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1. Introduction

Let K be an algebraically closed field which is complete which respect to a nontrivial non-
Archimedean absolute value | · |. In this paper we will first give the definition of the Berkovich
projective line P1

Berk = P1
Berk,K , then briefly discuss some of its properties. In particular we will

classify the points of P1
Berk into four types according to the Berkovich’s classification theorem.

We will also give a metric ρ on the space HBerk = P1
Berk\P1(K). Occasionally we will refer the

proof of some properties to [1], [3].
Let ϕ be a rational function defined on K, then ϕ induces a continuous map on P1

Berk. We
first remark that ϕ preserves the type of points. Then we restrict our attention to the situation
when ϕ is a linear fractional transformation on P1(K). This defines a group action PSL2(K)
on P1

Berk. We will discuss some transitivity properties of this group action. We will compare
some of our results with the similar ones for Möbius transformations on P1(C).

As opposed to some other sources (e.g. [1], [2]), we will take a geometrical approach to prove
most of the results, which depends heavily on the Berkovich’s classification of points in P1

Berk.
Throughout this paper we will give examples and counterexamples using the p-adic field Cp

and Ωp. All the properties we use can be found in [3].

2. The Berkovich Projective Line

2.1. The Berkovich affine Line A1
Berk.

Definition 2.1. Let A be a ring. A seminorm on A is a map | · | : A→ R≥0 satisfying:
• |0| = 0, |1| = 1;
• |f + g| ≤ |f |+ |g| for any f, g ∈ A.

It is said to be multiplicative if
• |fg| = |f ||g| for any f, g ∈ A.

It is said to be non-Archimedean if
• |f + g| ≤ max(|f |, |g|) for any f, g ∈ A.

Lemma 2.2. If A is a ring containing K, then any multiplicative seminorm on A that extends
| · | on K is non-Archimedean.

Proof. For any a, b ∈ A, n ∈ N+, we have

|a+ b|n = |(a+ b)n| =

∣∣∣∣∣
n∑
i=0

(
n

i

)
aibn−i

∣∣∣∣∣ ≤
n∑
i=0

∣∣∣∣(ni
)∣∣∣∣ |a|i|b|n−i ≤ (n+ 1) max(|a|, |b|)n.

Thus |a+ b| ≤ (n+ 1)1/n max(|a|, |b|). Let n→∞ we get |a+ b| ≤ max(|a|, |b|). �
1
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Definition 2.3. The Berkovich affine line over K is a topological space A1
Berk = A1

Berk,K =

{multiplicative seminorm | · | on K[X] : | · | extends | · | on K }, with the weakest topology such
that | · | 7→ |f | is continuous for any f ∈ K[X].

For convenience, when we refer to an element in A1
Berk, we usually write x when we regard

it as a point in the space A1
Berk, and | · |x when we regard it as a multiplicative seminorm on

K[X].
Since K is algebraically closed, we can factor any f ∈ K[X] into linear polynomials. Notice

multiplication is continuous, so it suffices to require | · | 7→ |X − a| to be continuous for any
a ∈ K in the above definition.

Proposition 2.4. A1
Berk is a locally compact Hausdorff space.

Proof. See [1], Theorem C.3. �

2.2. Berkovich’s classification theorem.

Although the definition of A1
Berk looks rather abstract, in fact we can characterize all its

elements quite concretely.
First we give some examples of points in A1

Berk.

Example 2.5. For any a ∈ K, define | · |a : K[X]→ R≥0, f 7→ |f(a)|. It is straightforward to
check that | · |a is a multiplicative seminorm on K[X], and that different a give rises to different
| · |a. Therefore we can identify a with | · |a, thus obtain an embedding K ↪→ A1

Berk (as sets). In
fact it is also an embedding of topological spaces.

Example 2.6. For any closed ballB(a, r) ⊂ K, define |·|B(a,r) : K[X]→ R≥0, f 7→ supx∈B(a,r) |f(x)|.
It is easy to see that | · |B(a,r) is a seminorm (in fact it is a norm). The fact that it is also mul-
tiplicative follows from an alternative definition of | · |B(a,r), see the two lemmas below.

It is also easy to show that different B(a, r) give rises to different | · |B(a,r). In fact, suppose
B(a1, r1) 6= B(a2, r2). By Lemma 2.7, infa∈K |T − a|B(ai,ri) = ri, i = 1, 2. If r1 6= r2, we
already have | · |B(a1,r1) 6= | · |B(a2,r2). If r1 = r2 = r, then B(a1, r1), B(a2, r2) are disjoint, so
|T − a1|B(a2,r2) = |a2 − a1| > r = |T − a1|B(a1,r1), thus we also have | · |B(a1,r1) 6= | · |B(a2,r2).

Notice when r = 0 this is just the previous example.

Lemma 2.7. For f =
∑n

i=0 ai(X − a)i ∈ K[X] we have |f |B(a,r) = max0≤i≤n |ai|ri.
In particular, if r > 0, then | · |B(a,r) is a norm.

Proof. See [3], Section 6.1.4, Proposition 1. �

Lemma 2.8. The seminorm | · |B(a,r) on K[X] is multiplicative.

Proof. See [3], Section 6.1.4, Proposition 2. �

As one may expect, in general Example 2.5, 2.6 do not cover all the points in A1
Berk. But

it is quite remarkable that we are close to the truth. In fact we have the following powerful
theorem.

Theorem 2.9 (Berkovich’s Classification Theorem). Every point x ∈ A1
Berk can be realized as

|f |x = lim
i→∞
|f |B(ai,ri)

for some nested sequence of closed balls {B(ai, ri)} in K. For such {B(ai, ri)}, we write x =
| · |{B(ai,ri)}.
Moreover, we can classify all the points in A1

Berk into four types according to the intersection
B = ∩∞i=1B(ai, ri) of the corresponding nested sequence:
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Type I: If B = {a} is a single point in K, then | · |{B(ai,ri)} = | · |a is said to be of type I.
Type II: If B = B(a, r) is a closed ball in K with r ∈ |K×|, then | · |{B(ai,ri)} = | · |B(a,r)

is said to be of type II.
Type III: If B = B(a, r) is a closed ball in K with r > 0, r 6∈ |K×|, then | · |{B(ai,ri)} =
| · |B(a,r) is said to be of type III.

Type IV: If B = ∅, then | · |{B(ai,ri)} is said to be of type IV.

Proof. See [1], Theorem 2.2. �

Example 2.10. Ωp is spherically complete with valued group R>0, hence A1
Berk,Ωp

contains
only points of type I and II.

Cp is not spherically complete with valued group pQ, hence A1
Berk,Cp

contains points of all
four types.

Lemma 2.11. Let x = | · |{B(ai,ri)}, y = | · |{B(bj ,sj)} be type IV points in A1
Berk. Then x = y if

and only if for any j, there exists i such that B(ai, ri) ⊂ B(bj , sj), and conversely (switch the
position of x, y).

Proof. See [1], Lemma 1.3. �

Warning 2.12. This is not true for points of other types. For example, consider the identity
| · |{B(a,r)} = | · |{B(a,r+1/i)}.

2.3. The Berkovich projective Line P1
Berk.

With A1
Berk at hand, the definition of P1

Berk is straightforward.

Definition 2.13. The Berkovich projective line over K is the one-point compactification of
A1

Berk,K , denoted as P1
Berk = P1

Berk,K = A1
Berk,K ∪ {∞}.

Figure 1 is a picture of the Berkovich projective line from [1]. We have adapted it a little here.
(However this picture is a little deceptive under our setting: if we require larger elements (with
respect to the partial order on P1

Berk, see the definition below) to be higher in this picture,
except the branch that lead to infinity, all other branches (whether above the Gauss point
ζGauss = | · |B(0,1) or not) should point downward.)

We extend the canonical embedding K ↪→ A1
Berk to P1(K) ↪→ P1

Berk by mapping ∞ ∈ P1(K)
to ∞ ∈ P1

Berk. The extended map is still an embedding of topological spaces (see [1]). We keep
the original classification for those ordinary points (i.e. points in A1

Berk), and classify ∞ as a
type I point.

Next we define a partial order on P1
Berk. For all x, y ∈ A1

Berk, we require that x ≤ y if and
only if |f |x ≤ |f |y for all f ∈ K[X]. We also require that x ≤ ∞ for all x ∈ P1

Berk where equality
holds if and only if x = ∞. By Definition 2.1 it is clear that x ≤ y and y ≤ x implies x = y.
So (P1

Berk,≤) is a partially ordered set.
We shall give some useful geometrical descriptions of this partial order.

Lemma 2.14. For points x = | · |B(a,r), y = | · |B(b,s) in A1
Berk not of type IV, x ≤ y if and only

if B(a, r) ⊂ B(b, s) as balls in K.

Proof. If B(a, r) ⊂ B(b, s), then clearly

|f |x = sup
α∈B(a,r)

|f(α)| ≤ sup
α∈B(b,s)

|f(α)|

for any f ∈ K[X]. Thus x ≤ y.
Conversely, suppose x ≤ y. Let f = X − b. By Lemma 2.7 we have

max(|a− b|, r) = |f |x ≤ |f |y = max(|b− b|, s) = s.
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Figure 1. The Berkovich Projective Line

So a ∈ B(b, s) and r ≤ s, which implies B(a, r) ⊂ B(b, s). �

Lemma 2.15. Type IV points are minimal in the partially ordered set (P1
Berk,≤).

Proof. Write y = | · |{B(ai,ri)}, yi = | · |B(ai,ri). It is clear that y ≤ yi for all i.
Suppose the statement doesn’t hold. Find x ∈ P1

Berk with x < y. Then x ∈ A1
Berk.

If x = | · |B(b,s) is not of type IV, then x ≤ y ≤ yi for any i. By Lemma 2.14 we know
B(b, s) ⊂ B(ai, ri). Hence ∩∞i=1B(ai, ri) ⊃ B(b, s) 6= ∅, contradiction!
Hence x is of type IV. Write x = | · |{B(bj ,sj)}.
Suppose there exist i0, j0 such that B(ai0 , ri0) ∩ B(bj0 , sj0) = ∅. Let f = X − bj0 . Then we
have |f |B(ai,ri) = |ai − bj0 | ≥ |ai0 − bj0 | for all i ≥ i0. Hence

|f |x = lim
i→∞
|f |B(ai,ri) ≥ |ai0 − bj0 | > sj0 = |f |B(bj0 ,sj0 ) ≥ |f |y.

This contradicts with x ≤ y.
Thus for all i, j we have

(2.1) B(ai, ri) ∩B(bj , sj) 6= ∅
Since x 6= y, Lemma 2.11 implies that there exists j such that B(ai, ri) 6⊂ B(bj , sj) for any i,
or conversely.
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For the former case, by (2.1) we know that B(bj , sj) ⊂ B(ai, ri) for all i. Thus ∩∞i=1B(ai, ri)
6= ∅. This contradicts with the fact that y is of type IV.
For the latter case, by the same argument we deduce that ∩∞j=1B(bj , sj) 6= ∅, which contradicts
with the fact that x is of type IV.
Thus the statement must hold. �

Lemma 2.16. If x, y ∈ A1
Berk, where x = | · |{B(ai,ri)} is of type IV, then x < y if and only if

y = | · |B(b,s) is not of type IV and that B(b, s) ⊃ B(ai, ri) for some i.

Proof. If y = | · |B(b,s) and B(b, s) ⊃ B(ai, ri) for some i, then clearly x ≤ xi ≤ y and x 6= y
holds. Here xi = | · |B(ai,ri).
Conversely, suppose x < y. By Lemma 2.15, y is not of type IV. Write y = | · |B(b,s).
Since ∩∞i=1B(ai, ri) = ∅ we know that B(ai0 , ri0) 6⊃ B(b, s) for some i0. We claim that
B(ai0 , ri0) ⊂ B(b, s).
If not, then B(ai0 , ri0) ∩B(b, s) = ∅. Consider f = X − b, we have

s = |f |y ≥ |f |x = lim
i→∞
|f |B(ai,ri) = |ai0 − b| > s,

this is a contradiction. Thus the statement must hold. �

Corollary 2.17. Type I points other than∞ are minimal in the partially ordered set (P1
Berk,≤).

Proof. This follows from Lemma 2.14, 2.16. �

Proposition 2.18. For any x ∈ P1
Berk, the set Sx = { y ∈ P1

Berk : x ≤ y } is totally ordered by
≤.
More precisely, we have

Sx =


{∞}, x =∞
{ | · |B(a,s) : s ≥ r} ∪ {∞}, x = | · |B(a,r) is not of type IV
∪∞i=1{ | · |B(ai,s) : s ≥ ri } ∪ {x,∞}, x = | · |{B(ai,ri)} is of type IV

Proof. By Lemma 2.14, 2.15, 2.16, everything is clear except that Sx is totally ordered when x
is of type IV.
Notice that x is the least element and ∞ is the greatest element in Sx, and that ∪ni=1{ | ·
|B(ai,s) : s ≥ ri } = { | · |B(an,s) : s ≥ rn } is totally ordered, we conclude that Sx is totally
ordered. �

Corollary 2.19. For any x, y ∈ P1
Berk, there is a least element in Sx ∪ Sy, which we denote as

x ∨ y. Moreover, if x ∨ y 6= x, y, then x ∨ y is of type II.

Proof. If x ≤ y or y ≤ x then the statement is clear. Now we suppose x, y are not comparable.
In particular x, y 6=∞.
If x = | · |B(a,r), y = | · |B(b,s) are not of type IV, then x ∨ y = | · |B(a,|a−b|) is of type II.
If exactly one of x, y is of type IV, suppose x = | · |{B(ai,ri)} is of type IV, y = | · |B(b,s). Since
x 6≤ y, we know B(ai, ri) 6⊂ B(b, s) for some i, and that x ∨ y = xi ∨ y is of type II, where
xi = | · |B(ai,ri).
If x = | · |{B(ai,ri)}, y = | · |{B(bj ,sj)} are both of type IV, then B(ai, ri)∩B(bj , rj) = ∅ for some
i, j, and that x ∨ y = xi ∨ yj is of type II, where xi = | · |B(ai,ri), yj = | · |B(bj ,sj). �

Proposition 2.20. P1
Berk is uniquely path connected, in the sense that for any distinct x, y ∈

P1
Berk, there exists a unique arc (the image of an injective map α : [0, 1] → P1

Berk) [x, y] that
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connects x, y (α(0) = x, α(1) = y).
More precisely, for x, y ∈ P1

Berk, x ≤ y we have

[x, y] = [y, x] = { z ∈ P1
Berk : x ≤ z ≤ y }.

And for general x, y ∈ P1
Berk, we have

[x, y] = [x, x ∨ y] ∪ [x ∨ y, y].

Proof. See [1], Lemma 2.10. �

Definition 2.21. For x ∈ P1
Berk, a tangent direction at x is a path-connected component of

P1
Berk\{x}. The tangent plane at x is the set of all tangent directions, denoted as Tx. For
y ∈ P1

Berk\{x}, we denote vx(y) to be the tangent direction at x that contains y.

Proposition 2.22. Let x ∈ P1
Berk, then

#Tx =


1, x is of type I, IV
#P1(k), x is of type II
2, x is of type III.

Here k is the residue field of K.

Proof.
(i) x =∞.

For any y, z 6=∞, by Corollary 2.19 we know y ∨ z = y, z or a type II point, which is not
∞. Hence y, z are in the same path-connected component, #Tx = 1.

Below we suppose x 6=∞.
By Proposition 2.18, one of the path-connected components of P1

Berk\{x} is Sx\{x}. We consider
the rest part Mx = {y ∈ P1

Berk : y < x}.
(ii) x 6=∞ is of type I or IV.

By Lemma 2.15 and Corollary 2.17 we know Mx = ∅. Thus #Tx = 1.
Below we suppose x is of type II or III. Then Mx is nonempty (for example it contains a type
I point inside the ball in K that corresponds to x).
For any y, z ∈Mx, we know that y, z are in the same path-connected component of Mx if and
only if [y, z] ⊂ Mx. This is equivalent to y ∨ z < x. Since y ∨ z ≤ x already holds, we know
that y, z are in the same path-connected component if and only if y ∨ z = x.
(iii) x is of type III.

By Corollary 2.19, we always have y ∨ z 6= x. So Mx is connected, #Tx = 2.
(iv) x is of type II.

Write x = | · |B(a,r).
For two points y 6= z in Mx, from the proof of Corollary 2.19 we can deduce that
y ∨ z = y′ ∨ z′ for some y′, z′ ∈Mx not of type IV.
Now the two balls B(b, s), B(c, t) in K that correspond to y, z has radius strictly less than
r, thus each of them has a single point image under the reduction map π : B(a, r) →
B(a, r)/B−(a, r) ' k, where B−(a, r) is the open ball with center a and radius r. Write
π(B(b, s)) = {α}, π(B(c, t)) = {β}.
When α = β, the ball that corresponds to y ∨ z has radius max(s, t, |b − c|) < r, so
y ∨ z 6= x, thus y, z are in the same path-connected component.
When α 6= β, the ball that corresponds to y ∨ z has radius |b− c| = r, so y ∨ z = x, thus
y, z are in different path-connected components.
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Hence we have shown that the path-connected components of Mx are in one-one corre-
spondence with k (clearly the reduction map is surjective). Combine with the other path-
connected component Sx\{x}, we know Tx is in one-one correspondence with P1(k). �

Although we will not make use of this fact, it is probably worth mentioning that we can
describe the topology of P1

Berk concretely using the notion of tangent planes.

Proposition 2.23. ∪x∈P1
Berk

Tx is a subbasis for the topology on P1
Berk.

Proof. See [1], p.12. �

However, it is often convenient to use an alternative definition of P1
Berk without referring to

A1
Berk. For example, this would facilitate our definition of rational maps on P1

Berk.
Let S = {multiplicative seminorm || · || on K[X,Y ] : || · || extends | · | on K, and ||X||, ||Y ||

are not both zero }. We define an equivalence relation on S by requiring that || · ||1 ∼ || · ||2 if
and only if there exists C > 0, such that for any d ≥ 0 and homogeneous F ∈ K[X,Y ] with
degree d, we have ||F ||1 = Cd||F ||2.

We say an element || · || ∈ S is normalized if max(||X||, ||Y ||) = 1.

Lemma 2.24. Let Ki be the set of all homogeneous polynomials in K[X,Y ] with degree i.
Suppose || · ||′ : ∪∞i=0 Ki → R≥0 satisfies:

• || · ||′ agrees with | · | on K0 = K;
• ||X||′, ||Y ||′ are not both 0;
• ||f + g||′ ≤ ||f ||′ + ||g||′ for any f, g ∈ Ki, for any i;
• ||fg||′ = ||f ||′||g||′ for any f, g ∈ ∪∞i=0Ki.

Then there exists || · || ∈ S that extends || · ||′.

Proof. For any G ∈ K[X,Y ], we can write G =
∑d

i=0Gi where Gi ∈ Ki. Define

||G|| = max
0≤i≤d

||Gi||′.

Then || · || extends || · ||′. We check that || · || is a multiplicative seminorm.
Let F =

∑d
i=0 Fi ∈ K[X,Y ], G =

∑d′

i=0Gi ∈ K[X,Y ] where Fi, Gi ∈ Ki. Add zero terms if
necessary, we may assume d = d′. Then

||F +G|| = max
0≤i≤d

||Fi +Gi||′ =≤ max
0≤i≤d

(||Fi||′ + ||Gi||′) ≤ ||F ||+ ||G||.

So || · || is a seminorm. By Lemma 2.2, || · || is non-Archimedean.
Moreover, write FG =

∑2d
k=0Hk with Hk ∈ Kk, then for any k we have

||Hk|| = ||
∑
i+j=k

FiGj || ≤ max
i+j=k

||FiGj || = max
i+j=k

(||Fi||||Gj ||) ≤ ||F ||||G||.

Choose minimal i0, j0 such that ||Fi0 || = ||F ||, ||Gj0 || = ||G||. Then for k0 = i0 + j0 we have

||Hk0 || = ||Fi0Gj0 || = ||F ||||G||

since all other terms in the summation above is strictly smaller.
Hence ||FG|| = max0≤k≤2d ||Hk|| = ||F ||||G||. So || · || is multiplicative. �

Lemma 2.25. For any || · || ∈ S, there exists a normalized || · ||∗ ∈ S such that || · || ∼ || · ||∗.
Moreover, for any homogeneous F ∈ K[X,Y ], ||F ||∗ is independent of the choice of || · ||∗.
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Proof. First suppose || · ||∗ satisfies the requirements.
With out loss of generality we may assume C = ||X|| ≥ ||Y ||. Then ||X||∗ = 1, and ||L||∗ =
||L||/C for any L ∈ K1.
Now for any homogeneous F ∈ K[X,Y ] of degree d, we can write F = F1 · · ·Fd where Fi ∈ K1

(since K is algebraically closed). Then we have

(2.2) ||F ||∗ =
d∏
i=1

||Fi||∗ =
d∏
i=1

||Fi||
C

=
||F ||
Cd

.

Hence if || · ||∗ exists, its values on homogeneous polynomials are uniquely determined.
Now the function || · ||∗ defined on ∪∞i=0Ki by (2.2) clearly satisfies the conditions in Lemma
2.24, so it can be extended to an element in S, which is normalized. The statement follows. �

Definition 2.26. The Berkovich projective line over K is S/∼, with the weakest topology
such that z 7→ ||F ||∗z is continuous for any homogeneous F ∈ K[X,Y ]. Here || · ||z ∈ S is any
representative of z.

Remark 2.27. Roughly speaking, Lemma 2.24 and 2.25 tell us that essentially the evaluations
at homogeneous polynomials are all we need to specify an element in P1

Berk. So here we really
do not care about the evaluations of non-homogeneous polynomials.

Proposition 2.28. The Definition 2.13 and 2.26 agree.

Proof. For the sake of this argument, denote the Berkovich projective line defined by Definition
2.13, 2.26 by A, B, respectively. Construct Φ: A→ B as following:
For x ∈ A, define Φ(x) = [|| · ||Φ(x)]. Where for all F ∈ K[X,Y ], || · ||Φ(x) ∈ S satisfies

||F (X,Y )||Φ(x) =

{
|F (X, 1)|x, x 6=∞
|F (1, 0)|, x =∞.

Then Φ is a homeomorphism that preserves P1(K). For details, see [1], p.24-26. �

Henceforce we identify points in P1
Berk through the homeomorphism Φ. In other words, for

any x ∈ P1
Berk defined though Definition 2.13, we require that

||F (X,Y )||x =

{
|F (X, 1)|x, x 6=∞
|F (1, 0)|, x =∞.

2.4. The metric ρ on the Berkovich hyperbolic space HBerk.

Definition 2.29. The Berkovich hyperbolic space over K is HBerk = P1
Berk\P1(K).

Definition 2.30. For x ∈ A1
Berk, write x = | · |{B(ai,ri)}. We define the diameter of x to be

diam(x) = limi→∞ ri. We define diam(∞) =∞.

From our previous discussion of the partial order ≤ on P1
Berk, it is clear that diam is mono-

tonically increasing with respect to ≤.

Example 2.31. In the proof of Corollary 2.19, we pointed out that for x = |·|B(a,r), y = |·|B(b,s)

in A1
Berk not of type IV, we have diam(x ∨ y) = max(r, s, |a− b|).

We shall make use of this result later.

Lemma 2.32. For x ∈ A1
Berk, diam(x) = 0 ⇐⇒ x is of type I.
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Proof. Type I points obviously have diameter 0.
Conversely, suppose x = {B(ai, ri)} ∈ A1

Berk with ri → 0. Then {ai} is a Cauchy sequence in
the complete space K with some limit a.
Since |a−ai| = limj→∞ |aj −ai| ≤ ri, we know a ∈ B(ai, ri). In particular ∩∞i=1B(ai, ri) ⊃ {a}.
Since ri → 0 we deduce that this intersection is exactly {a}. So x is of type I. �

Definition 2.33. The metric ρ on HBerk is defined by

ρ(x, y) = 2 logv(diam(x ∨ y))− logv(diam(x))− logv(diam(y)), x, y ∈ HBerk,

where v > 1 is a fixed number (which we shall not specify here).
The strong topology on HBerk is the topology induced by ρ.

Lemma 2.34. The metric ρ is well-defined.

Proof. It is clear that ρ(x, y) = ρ(y, x) ≥ 0, equality holds if and only if diam(x) = diam(x∨y) =
diam(y). By our previous discussions this can only happen when x = y.
It remains to check ρ(x, y) + ρ(y, z) ≥ ρ(x, z). This is equivalent to

(2.3) logv(diam(x ∨ y)) + logv(diam(y ∨ z)) ≥ logv(diam(x ∨ z)) + logv(diam(z)).

In fact, by Proposition 2.18 we know x ∨ y ≤ y ∨ z or y ∨ z ≤ x ∨ y. Assume the first case.
Then x, z ≤ y ∨ z, so x ∨ z ≤ y ∨ z. Also, y ≤ x ∨ y. (2.3) now follows from monotonicity. �

Remark 2.35. For convenience, sometimes we extend ρ to P1
Berk by defining ρ(x, x) = 0,

ρ(x, y) =∞ for any x ∈ P1(K), y ∈ P1
Berk\{x}.

Proposition 2.36. The strong topology on HBerk is strictly finer than its subspace topology
inherited from P1

Berk.

Proof. See [1], Lemma B.17 and p.42-44. �

3. Rational Maps on P1
Berk

3.1. Definition of the induced map.

Let ϕ ∈ K(X) be a rational function on K. We shall extend ϕ to a function on P1
Berk. First

we lift ϕ to a pair (F1, F2) of homogeneous polynomial with the same degree. Explicitly, if

ϕ =

∑m
i=0 aiX

i∑n
i=0 biX

i
, am, bn 6= 0

where
∑m

i=0 aiX
i,
∑n

i=0 biX
i have no common root, then we define the homogeneous lifting

F = (F1, F2) by

F1 =
k∑
i=0

aiX
iY k−i, F2 =

k∑
i=0

biX
iY k−i,

where k = max(m,n), ai = 0 for i > m, bi = 0 for i > n.

Definition 3.1. The induced map on P1
Berk by ϕ is defined by

[|| · ||x] 7→ [|| · ||F (x)],

where ||G||F (x) = ||G ◦ F ||x for any homogeneous polynomial G ∈ K[X,Y ] (by Lemma 2.24, it
suffices to specify the values of || · ||F (x) at all homogeneous polynomials).
We still denote this induced map by ϕ, and call it a rational map on P1

Berk.
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By factoring F1, F2 into linear polynomials, we easily check that ||X||F (x) = ||F1(X,Y )||x,
||Y ||F (x) = ||F2(X,Y )||x cannot both be 0. All other conditions for || · ||F (x) ∈ S are trivially
satisfied. Thus the induced map is well defined. It is also clear that the induced map agrees
with the original one on P1(K).

Proposition 3.2. A nonconstant rational map ϕ on P1
Berk preserves the type of points.

Proof. Since we do not need this general result here, we refer the proof to [1], Proposition
2.15. However, we will give an easy proof for the special case when ϕ is a linear fractional
transformation in Section 4.3. �

Proposition 3.3. Any rational map on P1
Berk is continuous.

Proof. See [1], p.31. �

4. Linear Fractional Transformations on P1
Berk

Definition 4.1. A linear fractional transformation (LFT) on P1
Berk is a rational map on P1

Berk

induced by a linear fractional transformation ϕ = aX+b
cX+d ∈ K(X), where a, b, c, d ∈ K and

ad− bc 6= 0.

Proposition 4.2. Any LFT ϕ on P1
Berk is bicontinuous with inverse ϕ−1 (here we really mean

the induced map on P1
Berk by ϕ−1 ∈ K(X)).

Proof. By definition it is clear that ϕ−1 is the inverse of ϕ as rational maps on P1
Berk. Continuity

follows from Proposition 3.3. �

Thus all LFTs on P1
Berk form a group under composition that is isomorphic to PSL2(K) =

GL2(K)/{λI : λ ∈ K×}. Thus we can think LFTs as group actions of PSL2(K) on P1
Berk given

by
PSL2(K)× P1

Berk → P1
Berk, (ϕ, x) 7→ ϕ(x).

In what follows we will be interested in transitivity properties of this group action.

Corollary 4.3. Any LFT preserves the path between two points. In other words, if x, y ∈ P1
Berk,

ϕ is an LFT, then ϕ([x, y]) = [ϕ(x), ϕ(y)]. �

4.1. Möbius transformations on P1(C).

We first take a detour to review some classical results.

Definition 4.4. A Möbius transformation (MT) is a function ϕ : P1(C) → P1(C) defined by
ϕ(z) = az+b

cz+d , where a, b, c, d ∈ C and ad− bc 6= 0.

Definition 4.5. A generalized circle in P1(C) is a circle in C or a line in C together with the
point ∞.

For convenience we will simply call a generalized circle a circle.

Proposition 4.6. Any MT carries circles to circles.

Proof. See [4], Chapter 3, Theorem 14. �

We also regard MTs as group action of PSL2(C) on C. Below we list some classical results
about transitivity properties of this group action.

Proposition 4.7. For any tuples (x1, x2, x3), (y1, y2, y3) of distinct points in P1(C), there exists
a unique MT ϕ such that ϕ(xi) = yi, i = 1, 2, 3.
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Proof. Let z1, z2, z3 ∈ P1(C) be distinct points. Let α = (z−z1)(z2−z3)
(z−z3)(z2−z1) (which reduces to z2−z3

z−z3 ,
z−z1
z−z3 ,

z−z1
z2−z1 if z1 =∞, z2 =∞, z3 =∞, respectively). Then α is an MT that carries (z1, z2, z3)

to (0, 1,∞). Also, α−1 is an MT that takes (0, 1,∞) back to (z1, z2, z3). The existence of ϕ
follows from this.
Any LFT β = az+b

cz+d that takes (0, 1,∞) to itself satisfies c = 0, b = 0, ad = 1. So β(z) = az
d = z

is the identity map. The uniqueness of ϕ follows from this. �

Proposition 4.8. For any x, y ∈ P1(C) and circles A,B in P1(C) such that x ∈ A and y ∈ B
are of the same truthness, there exists a MT ϕ such that ϕ(x) = y, ϕ(A) = B.

Proof. We first find two MTs that carries x to ∞, y to ∞, respectively. Thus we only need
to consider the special case when x = y = ∞. Under this assumption A,B are both circles
(non-degenerated ones) or both lines plus the infinity point.
If A,B are circles lies in C, let z1, z2 and r1, r2 be the centers and radii of A,B. Then ϕ(z) =
r2
r1

(z − z1) + z2 satisfies the requirement.
If A,B are lines plus the infinity point, by Proposition 4.7 we can let ϕ be an MT that carries
two distinct points other than∞ on A to two distinct points on B other than∞ which preserves
∞. By Proposition 4.6 ϕ satisfies the requirement. �

4.2. Geometrical descriptions.

In this section we describe the image of a ball B(x, r) (as a type II or III point in P1
Berk)

under LFTs. Since every LFT can be decomposed into affine maps and inversions, it suffices to
give the description for these two special cases.

For simplicity, from this point on we shall drop the norm symbol | · | and write {B(xi, ri)}
for the point | · |{B(xi,ri)} in P1

Berk (or B(x, r) for | · |B(x,r), x for | · |x). It will be clear from the
context whether this means a point in P1

Berk or a nested sequence of ball (or a ball, a point) in
K.

Proposition 4.9. Let A = aX + b be an affine map on P1
Berk. Then

A(B(x, r)) = B(ax+ b, |a|r).

Proof. Denote u = B(x, r), v = B(ax+ b, |a|r).
The homogeneous lifting of A is given by F1 = aX + bY , F2 = Y . We have

||f(X,Y )||A(u) =||f(aX + bY, Y )||u = |f(aX + b, 1)|u = sup
z∈B(x,r)

|f(az + b, 1)|

= sup
z∈B(ax+b,|a|r)

|f(z, 1)| = |f(X, 1)|v = ||f(X,Y )||v

for any f ∈ K[X,Y ]. Thus A(u) = v. �

Proposition 4.10. Let I = 1
X be the inversion map on P1

Berk. Then

I(B(x, r)) =


B( 1

x ,
r
|x|2 ), 0 6∈ B(x, r)

B(0, 1
r ), 0 ∈ B(x, r), r 6= 0

∞, B(x, r) = {0}.

Proof. Denote u = B(x, r), v =

{
B( 1

x ,
r
|x|2 ), 0 6∈ B(x, r)

B(0, 1
r ), 0 ∈ B(x, r), r 6= 0.

The homogeneous lifting of I is given by F1 = Y , F2 = X.
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(i) 0 6∈ B(x, r).
Then z ∈ B(x, r) =⇒ |z − x| ≤ r < |x| and |z| = |x| =⇒ 1

z ∈ B( 1
x ,

r
|x|2 ).

Conversely, 1
z ∈ B( 1

x ,
r
|x|2 ) =⇒ z = 1

1/z ∈ B( 1
1/x ,

r/|x|2
1/|x|2 ) = B(x, r).

Now for any homogeneous f ∈ K[X,Y ] with degree d, we have

||f(X,Y )||I(u) =||f(Y,X)||u = |f(1, X)|u = sup
z∈B(x,r)

|f(1, z)|

= sup
z∈B(x,r)

|x|d|f(
1

z
, 1)| = |x|d sup

z∈B( 1
x
, r
|x|2

)

|f(z, 1)|

=|x|d|f(X, 1)|v = |x|d||f(X,Y )||v
This means [|| · ||I(u)] = [|| · ||v]. Hence I(u) = v.

(ii) 0 ∈ B(x, r), r 6= 0.
Then u = B(0, r).
For any homogeneous f ∈ K[X,Y ] with degree d, write

f(X,Y ) =
∑
i+j=d

aijX
iY j .

Apply Lemma 2.7, we have

||f(X,Y )||I(u) =|f(1, X)|0 = max |aij |rj = rd max |aij |(
1

r
)i

=rd|f(X, 1)|v = rd||f(X,Y )||v.

This means [|| · ||I(u)] = [|| · ||v]. Hence I(u) = v.
(iii) B(x, r) = {0}.

For any f ∈ K[X,Y ] we have

||f(X,Y )||I(u) = |f(1, X)|u = |f(1, 0)| = ||f(X,Y )||∞.

So || · ||I(u) = || · ||∞, I(u) =∞. �

Theorem 4.11. Let ϕ = aX+b
cX+d be an LFT. Then

ϕ(B(x, r)) =


B(ax+b

cx+d ,
|ad−bc|
|cx+d|2 r), −

d
c 6∈ B(x, r)

B(ac ,
|ad−bc|
|c|2r ), −d

c ∈ B(x, r), r 6= 0

∞, B(x, r) = {−d
c}.

Notice c = 0 also belongs to the first case.

Proof. If c = 0, then ϕ is an affine map, the statement follows from Proposition 4.9.
Now suppose c 6= 0. Then ϕ = A2 ◦ I ◦A1, where

A1 = cX + d, A2 =
bc− ad

c
X +

a

c
.

Apply Proposition 4.9, 4.10, we get

ϕ(B(x, r)) = A2 ◦ I(B(cx+ d, |c|r))

=


A2(B( 1

cx+d ,
|c|

|cx+d|2 r)) = B(ax+b
cx+d ,

|ad−bc|
|cx+d|2 r), 0 6∈ B(cx+ d, |c|r)

A2(B(0, 1
|c|r )) = B(ac ,

|ad−bc|
|c|2r ), 0 ∈ B(cx+ d, |c|r), |c|r 6= 0

A2(∞) =∞, B(cx+ d, |c|r) = {0}.
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Notice that the three conditions in the above equation are equivalent to the ones in the theorem.
The statement follows. �

Corollary 4.12. Let x,A ∈ P1
Berk where x is of type I and A is of type III. Let ϕ = aX+b

cX+d be
an LFT. Then ϕ(x) < ϕ(A) and x < A are of the same truthness if and only if −d

c 6∈ BA, here
BA is the ball in K that corresponds to A.

Proof. Write ϕ = A2◦I◦A1 as above. Affine maps preserve the partial order. Also, A1(−d
c ) = 0,

−d
c ∈ BA ⇐⇒ 0 ∈ BA1(A). Thus it suffices to prove the corollary for the special case ϕ = I.

This follows from Proposition 4.10 and easy computations. �

4.3. Invariance of types and the metric ρ under LFTs.

Theorem 4.13. Any LFT preserves the type of points.

Proof. It is clear that any LFT preserves type I points.
In view of Theorem 4.11, it is also clear that any LFT preserves type II, III points, respectively.
It only remains to show that any LFT preserves type IV points.
Let B = {B(xi, ri)} be a point of type IV in P1

Berk. Let ϕ = aX+b
cX+d be an LFT.

Since ∩∞i=1B(xi, ri) = ∅, we know that −d/c 6∈ B(xi, ri) for all sufficiently large i. Since the
point B in P1

Berk only depends on B(xi, ri) for large i, we can assume that −d/c 6∈ B(xi, ri) for
all i.
Now, for all i ≥ 1, B(xi, ri) ⊂ B(x1, r1) implies that |xi − x1| ≤ r1. On the other hand,
|x1 + d

c | > r1. Thus |xi + d
c | = |x1 + d

c |, so |cxi + d| = |cx1 + d| is constant. This argument
make no sense to c = 0, but for c = 0 this last equality is trivially true.
Now we have ϕ(B(xi, ri)) = B(axi+bcxi+d

, |ad−bc||cx1+d|2 ri), by Theorem 4.11. The radius of these balls

are decreasing with limit |ad−bc||cx1+d|2 r, where r = diam(B).
Note that ∣∣∣∣axi+1 + b

cxi+1 + d
− axi + b

cxi + d

∣∣∣∣ =
|ad− bc||xi+1 − xi|

|cx1 + d|2
≤ |ad− bc|
|cx1 + d|2

ri,

so {ϕ(B(xi, ri))} is indeed a decreasing sequence of balls.
Suppose v ∈ ∩∞i=1ϕ(B(xi, ri)), let u = ϕ−1(v) ∈ P1(K), then v = au+b

cu+d , we have

|ad− bc|
|cx1 + d|2

ri ≥
∣∣∣∣v − axi + b

cxi + d

∣∣∣∣ =
|ad− bc||u− xi|
|cx1 + d||cu+ d|

.

Equivalently,

(4.1) |u− xi| ≤
|cu+ d|
|cx1 + d|

ri.

If |cu+ d| ≤ |cx1 + d|, then u ∈ ∩∞i=1B(xi, ri) = ∅, contradiction.
Thus |cu + d| > |cx1 + d| = |cxi + d|, so |c||u − xi| = |(cu + d) − (cxi + d)| = |cu + d| > 0. In
particular c 6= 0.
Now (4.1) becomes |cx1 + d| ≤ |c|ri.
However, |cx1 + d| = |c||x1 + d

c | > |c|r1 ≥ |c|ri, this is a contradiction.
This means ∩∞i=1ϕ(B(xi, ri)) = ∅, so B′ = {ϕ(B(xi, ri))} is a point of type IV in P1

Berk.
Now, let F = (F1, F2) be the homogeneous lifting of ϕ. For any homogeneous G ∈ K[X,Y ],
one can easily check

||G||∗ϕ(B) = ||G ◦ F ||∗B = lim
i→∞
||G ◦ F ||∗B(xi,ri)

= lim
i→∞
||G||∗ϕ(B(xi,ri))

= ||G||∗B′ .

Thus ϕ(B) = B′ is a point of type IV. The proof is complete. �
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Note that in the proof we actually find out what the image of a type IV point is. We state
this into the following corollary.

Corollary 4.14. Let B = {B(xi, ri)} be a point of type IV in P1
Berk, ϕ = aX+b

cX+d be an LFT.
Then |cxi + d| = λ ∈ |K×| for all i ≥ N for some N . Moreover,

ϕ(B) = {ϕ(B(xi, ri)}i≥N = {B(
axi + b

cxi + d
,
|ad− bc|

λ2
ri)}i≥N .

In particular,
diam(ϕ(B))

diam(B)
=
|ad− bc|

λ2
∈ |K×|. �

Theorem 4.15. Any LFT preserves the metric ρ on HBerk.

Proof. It suffices to prove the theorem for affine maps and the inversion map.
Let u = B(x, r), v = B(y, s) be two points in HBerk not of type IV.
First we consider an affine map A(X) = aX + b. By Proposition 4.9, Lemma 2.14 we easily
check that A preserves the order of type II or III points on HBerk. In particular it preserves ∨
restricted to type II or III points. So if u ≤ v, we have

ρ(A(u), A(v)) = logv(|a|s)− logv(|a|r) = logv(s)− logv(r) = ρ(u, v).

And for general u, v not of type IV, we have

ρ(A(u), A(v)) = ρ(A(u), A(u) ∨A(v)) + ρ(A(u) ∨A(v), A(v))

=ρ(A(u), A(u ∨ v) + ρ(A(u ∨ v), A(v)) = ρ(u, u ∨ v) + ρ(u ∨ v, v) = ρ(u, v).

Next we consider the inversion map I(X) = 1
X .

(i) 0 ∈ B(x, r), B(y, s).
By Proposition 4.10 we know I(u) = B(0, 1

r ), I(v) = B(0, 1
s ). Thus u, v and I(u), I(v) are

both comparable under the partial order ≤. Hence

ρ(I(u), I(v)) = | logv(
1

r
)− logv(

1

s
)| = | logv r − logv s| = ρ(u, v).

(ii) 0 ∈ B(x, r), 0 6∈ B(y, s) (or 0 6∈ B(x, r), 0 ∈ B(y, s), assume the former).
By Proposition 4.10, I(u) = B(0, 1

r ), I(v) = B( 1
y ,

s
|y|2 ).

If B(x, r) ∩ B(y, s) = ∅, then |y| > r ≥ |x|, |y| > s, so |x − y| = |y| > r, s. Thus
ρ(u, v) = 2 logv |y| − logv r − logv s by Exercise 2.31.
It is easily checked that I(v) ≤ I(u), thus

ρ(I(u), I(v)) = logv
1

r
− logv

s

|y|2
= 2 logv |y| − logv r − logv s = ρ(u, v).

If B(x, r) ∩B(y, s) 6= ∅, then B(y, s) ⊂ B(x, r), ρ(u, v) = logv r − logv s.
Also, |1r | ≥

1
r ,

s
|y|2 clearly hold, thus

ρ(I(u), I(v)) = 2 logv |
1

y
| − logv

1

r
− logv

s

|y|2
= logv r − logv s = ρ(u, v).

(iii) 0 6∈ B(x, r), B(y, s).
By Proposition 4.10 we know I(u) = B( 1

x ,
r
|x|2 ), I(v) = B( 1

y ,
s
|y|2 ).

If B(x, r) ⊂ B(y, s) (or B(y, s) ⊂ B(x, r), assume the former), then we know |x − y| ≤
s < |y|, so |x| = |y|.
Since ∣∣∣∣1x − 1

y

∣∣∣∣ =
|x− y|
|xy|

≤ s

|y|2
,

r

|x|2
≤ s

|y|2
,
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we know that I(u) ≤ I(v), so that

ρ(I(u), I(v)) = logv
s

|y|2
− logv

r

|x|2
= logv s− logv r = ρ(u, v).

If B(x, r) ∩B(y, s) = ∅, then |x− y| > r, s.
We now check that | 1x −

1
y | >

r
|x|2 ,

s
|y|2 .

By symmetry we only check the former.
If |x| ≥ |y|, we have ∣∣∣∣1x − 1

y

∣∣∣∣ =
|x− y|
|xy|

>
r

|x|2
If |x| < |y|, we know |x− y| = |y|, thus we have∣∣∣∣1x − 1

y

∣∣∣∣ =
1

|x|
>

r

|x|2
.

Thus by Exercise 2.31 we see that

ρ(I(u), I(v)) =2 logv |
1

x
− 1

y
| − logv

r

|x|2
− logv

s

|y|2
=2 logv |x− y| − logv r − logv s = ρ(u, v).

This proves that any LFT preserves the distance between points in HBerk not of type IV.
For any type IV point x = {B(ai, ri)}, we have ρ(x, xi) = logv ri− logv diam(x)→ 0 as i→∞,
where xi = B(ai, ri). Also, we can check ρ(ϕ(x), ϕ(xi)) → 0 as i → ∞ by applying Corollary
4.14. Hence type II or III points are dense in HBerk under the strong topology. Now the
statement for general points in HBerk follows from taking limit. �

Remark 4.16. Combining this result with Theorem 4.13, we know that any LFT preserves ρ
in the sense of Remark 2.35.

Corollary 4.17. Any LFT restricts on HBerk to a continuous map with respect to the strong
topology. �

4.4. Type I, II points under LFTs.

Theorem 4.18. For any tuples (x1, x2, x3), (y1, y2, y3) of distinct points in P1
Berk of type I,

there exists a unique LFT ϕ such that ϕ(xi) = yi, i = 1, 2, 3.

Proof. The proof is exactly the same as the classical one. See Proposition 4.7. �

Theorem 4.19. For any tuples (x1, x2, A), (y1, y2, B) of distinct points in P1
Berk, where xi, yi

are of type I, i = 1, 2, and A,B are of type II, such that A ∈ [x1, x2], B ∈ [y1, y2], there exists
an LFT ϕ such that ϕ(xi) = yi, i = 1, 2, and ϕ(A) = B.

Proof. Let α, β be LFTs that take (x1, x2), (y1, y2) to (0,∞), respectively. Let A′ = α(A),
B′ = β(B). By Corollary 4.3, A′, B′ ∈ [0,∞]. By Theorem 4.13, A′, B′ are of type II. Thus we
can write A′ = B(0, r), B′ = B(0, s) for some r, s ∈ |K|×.
Find u ∈ K× with |u| = s/r, then γ = uX is an LFT that maps (0,∞, A′) to (0,∞, B′), so
ϕ = β−1 ◦ γ ◦ α is an LFT that satisfies our requirement. �

Corollary 4.20. For any pairs (x,A), (y,B) of points in P1
Berk, where x, y are of type I, A,B

are of type II, there exists an LFT ϕ such that ϕ(x) = y, ϕ(A) = B.

Proof. If x < A, let x′ =∞. If x 6< A, let x′ ∈ K be any point with x′ < A. Choose y′ similarly.
Then apply Theorem 4.19 to (x, x′, A), (y, y′, B). �



16 QIUYU REN

Example 4.21. By the uniqueness part of Theorem 4.18, it is clear that in general we cannot
require an LFT to carry four distinct points of type I to another four.
By Theorem 4.15, it is also clear that in general we cannot require an LFT to carry two distinct
points of type II to another two.
The same are true under classical settings, where type II points in P1

Berk correspond to gener-
alized circles in P1(C).

Example 4.22. If we drop the condition that A ∈ [x1, x2], B ∈ [y1, y2], then Theorem 4.19
does not hold in general.
By Proposition 2.22, we can take a tangent direction at the Gauss point ζGauss = B(0, 1) that
does not contain 0 or ∞. Take any A,B of type II contained in this tangent direction with
different diameter, then A,B < ζGauss. We claim that there exists no LFT that carries (0,∞, A)
to (0,∞, B).
If not, let ϕ be such an LFT.
Notice that ϕ is bijective by Proposition 4.2. Apply Corollary 4.3, we have

{ϕ(ζGauss)} = ϕ([0,∞] ∩ [0, A] ∩ [∞, A]) = [0,∞] ∩ [0, B] ∩ [∞, B] = {ζGauss}.
Thus ϕ(ζGauss) = ζGauss. So we have

ρ(ζGauss, A) = − logv diam(A) 6= − logv diam(B) = ρ(ζGauss, B) = ρ(ϕ(ζGauss), ϕ(A)).

This contradicts with Theorem 4.15.

4.5. Type III, IV points under LFTs.

Although points of type I, II have good transitivity properties under the action of PSL2(K),
the same need not be true for points of type III, IV.

Example 4.23. In view of Theorem 4.11, in P1
Berk,Cp

, any LFT carries a ball of radius r to a
ball of radius cr or c/r for some c ∈ |C×p | = pQ.
In particular, there exists no LFT that carries the type III point B(0,

√
2) to the type III point

B(0,
√

3) in P1
Berk,Cp

.

Example 4.24. For any r > 0, we can find a type IV point in P1
Berk,Cp

with diameter r (see [3],
Section 3.4). In particular we can find type IV points A,B with diam(A) =

√
2, diam(B) =

√
3.

By Corollary 4.14, there exists no LFT that carries A to B.

For type III points in P1
Berk, the essential obstruction to transitivity is only the deficiency of

valued group. In fact by similar argument as Theorem 4.19 we obtain the following:

Theorem 4.25. Let (x1, x2, A), (y1, y2, B) be two tuples of distinct points in P1
Berk, where xi, yi

are of type I, i = 1, 2, and A,B are of type III, such that A ∈ [x1, x2], B ∈ [y1, y2]. Suppose
(1) diam(B)/diam(A) ∈ |K×|, and that x1 < A, y1 < B or x2 < A, y2 < B; or
(2) diam(A) · diam(B) ∈ |K×|, and that x1 < A, y2 < B or x2 < A, y1 < B.
Then there exists an LFT ϕ such that ϕ(xi) = yi, i = 1, 2, and ϕ(A) = B.

Remark 4.26. By Proposition 2.22 we already know that exactly one of x1, x2 (resp. y1, y2)
is smaller than A (resp. B).

Proof of Theorem 4.25.
(1) Without loss of generality we assume x1 < A, y1 < B.

Compose with α = 1
X−x2 , if necessary, we may assume x2 = ∞ (from Theorem 4.11

and Corollary 4.12 we know that composition with α won’t affect our other conditions).
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Compose with β = X − x1 if necessary, we may assume x1 = 0. Similarly we may assume
y2 =∞, y1 = 0.
Now A = B(0, r), B = B(0, s) where s/r = diam(B)/diam(A) ∈ |K×|. Find u ∈ K× with
|u| = s/r, then ϕ = uX satisfies our requirement.

(2) Without loss of generality we assume x2 < A, y1 < B.
The LFT γ = 1

X−x2 takes (x1, x2, A) to (x′1, x
′
2, A

′) where A′ ∈ [x′1, x
′
2], x′1 < A′, and

diam(A′) · diam(A) ∈ K×. Now the statement follows from (1). �

Theorem 4.27. Let (x,A), (y,B) be two pairs of points in P1
Berk where x, y are of type I and

A,B are of type III. Then there exists an LFT that carries (x,A) to (y,B) if and only if
(1) x < A, y < B or x 6< A, y 6< B, and that diam(A)/diam(B) ∈ |K×|; or
(2) x < A, y 6< B or x 6< A, y < B, and that diam(A) · diam(B) ∈ |K×|.

Proof. Sufficiency follows from Theorem 4.25. Now we check (1) or (2) is neccessary.
Let ϕ = aX+b

cX+d be an LFT that carries (x,A) to (y,B). Let BA be the ball in K that corresponds
to A.
Apply Theorem 4.11 and Corollary 4.12, we know that:
If −d

c 6∈ BA, then diam(A)/diam(B) ∈ |K×|, and y < B ⇐⇒ x < A. This is (1).
If −d

c ∈ BA, then diam(A) · diam(B) ∈ |K×|, and y < B ⇐⇒ x 6< A. This is (2). �

Corollary 4.28. Let A,B ∈ P1
Berk be of type III, then there exists an LFT ϕ that carries A to

B if and only if diam(A)/diam(B) ∈ |K×| or diam(A) · diam(B) ∈ |K×|. �

However, it is quite interesting that for type IV points, the deficiency of valued group is not
the only obstruction to transitivity.

Theorem 4.29 (Stability under small perturbations). Equip K4 with the topology induced by
the sup norm. For any type IV point A ∈ P1

Berk and LFT ϕ = aX+b
cX+d , there exists a neighborhood

U of (a, b, c, d) in K4 such that for every (a′, b′, c′, d′) ∈ U , α = a′X+b′

c′X+d′ is an LFT, and that
α(A) = ϕ(A).

Proof. Write A = {B(xi, ri)}. By Corollary 4.14, delete some initial terms if necessary, we may
assume that |cxi + d| = λ for all i, |xi| = λ1 for all i (take ϕ = 1

X in the corollary), and that

B = ϕ(A) = {B(yi, si)} = {B(
axi + b

cxi + d
,
|ad− bc|

λ2
1

ri)}

is a point of type IV.
Apply Corollary 4.14 again, we may also assume |yi| = λ2 for all i.
Denote s = diam(B), S = |ad− bc|, M = ||(a, b, c, d)|| = max(|a|, |b|, |c|, |d|).
Then we have λ, λ1, λ2, s, S,M > 0. Now let

δ0 = min

(
λs

(λ1 + 1)(λ2 + 1)
,

λ

λ1 + 1
,
S

M
,
√
S

)
.

Then for any t′ = t+ δt ∈ K with |δt| < δ0, t = a, b, c, d, we have
• |(a′d′ − b′c′)− (ad− bc)| = |δaδd + aδd + dδa − δbδc − bδc − cδb| < max(δ2

0 ,Mδ0) ≤ S =
|ad− bc|.
Thus |a′d′ − b′c′| = |ad− bc| > 0.
• |(c′xi + d′)− (cxi + d)| = |δcxi + δd| < max(λ1δ0, δ0) < λ = |cxi + d|.
Thus |c′xi + d′| = |cxi + d| = λ.
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• |(a′xi + b′ − c′xiyi − d′yi) − (axi + b − cxiyi − dyi)| = |δaxi + δb − δcxiyi − δdyi| <
max(λ1δ0, δ0, λ1λ2δ0, λ2δ0) < λs.
Thus |a′xi + b′ − c′xiyi − d′yi| ≤ max(λs, |axi + b− cxiyi − dyi|) ≤ λsi.

Hence α = a′X+b′

c′X+d′ is an LFT, and that∣∣∣∣a′xi + b′

c′xi + d′
− yi

∣∣∣∣ =
|a′xi + b′ − c′xiyi − d′yi|

|c′xi + d′|
≤ si,

|a′d′ − b′c′|
|c′xi + d′|

=
|ad− bc|
|cxi + d|

= si.

This means α(B(xi, ri)) = ϕ(B(xi, ri)), hence α(A) = ϕ(A).
Now take U to be the open ball in K4 with center (a, b, c, d) and radius δ0 completes the
proof. �

Remark 4.30. The same is true if we replace A by any point of type II or III, as one can check
by applying Theorem 4.11. Obviously this is not true for points of type I.

Example 4.31. We claim that for any r > 0, there exist A,B ∈ P1
Berk,Cp

of type IV with
diam(A) = diam(B) = r such that no LFT carries A to B.
Fix an A ∈ P1

Berk,Cp
of type IV with radius r. Let

F = {ϕ(A) : ϕ is an LFT }.
For any B ∈ F , Theorem 4.29 tells us that there exists an open set UB ∈ C4

p such that any
LFT ϕ = aX+b

cX+d with (a, b, c, d) ∈ UB satisfies ϕ(A) = B.
Since Cp is separable (see [3], Section 3.1), we know C4

p is separable. Now {UB : B ∈ F } is a
collection of disjoint open subset in C4

p, so F is countable. But the set of type IV points in Cp
with radius r is uncountable (see [3], Section 3.4), our claim follows.
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