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Preface

This is my notes summarizing some basics of equivariant cohomology theory.
The singular cohomology theory assigns algebraic invariants to topological spaces. Since its

emergence in the twentieth century, it has become an indispensable tool in studying geometry of
topological spaces. In the differentiable category, Georges de Rham (1903-1990) uses differential
forms on a manifold to define its de Rham cohomology, which is isomorphic to its singular coho-
mology (by de Rham theorem). In comparison, singular cohomology is defined for any topological
spaces and any coefficient ring, while de Rham cohomology is only defined for smooth manifolds
and real coefficient but is usually easier to compute and is hence preferred by differential geometers.

Suppose now we are working with G-spaces, i.e. topological spaces equipped with G-action.
One has an analogue of singular cohomology that captures the additional G-structure, called G-
equivariant cohomology (also known as Borel cohomology). When restricting to smooth manifolds,
with the aid of differential forms one can define the G-equivariant de Rham cohomology, which
agrees with the usual G-equivariant cohomology (by equivariant de Rham theorem).

In these notes, I will summarize the basics of equivariant cohomology theory, with emphasis in
the differentiable point of view. Section 1 is a review of some preliminaries. Section 2 gives the
definition of equivariant cohomology for general G-spaces and proves some of its basic properties.
In Section 3, under some motivations developed in Section 1, we define the equivariant de Rham
cohomology for G-manifolds. Section 4 is a continuation of Section 3, which introduces two most
important models for computing equivariant de Rham cohomology of G-manifolds. In the end of
Section 4, a proof of the equivariant de Rham theorem will be provided. Section 5 and Section 6
are some applications. The reader is assumed to be familiar with basic differential geometry and
algebraic topology.

These notes emerge from the notes I made for a reading course in equivariant de Rham theory
and Chern-Weil theory I took in Spring 2020 at MIT. In these notes, many proofs are omitted. Hard
ones are provided with suitable references and easy ones are left as exercises for readers. I would
like to thank Professor Victor Guillemin and Professor Zuoqin Wang for their valuable guidance.
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1 Preliminary

Convention 1.1. Throughout these notes, G denotes a Lie group with Lie algebra g. Although not
necessary everywhere, for simplicity, all Lie group appears in these notes are assumed to be compact.
Sometimes but not always, we will assume a Lie group to be connected. Usually, compactness is
used to average over the group, while connectedness is used to integrate local identities (given by
Lie derivatives) into global ones (given by pulling-back by group elements). The coefficient ring is
taken to be R throughout.

1.1 The Super- Language

The prefix “super-” can be added to many mathematical concept (it originated in physics, however).
Briefly speaking, the word “super” means that the object is equipped with a Z/2Z-grading. Here
is a list of some basic syntax of the super- language. We refer to [16, Section 3] and [7, Section 2.2]
for further reading.

• A super vector space is a Z/2Z-graded vector space. Alternatively, it is a direct sum of
vector spaces V = V 0⊕V 1. The elements in V 0 are said to be even while the ones in V 1 are
said to be odd.

• An (associative) superalgebra is a super vector space A = A0 ⊕ A1 equipped with an
associative multiplication A × A → A such that |ab| = |a||b| for any homogeneous a, b ∈ A.
Here | · |(= 0, 1) denotes the degree of a homogeneous element.

• The supercommutator of a superalgebra A is the bilinear bracket [·, ·] with [a, b] = ab −
(−1)|a||b|ba for homogeneous elements a, b ∈ A. A superalgebra is said to be supercommu-
tative if its supercommutator is identically zero. A superalgebra is said to be unital if there
is a multiplicative unit 1 (necessarily with degree 0).

• Morphisms between super vector spaces, superalgebras are defined to be degree-preserving
maps that preserve the linear, algebra (possibly with unit) structure, respectively.

Convention 1.2. From now on, whenever we speak of a superalgebra without further qualification,
it is understood that we are referring to a unital supercommutative associative superalgebra.

• Let A be a superalgebra. A superalgebra over A (or a A-superalgebra) is a superalgebra
B equipped with a superalgebra morphism A→ B. Morphisms between A-superalgebras are
superalgebra morphisms that respect the maps from A.

Before we continue, we shall add a remark to the use of sign. A slang for the sign in the super-
language is that:

It costs a sign to move one (odd) symbol past another (odd symbol).

Keep this in mind, we proceed with a couple more basic constructions in the super- world.

• For V a super vector space, let End(V ) denote the space of linear maps (instead of morphisms!)
from V to itself. Then End(V ) is a (not necessarily supercommutative) superalgebra by
defining End(V )i := {f ∈ End(V ) : fV j ⊂ V i+j , j = 0, 1}.
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• If A is a superalgebra, let Der(A) denote the sub super vector space of End(A) consists of
homogeneous maps D satisfying the super Leibniz rule:

D(ab) = D(a)b+ (−1)|a||D|aD(b), for a, b homogeneous (1)

and all linear combinations of such D. Maps in Der(A) are called superderivations of A.

• If A,B are two super vector spaces, then A⊗B is a super vector space in the obvious way. If
A,B are superalgebras, then A ⊗ B is a superalgebra with unit 1 ⊗ 1 and (a ⊗ b)(a′ ⊗ b′) =
(−1)|a

′||b|aa′ ⊗ bb′ for homogeneous a, b, a′, b′.

• A super vector space L is called a Lie superalgebra if it is equipped a bilinear bracket [·, ·]
which is super anti-commutative and satisfies the super Jacobi identity. More explicitly, for
any homogeneous elements a, b, c ∈ L we have

[a, b] = −(−1)|a||b|[b, a]

and
[a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]].

Note that a Lie superalgebra is not necessarily associative or unital or supercommutative.

Any Z-grading descends to a Z/2Z-grading in the obvious way. All definitions above make sense
with “Z/2Z” replaced by “Z” (but see the remark below about End(·)). Since we will work entirely
with Z-grading objects, we make the following convention.

Convention 1.3. From now on, whenever we speak of a super concept, it is understood that the
object is equipped with a Z-grading instead of simply a Z/2Z-grading. In particular, | · | values in
Z instead of Z/2Z.

Remark 1.4. Let V be a super (Z-graded!) vector space. It is not necessarily true that End(V )
is a direct sum of End(V )i, i ∈ Z, thus End(V ) is not super in this way. We shall instead define
the (not necessarily supercommutative) superalgebra End0(V ) = ⊕End(V )i and define Der(V ) as
a sub super vector space of End0(V ) in the same way as above.

Example 1.5. If M is a manifold, then the de Rham complex Ω(M) is a superalgebra. Moreover,
it is equipped with a differential d with degree 1, which acts on Ω(M) as a superderivation. Such
superalgebra is also called a differential graded algebra.

We end this section with a few properties which are left as exercises for readers.

Exercise 1.6. If A,B are two super vector spaces, then

A⊗B → B ⊗A, a⊗ b 7→ (−1)|a||b|b⊗ a for homogeneous a, b

defines a super vector space isomorphism. It is a superalgebra isomorhpism if A,B are superalge-
bras. In this sense we say the tensor product is supercommutative.

Exercise 1.7. Let A,B be two super vector spaces, then the linear map i : End0(A)⊗End0(B)→
End0(A⊗B) defined by (i(f ⊗g))(a⊗ b) = (−1)|g||a|f(a)⊗g(b) for homogeneous f ∈ End0(A), g ∈
End0(B), a ∈ A, b ∈ B is an injective superalgebra morphism.
From now on, we will omit the map i and write f ⊗ g as an element in End0(A ⊗ B) for any
f ∈ End0(A), g ∈ End0(B).
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Exercise 1.8. Let A be a superalgebra. Show that Der(A) is a Lie superalgebra under its super-
commutator.

Exercise 1.9. Let A,B be superalgebras.

(1) Suppose D acts on A,B as superderivations, respectively, then the diagonal action D = D ⊗
1 + 1⊗D is a superderivation on A⊗B.

(2) Suppose L→ Der(A), L→ Der(B) are two Lie superalgebra morphisms, then taking diagonal
actions defines a Lie superalgebra morphism L→ Der(A⊗B).

1.2 Differential Geometry of G-Manifolds

In this section we review some basic constructions on a G-manifold, i.e. a manifold equipped with
a G-action. In particular we list some definitions and basic properties for (smooth) principal G-
bundles. The reader should feel familiar with these materials, otherwise we recommend [5] and [15,
Part II] for further reading.

Let M be a manifold equipped with a right G-action. For any X ∈ g, let X denote the associated
vector field of A on M :

Xp =
d

dt

∣∣∣∣
t=0

(p · exp(tX)).

Any left action can be converted into a right action in the usual way. If M is equipped with a left
G-action, then X denotes the associated vector field of X on M with respect to the corresponding
right G-action. More explicitly,

Xp = − d

dt

∣∣∣∣
t=0

(exp(tX) · p).

Then, X 7→ X defines a Lie algebra morphism g→ X(M). As a shorthand, for a G-manifold M , we
will use ιX = ιX , LX = LX to denote the contraction, Lie differentiation by X on M , respectively.
Let R denotes the right multiplication G-action on M (which is the inverse left multiplication
if the G acts on the left). Then ιX , LX and the exterior derivative d acts by superderivations
on the exterior superalgebra Ω(M) with degree −1, 0, 1, respectively, and G acts on Ω(M) by
superalgebra automorphism via ρ defined by ρg = R∗g. We have the usual differential geometry
formulas, formulated in terms of supercommutators:

[ιX , ιY ] = 0,

[LX , ιY ] = ι[X,Y ],

[d, ιX ] = LX ,

[LX ,LY ] = L[X,Y ],

[d,LX ] = 0,

[d, d] = 0

as well as

LX =
d

dt

∣∣∣∣
t=0

ρexp(tX), (2)
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ρgLXρg−1 = LAdgX , (3)

ρgιXρg−1 = ιAdgX , (4)

ρgdρg−1 = d, (5)

for any X,Y ∈ g, g ∈ G.

Exercise 1.10. Let g̃ = g−1 ⊕ g0 ⊕ g1 where g−1 = {ιX : X ∈ g}, g0 = {LX : X ∈ g} and g1 = Rd.
Then the first six identities above define a Lie superalgebra structure on g̃. Also, g0

∼= g as Lie
algebras.

Therefore, the information carried by superderivations ι•,L•, d can be succinctly summarized
as saying

g̃→ Der(Ω(M)) (6)

is a morphism of Lie superalgebras (cf. Exercise 1.8).

Next, we restrict our attention to the situation where the G-action is free.

Definition 1.11. A (smooth) principal G-bundle is a smooth fiber bundle π : P → B such that
G acts on P freely and smoothly on the right and π is the projection onto the orbit space.

Definition 1.12. Suppose π : P → B is a principal G-bundle. A differential form α on P is said
to be

• horizontal if ιXα = 0 for any X ∈ g;

• invariant if ρgα = 0 for any g ∈ G;

• basic if it is both horizontal and invariant.

The space of horizontal, invariant, basic forms on P are denoted Ωhor(P ),Ω(P )G,Ωbas(P ), respec-
tively.

If α is invariant, then LXα = 0 for all X ∈ g. Assuming G is connected, LXα = 0 for all X ∈ g
implies α is invariant.

Proposition 1.13. Suppose π : P → B is a principal G-bundle. Then the pullback by π gives a

superalgebra isomorphism π∗ : Ω(B)
∼=−→ Ωbas(P ).

Proof. See [5, Corollary 6.13].

Definition 1.14. A connection on a principal G-bundle π : P → B is a 1-form ω ∈ Ω1(P ; g) =
Ω1(P )⊗ g such that

(i) ιXω = X for any X ∈ g.

(ii) ρgω = Adg−1 ◦ ω for any g ∈ G.

Proposition 1.15. Every principal G-bundle has a connection.

Proof. See [5, Corollary 6.7].
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Definition 1.16. The curvature of a connection ω ∈ Ω1(P ; g) on a principal G-bundle π : P → B
is

Fω := dω + 1
2 [ω, ω] ∈ Ω2(P ; g).

Here [·, ·] is defined to be the wedge product on forms followed by the Lie bracket on g.

Proposition 1.17. (i) Fω is horizontal: ιXFω = 0 for any X ∈ g;

(ii) Fω is Ad-equivariant: ρgFω = Adg−1 ◦ Fω for any g ∈ G;

(iii) (The Bianchi identity) dFω = [ω, Fω].

Proof. See [5, Theorem 7.2].

1.3 Spectral Sequences

Spectral sequence is an important tool in algebraic topology for computing cohomology. In this
section we state without proof the existence of spectral sequence for a filtered cochain complex and
some of its properties. As an important example we deduce the spectral sequence for a double
complex. For missing details one may consult [2, Chapter III].

Let (C∗, d) be a cochain complex of abelian groups where Cn = 0 for all n < 0. Let

C∗ = F 0C∗ ⊃ F 1C∗ ⊃ F 2C∗ ⊃ · · ·

be a decreasing filtration of C∗ with ∩F sC∗ = 0. Set F sC∗ = C∗ for s < 0. One can form the
associated graded complexes of {F sC∗}, which is by definition

grsC∗ = F sC∗/F s+1C∗, s ∈ Z.

Define
Es,t0 = grsCs+t = F sCs+t/F s+1Cs+t.

The differential d induces a map
d0 : Es,t0 → Es,t+1

0

with bidegree (0, 1), making E0 into a bigraded complex. Let E1 denote its cohomology, or explicitly

Es,t1 = Hs,t(E0, d0) = Hs+t(grsC∗).

Note that
0→ F s+1C∗ → F sC∗ → grsC∗ → 0

is a short exact sequence of cochain complexes, one obtain a long exact sequence with boundary
homomorphisms ∂. Then we define d1 : Es,t1 → Es+1,t

1 to be the composition

Hs+t(grsC∗)
∂−→ Hs+t+1(F s+1C∗)→ Hs+t+1(grs+1C∗),

which is a differential with of bidegree (1, 0), making E1 into a bigraded complex. Now define
E2 = H(E1, d1), which is also bigraded. The theorem below shows that this process continues, and
Er “converges” to H∗(C∗) as r →∞.

The filtration {F sC∗} is said to be first quadrant if Es,t0 = 0 whenever s < 0 or t < 0.
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Theorem 1.18. There exists bigraded complexes (Er, dr), r ≥ 0, where dr is of bidegree (r,−r +
1) such that Er+1 = H(Er, dr). Suppose {F sC∗} is first quadrant, then there is a filtration
{F sH∗(C∗)}s≥0 of H∗(C∗) that is exhaustive in the sense that F 0H∗(C∗) = H∗(C∗) and ∩sF sH∗(C∗) =
0, satisfying that for each s, t, Es,tr stabilizes to some Es,t∞ for sufficiently large r, and that Es,t∞

∼=
grsHs+t(C∗). Moreover, all constructions above are natural in the initial data {F sC∗}, and that
(E0, d0), (E1, d1) are constructed as in the discussion above.

The sequence {(Er, dr)}r≥0 are known as the spectral sequence of the filtered complex C∗

(with filtration {F sC∗}).

Corollary 1.19. Let {F sC∗}, {F sD∗} be first quadrant filtrations of C∗, D∗ and f : C∗ → D∗ be a

chain map respecting these filtrations. Suppose that f induces an isomorphism Er(f) : Er(C
∗)
∼=−→

Er(D
∗) for some r, then H∗(C∗) ∼= H∗(D∗).

Proof. By naturality Er(f) is a chain map, therefore Er+1(f) is also an isomorphism. Continue, it
follows that E∞(f) is an isomorphism. Therefore f induces isomorphism in each grsH∗. Since we
are working with coefficient R, this implies that f induces isomorphism in H∗ (for general coefficient
ring, one uses five lemma and induction to prove f induces isomorphism in each F sH∗).

Example 1.20 (Spectral Sequence of a Double Complex). A double complex (of abelian groups)
is a bigraded abelian group C∗,∗ equipped with differential d with bidegree (0, 1) and differential δ
with bidegree (1, 0) satisfying dδ + δd = 0. It is said to be first quadrant if Cs,t = 0 whenever
s < 0 or t < 0.

For any double complex C∗,∗, we define its total complex to be the graded cochain complex
(C∗, D) where

Cn =
⊕
p+q=n

Cp,q

and D = d+ δ is a differential of degree 1.
Let {F sC∗} be a decreasing filtration of C∗ given by

F sCn =
⊕
p+q=n
p≥s

Cp,q.

Then the associated graded complex is given by grsCn = Cs,n−s. Thus Es,t0 = Cs,t, d0 agrees with
the differential d on C∗,∗, Es,t1 = Hs,t(C∗,∗, d) is the vertical cohomology of the double complex C∗,∗,
and d1 is induced by the differential δ. In particular, the filtration {FsC∗} is of first quadrant if and
only if C∗,∗ is of first quadrant as a double complex. In such case, there is a spectral sequence with
(E0, d0), (E1, d1) given as above that converges to the cohomology of the total complex (C∗, D).

2 Equivariant Cohomology in Topology

In this section we define the G-equivariant cohomology of a G-space. See also [7, Section 1].

Remark 2.1. We shall make a technical assumption throughout these notes that all topological
spaces we are considering are paracompact. Then, every fiber bundle is a Hurewicz fibration, and
every vector bundle admits a bundle metric. This is not a too restrictive condition for us since every
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manifold is paracompact. Moreover, every CW complex is paracompact, and so will the classifying
spaces we construct in Section 2.3. Alternatively, we could instead make the weaker assumption
that all fiber bundles we are considering admits a numerable trivializing cover. See [9] for more
details.

2.1 Equivariant Cohomology of G-Spaces

For any topological space X, singular cohomology theory associate to it a ring H∗(X), and the
Z-grading on H∗(X) makes it a (unital, supercommutative, associative) superalgebra. For any
map f : X → Y between two spaces, we have an induced map

f∗ = H∗(f) : H∗(Y )→ H∗(X). (7)

The induced map is a superalgebra morphism which is functorial in the sense that (g ◦ f)∗ = f∗g∗

for maps f : X → Y , g : Y → Z, and that (idX)∗ = idH∗(X). In other words,

H∗ : Top→ sAlg

is a contravariant functor from the category of topological spaces to the category of superalgebras.
Moreover, the functor H∗ satisfies the homotopy invariance property: if f, g : X → Y are

homotopic, then f∗ = g∗. In other words it descends to a contravariant functor

H∗ : HoTop→ sAlg

where HoTop is the homotopy category of topological spaces, whose objects are the same as Top
and whose morphisms are homotopy classes of maps between spaces.

As a corollary of homotopy invariance property, (7) is an isomorphism whenever f is a homotopy
equivalence. In fact, a stronger statement is available. One say a map between topological spaces
is a weak equivalence if it induces isomorphism in all homotopy groups.

Theorem 2.2 (Weak equivalence property). The map (7) is an isomorphism whenever f is a weak
equivalence.

Proof. See [8, Theorem 4.21].

Suppose now that X is a G-space. We want to define an analogue of singular cohomology for
X that captures the additional G-structure, denoted H∗G(X).

A candidate for H∗G(X) is the cohomology ring of the orbit space X/G. However, when the
G-action is not free, the space X/G may behave badly. For example, X/G may not be a smooth
manifold even if X is. On the other hand, X/G usually behave nicely if the G-action is free. For
example, if G acts freely on a manifold X, then the projection map X → X/G is a principal
G-bundle. Therefore it is reasonable to define H∗G(X) = H∗(X/G) whenever the action is free.

We also expect our definition to satisfy the homotopy invariance property and the weak equiv-
alence property. Therefore we may repair a non-free action as follows: Let X be any G-space (say
G acts on the left). Let EG be a weakly contractible space (i.e. the map from EG to the one point
space ∗ is a weak equivalence) on which G acts freely on the right. Then EG × X has the same
homotopy type as X, and is equipped with a left G-action

g · (e, x) = (eg−1, gx), g ∈ G.

The quotient (EG×X)/G, also denoted EG×GX, or simply XG, is called the homotopy quotient
of X by G.
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Definition 2.3. The G-equivariant cohomology of a G-space X is

H∗G(X) := H∗(XG) = H∗((EG×X)/G). (8)

A G-equivariant map (referred to as G-map later) X → Y between G-spaces induces a map
XG → YG, which in turn induces a map H∗G(Y ) = H∗(YG)→ H∗(XG) = H∗G(X). In this way

H∗G : GTop→ sAlg

defines a contravariant functor from the category of G-spaces to the category of superalgebras.
We haven’t shown that the definition of equivariant cohomology is legitimate. In Section 2.2 we

show that H∗G is independent of the choice of EG. We also show that H∗G satisfies the homotopy
invariance property as well as the weak equivalence property. The existence of EG is deferred until
Section 2.3.

2.2 Properties of Equivariant Cohomology

Strictly speaking, different choices of EG give rises to different homotopy quotient XG, and Defi-
nition 2.3 potentially depends on this choice. We first show that H∗G arises from different choices
of EG are naturally identified.

Suppose E,E′ are two weakly contractible spaces on which G acts freely on the right and X is
a G-space. Then the G-map pr1 : E×E′ → E by projection induces a map between fiber sequences
G → E × E′ × X → (E × E′) ×G X and G → E × X → E ×G X, which in turn induces a map
between homotopy long exact sequences, and we have the commutatitive diagram

πk+1(G) πk+1(E × E′ ×X) πk+1((E × E′)×G X) πk(G) πk(E × E′ ×X)

πk+1(G) πk+1(E ×X) πk+1(E ×G X) πk(G) πk(E ×X).

where all horizontal maps except the middle one are isomorphisms. Therefore the five lemma implies
that the middle map is also an isomorphism. Now Theorem 2.2 says that (E×E′)×GX → E×GX
induces isomorphisms in H∗. Similarly (E × E′) ×G X → E′ ×G X induces isomorphism in H∗.
Therefore H∗(E ×G X) and H∗(E′ ×G X) are naturally identified, as desired.

Proposition 2.4. (1) The functor H∗G has the G-homotopy invariance property. In other words,
if f, g : X → Y are G-homotopic G-maps between G-spaces, then f∗ = g∗ : H∗G(Y )→ H∗G(X).

(2) The functor H∗G has the weak equivalence property. In other words, if a G-map f : X → Y is
a weak equivalence, then f∗ : H∗G(Y )→ H∗G(X) is an isomorphism.

Proof. (1) A G-homotopy X × I → Y between f, g induces a homotopy

EG×G X × I → EG×G Y, ([(e, x)], t) 7→ [(e, h(x, t))]

between f∗, g∗ : EG×G X → EG×G Y .
(2) The G-map idEG×f : EG×X → EG×Y is also a weak equivalence. It induces a map between
homotopy long exact sequences of fiber sequences G → EG ×X → XG and G → EG × Y → YG,
and the five lemma shows that f∗ : XG → YG is a weak equivalence. Then Theorem 2.2 implies the
desired result.
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Proposition 2.5. Suppose X is a G-space on which G acts freely. Then H∗G(X) = H∗(X/G)
naturally.

Proof. The G-map pr1 : EG ×X → X induces a map between the homotopy long exact sequence
of fiber sequences G → EG × X → XG and G → X → X/G. Then the five lemma implies the
desired result.

Let BG denote the quotient EG/G, which is determined up to weak homotopy.

Proposition 2.6. H∗G is contravariant functor from the G-homotopy category of G-spaces to the
category of H∗(BG)-superalgebras.

Proof. It remains to show that each H∗G(X) can be naturally endowed with a H∗(BG)-superalgebra
structure. To see this, consider the equivariant cohomology of the one point G-space ∗. By defini-
tion, H∗G(∗) = H∗(∗G) = H∗(EG/G) = H∗(BG). Therefore the trivial G-map X → ∗ induces a
superalgebra map H∗(BG) = H∗G(∗)→ H∗G(X), which is clearly natural in X.

2.3 Grassmannian Model for Classifying Spaces

In this section we give an explicit construction of a weakly contractible space EG equipped with a
free right G-action. The principal G-bundle EG → BG given by the orbit projection is called the
universal G-bundle. Its base BG is called the classifying space for G. Both these objects are
determined up to weak homotopy. See Section 5.1 for a justification of their names.

We have assumed that G is compact. Since there is a Lie group embbedding G ↪→ O(n) for
some integer n [3, Exercise 4.7.1], to construct EG, we may assume without loss of generality that
G = O(n).

Let k ≥ n be an integer. The Stifel variety Vn(Rk) is defined to be the subspace of Rk×n = (Rk)n

consists of orthonormal n-frames in Rk. The Lie group O(n) acts on Vn(Rk) freely on the right by
right matrix multiplication. The orbit space, denoted Grn(Rk), is called the n-th Grassmannian of
Rk. It can be identified with the space of n-planes in Rk passing the origin.

The embedding Rk ↪→ Rk+1 by adding 0 to the last coordinate induces an O(n)-equivariant
embedding Vn(Rk) ↪→ Vn(Rk+1) which descends to Grn(Rk) ↪→ Grn(Rk+1). The direct limits

Vn(R∞) = lim−→Vn(Rk), Grn(R∞) = lim−→Grn(Rk)

are known as the infinite Stifel variety and the infinite Grassmannian, respectively. The projection
Vn(R∞)→ Grn(R∞) is a principal O(n)-bundle.

We check that Vn(R∞) is weakly contractible. It will follow that Vn(R∞) → Grn(R∞) is a
universal O(n)-bundle and BO(n) = Grn(R∞) is a classifying space for G = O(n) (more generally,
Vn(R∞)/G is a classifying space for anyG that embeds inO(n)). This is known as the Grassmannian
model for classifying spaces.

Note Vn(R∞) can be also regarded as the space of orthonormal n-frames in R∞ = lim−→Rk. The

elements in R∞ can be written as a tuple (u1, u2, · · · )t where only finitely many ui are nonzero.
Any elements in Vn(R∞) can be written as an infinite matrix

U = (uij)i≥1,1≤j≤n, (9)

where only finitely many uij are nonzero. Under this identification, the group O(n) acts by right
matrix multiplication.
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Below is a “swindle” argument which shows that Vn(R∞) is contractible, hence weakly con-
tractible.

For any real matrix V = (vij)i≥1,1≤j≤n with full rank, let GS(V ) ∈ Vn(R∞) denote the matrix
obtained by applying the Gram-Schmidt orthonormalization to the column vectors of V . For any
U as in (9), define

h1(U, t) = GS(((1− t)uij + tui,(j−n))i,j), t ∈ [0, 1].

Here it is understood that uij = 0 for j ≤ 0. Then h1 retract Vn(R∞) onto its subspace, denoted
V ′n(R∞), consists of matrices where the upper n× n matrix is zero. For any U ∈ V ′n(R∞) as in (9),
define

h2(U, t) = (sin tδij + cos tuij)i,j , t ∈ [0, π/2].

Then h1 followed by h2 retracts Vn(R∞) onto the point (δij)i,j ∈ Vn(R∞). Hence Vn(R∞) is
contractible.

Exercise 2.7. Check that h1, h2 above are well-defined. More precisely, for h1, check that GS
always takes in matrices with full rank; for h2, check that its image lies in Vn(R∞).

3 Equivariant Cohomology in Differential Geometry

In this section we first give the definition of G∗ modules and G∗ algebras. Then we define their
G-equivariant cohomology. The structure and materials of this section are mostly in parallel with
those of Section 2. Motivations for some definitions in Section 3.1 are from Section 1.2. Our
treatment essentially follows [7, Section 2].

3.1 Equivariant Cohomology of G∗ Modules

Motivated by (2)∼(6), we make the following definition.

Definition 3.1. A G∗ module is a super vector space A equipped with a Lie superalgebra morphism
g̃ → Der(A) and a G-representation ρ : G → Aut(A) such that (2)∼(5) holds. A G∗ module is a
G∗ algebra if the underlying super vector space is a superalgebra.

Usually, we just write ρg(a) as g · a for g ∈ G, a ∈ A.

Example 3.2. Suppose M is a G-manifold. Then Ω(M) is a G∗ algebra.
Let Ωc(M) denote the compactly supported de Rham complex. Then Ωc(M) is a G∗ module.

It is not a G∗ algebra if M is not compact since it is not unital.

In the rest of these notes, all (essentially two) examples of G∗ modules we will encounter are
G∗ algebras. Therefore we will not put emphasize on the development of G∗ modules.

Several comments are in order.

• Strictly speaking, in order that (2) makes sense, it is required that A processes some kind of
topology. This will be automatic in all the cases we will encounter. See also [7, pp.17].

• A super vector space map (resp. superalgebra map) between G∗ modules (resp. G∗ algebras)
is a morphism if it respects the G∗ module structure. This makes the space of G∗ modules
into a category and the space of G∗ algebras its subcategory.
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• Suppose A,B are G∗ modules (resp. G∗ algebras), then the diagonal representation of G on
A ⊗ B given by g · (a ⊗ b) = (g · a) ⊗ (g · b) and the diagonal map g̃ → Der(A ⊗ B) defined
by Exercise 1.9 makes A⊗B a G∗ module (resp. G∗ algebra).

• Any G∗ module A is automatically a cochain complex with differential d. We denote its
cohomology by H(A), which is a super vector space. If A is a G∗ algebra, then H(A) is a
superalgebra.

Exercise 3.3. Let A,B be two G∗ modules (resp. G∗ algebras). Then the map A ⊗ B → B ⊗ A
defined in Exercise 1.6 is a G∗ module (resp. G∗ algebra) isomorphism.

Motivated by Definition 1.14, we say a G∗ algebra A is regular if there exists an element
ω ∈ A1 ⊗ g (called a connection) such that,

(i) ιXω = X for any X ∈ g;

(ii) g · ω = Adg−1 ◦ ω for any g ∈ G.

A typical example of regular G∗ algebra is Ω(M) where M is a manifold equipped with a free
G-action.

A G∗ module A is said to be acyclic if it is acyclic as a cochain complex, i.e. if

H∗(A) = R =

{
R, ∗ = 0

0, ∗ 6= 0.

A typical example of acyclic G∗ algebra is Ω(M) where M is a contractible G-manifold.

For a G∗ module A, let Ahor, A
G, Abas denote its sub super vector space of horizontal, invariant,

basic elements, as defined by the same formulae in Definition 1.12.

Exercise 3.4. (Abas, d) is a cochain complex.

As a shorthand we will write Hbas(A) to denote H(Abas). For a typical example, take A = Ω(P )
where π : P → B is a principal G-bundle, then Abas ' Ω(B) via π∗, by Proposition 1.13. Therefore
in this case

Hbas(A) = H(Ω(B)) = H∗(B). (10)

Having these notions for G∗ modules and G∗ algebras, we give the definition of G-equivariant
cohomology of a G∗ module and of a G-manifold. Let E denote any acyclic regular G∗ algebra.

Definition 3.5. The G-equivariant cohomology of a G∗ module A is the super vector space

HG(A) = Hbas(E ⊗A)

which is a superalgebra if A is a G∗ algebra.

Then a morphism A→ B of G∗ modules (resp. G∗ algebras) induces HG(A)→ HG(B). In this
way HG defines a covariant functor

HG : G∗Mod→ sVect
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and a covariant functor
HG : G∗Alg→ sAlg.

We haven’t show that the functor HG does not depend on the choice of E, nor have we show
the existence of E. These will be done in the Section 3.2 and Section 3.3, respectively.

Definition 3.6. The G-equivariant de Rham cohomology of a G-manifold M is the superal-
gebra

H∗G,dR(M) := HG(Ω(M)) = H((E ⊗ Ω(M))bas). (11)

Since the de Rham functor Ω is a contravariant functor

Ω: GMfd→ G∗Alg,

we see that H∗G,dR defines a contravariant functor

H∗G,dR : GMfd→ sAlg.

One is encouraged to compare Definition 2.3 and Definition 3.6. In comparison, E is a “real-
ization” of de Rham complex for EG, where acyclicity of E corresponds to weakly contractibility
of EG, and regularity of E corresponds to (local) freeness of G-action on EG. The tensor prod-
uct in the smooth world corresponds to the multiplication in the topological world. Restricting
to basic elements corresponds to quotient by G (cf. Proposition 1.13). Hence (E ⊗ Ω(M))bas is
a “realization” of de Rham complex for MG. In fact, in Section 4.6 we will prove the following
theorem.

Theorem 3.7. Restricting to the category of G-manifolds, we have H∗G,dR = H∗G as contravariant
functors to the category of superalgebras.

In particular, H∗G,dR(∗) = H∗G(∗) = H∗(BG). One can slightly improve the theorem as follows.

Theorem 3.8 (Equivariant de Rham Theorem). Restricting to the category of G-manifolds, we
have H∗G,dR = H∗G as contravariant functors to the category of H∗(BG)-superalgebras.

Therefore, we may simply write H∗G for both the equivariant cohomology functor and the equiv-
ariant de Rham cohomology functor. But we refrain from doing this until Theorem 3.8 is proved.

Exercise 3.9. (1) Suppose A is a regular G∗ algebra and A→ B is a G∗ algebra morphism, show
that B is also a regular G∗ algebra.
(Hint: consider the image of a connection of A under the map A→ B.)

(2) Let A,B be G∗ algebras. If A or B is regular, then so is A⊗B.

3.2 Properties of Equivariant de Rham Cohomology

We first show that functors HG on G∗ modules arise from different choices of acyclic regular G∗

algebra E are naturally identified.

Proposition 3.10. If A is a G∗ module, B is a regular G∗ algebra, and E is an acyclic regular
G∗ algebra, then the inclusion B ⊗A ↪→ E ⊗B ⊗A induces isomorphism in Hbas.

Proof. See [7, Theorem 4.3.1].
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Corollary 3.11. If A is a regular G∗ algebra, then Hbas(A) = HG(A) naturally in A.

Proof. Take A,B in Proposition 3.10 to be R, A, respectively.

By Proposition 3.10, if E,E′ are two acyclic regular G∗ algebra, then Hbas(E⊗A) = Hbas(E
′⊗

E⊗A) = Hbas(E⊗E′⊗A) = Hbas(E
′⊗A) (cf. Exercise 3.3). In this way, HG arises from different

choices of E are naturally identified.

Proposition 3.12. Suppose X is a G-manifold on which G acts freely. Then H∗G,dR(X) =
H∗(X/G) naturally.

Proof. Since Ω(X) is a regular G∗ algebra, by Corollary 3.11 and Proposition 1.13, we have a
natural identification

H∗G,dR(X) = HG(Ω(X)) = Hbas(Ω(X)) = H(Ω(X/G)) = H∗(X/G).

Proposition 3.13. HG is a covariant functor from the category of G∗ algebras to the category of
HG(R)-superalgebras.

Proof. For any G∗ algebra A, the inclusion R ↪→ A induces a map HG(R) → HG(A) natural in
A.

Proposition 3.14. H∗G,dR is a contravariant functor from the category of G-manifolds to the
category of H∗G,dR(∗)-superalgebras.

Proof. The trivial G-space ∗ is final in GMfd. Therefore for a G-manifold M there is a map
H∗G,dR(∗)→ H∗G,dR(M) natural in M .

The natural map HG(R) → HG(A) (resp. H∗G,dR(∗) → H∗G,dR(M)) is called the Chern-Weil
map for the G∗ algebra A (resp. G-manifold M). See Section 5 for more details.

3.3 Infinite Dimensional Manifolds

An infinite dimensional manifold is a topological space M equipped with a filtration M0 ⊂
M1 ⊂ M2 ⊂ · · · ⊂ M such that Mi ⊂ Mi+1 are embedding of smooth manifolds and M = lim−→Mi

as topological spaces.

Exercise 3.15. Let M ↪→ N be an embedded submanifold. Show that the restriction map Ω(N)→
Ω(M) is surjective.

Suppose M is an infinite dimensional manifold defined as above. Then {Ω(Mi)} together with
restriction maps forms an inverse system of differential graded algebras (cf. Example 1.5) where
all restriction maps are surjective. The de Rham complex of M is defined to be the differential
graded algebra

Ω(M) := lim←−Ω(Mi).

Any form θ ∈ Ω(M) can be identified with a compatible sequence of forms θi ∈ Ω(Mi).
Recall that in Section 2.3 we constructed a contractible space EG equipped with a free G-action

using the Grassmannian model. Explicitly, choose an integer n such that G ↪→ O(n), then

EG = Vn(R∞) = lim−→Vn(Rk).
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Define
E = Ω(Vn(R∞)) = lim←−Ω(Vn(Rk)).

We check that E is acyclic and regular.

Exercise 3.16. Let H ↪→ G be an embedding of (compact) Lie groups. Check that any regular
G∗ algebra is also a regular H∗ algebra.
(Hint: Construct a connection by first choosing an element satisfying (i) in Definition 1.14, then
doing an averaging.)

Regularity of E: By exercise 3.16, it suffices to check that E is regular in the case G = O(n). Let
U = (uij)i≥1,1≤j≤n be coordinates of EG = Vn(R∞), as in Section 2.3. Then ω = U tdU is a matrix
valued 1-form on EG. We check that ω is actually o(n)-valued, and is a connection of E = Ω(EG).

To see ω values in o(n), we check that the (i, j)-coordinate plus the (j, i)-coordinate of ω equals

∞∑
k=1

(ukidukj + ukjduki) = d(

∞∑
k=1

ukiukj) = dδij = 0.

To see ω is a connection, we check that
(i) For any X ∈ g, we have XU = UX (as a tangent vector at U ∈ EG), therefore

ιXω = U t(UX) = X.

(ii) For any g ∈ G, we have

g · ω = (Ug)td(Ug) = gtU t(dU)g = g−1U t(dU)g = Adg−1ω.

Acyclicity of E: We begin with a lemma.

Lemma 3.17. Suppose {Ai}i≥0 is an inverse system of cochain complexes (resp. differential graded
algebras) with inverse limit A where all restriction maps are surjective. Suppose that for each k, the

inverse system Hk(Ai) stabilizes, i.e. Hk(Ai+1)
∼=−→ Hk(Ai) for sufficiently large i, then the stable

cohomology lim←−H
∗(Ai) equals H∗(A) as super vector spaces (resp. superalgebras).

Proof. Let d denote the differentials of each Ai and r : Ai+1 → Ai, ri : A→ Ai denote the restriction
maps.

First we assume {Ai}i≥0 is an inverse system of cochain complexes. Since the all restriction
maps r : Ai+1 → Ai are surjective, an element a ∈ A is identified with a sequence of elements
ai ∈ Ai that are compatible with restriction maps.

Fix k, let i be an integer such that Hk(A∗) and Hk−1(A∗) stabilize for ∗ ≥ i. We check that ri
induces isomorphism in Hk. This will imply the desired result.

Surjectivity : Let ai ∈ Aki be a cocycle. We find a cocycle ai+1 ∈ Aki+1 with rai+1 = ai. Then
inductively we can find a sequence of cocyles aj ∈ Akj , j ≥ i, compatible with restriction maps.

They patch to a cocycle a ∈ Ak, proving that ri induces a surjection in Hk.
Since r : Ai+1 → Ai induces isomorphism in Hk, we can find a cocycle a′i+1 ∈ Aki+1 such that

ra′i+1 = ai + dbi for some bi ∈ Ak−1
i . Since r : Ai+1 → Ai is surjective, we can find bi+1 ∈ Ak−1

i+1

with rbi+1 = bi. Then ai+1 := a′i+1 − dbi+1 ∈ Aki+1 is a cocycle satisfying rai+1 = ai, as desired.
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Injectivity : Let a ∈ Ak be a cocycle such that ai = dbi ∈ Aki for some bi ∈ Ak−1
i . We prove that

there exists bi+1 ∈ Ak−1
i+1 such that ai+1 = dbi+1 and bi = rbi+1. Then inductively we can find a

compatible sequence of elements bj ∈ Ak−1
j , j ≥ i, such that dbj = aj . Thus bj patches to b ∈ Ak−1

with db = a, proving that a is a coboundary.
Since r : Ai+1 → Ai induces isomorphism in Hk, we can find b′i+1 ∈ A

k−1
i+1 such that db′i+1 = ai+1.

Then bi − rb′i+1 ∈ Ak−1
i is a cocycle. By the same argument as in the surjectivity part, we can

find a cocycle b′′i+1 ∈ A
k−1
i+1 such that rb′′i+1 = bi − rb′i+1. Then bi+1 := b′i+1 + b′′i+1 ∈ A

k−1
i+1 satisfies

dbi+1 = ai+1 and rbi+1 = bi.

Finally, if {Ai}i≥0 is an inverse system of differential graded algebras, then the underlying super
vector space structure of lim←−H

∗(Ai) agrees with the inverse limit of Ai as cochain complexes. The
restriction maps H∗(A) → H∗(Ai) induces a superalgebra morphism H∗(A) → lim←−H

∗(Ai), which
is an isomorphism of super vector spaces, thus also an isomorphism of superalgebras.

Here is a well-known property of Stifel varieties.

Proposition 3.18. Vn(Rk) is (k − n − 1)-connected, i.e. its q-th homotopy group is trivial for
q ≤ k − n− 1.

Proof. Recall that Vn(Rk) can be regarded as a tuple of orthonormal vectors (v1, · · · , vn) in Rk.
The projection onto the first vector gives a map Vn(Rk)→ Sk−1 which is a fiber bundle with fiber
Vn−1(Rk−1). The long exact sequence for this fiber sequence shows Vn−1(Rk−1)→ Vn(Rk) induces
isomorphism in πq for q ≤ k − 2. Inductively one sees that πq(Vn(Rk)) = πq(V0(Rk−n)) = πq(∗) is
trivial for q ≤ k − n− 1.

As a corollary, the Hurewicz theorem [8, Theorem 4.32] implies that

H∗(Vn(Rk)) =

{
0, 1 ≤ ∗ ≤ k − n− 1

R, ∗ = 0.

Now Lemma 3.17 applying to {Ω(Vn(Rk))}k≥0 shows that H∗(Ω(EG)) = R, as desired.

4 The Weil Model and the Cartan Model

In this section, we introduce two models that make the computation of equivariant cohomology
simpler. In the end of this section, using the tools we have developed by then, we provide a proof
of the equivariant de Rham theorem. This section essentially follows [7, Section 2, 3, 4, 6] and [15,
Part III].

4.1 The Weil Algebra

Roughly speaking, the Weil algebra W (g) for G is an acyclic regular G∗ algebra that is initial (up
to chain homotopy) among all regular G∗ algebras.

We begin with some motivation from Section 1.2. Suppose P → B is a principal G-bundle with
a chosen connection ω ∈ Ω1(P ; g), then the de Rham complex Ω(P ) is a regular G∗ algebra with
connection ω. We look for a G∗ algebra W (g) together with a map W (g)→ Ω(P ).
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The connection 1-form ω ∈ Ω1(P ) ⊗ g can be regarded as a linear map g∗ → Ω1(P ), which
extends to a superalgebra map f1 : ∧ (g∗) → Ω(P ). Here ∧(V ) denotes the exterior algebra of a
vector space V .

The curvature 2-form Fω ∈ Ω2(P ) ⊗ g can similarly be regarded as a linear map g∗ → Ω2(P )
which extends to a superalgebra map f2 : S(g∗)→ Ω(P ). Here S(V ) denotes the symmetric algebra
of a vector space V , but with grading twice as usual, so that Sk(V ) = 0 for odd k. (Note we are
using different notational convention with [7] and [15].)

The maps f1 and f2 combine to a superalgebra map

f = f1 ⊗ f2 : ∧ (g∗)⊗ S(g∗)→ Ω(P ).

This encourage us to define W = W (g) = ∧(g∗) ⊗ S(g∗) as a superalgebra. The group G acts
on W via the coadjoint action on g∗. Then the Ad-equivariance of ω and Fω implies that the map
f is G-equivariant. Let L on W be the infinitesimal of this G-action (cf. (2)). Then f commutes
with LX for any X ∈ g.

We still need to specify the action of ιX and d on W to make it a G∗ algebra such that f is a
G∗ algebra morphism. Since ιX and d are superderivations, it suffices to define them on a set of
algebra generators, for example ∧1(g∗) ∪ S2(g∗).

Let α ∈ g∗ be arbitrary. By ιXω = X and ιXFω = 0, we must define

ιX(α⊗ 1) = 〈X,α〉

and
ιX(1⊗ α) = 0.

By dω = − 1
2 [ω, ω] + Fω and d2 = 0, we must define

d(α⊗ 1) = δα⊗ 1 + 1⊗ α,

extend it to ∧(g∗)→ Ω(P ), and define

d(1⊗ α) = −d(δα⊗ 1).

Here
δ : ∧1 (g∗)→ ∧2(g∗) (12)

is the operator defined by

(δα)(X,Y ) := −α([X,Y ]) for all X,Y ∈ g.

Proposition 4.1. The operators ιX ,LX , d and the G-action defined above make W a G∗ algebra.
Moreover, the map f : W → Ω(P ) is a G∗ algebra morphism.

Proof. The interested reader may check this himself/herself using the coordinate expressions given
Section 4.4. See also [15, Section 19.3] for part of the computations.

Proposition 4.2. The Weil algebra W is acyclic and regular.
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Proof. For regularity, suppose that the element

θ ∈W 1 ⊗ g = ∧1(g∗)⊗ 1 ∼= g∗ ⊗ g ∼= Hom(g, g) (13)

corresponds to idg ∈ Hom(g, g) under the usual identification. Then θ is the unique connection of
W .

For acyclicity, construct a homotopy operator using coordinate expression. See [15, Theo-
rem 19.2].

Proposition 4.3. The Weil algebra W satisfies HG(W ) = Hbas(W ) = Wbas = S(g∗)G.

Proof. By definition, we compute that Wbas = (Whor)
G = S(g∗)G, which contains only even el-

ements. Hence d = 0 on Wbas and Hbas(W ) = Wbas. The equality HG(W ) = Hbas(W ) is by
Corollary 3.11.

The conditions in Definition 1.14 are convex. This allows us to interpolate maps f : W → Ω(P )
arise from different choices of ω. A more precise and general theorem states that

Theorem 4.4. For any regular G∗ algebra A, there exists a unique G∗ algebra morphism W → A
up to chain homotopy.

Proof. Let θ be the connection element in W and take any connection ω ∈ A1⊗g of A. Then θ 7→ ω
restricted to components extends to a G∗ algebra morphism W → A. Conversely, any G∗ algebra
morphism W → A tensored with g maps θ to some connection of A. Then one uses the convexity
of the space of connections of A to conclude the proof. See [7, Theorem 3.3.1] for details.

Strictly speaking, the “chain homotopy” above refers to chain homotopy between G∗ algebras,
which is a notion we have not yet defined. There is nothing mysterious, but keeping track of the
G∗ structure takes a little work. Interested readers may consult [7, Section 2.3.3] to find an explicit
definition. We just point out that chain homotopic maps between G∗ modules induce isomorphic
maps in G-equivariant cohomology. Moreover, if f, g : A → B are chain homotopic map between
G∗ modules and C is another G∗ module, then f ⊗ 1, g ⊗ 1: A⊗C → B ⊗C are chain homotopic.
Therefore, as a corollary of Theorem 4.4, we have

Corollary 4.5. Let A be a regular G∗ algebra and B be a G∗ module. Then all G∗ algebra morphism
W → A induce the same map HG(W ⊗B)→ HG(A⊗B).

In particular, take B = R, we have

Corollary 4.6. Let A be a regular G∗ algebra. There is a map

S(g∗)G → Hbas(A)

defined naturally in A, which is the induced map in Hbas by any G∗ algebra morphism W → A.

This map is known as the Chern-Weil map for the regular G∗ algebra A. See Section 5 for
more details.
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4.2 The Weil Model

Take E = W (g) in Definition 3.5, we obtain the Weil model for a G∗ module A, which is by
definition the cochain complex ((W (g) ⊗ A)bas, d). Its cohomology computes the G-equivariant
cohomology of A. A G∗ module morphism A → B induces a map between Weil modules in the
usual way, which in turn induces a map in equivariant cohomology.

Example 4.7. Let ∗ denote the one point G space. Then Ω(∗) = R is the trivial G∗ algebra. Using
Weil model and Proposition 4.3 we compute the G-equivariant de Rham cohomology of a point to
be

H∗G,dR(∗) = HG(R) = H(Wbas) = S(g∗)G.

In particular, take G = S1, then

H∗S1,dR(∗) = S(R)S
1

= R[u]

is a polynomial ring in one indeterminant u with |u| = 2.
On the other hand, the topological G-equivariant cohomology of a point is H∗G(∗) = H∗(BG).

Using the Grassmaniann model for BS1 one sees that BS1 = Gr2(R∞) = CP∞, thus we also have

H∗G(∗) = H∗(CP∞) = R[u].

If A is a G∗ algebra, then a G∗ algebra map W (g)→W (g)⊗A, for example the inclusion into
first component, equip HG(A) with a S(g∗)G-superalgebra structure. The choice of this G∗ algebra
map is irrelevant (cf. Corollary 4.6).

4.3 The Cartan Model

The Cartan Model for a G∗ module is another model that computes its G-equivariant cohomology.
Although it is less intuitive than the Weil model, it is actually more suitable for computations for
various reasons we will see.

Exercise 4.8. Check that G-action on a G∗ module A restricts to a G-action on Ahor.

Let G act on S(g∗) via the coadjoint action. Let A be any G∗ module. Then the diagonal action
defines a G-action on S(g∗)⊗A.

Theorem 4.9. (Weil-Cartan Isomorphism) Let A be a G∗ module (resp. G∗ algebra). Define

F : (W (g)⊗A)hor → S(g∗)⊗A

to be the restriction of the projection map

W (g)⊗A = ∧(g∗)⊗ S(g∗)⊗A→ ∧0(g∗)⊗ S(g∗)⊗A = R⊗ S(g∗)⊗A = S(g∗)⊗A

to (W (g)⊗A)hor. Then F is a G-equivariant super vector space (resp. superalgebra) isomorphism.
Therefore, it induces a super vector space (resp. superalgebra) isomorphism

F : (W (g)⊗A)bas → (S(g∗)⊗A)G.
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Proof. See [15, Theorem 21.1].

The map F carries the differential d on (W (g)⊗A)bas a differential dG on CG(A) := (S(g∗)⊗A)G.
The cochain complex (CG(A), dG) is called the Cartan model for A. Its cohomology computes
the G-equivariant cohomology for A. See Proposition 4.12 for an explicit expression for dG. A
morphism f : A→ B induces morphism 1⊗ f between their Cartan models, which in turn induces
a map in equivariant cohomology.

If M is a G-manifold, then elements in ΩG(M) := CG(Ω(M)) = (S(g∗)⊗Ω(M))G are called G-
equivariant differential forms on M . With respect to the differential dG, we also have the notions of
closed and exact forms on M . The cohomology of ΩG(M) computes the G-equivariant cohomology
of M .

Example 4.10. If A = R is the trivial G∗ algebra, then CG(A) = S(g∗)G consists of only even
elements. Therefore we find again that

H∗G,dR(∗) = HG(R) = H(S(g∗)G, dG) = S(g∗)G.

The inclusion S(g∗)G ↪→ (S(g∗) ⊗ A)G into first component equips HG(A) with a S(g∗)G-
superalgebra structure.

4.4 Coordinate Expression

Fix a basis X1, · · · , Xn for g and ξ1, · · · , ξn its dual basis for g∗. Let θi = ξi⊗ 1 and ui = 1⊗ ξi be
elements in W (g). They freely generate W (g) as a superalgebra. As a shorthand, write ιi,Li for
ιXi ,LXi , respectively.

Write [Xi, Xj ] = ckijXk. The coefficients ckij ∈ R are known as the structural constants for g.
They are skew-symmetric in i, j and satisfy the Jacobi’s identity. Note the Einstein summation
principle is in use, here and thereafter.

Exercise 4.11. (1) The coadjoint action ad∗ is given by

ad∗Xi
ξk = −ckijξj .

(2) The operator δ as in (12) is given by

δξk = − 1
2c
k
ijξ

i ∧ ξj .

(3) Let ω be a connection on a principal G-bundle P → B with curvature Fω. In coordinate
expression, write ω = ωi⊗Xi and Fω = F iω⊗Xi. The structural equations dω = − 1

2 [ω, ω]+Fω
and dFω = [ω, Fω] can be written as

dωk = ckijω
i ∧ ωj , dF kω = ckijω

i ∧ ωj .

In the notation of Section 4.1, the connection θ ∈ W ⊗ g can be written as θ = θi ⊗Xi. The
map f : W → Ω(P ) maps each θi to ωi and each ui to F iω. Since the elements θi, ui freely generate
W , the operators ιi,Li, d are uniquely determined by their action on these elements. Explicitly,
one can compute that

ιiθ
k = δki ;
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ιiu
k = 0;

Liθk = −ckijθj ;

Liuk = −ckijuj ;

dθk = uk − 1
2c
k
ijθ

iθj ;

duk = −ckijθiuj .

Using these equations, the reader can directly check most unproven statements in Section 4.1.

Proposition 4.12. The differential dG on the Cartan model CG(A) = (S(g∗)⊗A)G given by

dG = 1⊗ d− ui ⊗ ιi.

Here ui acts on S(g∗) by multiplication on the left.

Proof. See [15, Section 21.2].

4.5 Spectral Sequences for Cartan Models as Double Complexes

We begin with two lemmas concerning the induced G-action on the cohomology for a G-cochain
complex.

Lemma 4.13. Let (C, d) be a cochain complex equipped with a G-action that commutes with d.

Then CG ↪→ C induces an isomorphism H(CG)
∼=−→ H(C)G.

Proof. Let µ be the Haar measure on G. For any a ∈ C, let

ā =

∫
G

(g · a)dµ

denote the average of a over G, which is a G-invariant element. Clearly da = dā.

Injectivity : Let c be a G-invariant coboundary of (C, d). Then c = db for some b ∈ C. Therefore
we have c = c̄ = db = db̄.

Surjectivity : Let c be a cocycle in (C, d) with [c] ∈ H(C)G. Then [g · c] = g · [c] = [c] for all g ∈ G,
and we find that [c] = [c̄] is in the image of H(CG)→ H(C)G.

Lemma 4.14. If A is a G∗ module and G is connected, then the induced G-action on H(A) is
trivial.

Proof. Let c ∈ A be a cocycle. It suffices to prove LXc is a coboundary for any X ∈ g. For this we
compute that LXc = [ιX , d]c = d(ιXc).

Now we come back to the main construction. The Cartan model CG(A) for a G∗ module A can
be given a bigrading such that (CG(A), dG) is the total complex.

Exercise 4.15. The operators d = 1⊗ d and δ = −ui ⊗ ιi both act on CG(A).

23



Define Cp,q = (S2p(g∗) ⊗ Aq−p)G, then (C∗,∗, d, δ) is a first quadrant double complex. By
Example 1.20, the spectral sequence for this double complex has E1 term given by

Ep,q1 = Hp,q(C∗,∗, d). (14)

Apply Lemma 4.13 to the cochain complex (S(g∗)⊗A, d), we see that H(C∗,∗, d) = (H(S(g∗)⊗
A, d))G = (S(g∗)⊗H(A))G. Now (14) becomes

Ep,q1 = (S2p(g∗)⊗Hq−p(A))G. (15)

In the case G acts on H(A) trivially, for example when G is connected (cf. Lemma 4.14), this
becomes

Ep,q1 = S2p(g∗)G ⊗Hq−p(A). (16)

Theorem 4.16. Suppose a G∗ module (resp. G∗ algebra) morphism A→ B induces isomorphism
in cohomology, then it also induces isomorphism in G-equivariant cohomology.

Proof. By (15), the map CG(A) → CG(B) induces an isomorphism in the E1 term of spectral
sequences of corresponding double complexes. By Corollary 1.19, it also induces isomorphism in
cohomology of total complexes.

4.6 A Proof of Equivariant de Rham Theorem

In this section we prove Theorem 3.8. By naturality, it suffices to prove Theorem 3.7. Our proof
essentially follows [7, Section 2.5], with some details filled in.

Choose integer n and an embedding G ↪→ O(n) of Lie groups. Let

EG = Vn(R∞) = lim−→Vn(Rk),

E = Ω(Vn(R∞)) = lim←−Ω(Vn(Rk))

be defined as in Section 2.3, Section 3.3, respectively.
We will justify that

H∗G(M) = H∗(Vn(R∞)×GM) (17)

= lim←−H
∗(Vn(Rk)×GM) (18)

= lim←−Hbas(Ω(Vn(Rk)×M)) (19)

= Hbas(Ω(Vn(R∞)⊗M)) (20)

= Hbas(Ω(Vn(R∞))⊗ Ω(M)) (21)

= H∗G,dR(M). (22)

By carefully tracking the maps one will see that all these identifications are natural. This will finish
the proof for the equivariant de Rham theorem.

(17)(22): These are just definitions.

(19): For k ≥ n, G acts on Vn(Rk) freely. Therefore Vn(Rk) ×M → Vn(Rk) ×G M is a principal
G-bundle and the equality follows from (10).
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(18): We have seen in Section 3.3 that for each q, πq(Vn(Rk)) stabilizes to πq(Vn(R∞)) as k →∞.
Since πq(X × Y ) = πq(X) × πq(Y ) for any spaces X,Y , we see that πq(Vn(Rk) ×M) stabilizes to
πq(Vn(R∞)×M). Now the homotopy long exact sequence for corresponding fiber sequences and the
five lemma imply that πq(Vn(Rk)×GM) stabilizes to πq(Vn(R∞)×GM). Therefore Hq(Vn(Rk)×M)
stabilizes to Hq(Vn(R∞)×M) [14, Theorem 7.5.9].

(20): We should first explain the notation: Vn(R∞)×M is an infinitely dimensional manifold defined
by the filtration {Vn(Rk)×M} and Ω(Vn(R∞)×M) is its de Rham complex (cf. Section 3.3).

Clearly Ωbas(Vn(R∞)×M) = lim←−Ωbas(Vn(Rk)×M). Since for each q, Hq(Ωbas(Vn(Rk)×M)) =

Hq(Vn(Rk)×GM) stabilizes as k →∞, as explained above, Lemma 3.17 justifies the desired equality.

(21): The projection maps from Vn(R∞)×M onto the two factors give rises to an inclusion

Ω(Vn(R∞))⊗ Ω(M) ↪→ Ω(Vn(R∞)×M). (23)

Since Ω(Vn(R∞)) is regular, so are Ω(Vn(R∞)) ⊗ Ω(M) and Ω(Vn(R∞) ×M) (cf. Exercise 3.9).
Therefore Corollary 3.11 shows that we may replace Hbas by HG on both sides of (21). By Theo-
rem 4.16, it suffices to show that (23) induces isomorphism in ordinary cohomology. By acyclicity
of Ω(Vn(R∞)) and Künneth theorem, Ω(M) ↪→ Ω(Vn(R∞))⊗ Ω(M) induces isomorphism in coho-
mology, so it remains to show

Ω(M) ↪→ Ω(Vn(R∞)×M)

induces isomorphsm in cohomology. Since Hq(Vn(Rk) ⊗ M) stabilizes to Hn(M) as k → ∞,
Lemma 3.17 implies that H∗(Ω(Vn(R∞)×M)) = H∗(Ω(M)). The equality is justified.

5 Characteristic Classes

In this section, we develop the Chern-Weil theory for characteristic classes. Instead of working
directly with connection and curvature forms in a principal bundle, our definition of the Chern-
Weil map is on the algebraic level, using the language of equivariant de Rham cohomology we have
developed. See also [7, Section 8]. The reader may consult [11, Chapter XII][13, Section 5, 6] for
a classical development of Chern-Weil theory. Our presentation will blend with some topological
perspectives. The reader may consult [12] for more details in topological development.

5.1 Characteristic Classes in Topology

In this section we define the notion of characteristic classes for (topological) principal G-bundles.
We begin with some review of algebraic topology for classifying spaces.

Proposition 5.1. Let P → B be any principal G-bundle. There is a map f : B → BG such that
P → B is isomorphic to f∗EG→ B as a principal G-bundle. The map f is unique up to homotopy.

Proof. See [9, Section 10, 11].

In other words, the universal bundle EG→ BG is the final object in the homotopy category of
principal G-bundles (objects are principal G-bundles up to isomorphism that preserves base, mor-
phisms are maps between bases up to homotopy; note that homotopic maps pullbacks to isomorphic
bundles [9, Theorem 9.9]). The map f (or rather, the homotopy class of it) in the Proposition is
called the classifying map for P → B.
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Let BunG(B) denote the set of principal G-bundles over B up to isomorphism. Then BunG
defines a contravariant functor BunG : HoTop→ Set.

Definition 5.2. A characteristic class for (topological) principal G-bundles is a natural trans-
formation

c : BunG → H∗. (24)

Since EG → BG is final, any characteristic class is uniquely determined by its evaluation at
EG→ BG. Therefore we obtain the following alternative definition for characteristic classes.

Definition 5.3. A characteristic class for principal G-bundles is a cohomology class c ∈ H∗(BG).

Explicitly, given a natural transformation c as in (24), the corresponding c ∈ H∗(BG) is given
by the evaluation of c at the universal bundle EG → BG. Conversely, given c ∈ H∗(BG), the
corresponding natural transformation c in (24) is given by c(P → B) = f∗c, where f is the
classifying map for P → B. Alternatively, the G-map P → ∗ induces a map

H∗(BG) = H∗G(∗)→ H∗G(P ) = H∗(B) (25)

which maps c to c(P → B). We call this the (topological) Chern-Weil map for P → B. Evaluation
of c on G-bundle maps are defined to be the pullback map between bases. (To justify the alternative
description, one may want to use the homotopy long exaxt sequence.)

5.2 Characteristic Classes for smooth Principal G-Bundles

We switch our attention back to differentiable category. The domain of functors BunG and H∗ are
restricted to the subcategory Mfd.

Definition 5.4. A characteristic class for (smooth) principal bundles is a natural transformation
between BunG → H∗.

Then, any characteristic class for topological principal G-bundles restricts to a characteristic
class for smooth principal G-bundles. However, since there is no classifying object in Mfd like BG
in Top, it is not immediate that the restriction is injective or surjective. Nevertheless, we have the
following theorem due to H. Cartan.

Theorem 5.5. A characteristic class for smooth principal G-bundles is the same as a characteristic
class for topological principal G-bundles restricted to Mfd.

Proof. Using the Grassmaniann model as in Section 2.3, EG→ BG can be realized as a principal
G-bundle of infinite dimensional manifolds

EG = lim−→EiG→ lim−→BiG = BG

with πq(EiG) = 0 for q ≤ i (relabeling if necessary). ThenBiG classifies smooth principalG-bundles
whose base space has dimension at most i (see [9, Section 10, 11]). Therefore, a characteristic class
for smooth principal G-bundles can be identified as a compatible sequence of c(EiG → BiG) ∈
H∗(BiG), which is the same as an element c′ ∈ lim←−H

∗(BiG) = H∗(BG) (the last equality is
justified in the same way as for (18)). See also [4, Section 8].
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Let A be a G∗ algebra. Recall that the inclusion R→ A induces a superalgebra map S(g∗)G =
HG(R) → HG(A), making HG(A) a S(g∗)G-superalgebra. This map is called the Chern-Weil
map for A.

What we will be most interested in is the case A = Ω(P ) where P → B is a (smooth) principal
G-bundle, the Chern-Weil map for A is the induced map in H∗G,dR by P → ∗, which is given by

S(g∗)G = H∗G(∗)→ H∗G(P ) = H∗(B). (26)

This is called the Chern-Weil map for the (smooth) principal G-bundle P → B, which agrees
with the map (25) under identification S(g∗)G = H∗G(∗) = H∗(BG).

Theorem 5.5 enables us to redefine characteristic classes as follows.

Definition 5.6. A characteristic class for (smooth) principal G-bundles is an element of S(g∗)G.

Given an element c ∈ S(g∗)G, the corresponding natural transformation c : BunG → H∗ is just
given by assigning each P → B the image of c under the Chern-Weil map (26), and each bundle
map the pullback map in H∗ between bases.

Since S(g∗)G is a superalgebra with only even elements, it is a graded commutative algebra over
R in the usual sense.

The symmetric algebra S(g∗) can be identified as the polynomial ring over g (more precisely,
over a set of basis X1, · · · , Xn in g). Under this identification, G-invariant elements corresponds to
Ad-invariant polynomials. Therefore, people often call S(g∗)G the (commutative) ring of invariant
polynomials (with respect to G).

5.3 Chern Classes, Pontrjagin Classes, and the Euler Class

Roughly speaking, Chern Classes, Pontrjagin Classes, and Euler Classes are some well-chosen gen-
erators of the graded algebra of characteristic classes for different kinds of vector spaces. More
precisely and less mysteriously, under the identification pointed out in the previous section, (a part
of) Chern classes, (a part of) Pontrjagin classes, ((a part of) Pontrjagin classes + Euler class) freely
generates S(g∗)G for G = U(n), O(n), SO(2n), respectively. We will state the structural theorems
for these S(g∗)G and refer readers to [11, Section XII.2] for proofs. But first of all, we establish a
correspondence between characteristic classes of vector bundles and those of principal bundles.

All spaces in this section are smooth manifolds. However, if we replace the smooth Chern-Weil
map (26) by the topological Chern-Weil map (25) in our discussions below, they make sense for
general topological spaces as well.

5.3.1 Characteristic Classes for Vector Bundles

We first consider complex vector bundles. Let V ectCn : Mfd→ Set denote the contravariant functor
sending a space to the isomorphism classes of complex n-bundles over it. Let V ectC,Hern denote the
functor sending a space to the isomorphism classes of complex n-bundles over it that are equipped
with Hermitian metrics.

Exercise 5.7. The forgetful map induces a natural isomorphism V ectC,Hern

∼=−→ V ectCn.
(Hint: The existence of partition of unity equipped any vector bundle a Hermitian metric, which
gives us an inverse of the given natural transformation. One need to check this inverse is well-
defined. The space of Hermitian metrics over a fixed space is convex, which allows us to interpolate,
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thus identify different choices naturally. One may want to make use of Gram-Schmidt orthonor-
malization.)

Suppose E → B is an n-dimensional complex vector bundle equipped with a Hermitian metric.
Its associated unitary frame bundle F(E) is a principal U(n)-bundle over B. Conversely, let P → B
be any principal U(n)-bundle, then P ×U(n)Cn = (P ×Cn)/U(n) is a complex n-bundle. These two
constructions are inverses of each other: they give an inverse pair of natural isomorphisms between
contravariant functors BunU(n) and V ectC,Hern . Combine this with Exercise 5.7 we obtain a natural
isomorphism

V ectCn
∼=−→ BunU(n),

which is given by choosing any metric and take the associated unitary frame bundle.
A characteristic class for complex n-bundles is a natural transformation c : V ectCn → H∗.

Under the identification described above, this is the same as a characteristic class for principal
U(n)-bundles.

Similarly, a characteristic class for real n-bundles is a natural transformation c : V ectRn → H∗,
which is the same as a characteristic class for principal O(n)-bundles. A characteristic class for
oriented real n-bundles is a natural transformation c : V ectR,orin → H∗, which is the same as a
characteristic class for principal SO(n)-bundles.

Remark 5.8. The same identifications hold for topological bundles as well. Note we are under the
assumption in Remark 2.1 so that partition of unity always exists.

5.3.2 Chern Classes

The Lie algebra u(n) of U(n) consists of n × n complex matrices X with X + X∗ = 0. Let

ck = c
(n)
k (X), k = 0, 1, · · · be polynomials in u(n) defined by

det

(
I − t

2πi
X

)
=
∑

ck(X)tk. (27)

In particular, c0(X) = 1, c1(X) = i
2π tr(X), cn(X) = ( i

2π )ndet(X), and ck(X) = 0 for k > n.
Clearly all ck are Ad-invariant. Each ck has polynomial degree k, thus is of degree 2k as an element
in S(u(n)∗)U(n) ⊗ C. The strange coefficient 1

2πi is taken so that c1 satisfies a certain topological
normalization which we will not come across.

Proposition 5.9. All ck are of real coefficient. Moreover, the ring of invariant polynomials,
S(u(n)∗)U(n), is freely generated by c1, · · · , cn as an algebra over R.

The element ck ∈ S2k(u(n)∗)U(n) is called the k-th Chern class for complex n-bundles. The
element c = c(n) =

∑
ck = 1 + c1 + · · ·+ cn is called the total Chern class for complex n-bundles.

Suppose E → B is a complex n-bundle. Equipped it with a metric and let P = F(E) → B
be the associated unitary frame bundle. The image of ck under the Chern-Weil map (26), denoted
ck(E), is called the k-th Chern class of E → B. The image of c, denoted c(E), is called the
total Chern class of E → B. As explained earlier, these element are independent of the choice
of metric, and are natural in E → B. Since the Chern-Weil map is degree-preserving, ck(E) is a
cohomology class in H2k(B).
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5.3.3 Pontrjagin Classes

The Lie algebra o(n) of O(n) consists of n × n real matrices X with X + Xt = 0. Let pk = p
(n)
k ,

k = 0, 1, · · · be polynomials in o(n) defined by

det

(
I − t

2π
X

)
=
∑

pk(X)t2k. (28)

Note this is well-defined, since det(I − t
2πX) = det(I + t

2πX
t) = det(I + t

2πX) implies that the
coefficient of tj on the left hand side is zero for odd j. By definition, we have p0(X) = 1, pk(X) = 0
for k > n/2. Each pk is Ad-invariant, with polynomial degree 2k.

Proposition 5.10. The ring of invariant polynomials, S(o(n)∗)O(n), is freely generated by p1, · · · ,
p[n/2] as an algebra over R.

The element pk ∈ S4k(o(n)∗)O(n) is called the k-th Pontrjagin class for real n-bundles.
Suppose E → B is a real n-bundle. Equip it with a metric and let P = F(E) → B be the

associated orthogonal frame bundle. The image of pk under the Chern-Weil map (26), denoted
pk(E), is called the k-th Pontrjagin class of E → B, which is a cohomology class in H4k(B). We
also have the notion of total Pontrjagin class.

5.3.4 The Euler Class

The group SO(n) is the identity component of O(n). Therefore the Lie algebra so(n) of SO(n) is
just o(n).

If n = 2m is even, there is a polynomial Pf in so(n) defined by

Pf(X) =
1

2mm!

∑
σ∈S2m

sgn(σ)Xσ(1)σ(2)Xσ(3)σ(4) · · ·Xσ(2m−1)Xσ(2m),

called the Pfaffian. Define

e = e(n) =
1

(2π)m
Pf.

Exercise 5.11. Show that

(1) Pf(AXA−1) = det(A)Pf(X) for A ∈ O(n). Therefore Pf ∈ S(so(n))SO(n).

(2) Pf(X)2 = det(X). Therefore e2 = pm.

Proposition 5.12. (1) If n = 2m−1 is odd, then the ring of invariant polynomials, S(so(n)∗)SO(n),
is freely generated by p1, · · · , pm−1 as an algebra over R.

(2) If n = 2m is even, then S(so(n)∗)SO(n) is freely generated by p1, · · · , pm−1, e as an algebra over
R.

In the case n = 2m, the element e ∈ Sn(so(n)∗)SO(n) is called the Euler class for oriented real
n-bundles. In the case n = 2m− 1, we define the Euler class e = e(n) for oriented real n-bundles
to be the zero element in S(so(n)∗)SO(n).

Suppose E → B is an oriented real n-bundle. Equip it with a metric and let P = F(E)→ B be
the associated special orthogonal frame bundle. The image of e under the Chern-Weil map (26),
denoted e(E), is called the Euler class of E → B, which is a cohomology class in Hn(B). It is
zero if n is odd.
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5.4 Reduction of Structure Group

5.4.1 Reduction of Structure Group in Equivariant Cohomology

Let H ↪→ G be an embedding of compact Lie groups. Any G-space M is also an H-space. We now
define a reduction map

H∗G(M)→ H∗H(M) (29)

naturally in M , in both topological and smooth setups.
In the topological world, let EG → BG be a universal G-bundle. Then EG → EG/H = BH

gives a universal H-bundle. We define (29) to be the composition

H∗G(M) = H∗(EG×GM)→ H∗(EG×H M) = H∗H(M).

In the smooth world, let E be an acyclic regular G∗ algebra, which is also an acyclic regular H∗

algebra (cf. Exercise 3.16). We define (29) to be the composition

H∗G(M) = H((E ⊗ Ω(M))basG∗ )→ H((E ⊗ Ω(M))basH∗ ) = H∗H(M).

Here the subscript in bas indicate which group we are taking basic element with respect to.

Exercise 5.13. (1) Show that under the identification H∗G = H∗G,dR, the identifications in Propo-
sition 2.5 and Proposition 3.12 are the same.

(2) Check that for a G-manifold M , the two definitions above for (29) agree.
(Hint: One may want to use an infinite dimensional manifold model for EG→ BG)

In the smooth setup, we can be more explicit about the reduction map (29). Take the acyclic
regular G∗ algebra E to be the Weil algebra W (g). The restriction map g∗ → h∗ induces the unique
H∗ algebra morphism W (g)→W (h). Therefore (29) can be naturally identified as the composition

H∗G(M) = H((W (g)⊗Ω(M))basG∗ )→ H((W (g)⊗Ω(M))basH∗ )→ H((W (h)⊗Ω(M))basH∗ ) = H∗H(M).

In terms of the Cartan model, the restriction g∗ → h∗ induces a map ΩG(M) = (S(g∗)⊗Ω(M))G →
(S(h∗)⊗ Ω(M))H = ΩH(M), which in turn induces the map (29).

5.4.2 Chern-Weil Map and Reduction of Structure Group

In this section we examine the compatibility of Chern-Weil map (25) with changes of structure
group. Readers may consult [5, Section 4] for basic notions about extension and reduction of
principal bundles.

Let H ↪→ G be as before. Let P → B be a principal G-bundle, and Q→ B a principal H-bundle
which is a reduction of P → B, i.e. there is an H-equivariant inclusion Q ↪→ P compatible with
the projection maps. It is natural to guess that the Chern-Weil maps for these two bundles are
compatible.

Proposition 5.14. The diagram

S(g∗)G H∗(BG)

H∗(B)

S(h∗)H H∗(BH)

is commutative.
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The commutativity of the square on the left is justified in the previous section. Since the
topological Chern-Weil map is the pullback by classifying map, it remains to prove the following
proposition.

Proposition 5.15. Let B → BH be the classifying map for Q → B, then the composition map
B → BH → BG is the classifying map for P → B.

Proof. Let f denote the composition map B → BH → BG. The universal property of pullback
yields a dotted map in the following commutative diagram:

Q

f∗BG E

B BH BG,

which implies f∗BG is an extension of Q, thus is isomorphic to P as principal G-bundles.

5.4.3 Chern Classes and Pontrjagin Classes

In this section we examine the restriction map r = rU(n),O(n) : S(u(n)∗)U(n) → S(o(n)∗)O(n).
The Chern classes ck are defined by the polynomial equation (27) in X ∈ u(n). Restricting this

to a polynomial equation in X ∈ o(n) and use (28), we obtain∑
r(ck)(X)tk = det

(
I − t

2πi
X

)
=
∑

pk(X)(−it)2k.

Compare coefficient, we see that

r(c2k) = (−1)kpk, r(c2k+1) = 0, k = 0, 1, · · · . (30)

These relations completely determine r. Now we turn to geometric interpretation in charac-
teristic classes of vector bundles. Let E → B be a real n-bundle equipped with a metric. Then
E ⊗ C→ B is a complex n-bundle equipped with an induced Hermitian metric. Moreover, the or-
thogonal frame bundle of E is a reduction of the unitary frame bundle of E⊗C to O(n). Therefore
Proposition 5.14 and (30) implies that

c2k(E ⊗ C) = (−1)kpk(E), c2k+1(E ⊗ C) = 0, k = 0, 1, · · · .

5.4.4 The Euler Class and the Top Chern Class

Regarding Cn as R2n by breaking each complex coordinate zk = xk + iyk into two adjacent real
coordinates xk, yk, we obtain an inclusion j : Cn×n ↪→ R2n×2n by replacing each entry z = x + iy
by a matrix

(
x −y
y x

)
.

Exercise 5.16. For any A ∈ Cn×n, we have det(j(A)) = |det(A)|2.

31



The map j restricts to a map U(n) ↪→ SO(2n). The induced Lie algebra map is also given by a re-
striction of j. In this section we examine the induced restriction map r = rSO(2n),U(n) : S(so(2n)∗)SO(2n)

→ S(u(n)∗)U(n).
Take X = j(A) in (28) for A ∈ u(n), we obtain∑

r(pk)(A)t2k = det

(
I2n −

t

2π
j(A)

)
= det

(
j

(
In −

t

2π
A

))
=

∣∣∣∣det

(
In −

t

2π
(A)

)∣∣∣∣2 =
∣∣∣∑ ck(A)(it)k

∣∣∣2 .
Compare coefficient and we obtain that

r(pk) =
∑
`

(−1)k−`c`c2k−`. (31)

We still need to determine r(e). We compute that r(Pf)(A) = Pf(j(A)) = indet(A), therefore

r(e) =
1

(2π)n
r(Pf) =

1

(2π)n
Pf ◦ j =

(
i

2π

)n
det = cn. (32)

Exercise 5.17. Check that Pf(j(A)) = indet(A) for any A ∈ u(n).

Geometrically, let E → B be a complex n-bundle, which is automatically an oriented real 2n-
bundle by breaking each complex coordinate into two adjacent real ones in the usual way. Then
(31)(32) and similar argument as in the previous section imply

pk(E) =
∑
`

(−1)k−`c`(E)c2k−`(E)

and
e(E) = cn(E).

5.4.5 Whitney Sum Formulae

Choose p, q ≥ 0 with p+q = n. There is an embedding U(p)×U(q) ↪→ U(n) defined in the usual way.
We examine the restriction map r = rU(n),U(p)×U(q) : S(u(n)∗)U(n) → S((u(p)⊕ u(q))∗)U(p)×U(q) =

S(u(p)∗)U(p) ⊗ S(u(q)∗)U(q).
Restrict the value of indeterminantX ∈ u(n) in (27) to block matrices ( Y 0

0 Z ), Y ∈ u(p), Z ∈ u(q).
We obtain∑

r(c
(n)
k )(X)tk = det

(
Ip −

1

2πi
Y

)
det

(
Iq −

1

2πi
Z

)
=
(∑

c
(p)
i ti

)(∑
c
(q)
j tj

)
.

Take t = 1, we can rewrite this in terms of total Chern classes as

r(c(n)) = c(p)c(q).

Compare each degree we obtain more concrete formula

r(c
(n)
k ) =

∑
i+j=k

c
(p)
i c

(q)
j .
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Any of these three equivalent formulae is known as the Whitney sum formula for Chern classes.
Geometrically, if a complex n-bundle E → B splits to a direct sum of a p-bundle and a q-bundle,

say E = E1⊕E2, then the formulae above translates to the Whitney sum formula for Chern classes
of complex vector bundles:

c(E1 ⊕ E2) = c(E1)c(E2),

and two equivalent formulations.

Similarly, by examining the reduction map S(o(n)∗)O(n) → S(o(p)∗)O(p)⊗S(o(q)∗)O(q) we obtain
the Whitney sum formula for Pontrjagin classes of real vector bundles:

p(E1 ⊕ E2) = p(E1)p(E2).

By examining S(so(n)∗)SO(n) → S(so(p)∗)SO(p) ⊗ S(so(q)∗)SO(q) we obtain the Whitney sum for-
mula for Euler classes of oriented real vector bundles

e(E1 ⊕ E2) = e(E1)e(E2).

Alternatively, these two formulae follow from the Whitney sum formula for Chern classes and the
relation between Chern classes and Pontrjagin/Euler classes described in Section 5.4.3, 5.4.4.

5.5 The Splitting Principle

As an application of equivariant cohomology theory we have developed, we prove the following
theorem, whose topological version is known as the splitting principle. This section follows [7,
Section 6.8, 8.6].

Theorem 5.18. For any (smooth) complex vector bundle E → B, there exists a manifold Fl(E)
equipped with a map f : Fl(E)→ B, such that

(1) The pullback map f∗ : H∗(B)→ H∗(Fl(E)) is injective.

(2) The pullback bundle f∗E splits into direct sum of line bundles.

Such manifold Fl(E) is called a splitting manifold for E → B.
The splitting principle implies that if we want to check some algebraic relations between Chern

classes of a complex vector bundle, by replacing it with the pullback bundle over its split manifold
if necessary, we may as well assume that this bundle splits into line bundles.

Proof. Let n be the dimension of E → B. Let T ⊂ U(n) be the subgroup of diagonal unitary
matrices. Then S(t∗)T = S(t∗) = R[t1, · · · , tn] is the polynomial ring in n variables t1, · · · , tn,
each of degree 2. Let N be the normalizer of T in U(n). Then Σn = N/T can be identified with
the permutation group of {t1, · · · , tn}. Since the restriction map S(u(n)∗)U(n) → S(t∗) maps each
Chern class ck to some nonzero constant times the k-th symmetric polynomial function in t1, · · · , tn,
we see that the restriction map gives an isomorphism

S(u(n))U(n) ∼=−→ S(t∗)Σn = S(n∗)N . (33)

Let F(E) be the frame bundle of E → B. Let Fl(E) = F(E)/T and let f : Fl(E)→ B be the
projection map. We check that (Fl(E), f) satisfies our requirements.
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We first check (2). A point p ∈ Fl(E) is an equivalence class p = [(e1, · · · , en)] of unitary
frame in the fiber Ex of E → B, where x = f(p) ∈ B, which is the same as an ordered direct sum
decomposition Ex = L1 ⊕ · · · ⊕ Ln into line bundles. This induces a decomposition of the fiber in
the pullback bundle f∗E above p into ordered direct sum of line bundles. The decompositions at
all p ∈ Fl(E) patches to a splitting of f∗E.

It remains to check (1). The map f∗ : H∗(B) → H∗(Fl(E)) is naturally identified with the
reduction map

H∗U(n)(F(E))→ H∗N (F(E))→ H∗T (F(E)). (34)

In terms of Cartan model for the U(n)∗ algebra A = Ω(F(E)), this composition map is induced by
the composition

CU(n)(A)→ CN (A)→ CT (A) (35)

The second map in (35) is the inclusion CT (A)Σn ↪→ CT (A). By Lemma 4.13, it induces

isomorphism HN (A)
∼=−→ HT (A)Σn .

The first map in (35) induces a map in each terms Er in the corresponding spectral sequences
constructed in Section 4.5. Since U(n), and therefore N , acts on H(A) trivially by Lemma 4.14,
the induced map in E1 term is given by (cf. (16))

S(u(n)∗)U(n) ⊗A→ S(n∗)N ⊗A,

which is an isomorphism by (33). By Corollary 1.19, the induced map in cohomology is also an
isomorphism.

In conclusion, (34) factors as

H∗U(n)(F(E))
∼=−→ H∗N (F(E))

∼=−→ H∗T (F(E))Σn ↪→ H∗T (F(E)),

which is an injection, as desired.

6 Localization for Torus Actions

Thoughout this section, let T denote a torus, M denotes a T -manifold, and F := MT denotes the
fixed point set of M . By a usual argument [15, Theorem 25.1][7, Proposition 10.9.1], each connected
component of F is a closed embedded submanifold of M of even codimension. In this section we
will describe, in two ways, that some useful information of M is actually captured by the behavior
of M at or near F .

This section follows and generalizes [15, Chapter IV, V], which deals with the case T = S1.
Many results in this section can be generalized into ones for general compact Lie group G. We
will not mention such generalizations. Interested readers may consult [7, Section 10, 11] for further
information.

6.1 Localized Equivariant Cohomology

The construction of localized T -equivariant cohomology is algebraic. For basic notions and prop-
erties of localization of a ring, we refer readers to any introductory book in commutative algebra,
e.g. [1].
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Recall that the space of T -equivariant differential forms on M is given by the ring ΩT (M) =
(S(t∗) ⊗ Ω(M))T = S(t∗) ⊗ Ω(M)T , which is an S(t∗)-superalgebra. Its cohomology, H∗T (M), is
also an S(t∗)-superalgebra.

Let F (t∗) denote the fraction field of S(t∗), which inherit a Z-grading in the usual way. Localize
ΩT (M) at the multiplicative subset S = S(t∗)\{0} of S(t∗), we obtain the F (t∗)-superalgebra
ΩT,loc(M) := S−1ΩT (M) = F (t∗) ⊗ Ω(M)T . Since localization commutes with cohomology, its
cohomology is the F (t∗)-superalgebra H∗T,loc(M) := S−1H∗T (M), which is called the localized
T-equivariant cohomology of M .

6.2 Equivariant Mayer-Vietoris Sequence

Recall that in ordinary de Rham cohomology theory, if {U, V } is an open cover of M , then we have
a short exact sequence of cochain complexes

0→ Ω(M)→ Ω(U)⊕ Ω(V )→ Ω(U ∩ V )→ 0.

If U, V are both G-invariant, by averaging over T , one sees that

0→ ΩT (M)→ ΩT (U)⊕ ΩT (V )→ ΩT (U ∩ V )→ 0,

is also short exact. We obtain

Theorem 6.1 (Mayer-Vietoris Sequence for Equivariant Cohomology). There is a long exact se-
quence

· · · → Hq
T (M)→ Hq

T (U)⊕Hq
T (V )→ Hq

T (U ∩ V )→ Hq+1
T (M)→ · · · .

Alternatively, one can resort to topological argument to prove Theorem 6.1, which might be
more straightforward: the homotopy quotients UT , VT is an open cover of MT . Therefore the usual
Mayer-Vietoris sequence for MT = UT ∪ VT implies the equivariant version above. Note that the
fact T is abelian is not necessary.

Since localization preserves exactness, we obtain

Corollary 6.2 (Mayer-Vietoris Sequence for Localized Equivariant Cohomology). There is a long
exact sequence

· · · → Hq
T,loc(M)→ Hq

T,loc(U)⊕Hq
T,loc(V )→ Hq

T,loc(U ∩ V )→ Hq+1
T,loc(M)→ · · · .

6.3 Borel Localization Theorem

Lemma 6.3. Let T = S1⊕T ′ be a decomposition of T into subtori. If MS1

= ∅, then H∗T,loc(M) =
0.

Proof. Let X1, · · · , Xn be a basis for t with X1 ∈ s1, and u1, · · · , un be the dual basis, as elements
in S2(t∗).

By assumption, the associated vector field X1 is nonvanishing. By using a partition of unity
and averaging we can find a T -invariant element θ ∈ Ω1(M) such that ι1θ = 1. Then, t · (ιiθ) =
ιi(t · θ) = ιiθ for all i = 1, · · · , n and t ∈ T . Thus each ιi is an invariant element in Ω0(M) = R.
Therefore `i = ιiθ are constants with `1 = 1.
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Let

α =
θ

`iui
∈ Ω−1

T,loc(M).

Then we find that

dTα =
dθ − ui ⊗ ιiθ

`iui
=

dθ

`iui
− 1

is an invertible element in Ω0
T,loc(M) with inverse

λ = −
(

1 +
dθ

`iui
+

(dθ)2

(`iui)2
+ · · ·+ (dθ)m

(`iui)m

)
,

where m is any integer with 2m ≥ dim(M) − 1. Since ιidθ = Liθ − dιiθ = 0 for all i, we see that
dTλ = 0. It follows that the element β = λα ∈ Ω−1

T,loc(M) satisfies dTβ = 1.
Now we see any cocycle c ∈ ΩT,loc(M) is also a coboundary since c = dT (βc). It follows that

H∗T,loc(M) = 0.

Theorem 6.4 (Borel Localization Theorem). The inclusion F ↪→ M induces isomorphism in
localized T -equivariant cohomology.

Proof. Use induction on dim(T ). When dim(T ) = 0 the statement is trivial since F = M .
Suppose dim(T ) > 0. Write T as a direct sum of tori S1 ⊕ T ′. Since S1 and T ′ commute, T ′

acts on each component of MS1

respectively. Since (ΩT (MS1

), dT ) = S((s1)∗) ⊗ (ΩT ′(M
S1

), dT ′)
and (ΩT (F ), dT ) = S((s1)∗)⊗ (ΩT ′(F ), dT ′) as cochain complexes, by induction hypothesis we see

that the inclusion F ↪→MS1

induces an isomorphism

H∗T,loc(M
S1

) = F ((s1)∗)⊗H∗T ′,loc(MS1

)
∼=−→ F ((s1)∗)⊗H∗T ′,loc(F ) = H∗T,loc(F ).

Therefore, it remains to show that MS1

↪→ M induces isomorphism in localized T -equivariant
cohomology.

Let U be a T -equivariant tubular neighbhorhood of MS1

[10, Theorem 4.4], i.e. a neighborhood

of MS1

that is T -equivariantly diffeomorphic to the normal bundle of MS1

in M . Let V = M\MS1

.
Then both V and U ∩ V are T -manifolds without any point fixed by S1. The Mayer-Vietoris
sequence for localized T -equivariant cohomology applied to {U, V } and Lemma 6.3 give isomorphism

H∗T,loc(M)
∼=−→ H∗T,loc(U). Finally, by linearly shrinking onto the base, we see that the inclusion

of MS1

into its normal bundle is a T -equivariant deformation retract. By Proposition 2.4, we
conclude that MS1

↪→ U induces isomorphism in T -equivariant cohomology, thus also in localized
T -equivariant cohomology. The statement follows.

The following corollaries are immediate. Note that Lemma 6.3 is a special case of Corollary 6.6.

Corollary 6.5. The inclusion F ↪→M induces H∗T,loc(M)
∼=−→ F (t∗)⊗H∗(F ).

Corollary 6.6. If F = ∅, then H∗T,loc(M) = 0.
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6.4 Equivariant Integration

For any oriented T -manifold X possibly with boundary, the integral operator
∫
X

on Ω(X) induces
an integral operator, still denoted

∫
X

, on the space of localized T -equivariant forms on X, ΩT,loc(X).
Similar to the usual integral, we have

Proposition 6.7 (Equivariant Stokes’ Formula). Let i : ∂X → X denote the inclusion map and
θ ∈ ΩT,loc(X) be arbitrary, then ∫

X

dT θ =

∫
∂X

i∗θ.

Proof. Use a basis expression as in Proposition 4.12, write dT = 1⊗d−ui⊗ ιi. By the usual Stokes’
formula we deduce that ∫

X

(1⊗ d)θ =

∫
∂X

i∗θ.

By degree reason we deduce that ∫
X

(ui ⊗ ιi)θ = 0.

The statement follows.

Borel localization theorem says that the localized T -equivariant cohomology of M concentrates
at F . Therefore, any closed localized T -equivariant differential form supported away from F is
exact. In particular its integral is zero by equivariant Stokes’ formula. Therefore, one should
expect a formula expressing the integral of a closed T -equivariant form on M in terms of its value
near F . This is the topic for Section 6.6.

We end this section with one more equivariant notion. Let π : E → B be a T -equivariant fiber
bundle, i.e. a fiber bundle whose projection map is T -equivariant. Suppose the base B is oriented
and the fiber F is compact oriented of dimension m. By convention, the orientation on E is taken
to be the “base first” orientation, i.e. TE has the product orientation TB ⊕ TF .

Then, the usual fiber integration operator π∗ : Ωq(E) → Ωq−m(B) induces a fiber integration
operator π∗ : ΩqT,loc(E)→ Ωq−mT,loc(B). The usual formula∫

E

π∗α ∧ β =

∫
B

α ∧ π∗β (36)

for α ∈ Ω(B), β ∈ Ω(E) directly implies the validity of the same formula for α ∈ ΩT,loc(B),
β ∈ ΩT,loc(E).

6.5 Equivariant Euler Classes

In this section, we introduce the notion of equivariant Euler class for a T -equivariant oriented vector
bundle and state without proof one of its important property. For a proof we refer readers to [6] or
[7, Section 10]. The corresponding development for usual Euler classes is well-treated in [2].

Topologically, a principal G-bundle P → B is called a T-equivariant principal G-bundle if
P → B is T -equivariant such that the actions ofG,T on P commute. The homotopy quotient of such
P → B by T is a principal G-bundle PT → BT . By definition, a T-equivariant characteristic
class for P → B is the image of a fixed element c ∈ H∗(BG) = S(g∗)G in H∗(BT ) = H∗T (B).
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By the same development as in Section 5, we can define the equivariant Chern classes, equivariant
Pontrjagin classes, and equivariant Euler classes for various equivariant vector bundles.

In the differentiable setting, the T -equivariant Euler class eT for a T -equivariant oriented real
n-bundle E → B can be represented by a T -equivariant n-form on B, also denoted eT . Equip E
with a T -invariant metric and let π : S(E) → B denote the unit sphere bundle of E → B. Then
π∗eT = −dTσ for some σ ∈ Ωn−1

T (B) that is a global volume form, i.e. a form σ such that the fiber
integral π∗σ is the constant 1 function on B.

6.6 Localization Formula

Theorem 6.8 (Localization Formula). Suppose M is oriented. For a closed form µ ∈ ΩT,loc(M),
we have ∫

M

µ =
∑
X

∫
X

i∗Xµ

eX
. (37)

Here X runs over the connected components of F , iX is the inclusion of X into M , and eX is the
equivariant Euler class of NX, the normal bundle for X ↪→M .

We first make a few clarifications. If one is willing to work up to a sign, he/she may skip much
discussions about orientation.

• In the integrand on the right hand side of (37), 1/eX ∈ ΩT,loc(X) denotes the inverse of
eX , and i∗Xµ/eX denotes the product of i∗Xµ and 1/eX , which is irrelevant of the order of
multiplication since 1/eX has even degree. See [7, Section 10.8] for a justification that eX is
invertible.

• By convention, the orientation of NX is taken such that TM has the “fiber first” orientation:
the product orientation NX ⊕ TX. Equivalently, TX has the “base first” orientation, since
NX is even-dimensional.

• Any submanifold X is always orientable. Its orientation is irrelevent since reversing its orien-
tation reverses the sign of both the integral and the equivariant Euler class eX .

Proof. Suppose X is a full dimensional component, say with the same orientation as M . Then
we have eX = 1, and M\X is still a T -manifold. Therefore we may substract X from M with-
out changing the truthness of the statement. Below we shall assume F has no full dimensional
component.

Assume without loss of generality that µ is homogeneous. Note both side of (37) is zero if |µ|
has different parity from dim(M). Below we assume |µ| and dim(M) have the same parity.

Let NF → F denote the normal bundle of F in M . Let S(NF ) → F denote its unit sphere
bundle (with respect to a T -invariant metric). Then S(NF ) is a T -manifold in the usual way,
without fixed point. Equip S(NF ) with the usual (“base first”) orientation as a fiber bundle.

We begin the proof with a spherical blow-up of M at the (union of) submanifold(s) F . By
definition, this is an oriented T -manifold M̃ with boundary obtained by replacing F with S(NF ),
equipped with a projection map p : M̃ → M . Then, p restricted to Int(M̃) is an orientation
preserving T -diffeomorphism onto M\F , and p restricted to ∂M̃ is the bundle projection S(NF )→
F . The induced orientation on ∂M̃ is determined by “outward normal first”. This outward normal
direction is in the fiber of S(NF )→ F , which moreover differs from the usual fiber outward normal
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by a sign. Consequently, we see that p|∂M̃ change the orientation by a sign of (−1)dim(M)+1 (again,
note each component of F has even codimension).

By dimensional reason and change of variable formula we see that∫
M

µ =

∫
M\F

µ =

∫
Int(M̃)

p∗µ =

∫
M̃

p∗µ.

Let i : S(NF ) = ∂M̃ ↪→ M̃ denote the inclusion. Since i∗p∗µ is a closed form on S(NF ),
a T -manifold without fixed point, we know a priori by Theorem 6.4 that i∗p∗µ = dTα for some
α ∈ ΩT,loc(S(NF )). For a component X of F , let αX denote the restriction of α to S(NX). By
equivariant Stokes’ formula,∫

M̃

p∗µ = (−1)dim(M)+1

∫
S(NF )

α = (−1)dim(M)+1
∑
X

∫
S(NX)

αX .

It remains to show that

(−1)dim(M)+1

∫
S(NX)

αX =

∫
X

i∗Xµ

eX
.

Let π : S(NX)→ X denote the projection map and π∗ denotes the fiber integration. Choose a
global volume form σX ∈ ΩT (S(NX)) with dTσX = −π∗eX . Since µ is closed, we have

dT

(
−σX ∧

π∗i∗Xµ

π∗eX

)
= −dTσX ∧

π∗i∗Xµ

−dTσX
= π∗i∗Xµ,

which is the same as i∗p∗µ restricted to S(NX). Therefore we may take

αX = −σX ∧
π∗i∗Xµ

π∗eX
= (−1)dim(M)+1π∗

(
i∗Xµ

eX

)
∧ σX .

Now (36) implies

(−1)dim(M)+1

∫
S(NX)

αX =

∫
X

i∗Xµ

eX
∧ π∗σX =

∫
X

i∗Xµ

eX
,

as desired.
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