃b ≤ Ĩe}

andG acts by conjugation. The quotient should be interpreted as the homotopy quotient
EG×G Rep≤0(S, {Ci})e in case the conjugation action is not free.

To conclude this, one argues as follows: realize G as the semidirect product of G0 and

G, where G0 denotes the gauge that acts as identity at ∗. Then A≥0(S, {Ci})/G0
'−→

Rep≤0(S)e, and mod out the extra G corresponds to mod conjugation on the right hand
side.

However, we refrain from taking such perspective since we did not really define a
topology on A≥0(S, {Ci}) and it does not make much sense to discuss the weak homo-
topy type of the quotient A≥0(S, {Ci})/G.

Lastly, we point out that all results in this section remains true if we replace the
pair (nonnegatively curved connections, nonnegative/nonpositive paths) by (flat con-
nections, constant paths) or (all connections, all paths). The proofs are similar, if not
easier. Note that the counterpart for Proposition 2.1 in the all connection case, namely
that the space of all paths in G̃ with given endpoints is weakly contractible, is trivially
true.

In particular we recover the following descriptions for Aflat and A (possibly b = 0):

Aflat(S, {Ci})e
'−→ R̃ep(S, {Ci})e;

A(S, {Ci})e
'−→ G̃2g × C̃.

Here

R̃ep(S, {Ci})e = {(X̃1, Ỹ1, · · · , Z̃b) ∈ G̃2g × C̃ | [X̃1, Ỹ1] · · · [X̃g, Ỹg]Z̃1 · · · Z̃b = Ĩe}.

By our construction, it is clear that in all cases, the following diagram commutes.
Here vertical arrows are weak equivalences.

Aflat(S, {Ci})e A≥0(S, {Ci})e A(S, {Ci})e

R̃ep(S, {Ci})e R̃ep≤0(S, {Ci})e G̃2g × C̃.

' ' ' (9)

Remark 3.6. Pedantically, one also have the corresponding commutative diagram for
moduli spaces:

Aflat(S, {Ci})e/G A≥0(S, {Ci})e/G A(S, {Ci})e/G

Rep(S, {Ci})e/G Rep≤0(S, {Ci})e/G (G2g ×C)/G,

' ' '

where Rep(S, {Ci}) is defined in the similar way as above.
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4. Deformation Techniques in G

In this section we perform two tricks to deform some particular elements in G in
some nice ways. More explicitly, we perform a way to deform the space of hyperbolic
elements in the positive direction and a way to deform a pair of elements in G such that
their commutator moves in the positive direction.

These two easy tricks will be the key for our analysis in Section 5 of nonpositive
representation spaces.

4.1. Deformation of Hyperbolic Elements. We begin by introducing a parametriza-
tion for hyperbolic elements in G.

For any hyperbolic element g ∈ G, let ξ+(g), ξ−(g) ∈ RP 1 denote the eigenvector of
the left multiplication map g : R2/{±1} → R2/{±1} with the larger, smaller absolute
value of eigenvalue, respectively, and let λ(g) denote the larger absolute value of the

eigenvalue. Also, let ξ(g) denote the midpoint of the (counterclockwise) arc
>
ξ−(g)ξ+(g).

For example, when λ > 1, for the element

g =
(
λ−1 0

0 λ

)
∈ G

we have ξ−(g) = 0, ξ+(g) = π/2, ξ(g) = π/4 and λ(g) = λ.
Let Hyp ⊂ G denote the set of hyperbolic elements. Then the map

ξ− × ξ+ × λ : Hyp→ ((RP 1)2\∆)× (1,∞),

is a diffeomorphism. Here ∆ denotes the diagonal of RP 1 × RP 1. The inverse of this
map is given by

Ψ(ξ−, ξ+, λ) =
1

sin(ξ− − ξ+)

(
cos ξ+ cos ξ−
sin ξ+ sin ξ−

) (
λ 0
0 λ−1

) ( sin ξ− − cos ξ−
− sin ξ+ cos ξ+

)
. (10)

Lemma 4.1. Let (ξ−, ξ+, λ) ∈ (RP 1)2 × (1,∞) and a, b > 0. Then the path

p : (−ε, ε)→ G,

t 7→ Ψ(ξ− − at, ξ+ + bt, λ)

is positive.

Proof. It suffices to check the velocity vector at t = 0 is positive. After conjugation and
changing a, b we may assume ξ− = 0, ξ+ = π/2.

Let p+(t) = Ψ(0, bt, λ). By (10) we have

p+(t) =
(
λ−1 (λ−1−λ) tan(bt)

0 −λ

)
.

Thus p′+(0) =
(

0 b(λ−1−λ)
0 0

)
. Similarly for p−(t) = Ψ(−at, π/2, λ) we have p′−(0) =(

0 0
a(λ−λ−1) 0

)
. Therefore

p′(0)p(0)−1 = (λ− λ−1)
(

0 −bλ−1

aλ 0

)
,

which is a positive element in g by (4). �
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ξ−

ξ+

λ

RP 1

Figure 1. Deform Ψ(ξ−, ξ+, λ) in positive direction

Lemma 4.2. Let C = Cλ be a hyperbolic conjugacy class consists of g ∈ Hyp with
λ(g) = λ. Let ξ ∈ RP 1 be arbitrary. Then the path

γC,ξ : (0, π/2)→ C, t 7→ Ψ(ξ − t, ξ + t, λ) (11)

is positive. Moreover, for any ε-neighborhood U of ξ (resp. ξ + π/2) in RP 1, the
element γC,ξ(t) maps every point in RP 1\U clockwisely (resp. counterclockwisely) into
U for sufficiently small t > 0 (resp. sufficiently large t < π/2).

Proof. The first statement follows from Lemma 4.1. For the second statement, after
conjugation we assume ξ = 0. By (10) we have

γC,0(t) =

(
1
2(λ+λ−1) cot t

2 (λ−λ−1)
tan t
2 (λ−λ−1) 1

2(λ+λ−1)

)
,

and the statement is clear. �

Corollary 4.3. There is a homotopy γ : [0, 1)×Hyp→ Hyp satisfying:

(a) γ0 = idHyp.
(b) For any Z ∈ Hyp, the path t 7→ γt(Z) stays in a fixed conjugacy class and is positive.
(c) For any Z ∈ Hyp and any ε-neighborhood U of ξ(Z) + π/2 in RP 1, the element

γt(Z) maps every point in RP 1\U counterclockwisely into U for sufficiently large t.

Proof. For any hyperbolic conjugacy class C and Z ∈ C, let t0 = 1
2(ξ+(Z) − ξ−(Z)) ∈

(0, π/2) and take

γt(Z) = γC,ξ(Z)(tπ/2 + (1− t)t0). �

4.2. Deformation of Elements in a Commutator. Recall that the commutator has
a canonical lift in G̃.

Lemma 4.4. Suppose X,Y ∈ G with rot([X,Y ]) 6= 0, then both X and Y must be
hyperbolic. In particular, if rot([X,Y ]) < 0, then ξ−(X), ξ−(Y ), ξ+(X), ξ+(Y ) ∈ RP 1

are distinct and are arranged in the counterclockwise order.

Proof. For the first statement, we proceed by contradiction and show that if X is not
hyperbolic, then [X,Y ] must have a fixed point in R and hence rot([X,Y ]) = 0. The

same argument will apply for Y being not hyperbolic. Let X̃, Ỹ be arbitrary lifts of
X,Y .
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ξ−(X)

ξ+(X)

ξ−(Y )

ξ+(Y )

X

Y

Y
X
−1
Y
−1

RP 1

Figure 2. Conjugate X−1 by Y

If X is elliptic, we can apply simultaneous conjugation to assume X̃ = r̃θ. Hence
ϕX̃ ≡ θ. On the other hand, from (5) we know that rot(g̃) ∈ [minϕg̃/π,maxϕg̃/π] for

any g̃ ∈ G̃. In particular, we get minϕỸ X̃−1Ỹ −1 ≤ −θ ≤ maxϕỸ X̃−1Ỹ −1 . By continuity,
there exists some x ∈ R such that ϕỸ X̃−1Ỹ −1(x) = −θ, and x is therefore fixed by [X,Y ].

If X is parabolic, say nonnegative parabolic, choose lift X̃ with rotation number
0 and we have minϕX̃ = 0 (see Lemma 2.2). Suppose this minimum is attained by

x0 ∈ R. Note that Ỹ X̃−1Ỹ −1 is a nonpositive parabolic element with rotation number
0 implies maxϕỸ X̃−1Ỹ −1 = 0. Suppose this maximum is attained by x1 ∈ R. Then we
have:

[X,Y ](x1) ≥ x1 and [X,Y ]((Ỹ X̃−1Ỹ −1)−1(x0)) ≤ (Ỹ X̃−1Ỹ −1)−1(x0).

By continuity, there exists some x fixed by [X,Y ].

For the second statement, rot([X,Y ]) < 0 implies [X,Y ] moves all the points in
RP 1 clockwisely (referred to as negatively later). In particular, as ξ−(Y X−1Y −1) =
Y (ξ+(X)) and ξ+(Y X−1Y −1) = Y (ξ−(X)) are both fixed by Y X−1Y −1, X must move

them negatively. That is, Y (ξ+(X)), Y (ξ−(X)) ∈
>
ξ+(X)ξ−(X). Especially, Y moves

ξ−(X) negatively and ξ+(X) positively. Hence ξ+(X) ∈
>
ξ−(Y )ξ+(Y ) and ξ−(X) ∈

>
ξ+(Y )ξ−(Y ), which finish our proof. �

Lemma 4.5. Fix hyperbolic X ∈ G and ξ−, ξ+ ∈ RP 1 satisfying ξ−(X), ξ−, ξ+(X), ξ+

are distinct and are arranged in the counterclockwise order, then the path

τX,ξ−,ξ+ : (1,∞)→ G̃, t 7→ [X,Ψ(ξ−, ξ+, t)]

is negative. Moreover, for sufficiently small t, rot(τX,ξ−,ξ+(t)) > −1/2.

Proof. Let Yt denote Ψ(ξ−, ξ+, t), then it suffices to argue that YtX
−1Y −1

t is mov-
ing in the negative direction. Indeed, observe that λ(YtX

−1Y −1
t ) = λ(X) is fixed,

ξ−(YtX
−1Y −1

t ) = Yt(ξ+(X)) moves positively while we increase t, and ξ+(YtX
−1Y −1

t ) =
Yt(ξ−(X)) moves negatively while we increase t. Therefore Lemma 4.1 applies, which
shows that τX,ξ−,ξ+ is negative. The second statement is clear as limt→1 Yt = I implies

limt→1 τX,ξ−,ξ+(t) = [X, I] = Ĩ0. �

Remark 4.6. In fact, we always have rot(τX,ξ−,ξ+(t)) < 0 for all t and rot(τX,ξ−,ξ+(t)) =
−1 for sufficiently large t.
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Let Br : G×G→ G̃ denote the lifted commutator map.

Corollary 4.7. There is a homotopy τ : [0, 1]×G×G→ G×G satisfying:

(a) τ0 = idG×G, τt = τ1 for t ≥ 1/2, τt(X,Y ) = (X,Y ) if rot([X,Y ]) ≥ −1/2.
(b) For any X,Y ∈ G, the path t 7→ Br ◦ τt(X,Y ) is nonnegative. It is positive on

[0, 1/2] if rot([X,Y ]) < −1/2.
(c) For any X,Y ∈ G, rot(Br ◦ τ1(X,Y )) ≥ −1/2.

Proof. For rot([X,Y ]) ≤ −1/2, because of Lemma 4.5 we may choose the unique (as
rotation number is strictly increasing along positive path in the elliptic locus) λX,Y such
that rot([X,Ψ(ξ−(Y ), ξ+(Y ), λ)]) = −1/2. Then λX,Y ≤ λ(Y ), with equality if and only
if rot([X,Y ]) = −1/2. Note that the uniqueness of λX,Y implies its continuity in X,Y .
Now for t ≤ 1/2, take

τt(X,Y ) =

{
(X,Y ), if rot([X,Y ]) > −1/2

(X,Ψ(ξ−(Y ), ξ+(Y ), (1− 2t)λ(Y ) + 2tλX,Y )), if rot([X,Y ]) ≤ −1/2. �

5. Nonpositive Representation Spaces

5.1. Proof of Main Theorem. By the commutative diagram (9), to prove our main
theorem, it suffices to prove the corresponding statement in terms of representation
spaces:

Proposition 5.1. Let S be an oriented surface with genus g and b boundary compo-
nents. Let C1, · · · , Cb be hyperbolic conjugacy classes of G.

(a) Suppose e ≥ max{g, 1}. Then the inclusion R̃ep≤0(S, {Ci})e ↪→ G̃2g × C̃ is a
homotopy equivalence.

(b) Suppose e ≤ −max{g, 1}. Then the inclusion R̃ep(S, {Ci})e ↪→ R̃ep≤0(S, {Ci})e is
a homotopy equivalence.

As a shorthand, we use U to denote a generic element (X1, Y1, · · · , Xg, Yg, Z1, · · · , Zb) ∈
G2g × C and P̃ (U) to denote the product [X1, Y1] · · · [Xg, Yg]Z̃1 · · · Z̃b ∈ G̃. Similarly,

we use Ũ to denote a generic element in G̃2g× C̃ and P̃ (Ũ) to denote the corresponding
product. Moreover, let γ, τ be as constructed in the previous section.

Lemma 5.2. The homotopy

Γ: [0, 1)×G2g ×C → G2g ×C, Γt = (τt)
g × (γt)

b

satisfies:

(a) Γ0 = idG2g×C .

(b) For any U ∈ G2g ×C, rot(P̃ (Γt(U))) > −max{g, 1} for sufficiently large t.

(c) For any U ∈ G2g×C, the path t 7→ P̃ (Γt(U)) is nonnegative. It is positive wherever

rot(P̃ (Γt(U))) ≤ −max{g, 1}.
Moreover, Γ lifts to a homotopy Γ̃ : [0, 1) × G̃2g × C̃ → G̃2g × C̃ that satisfies the

corresponding properties.

Proof. (a) is immediate. For (b), write U = (X1, Y1, · · · , Zb). Then for sufficiently large
t, there exists some ri such that the displacement function ϕ defined by (6) satisfies

ϕBr◦τt(Xi,Yi) ≥ −ri > −π;
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ϕγ̃t(Zj) >

{∑g
i=1(ri − π)/b, g > 0

−π/b, g = 0

everywhere on R. Therefore

ϕP̃ (Γt(U)) > −max{g, 1}π

and (b) follows. For (c), by construction of γ, τ we see P̃ (Γt(U)) is positive wherever
Γt(U) is nonconstant. Also, any maximal interval where Γt(U) is constant must be of
form [t0, 1) (in which case b = 0, t0 = 0 or 1/2). Therefore (c) follows from (b).

The statement about lifting is clear. �

Reverse all the constructions in Section 4 to make hyperbolic elements or commuta-
tors deform in the negative direction, we get

Corollary 5.3. There is a homotopy Γ− : [0, 1)×G2g ×C → G2g ×C satisfying:

(a) Γ−0 = idG2g×C .

(b) For any U ∈ G2g ×C, rot(P̃ (Γ−t (U))) < max{g, 1} for sufficiently large t.

(c) For any U ∈ G2g×C, the path t 7→ P̃ (Γ−t (U)) is nonpositive. It is negative wherever

rot(P̃ (Γ−t (U))) ≥ max{g, 1}.
Moreover, Γ− lifts to a homotopy Γ̃− : [0, 1)× G̃2g × C̃ → G̃2g × C̃ that satisfies the

corresponding properties. �

Proof of Proposition 5.1. Let

R̃ep
Par−

(S, {Ci})e = {Ũ ∈ G̃2g × C̃ | P̃ (Ũ) is either Ĩe

or a nonpositive parabolic element with rotation number e}.

This space is the boundary of R̃ep≤0(S, {Ci})e as a (closed) subspace of G̃2g × C̃.

(a) For any Ũ ∈ G̃2g × C̃, by Corollary 5.3 we can find a minimal t = t(Ũ) ∈ [0, 1)

such that Γ̃−t (Ũ) ∈ R̃ep≤0(S, {Ci})e. Then t = 0 for Ũ ∈ R̃ep≤0(S, {Ci})e, and t is the

unique time such that Γ̃−t (Ũ) ∈ R̃ep
Par−

(S, {Ci})e for

Ũ ∈ (G̃2g × C̃)\R̃ep≤0(S, {Ci})e ∪ R̃ep
Par−

(S, {Ci})e.

Here, to conclude uniqueness, we used the (strict) negativity statement in (c) of Corol-
lary 5.3.

Therefore is t continuous in Ũ , and

Λ̃−s (Ũ) = Γ̃−
st(Ũ)

(Ũ), s ∈ [0, 1]

gives a deformation retract from G̃2g × C̃ onto R̃ep≤0(S, {Ci})e.
(b) For any Ũ ∈ R̃ep≤0(S, {Ci})e, by Lemma 5.2, we can find a maximal t = t(Ũ) ∈ [0, 1)

such that Γ̃t(U) ∈ R̃ep≤0(S, {Ci})e. Then t is the unique time such that Γ̃t(Ũ) ∈
R̃ep

Par−
(S, {Ci})e, and

Λ̃s(Ũ) = Γ̃st(Ũ)(Ũ), s ∈ [0, 1]

gives a deformation retract from R̃ep≤0(S, {Ci})e onto R̃ep
Par−

(S, {Ci})e.
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If χ(S) ≥ 0, it is straighforward to check that R̃ep≤0(S, {Ci})e = ∅ for all e < 0,
and the original statement is trivial. Assume now χ(S) < 0, then a result by Mondello
[Mon16, Theorem 2.19(e)] implies that the inclusion

Rep(S, {Ci})e/G ↪→ Rep
Par−

(S, {Ci})e/G

a deformation retract. Since e < 0 implies that the conjugation action is free and proper
(for properness see [Mon16, Lemma 2.10, Remark 2.13]), we see that

R̃ep
Par−

(S, {Ci})e → Rep
Par−

(S, {Ci})e/G

is a fiber bundle with fiber G × Z2g+max{0,b−1}. Therefore the homotopy long exact
sequence and five lemma and Whitehead theorem implies that the inclusion

R̃ep(S, {Ci})e ↪→ R̃ep
Par−

(S, {Ci})e
is a homotopy equivalence. The statement follows. �

5.2. Nonpositive Representation Spaces in Genus Zero Case. Recall that Propo-
sition 1.1 states that for e < 0, we have a homotopy equivalence

Rep(S, {Ci})e/G ' Sym−χ(S)+e(S). (12)

In this section, assuming genus zero, we prove the following proposition without invoking
part (b) of our main theorem.

Proposition 5.4. Suppose S has genus zero and b > 0 boundary components, e is an
arbitrary integer. Then the space Rep≤0(S, {Ci})e/PSO(2) is homotopy equivalent to

Sym−χ(S)+e(S).

Since the G-action on Rep≤0(S, {Ci})e is free and proper for e < 0, a consequence is
that:

Corollary 5.5. Under the same setting, assume e < 0. Then the space Rep≤0(S, {Ci})e/G
is homotopy equivalent to Sym−χ(S)+e(S).

While reading the following proof, one may want to visualize hyperbolic elements
using arrows as in Figure 1.

Proof of Proposition 5.4. Let ξ : Hyp→ RP 1 be as in Section 4.
Step 1: The map Ξ = ξb : Rep≤0(S, {Ci})e → (RP 1)b is a homotopy equivalence onto
its image.

Let ξ1, · · · , ξb ∈ RP 1 be given. Let γC,ξ be as in (11). Via the map γC1,ξ1×· · ·×γCb,ξb ,
we may identify Ξ−1(ξ1, · · · , ξb) with a subset of (0, π/2)b, denoted K. Then an element
(t1, · · · , tb) ∈ K implies that (t′1, · · · , t′b) ∈ K for all 0 < t′j ≤ tj . HenceK is contractible.

Step 2: Lift ξ1, · · · , ξb ∈ RP 1 to x1, · · · , xb ∈ R such that 0 ≤ xi+1 − xi < π. Then
(ξ1, · · · , ξb) ∈ im(Ξ) if and only if xb − x1 > −eπ.

Let (Z1, · · · , Zb) ∈ Ξ−1(ξ1, · · · , ξb). Then we have

eπ ≥ϕZ̃1···Z̃b(xb) = Z̃1 · · · Z̃b(xb)− xb > Z̃1 · · · Z̃b−1(xb)− xb
>Z̃1 · · · Z̃b−2(xb−1)− xb > · · · > x1 − xb.
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Conversely, assume xb − x1 > −eπ. Choose 0 < ε < (xb − x1 + eπ)/2 such the
closures of ε-neighborhoods of ξi and ξi+1 are disjoint unless ξi = ξi+1. Choose small
t > 0 satisfying (c) in Lemma 4.2 with respect to ε and each γCi,ξi . Let Zi = γCi,ξi(t).
Then we have

ϕZ̃1···Z̃b(xb − ε) = Z̃1 · · · Z̃b(xb − ε)− (xb − ε) < Z̃1 · · · Z̃b−1(xb + ε)− π − (xb − ε)

<Z̃1 · · · Z̃b−2(xb−1 + ε)− π − (xb − ε) < · · · < (x1 + ε)− π − (xb − ε) < eπ − π.

Therefore (Z1, · · · , Zb) ∈ Rep≤0(S, {Ci})e and the claim follows.

Step 3: Rep≤0(S, {Ci})e/PSO(2) ' Tb−1
b−2+e. Here Tmk denotes the k-skeleton of the

m-dimensional torus Tm equipped with the usual cell structure (so that the number of
i-cells is

(
m
i

)
).

Let Ψ be as in (10). We observe that the conjugation of Ψ(ξ−, ξ+, λ) by rθ ∈ PSO(2)
equals Ψ(ξ− + θ, ξ+ + θ, λ). Therefore,

Rep≤0(S, {Ci})e/PSO(2) ' {(Z1, · · · , Zb) ∈ Rep≤0(S, {Ci})e | ξ(Z1) = 0 ∈ RP 1}.

which is in turn, by Step 1, homotopy equivalent to the the space of (ξ1, · · · , ξb) ∈ im(Ξ)
with ξ1 = 0. Let di = (xi+1 − xi)/π ∈ [0, 1) where xi are as in Step 2. Then

Rep≤0(S, {Ci})e/PSO(2) ' {(d1, · · · , db−1) ∈ Tb−1 |
b−1∑
i=1

di > −e}, (13)

where we have identified [0, 1)b−1 with Tb−1 via the natural bijection.
Finally, the reader may check by himself/herself that the right hand side of (13)

is homotopy equivalent to Tb−1
b−2+e. For example, for e ≤ 0 one can first deform its

complement, cell by cell, onto Tb−1
−e , and then deform Tb−1\Tb−1

−e , cell by cell, onto

Tb−1
b−2+e (here the cell structure is shifted by (1/2, · · · , 1/2)).

Step 4: Symk(S) ' Tb−1
k for any k ∈ Z.

Choose a homotopy equivalence (S1)∨(b−1) ↪→ S. Identify (S1)∨(b−1) as a subset of the
group Tb−1 in the natural way. Then for any k ∈ Z≥0 we have homotopy equivalences

Symk(S)
'←− Symk((S1)∨(b−1))

'−→ Tb−1
k

[(θ1, · · · , θk)] 7→
k∑
i=1

θi.

where a homotopy inverse of the second map is given by

Tb−1
k → Symk((S1)∨(b−1))

r∑
i=1

θi → [(θ1, · · · , θr, 0, · · · , 0)]

where r ≤ min{k, b− 1} and θ1, · · · , θr ∈ (S1)∨(b−1) lie on different circles. �

Remark 5.6. Combined with Proposition 5.1, the constructions in the proof gives an
easy realization of the map (12) in the genus zero case.
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Also, by a carefully tracking of maps, one sees that the three chains of inclusions
Rep≤0(S, {Ci})e/PSO(2) (or Rep≤0(S, {Ci})e/G in the case e < 0), Tb−1

b−2+e, Sym
b−2+e(S),

indexed by e, are homotopic to each other via the maps we have constructed.
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