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1. Introduction

To classify all semisimple Lie algebras (finite dimensional, over an alge-
braically closed field of characteristic 0), one first goes through the root
space decomposition. Then he classifies all irreducible root systems up to
isomorphism. Next he may explicitly construct simple Lie algebras corre-
spond to each of these irreducible root systems. Now finally he claims that
he has classified all simple Lie algebras up to isomorphisms, and therefore
all semisimple Lie algebras up to isomorphism are finite direct sums of these
simple ones.

There is a flaw in this argument. It may happen that two simple Lie
algebras correspond to two different root systems are isomorphic. To rule
out this possibility, one way is to show that when we do the root space
decomposition, different choices of maximal toral subalgebra give rises to
isomorphic root systems.

We show that two different maximal toral subalgebras H, H ′ of a semisim-
ple Lie algebra L are conjugate under the automorphism group of L (in fact,
the inner automorphism group of L). This would be sufficient for this final
step of classification theorem for semisimple Lie algebras.

We will also prove a generalization of this for any (not necessarily semisim-
ple) Lie algebra L. Namely that the Cartan subalgebras of L are conjugate
to each other. Our proof will follow that of Bourbaki [1].

In this article the base field k is always assumed to be algebraically closed
with characteristic zero.

2. Conjugacy of maximal toral subalgebras

Let L be a finite dimensional semisimple Lie algebra. For a maximal toral
subalgebra H ⊂ L, we have the root space decomposition

L = H ⊕⊕α∈RLα,

where R ⊂ H∗ is the set of roots.
For any nilpotent element in L we write e(x) = exp(adx). Then the inner

automorphism group of L, denoted InnL, is the subgroup of AutL generated
by all e(x) with adx nilpotent. Let E(H) < InnL be the subgroup generated
by e(x), x ∈ Lα for some root α. The main theorem we are going to prove
is:
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Theorem 1. Let H,H ′ be two maximal toral subalgebras of the finite di-
mensional semisimple Lie algebra L. Then
(i) E = E(H) is independent of choice of H.
(ii) H ′ = σH for some σ ∈ E.

We first do some preparations for the proof. An element h ∈ H is said to
be regular if α(h) 6= 0 for all α ∈ R. Let Hreg be the set of regular elements
of H. Regard H as an affine space An(k) with the Zariski topology. Then
each α ∈ R is a polynomial function (of degree 1). Since R is finite, we see
that Hreg = An\ ∪α∈R {α = 0} is a nonempty open set. A basic fact in
algebraic geometry we’ll use is that:

Proposition 2. Let F : AN → AN be a polynomial map such its differential
dF is nonsingular at some point P ∈ AN . Then for any nonempty open set
U , F (U) contains a nonempty open set.

For a proof, see Bourbaki [1, Chapter VII, App. I]. We now prove the
main theorem.

Proof of Theorem 1. Let L = H⊕⊕ri=1Lαi be the root space decomposition
with respect to H. Let F : H ×

∏r
i=1 Lαi = L → L, (h, x1, · · · , xr) 7→

e(x1) · · · e(xr)(h). Let L′α′
i
, i = 1, · · · , r′, F ′ : L → L be similarly defined

with respect to H ′. Claim: F (Hreg ×
∏r
i=1 Lαi) contains a dense open set

in L.
We have remarked that Hreg is a nonempty open set in H. It follows that

Hreg ×
∏r
i=1 Lαi is a nonempty open set in L. By Proposition 2, it suffices

to show that dF |P is nonsingular for some P ∈ L. Take any h0 ∈ Hreg,
P = (h0, 0, · · · , 0), we compute that

dF |P (h, 0, · · · , 0) =
d

dt

∣∣∣∣
t=0

F (h0 + th, 0, · · · , 0) =
d

dt

∣∣∣∣
t=0

(h0 + th) = h;

dF |P (0, 0, · · · , xi, · · · , 0) =
d

dt

∣∣∣∣
t=0

F (h0, 0, · · · , txi, · · · , 0)

=
d

dt

∣∣∣∣
t=0

exp(ad txi)(h0) = adxi(h0) = −adh0(xi) = −αi(h0)xi.

Note the regularity of h0 means αi(h0) 6= 0. Therefore we see that dF |P is
surjective, thus nonsingular. The claim is proved.

Back to our proof. By the same argument F ′(H ′reg ×
∏r′

i=1 L
′
α′
i
) contains

a nonempty open set in L. Now basic algebraic geometry tells us F (Hreg ×∏r
i=1 Lαi) ∩ F ′(H ′reg ×

∏r′

i=1 L
′
α′
i
) 6= ∅. Choose a common element σ(h) =

σ′(h′), where σ ∈ E(H), σ′ ∈ E(H ′), h ∈ Hreg, h′ ∈ H ′reg. Take centralizer,
we have

(1) σCL(h) = CL(σ(h)) = CL(σ′(h′)) = σ′CL(h′).
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But the regularity of h, h′ implies that CL(h) = H, CL(h′) = H ′. Therefore
σH = σ′H ′. (Note that up to this point we have already resolved the
problem raised in the introduction.)

It remains to prove (i). This is immediate: Note σ ◦ e(x) ◦σ−1 = e(σ(x)),
we have σE(H)σ−1 = E(σH). But σ ∈ E(H), so E(H) = σE(H)σ−1 =
E(σH). Similarly E(H ′) = E(σ′H ′), and (i) follows since σH = σ′H ′. �

3. Conjugacy of CSAs

In this section let L be any finite dimensional Lie algebra. A Cartan
Subalgebra (CSA) of L is a nilpotent subalgebra that is the normalizer of
itself in L. In semisimple case the definition turns out to coincide with that of
a maximal toral subalgebra. For a direct proof see Bourbaki [1, Chapter VII,
§2]. For an indirect proof, first note a maximal toral subalgebra is a CSA,
then apply the two conjugacy theorems (see below)! (In particular, we’ll
need the independence of E(H) on H)

For this arbitrary L, Theorem 1 is still true with “maximal toral subal-
gebra” replaced by “CSA”. There is no significant difference for the proof
but we need to generalize some concept into this setting. Here is a brief
summation:

• Generalization of root space decomposition.
If H ⊂ L is a nilpotent subalgebra, then we have the following
decomposition (Proposition 4):

L = L0 ⊕⊕α∈RLα(= L0(H)⊕⊕α∈RLα(H)),

where R ⊂ H∗\{0}, Lα = {x ∈ L : (adh − α(h))n(x) = 0 for some
n ≥ 0}. R is such that Lα 6= {0} for α ∈ R. This is called the
primary decomposition of L with respect to H. Clearly H ⊂ L0 since
H is nilpotent. Moreover, if H is a CSA, then H = L0 (Lemma 5).
• Generalization of a regular element.

Let the notations be as above. An element h ∈ H is said to be
regular if α(h) 6= 0 for all α ∈ R. Let Hreg be the set of regular
elements in H. Then Hreg is a nonempty open subset of H (the
proof is similar as in semisimple case). Moreover, it is clear that
H = L0(h)(= {x ∈ L : (adh)n(x) = 0 for some n ≥ 0}) for any
h ∈ Hreg.
• Generalization of the automorphism group E(H).

Let the notations be as above. Let E(H) < InnL be the subgroups
generated by e(x), x ∈ Lα for some α ∈ R (see Lemma 6).

One can now readily recover the proof of Theorem 1 for this general setting
(but note in (1), one should take L0(·) instead of centralizer). There are a
few claims to check. Let’s fill in the gaps.

Lemma 3. Let V be a finite dimensional vector space over k, T, T ′ be linear
operators on V . Let V a = {x ∈ V : (T −a)nx = 0 for some n ≥ 0}. Suppose
that (adT )m(T ′) = 0 for some m ≥ 0, then V a is stable under T ′.
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Proof. Let d = dimV . By linear algebra we can also write V a = {x ∈
V : (T − a)dx = 0}.
We use induction on m to prove the lemma. When m = 0, we have T ′ = 0,
there is nothing to prove.
Suppose m > 0. Let x ∈ V a be arbitrary. We have

(T − a)2dT ′x =((T − a)2dT ′ − T ′(T − a)2d)x

=
2d∑
i=1

((T − a)2d−i[T, T ′](T − a)i−1)x.

But (adT )m−1[T, T ′] = (adT )m(T ′) = 0, so by induction hypothesis V a is
stable under [T, T ′]. Clearly V a is also stable under T − a. This means
[T, T ′](T − a)i−1x ∈ V a for all i. Now ((T − a)2d−i[T, T ′](T − a)i−1)x = 0
no matter i− 1 ≥ d or 2d− i ≥ d. Hence (T − a)2dT ′x = 0, so T ′x ∈ V a by
definition. �

Proposition 4. If H ⊂ L is nilpotent subalgebra, then we have the primary
decomposition

L = L0 ⊕⊕α∈RLα,

Proof. The proof is similar to the usual root space decomposition (which is
an application of simultaneous diagonalization). One need to show that the
sum is direct and is all of L. The first part is straightforward: Suppose xβ =∑

α xα is a nontrivial identity, then xβ is vanished by both (adh − β(h))m

and
∏
α(adh− α(h))m for some large m. Since k is infinite we may choose

h such that β(h) and all α(h) are distinct. Then Bézout’s theorem yields
xβ = 0, a contradiction.

For the second part, first note that for any h ∈ H, linear algebra tells
us that with respect to adh, V can be decomposed into V a for some a’s.
Moreover, for any h′ ∈ H we have (ad adh)m(adh′) = ad ((adh)m(h′)) = 0
for large m since H is nilpotent. Now Lemma 3 and induction on dimL
finish the proof. �

Lemma 5. Suppose H is a CSA of L, then L0 = H.

Proof. Let h ∈ H be arbitrary. For every x ∈ L0, we can find n such that
(adh)n(x) = 0 ∈ H. Since L is finite dimensional this n can be choosen to be
uniform in x. Consider the adjoint representation of H on L0/H, the above
argument shows that every adh for h ∈ H is nilpotent. Suppose L0 6= H,
then Engel’s theorem yields an element x ∈ L0\H such that adh(x) ∈ H for
all h ∈ H. In other words x belongs to the normalizer of H, this contradicts
the assumption that H is a CSA. �

Lemma 6. (i) [Lα, Lβ] ⊂ Lα+β for any α, β; (ii) Every x ∈ Lα where α ∈ R
is ad-nilpotent. Therefore E(H) < InnL is well-defined.
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Proof. (i) Use induction on ` and the Jacobi identity, it is easily seen that
for any x, y, h ∈ L, a, b ∈ k we have

(adh− a− b)`[x, y] =
∑̀
i=0

(
`

i

)
[(adh− a)ix, (adh− b)`−iy].

Now let x ∈ Lα, y ∈ Lβ, h ∈ H. Find m,n such that (adh − α(h))mx =
(adh− β(h))ny = 0. Then the above identity applied to a = α(h), b = β(h)
and ` = m+ n yields (adh− (α+ β)(h))m+n[x, y] = 0. Since h is arbitrary
we see [x, y] ∈ Lα+β. Since x, y are arbitrary the statement follows.
(ii) Since L is finite dimensional, we see R is finite. Now, (i) says that
(adx)n(Lβ) ⊂ Lnα+β = 0 for all β ∈ R, for sufficiently large n. Therefore
adx is nilpotent. �

Theorem 7. Let H,H ′ be two CSAs of the finite dimensional Lie algebra
L. Then
(i) E = E(H) is independent of choice of H.
(ii) H ′ = σH for some σ ∈ E.

Proof. Exercise. �

4. A comment on the group E

Recall E(H) < InnL is defined as the subgroup generated by e(x), x ∈ Lα
for some α ∈ R, and in our conjugacy theorem we have incidentally showed
that E = E(H) is independent of the choice of H. Now, E seems to possess
a large part of InnL. Can we actually prove that E = InnL?

A little thought tells us that this is not true in general.

Example 8. Let L be a Lie algebra spanned by x, y, with [x, y] = x. Then
L itself is a CSA. It follows that E = E(L) is the trivial group. However,
e(x) = 1 + adx ∈ InnL is nontrivial since e(x)(y) = x + y. Therefore
E 6= InnL.

However, this is true when L is semisimple.

Theorem 9. If L is semisimple, then E = InnL.

For a proof, one can see for example Fulton, Harris [2, Proposition D.40].
Note that the proof actually shows that the automorphism group AutL is
the semidirect product of InnL and Γ(L), where Γ(L) is the automorphism
groups of the Dynkin diagram associated to the root system of L.
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