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1. Introduction

In this paper we present three complex analytic approaches to prove Bern-
stein’s theorem.

Theorem (Bernstein). If S is a minimal graph of some function f : R2 → R
defined over all of R2, then S is a plane.

The most important hypothesis of this theorem is that the graph be de-
fined over all of R2 - there are numerous examples of minimal surfaces in R3

which are easily described, but which are not defined for all x, y coordinates
- for example, the upper half of a catenoid r = cosh(z) omits the circle
r2 = x2 + y2 < 1, and the ruled helicoid z = y tanx fails to include those
(x, y) for which tanx = ±∞ and y 6= 0.

Thus, Bernstein’s theorem makes a global statement about the behavior
of minimal graphs - and thus we need methods similarly capable. In the
first proof, from the function f whose graph satisfies the hypotheses, we
construct a complex holomorphic (more specifically - entire) function which
avoids the upper half plane, and with the Casorati-Weierstrass conclude that
it is a constant. Some additional manipulation is done to show that f has
constant first derivatives of x1, x2 - so it describes a plane.

In the second proof, we first show that the entire minimal graph S is con-
formally equivalent to the complex plane C. Instead of directly constructing
an entire holomorphic function like the first proof, we invoke the uniformiza-
tion theorem in the Riemann surface theory to alleviate our works. Next, we
observe that the Gauss map on S is conformal and invoke Picard’s theorem
to finish the proof.

The third proof is of a more functional analytic nature. In this proof we
use some results of differential forms and introduce the notion of calibrations
to establish a growth bound on the surface area of S. It turns out that this
growth bound, which will be shown to be quadratic, allows us to very easily
prove that S has a property called parabolicity. This property concerns
the behavior of a certain class of functions on S, and we will exploit this
property by defining such a function describing the unit normal on S. The
parabolicity of S will then imply that the unit normal is in fact constant,
meaning that S must be a plane.

1



2 JORDAN BENSON FARAZ MASROOR QIUYU REN

2. Preparations for the first two proofs

Definition 1. Local coordinates ξ1, ξ2 on a Riemannian surface (Σ, g) is
said to be isothermal if gij = λ2δij for some function λ > 0.

It is a fact that local isothermal coordinates always exists on a Riemann-
ian surface. We will not give a proof for this fact, but a justification can
be found in the remark after Proposition 10. Intuitively speaking, isother-
mal coordinates are parametrizations that are suitable for doing complex
analysis. See Remark 9 for a further explanation.

Using isothermal coordinates, we propose an alternative description for
minimal surfaces. See [6].

Suppose a surface Σ ⊂ Rn is parametrized by x(ξ) : D → R3 where D is
a domain in R2 and (ξ1, ξ2) are isothermal coordinates. Let ζ = ξ1 + iξ2 and

φk =
∂xk
∂ξ1
− i∂xk

∂ξ2
, k = 1, · · ·n.

Then we have

n∑
k=1

φ2
k = g11 − g22 − 2ig12 = λ− λ− 0 = 0; (1)

n∑
k=1

|φk|2 = g11 + g22 = 2λ2 > 0. (2)

Proposition 2. Let x(ξ) be as above. The following are equivalent:
(I) Σ is minimal;
(II) xk is harmonic in (ξ1, ξ2) for all k;
(III) φk is holomorphic in ζ for all k.

Proof. (I)⇔(II): We compute

〈∆x, ∂1x〉 = 〈∂11x, ∂1x〉+ 〈∂22x, ∂1x〉
= 1

2∂1g11 + ∂2g12 − 〈∂2x, ∂12x〉 = 1
2∂1(g11 − g22) + ∂2g12 = 0.

Similarly 〈∆x, ∂2x〉 = 0. Therefore ∆x is normal to Σ. Also note that
∂1x, ∂2x are orthogonal with length λ, so ∆x = ∂11x + ∂22x = λ2H, where
H is the mean curvature vector of S.
(II)⇔(III): φk is holomorphic if and only if it the Cauchy-Riemann equation
is satisfied:

∂11xk = −∂22xk, ∂12xk = ∂21xk.

The second equation is automatic, while the first is exactly the condition
that xk is harmonic. �

Therefore, in the minimal case we can recover xk (up to constant) from
φk via the complex integration

xk = Re

∫
φkdζ. (3)
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3. First approach

I follow the approach of Osserman [6], rearranged for clarity and with some
technicalities omitted. Unfortunately, the proof requires much computation
that is also omitted.

The main sketch of the proof is as follows: a particular mapping ξ from
the x1, x2 plane to ξ1, ξ2 is constructed, such that this map is invertible;
that this inverse is defined over the entire ξ1, ξ2 plane (as opposed to part of
it); and with ξ1, ξ2 being isothermal coordinates of the surface. From this
mapping ξ−1, we construct a holomorphic/analytic entire function, which
has negative imaginary part everywhere. It must therefore be a (complex)
constant, and after some manipulation we obtain another set of isother-
mal coordinate u1, u2. The coordinate functions x1, x2 are shown to have
constant derivatives with respect to u1, u2, and thus they describe a plane.

Let S, f be as in the statement. Let (x1, x2) be coordinates in the domain
of f . Abbreviating the first derivatives by p = fx1 , q = fx2 , recall that the
minimal surface equation for f is

(1 + q2)fx1x1 + (1 + p2)fx2x2 = 2pqfx1x2 .

Lemma 3. The above equation is equivalent to both

∂

∂x1

( pq
W

)
=

∂

∂x2

(
1 + p2

W

)
,

∂

∂x1

(
1 + q2

W

)
=

∂

∂x2

( pq
W

)
,

where W =
√

1 + p2 + q2.

Proof. Computation left to the reader. �

Inspecting the first equation, we can find a function F (x1, x2) for which

the first equation equals ∂2F
∂x1∂x2

(valid over a bounded region such as a circle

in the x-plane with radius R). Integrating, we obtain

∂F

∂x1
=

1 + p2

W
,
∂F

∂x2
=
pq

W
.

Similarly, over the same region we can find G for which

∂G

∂x1
=
pq

W
,
∂G

∂x2
=

1 + q2

W
.

Lemma 4. The 2x2 matrix M with these entries in the above order is
positive definite.

Proof. A 2x2 matrix is positive definite if and only if both its trace and
determinant are positive. The diagonal entries are clearly positive, and thus
so is the trace. The determinant of this matrix is 1. �

Before ξ is defined, consider an intermediate mapping v, defined by x =
(x1, x2)→ v(x) = (v1, v2) ∈ R2 by v1 = F, v2 = G.
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Lemma 5. For any x 6= y ∈ R2, we have

(v(y)− v(x)) · (y − x) > 0.

In the above statement, we abbreviate v((y1, y2)) as v(y), letting y =
(y1, y2), and so on.

Proof. Letting f(t) = (y−x) ·v(ty+(1−t)x) (the dot product of two vectors
in R2), we can delicately compute using the Chain rule that

f ′(t) = (y − x) ·
(
∂v

∂x1
(y1 − x1) +

∂v

∂x2
(y2 − x2)

)
= (y1 − x1)

(
∂v1

∂x1
(y1 − x1) +

∂v1

∂x2
(y2 − x2)

)
+ (y2 − x2)

(
∂v2

∂x1
(y1 − x1) +

∂v2

∂x2
(y2 − x2)

)
= (y1 − x1)

(
∂F

∂x1
(y1 − x1) +

∂F

∂x2
(y2 − x2)

)
+ (y2 − x2)

(
∂G

∂x1
(y1 − x1) +

∂G

∂x2
(y2 − x2)

)
= (y − x) ·M(y − x)

> 0,

because M is positive definite and y 6= x. Evaluating f(1) > f(0), we obtain

v(y) · (y − x) > v(x) · (y − x)

and the lemma is proven by rearranging. �

Now, construct ξi(x1, x2) = xi + ui(x1, x2). Then for y 6= x again, we
have that

|ξ(y)− ξ(x)||y − x| ≥ (ξ(y)− ξ(x)) · (y − x)

= (y − x+ u(y)− u(x)) · (y − x)

= (y − x) · (y − x) + (u(y)− u(x)) · (y − x)

> (y − x) · (y − x)

= |y − x|2

=⇒ |ξ(y)− ξ(x)| > |y − x|,
where the first inequality is the Cauchy Schwarz inequality. This inequality
also implies that the map ξ is one-to one. At this point, we may abandon
the v mapping.

In the next step, it will be shown that ξ takes values on the entire ξ1, ξ2

plane, and not just part of it. I claim that if the original bounded domain
∆ of x contains a large disc NR(0) around 0, then ξ(∆) also has a large
disc NR(ξ(0)) around ξ(0). Indeed, because ξ is continuously differentiable,
the interior of δ must map to the interior of ξ(∆), so that the boundary of
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the latter must have preimage in the boundary of the former. Thus, if ξ0 ∈
∂ξ(∆), then ξ0 = ξ(x0) for x0 ∈ ∂∆, ie. |x0−x| = R =⇒ |ξ(x0)−ξ(x)| ≥ R.

This fact is important because we can then expand our circle of consid-
eration (in the x1 − x2 plane) to arbitrarily large size, and the above tells
us that the ξ1, ξ2 grow even bigger - so that when the entire x1, x2 plane is
considered, then so is the entire ξ1, ξ2 plane.

Now, we must invert the (x1, x2)→ (ξ1, ξ2) mapping, to describe the coor-
dinate functions x1, x2 as functions of the parameters ξ1, ξ2. We can compute

that the Jacobian of this forward transformation is J := 2 + 2+p2+q2

W > 0 so
that inversion is indeed possible. We can then check that ξ1, ξ2 are isother-
mal coordinates by using

gij =
∂x

∂ξi
· ∂x
∂ξj

=
∂x1

∂ξi

∂x1

∂ξj
+
∂x2

∂ξi

∂x2

∂ξj
+
∂x3

∂ξi

∂x3

∂ξj
.

∂xi
∂ξj

for i = 1, 2 can be read off the inverse of the Jacobian matrix. For i = 3,

use the chain rule to find ∂x3
∂ξj

= ∂x3
∂x1

∂x1
∂ξj

+ ∂x3
∂x2

∂x2
∂ξj

= p∂x1
∂ξj

+ q ∂x2
∂ξj

. Doing all

this computation, we will find g11 = g22 = W
J , and g12 = g21 = 0 - so that

ξ1, ξ2 indeed describe isothermal coordinates.
The next few steps of the proof can be found in Osserman as theorem 5.1,

but is here split into many steps.
We know ξ1, ξ2 are isothermal parameters. From our preliminary discus-

sion, constructing ζ = ξ1 + iξ2 ∈ C and φk = ∂xk
∂ξ1
− i∂xk∂ξ2

, both φ1 and φ2 are

holomorphic functions of ζ. Because ξ1, ξ2 were previously shown to both
cover the entire ξ plane, ζ traverses the entire complex plane - so that φ1, φ2

are actually both entire.

Theorem 6. φ2

φ1
is also entire, and more specifically, is a (complex) constant

function as well.

This is the first truly ’global’ argument made in this proof, and is the
reason for bringing in methodology from complex analysis.

Proof. First, we need to show that φ1 avoids zero so that φ2

φ1
has non-zero

denominator, and so will be entire as well.
Note the identity Im(φ2

φ1
) = 1

|φ1|2 Im(φ̄1φ2). To evaluate the latter term,

plug in the definitions of φk and take the imaginary part, to obtain Im(φ̄1φ2) =
∂x1
∂ξ2

∂x2
∂ξ1
− ∂x1

∂ξ1
∂x2
∂ξ2

= −∂(x1,x2)
∂(ξ1,ξ2) < 0.Therefore, φ1 and φ2 both avoid zero (oth-

erwise the above quantity would equal zero), so the function φ2

φ1
is entire.

We have shown the entire function φ2

φ1
avoids the upper half plane - so by

the Casorati-Weierstrass theorem, it must be a constant function a− bi for
some b > 0. �

Theorem 7. There exist another set of isothermal coordinates u1, u2 which
are simply a linear transformation of x1, x2: u1 = x1, u2 = 1

b (x2 − au1).
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Proof. We have that φ2 = (a − bi)φ1. Plugging in φ1, φ2’s definitions and
equating real and imaginary parts, we obtain

∂x2

∂ξ1
= a

∂x1

∂ξ1
− b∂x1

∂ξ2

∂x2

∂ξ2
= b

∂x1

∂ξ1
+ a

∂x1

∂ξ2
.

Letting u1 = x1, u2 = 1
b (x2 − au1) ⇐⇒ x2 = au1 + bu2 be the linear

transformation, we have

∂u1

∂ξ1
=
∂u2

∂ξ2
,
∂u2

∂ξ1
= −∂u1

∂ξ2
.

These are precisely the Cauchy-Riemann equations for the function u =
u1 + iu2 as a function of ζ = ξ1 + iξ2. Thus, u is a holomorphic function of
ζ.
u’s derivative can never be zero somewhere - for this would imply ∂u1

∂ξ1
, ∂u2
∂ξ1

, ∂u1
∂ξ2

, ∂u2
∂ξ2

are all 0 there. From the linear relationship between u and x, this would
imply φ2, φ1 = 0 there, which was shown to never occur. Thus, again using
facts from complex analysis, u is a conformal map from C to C.

Since ξ1, ξ2 are isothermal coordinates taking the x plane to the ξ, and u a
conformal map from ξ to the u plane, we conclude by taking the composition
u◦ ξ : x→ u that u1, u2 are isothermal coordinates as well - since conformal
maps preserve isothermalness.

�

We come to the final step of the proof. u1, u2 are isothermal parameters
of x1, x2. Just as φi was defined as ∂xk

∂ξ1
− i∂xk∂ξ2

, define ψk = ∂xk
∂u1
− i∂xk∂u2

.

By the linear relation between x and u, ψ1, ψ2 are constants. But from our
preliminary discussion, ψ2

1 +ψ2
2 +ψ2

3 = 0, so ψ3 = ∂x3
∂u1
− i∂x3

∂u2
is a (complex)

constant. Thus, x3 has constant derivatives with respect to u1, u2, and again
by linearity, with respect to x1, x2 as well - the surface is a plane.

4. Second approach

A map between two Riemannian surfaces is said to be conformal if it is a
diffeomorphism that preserves angles. Clearly conformality is an equivalence
relation between Riemannian surfaces.

Given an abstract surface Σ, two Riemannian metrics g1, g2 on it are said
to be conformally equivalent if the identity map (M, g1) → (M, g2) is a
conformal equivalence.

Definition 8. A conformal structure on a surface is a conformally equiv-
alent class of Riemannian metrics on this surface. A Riemann surface is
an oriented surface equipped with a conformal structure.

Remark 9. Equivalently, a Riemann surface is a one dimensional complex
manifold. The equivalence comes from the observation that conformal maps
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between two domains in C are exactly biholomorphic or anti-biholomorphic
maps, and that the orientation rules out the anti-biholomorphic ones.

Here is a powerful classification theorem for simply connected Riemann
surfaces.

Proposition 10 (Uniformization Theorem). Any simply connected Rie-
mann surface is conformally equivalent to exactly one of the following:

• The Riemann sphere CP1 = S2.
• The complex plane C.
• The unit disk D in C.

The proof is complicated. We refer interested readers to any standard
textbook in Riemann surfaces, e.g. Donaldson [3], Forster [5]. As a corollary
of this we obtain the local existence of isothermal coordinates (although this
is a much easier statement).

As an application for isothermal coordinates, we first prove the following
lemma.

Lemma 11. Suppose n = 3. The Gauss map N : Σ → S2 on a minimal
surface Σ is conformal.

Proof. It suffices to check locally. Let (ξ1, ξ2) be isothermal coordinates near
some point p ∈ Σ. Let A denotes the second fundamental form of Σ ↪→ R3.
Then Aij = 〈∂iN, ∂jx〉.

Note ∂iN ∈ TN(p)S2 = TpΣ and that ∂1x, ∂2x ∈ TpΣ are orthogonal with
length λ, we have

∂iN =
1

λ2
(Ai1∂1x+Ai2∂2x).

Therefore

|∂iN |2 =
1

λ2
(A2

i1 +A2
i2);

〈∂1N, ∂2N〉 =
1

λ2
(A11A21 +A12A22).

Symmetry of A implies A12 = A21, minimality of Σ implies A11 + A22 = 0.
Therefore the equations above yields |∂1N |2 = |∂2N |2 and 〈∂1N, ∂2N〉 = 0,
which implies that N ◦ x is conformal. Since conformality is an equivalence
relation we conclude that N is conformal. �

Now let’s get back to Theorem 1. The surface S inherited a Riemannian
structure from R3 which descends to a conformal structure. Therefore S is
naturally a simply connected Riemann surface. The key for this approach
is the following lemma. Our proof presented below follows Osserman [6].

Lemma 12. S is conformally equivalent to C.

Proof of Bernstein’s Theorem. By Lemma 12, there is a conformal map φ : C→
S. By Lemma 11, the Gauss map N : S → S2 is conformal. Therefore the
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composition N ◦ φ : C → S2 = CP1 is conformal, thus holomorphic or anti-
holomorphic as a map between Riemann surfaces.

By Picard’s theorem, either N ◦ φ is constant, or its image omits at most
two points in S2. Since S is a graph over R2, we see the image is contained
in a hemisphere. Therefore N must be constant and Bernstein’s theorem
follows. �

It remains to prove the Lemma 12. Since S is noncompact, it is not
conformally equivalent to S2. By uniformization theorem, it suffices to rule
out the possiblity that S is hyperbolic. Assume for contrary that we have a
conformal equivalence x(ξ) : D→ S. Let φk be defined as in Section 2. The
following result might be a little surprising.

Lemma 13. When n = 3, all holomorphic solution to (1) in a domain
U ⊂ C are given by

φ1 = 1
2f(1− g2), φ2 = i

2f(1 + g2), φ3 = fg (4)

or

φ1 = if, φ2 = f, φ3 = 0, (5)

where f is holomorphic in U , g is meromorphic in U , such that f has a zero
of order at least 2m wherever g has a pole of order m.

Proof. It is straightforward to check (4)(5) are solutions.
Conversely, let (φ1, φ2, φ3) be any solution. If φ1 − iφ2 = 0, then φ3 = 0

and we obtain (5) by letting f = φ2.
Now we shall assume f := φ1− iφ2 is not constantly zero. Let g := φ3/f .

Then we have

f(φ1 + iφ2) = φ2
1 + φ2

2 = −φ2
3 = −f2g2,

from which we obtain φ1 + iφ2 = −fg2, and (4) follows. �

Therefore, the map x(ξ) is given by (3) where φk are given by (4) or (5).
This is called the Weierstrass representation for S. Note this formula
applies to any simply connected minimal surfaces, where the domain of
parametrization can be choosen to be either D or C.

Lemma 14. Let f : D → C∗ = C\{0} be a holomorphic function. Then
there exist a divergent path γ in D such that∫

γ
|f(z)||dz| <∞.

Proof. Let g be a primitive of f with g(0) = 0. Then g is a biholomorphic
map from D onto some bounded domain in U ⊂ C containing 0. Choose
w0 ∈ C\U with |w0| minimal and let C : [0, 1)→ C denotes the path t 7→ tw0

in U . Then γ = g−1(C) is a divergent path in D satisfying∫
γ
|f(z)||dz| =

∫
C
|f ◦ g−1(w)|

∣∣∣∣ dzdw
∣∣∣∣ |dw| = ∫

C
|dw| = |w0| <∞. �
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Back to the proof of Lemma 12. Let x(ξ) be as above. If φk are given
by (5), then x3 is constant, which implies S is a plane which is conformally
equivalent to C, so the lemma holds. Below we assume φk are given by (4).

Then we have

N =
1

λ2
(∂1x× ∂2x) =

1

λ2
(Im(φ2φ̄3), Im(φ3φ̄1), Im(φ1φ̄2))

=

(
2Re(g)

|g|2 + 1
,

2Im(g)

|g|2 + 1
,
|g|2 − 1

|g|2 + 1

)
. (6)

By reversing the orientation (switching ξ1, ξ2) if necessary, we may assume
N points downward, then (6) implies |g| < 1.

Next, by (2) we have

λ = (
1

8
|f |2|1+g2|2 +

1

8
|f |2|1−g2|2 +

1

2
|f |2|g|2)1/2 =

|f |
2

(1+ |g|2) ≤ |f |. (7)

In particular since λ > 0, f : D → C does not vanishes. Now let γ be
choicen as in Lemma 14. Then x ◦ γ is a divergent path in S, hence has
infinite length. However,

length(x ◦ γ) =

∫
x◦γ

ds =

∫
γ
λ|dζ| ≤

∫
γ
|f(ζ)||dζ| <∞,

which is a contradiction.

5. Third approach

In this approach, the core idea is to show that every minimal graph S
“grows quadratically in area” relative to open balls in the ambient space.
To reach this result we first review and generalize some results from 18.02
and then introduce the notion of calibrations. Once we’ve used calibrations
to establish the quadratic growth of the surface area of S, we use a log cutoff
trick in the proof of Proposition 23 to show that S has a certain property
called parabolicity. Once this property is established, Bernstein’s theorem
follows almost immediately when the parabolicity of S is used to show that
a certain function on S is in fact constant.

To set notational conventions straight, let ∂M denote the boundary of a
surface M , meaning let ∂M denote the set of points in M which are not
regular points, as defined in class.

One of the first results we’re going to use for this approach is Stokes’s
theorem, but for ease of notation it’s going to be written slightly differently
than in the usual 18.02 way. In order to make sense of this new form, we
introduce the following definitions.
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Lemma 15 (Stokes’s Theorem). Given an n-dimensional surface Σ ⊂ R3

and a smooth (n− 1)-form ω on R3, we have the equality∫
∂Σ
ω =

∫
Σ
dω (†)

Proof. We won’t give a proof of this result since most proofs involve a fair
amount of theory that won’t be used in this paper, but the interested reader
should consult Munkres’s textbook on manifolds or (MIT Professor Victor)
Guillemin’s book on differential forms. �

For n = 2 one would compute the left-hand side by parametrizing the
(1-dimensional) boundary ∂Σ of the surface Σ by a variable, say t, and then
computing the line integral∫

∂Σ
f(x, y)dx+ g(x, y)dy =

∮ (
f(x(t), y(t))

dx

dt
+ g(x(t), y(t))

dy

dt

)
dt,

where we have written ω = f(x, y)dx+ g(x, y)dy without loss of generality.

The right-hand side of (†) is computed by first noting that dω = ( dgdx−
df
dy )dx∧

dy, following from the definition of d found in any source on differential
forms, and then computing the double integral∫

Σ
dω =

∫∫
Σ

(
dg

dx
− df

dy
)dxdy

using the parametrization of Σ. This theorem, which takes the form of
Green’s theorem in R3, allows one to choose whichever side is easier to com-
pute and also yields the following result as a consequence.

Corollary 16. Given two surfaces Σ,Σ′ ⊂ R3 having identical boundary
(i.e., ∂Σ = ∂Σ′) and a smooth 1-form ω, we have that

∫
Σ dω =

∫
Σ′ dω.

Proof. This is a generalization of the technique used in 18.02 to show that
line integrals over conservative vector fields depend only on their endpoints.
Since ∂Σ = ∂Σ′ by assumption, we can actually form the surface Σ ∪ Σ′ in
a meaningful way. That is to say, this union does indeed give us a regular
surface, as opposed to, say, the disjoint union of Σ and some arbitrary point
not on Σ (which doesn’t even have a well-defined dimension). As a result,
we can apply Stokes’s theorem to this surface.

Letting Ω = Σ ∪ Σ′, we see that ∂Ω = ∅, which means that the left-hand
side of (†) vanishes, where we take integrals over ∂Ω and Ω. The right-hand
side, however, can be rewritten as∫

Ω
dω =

∫
Σ
dω −

∫
Σ′
dω,

where the minus sign appears because we have to keep track of orientation
(ω is sensitive to orientation-reversal). Since this quantity must equal the
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left-hand side of (†), which we already showed to be equal to 0, we have that∫
Σ dω =

∫
Σ′ dω, as desired. �

From here on let Ω ⊂ R2 and u : Ω → R be a C2 function satisfying the
minimal surface equation, and let Graphu = {(x, y, u(x, y)) ∈ R3 | (x, y) ∈
Ω}. The graphical nature of Graphu allows us to make the following defini-
tion.

Definition 17. Given vectors X,Y ∈ Ω × R ⊂ R3, let N denote the unit
normal to the plane spanned by X,Y so that N = X×Y

|X×Y | , and let (X,Y,N)

denote the matrix with columns given by X,Y,N , respectively. The cal-
ibration ω is defined to be the 2-form ω(X,Y ) = det(X,Y,N), where
det(X,Y,N) denotes the determinant of the matrix (X,Y,N) defined above.

Lemma 18. The calibration ω defined above satisfies dω = 0 and, supposing
X,Y are orthonormal vectors, |ω(X,Y )| ≤ 1, with this inequality being sat-
urated if and only if X,Y lie in the tangent space of Graphu at some point.
[2, Eqs 1.14-1.16]

Proof. [2] �

Proposition 20 below is one of the key steps in this proof of Bernstein’s
theorem, and the following lemma should be thought of as a comparison
result like those covered in lecture. It allows us to use the surface areas of
“nice” surfaces like spheres to establish bounds on the surface area of Graphu
by exploiting its area-minimizing property. Once we’ve done this, proposi-
tion 20 follows almost immediately. Functionally, the following lemma plays
the same role in this proof as the ODE-PDE comparison principle played
in showing convexity of CSF solutions in class. By bounding our object of
interest by an object which is easier to study, we can constrain its behavior.

Lemma 19. With u as above, if Σ ⊂ Ω × R is any other surface with
∂Σ = ∂Graphu, then

Area(Graphu) ≤ Area(Σ)

Proof. (see [2]) By assumption, Σ and Graphu have the same boundary, and
dω = 0 by the previous lemma, so our corollary to Stokes’s theorem above
gives us the equality ∫

Graphu

ω =

∫
Σ
ω

The rest of the previous lemma then gives us the inequality

Area(Graphu) =

∫
Graphu

ω =

∫
Σ
ω ≤ Area(Σ)

�
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In other words, the fact that u satisfies the minimal surface equation
tells us, as we expect, that Graphu minimizes area with respect to “nearby”
surfaces Σ ⊂ Ω×R. Here, “nearby” means having the same boundary. Now
we use the previous results to prove the following.

Proposition 20. With u as above, if Dr ⊂ Ω, then Area(Br ∩ Ω) ≤
Area(S2)

2 r2 = 2πr2, where Dr ⊂ R2 and Br ⊂ R3 denote the closed unit
disk in 2-space and the closed unit ball in 3-space. [2, Cor 1.2]

Proof. We derive an extremely crude bound on the area of Br ∩Graphu by
noting that ∂Br ∩Graphu divides ∂Br into two connected components, one

of which must have area at most Area(S2)
2 r2 = 2πr2. By the previous lemma,

this gives an upper bound on Area(Br ∩Graphu). �

Before proving Proposition 22 below, we first recall the definition of a
parabolic surface.

Definition 21. We say that a surface Σ is parabolic if it does not admit
any positive superharmonic function u (i.e., u > 0 and ∆Σu ≤ 0) such that
u is not constant.

Proposition 22. If Σ is a complete surface so that for all s > 0 we have
BΣ
s ≤ Cs2, then Σ is parabolic. [2, Prop 1.37]

Proof. Following our definition above, assume that there is a function u on
Σ with u > 0 and ∆Σu ≤ 0. Set w = log u so that |∇Σw|2 ≤ −∆Σw. Let
r(x) denote the distance from x to p and R > 0 be some positive constant
which will be manipulated later, and define the cutoff function η by

η =


1 r2 ≤ R
2− log r2

logR R < r2 ≤ R2

0 r2 > R2

It is not too hard to convince oneself that 2ab ≤ 1
2a

2 + 2b2 by computing

(a+ b)2 and liberally removing (nonnegative) terms from the left hand side.
Combining this inequality with an application of Stokes’s theorem gives

∫
η2|∇Σw|2 ≤ −

∫
η2∆Σw

≤ 2

∫
η|∇Ση||∇Σw|

≤ 1

2

∫
η2|∇Σw|2 + 2

∫
|∇Ση|2

From here we substitute the definition of η and using our area bound
Area(BΣ

s ) ≤ Cs2, we obtain
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∫
BΣ√

R

|∇Σw|2 ≤
∫
η2|∇Σw|2

≤ 4

∫
|∇Ση|2

≤ 16

(logR)2

logR∑
`= 1

2
logR

∫
(BΣ

e`
−BΣ

e`−1 )
r−2

≤ 16

(logR)2

logR∑
`= 1

2
logR

Ce2

≤ 8Ce2

logR

Now we let R → ∞ to see that w must be constant, as the integral of
|∇Σw|2 over all of Σ is identically zero.

�

In particular, a surface satisfying the hypotheses of Bernstein’s theorem
is parabolic. Before we prove Bernstein’s theorem we’ll need the following
equation. It will be stated without proof since it is mostly computational,
and the interested reader should consult [2, pp. 47] for a more thorough
treatment. If we consider u = 〈N, (0, 0, 1)〉 and consider the graph Graphu
of this function, the second variational formula gives

∆Σu = −|A|2u ≤ 0, (8)

where A denotes the shape operator on Σ.

Proof of Bernstein’s Theorem. At this point Bernstein’s theorem follows straight-
forwardly. Equation (8) tells us that u = 〈N, (0, 0, 1)〉 > 0 is superharmonic.
Applying Proposition 22, we get that u must be constant. As u gives the
inner product between the unit normal N on Σ and the constant vector
(0, 0, 1) pointing upward in the z-direction, this tells us Σ is planar. �

6. Ending Remarks

6.1. Two classifications of Riemann surfaces. All connected Riemann
surfaces are classified into three types: elliptic, parabolic, hyperbolic,
according to its universal cover being conformally equivalent to the Riemann
sphere, the complex plane, or the hyperbolic disk [5]. In this language,
Lemma 12 says that S is parabolic.

In the third approach above we used a different convention by functional
analysts: a connected Riemann surface is said to be elliptic if it is compact,
hyperbolic if it possesses a nonconstant negative subharmonic function,
and parabolic otherwise.
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In general these two definitions are not equivalent. One obvious reason
is that in the first definition, the only elliptic Riemann surface is S2 [5],
whereas any closed surface is elliptic according to the second definition.
One less trival example is that every finitely punctured closed surface is
hyperbolic in the first definition, but not in the second [4].

Proposition 23. For a simply connected Riemann surfaces, the two defi-
nitions agree.

Therefore, Lemma 12 and Lemma 22 are equivalent.

Proof. Let S be a simply connected Riemann surface. If S is compact, then
it can only be S2, which is ellptic in both definitions. Below we assume S is
noncompact.

Since (sub)harmonicity is a conformal invariant, it suffices to prove D
possess a nonpositive nonconstant subharmonic function while C does not
possess one. For D, such a function is given by f(x, y) = x2 − 1. For C, the
statement is just Liouville’s Theorem for subharmonic functions. �

6.2. A generalization. The second approach presented above can be slightly
improved to prove the following generalization of Bernstein’s Theorem.

Proposition 24. Let S be any complete oriented minimal surface in R3. If
S is not a plane, then the image of the Gauss map is dense in S2.

Proof. Suppose the Gauss map does not have dense image. Rotate the axis
if necessary we may assume it omit a neighborhood of (0, 0, 1) ∈ S2.

Realize S̃, the universal cover of S, as an immersed surface in R3 with
the same image as S. Then the Gauss map of S̃ also omits a neighborhood
of (0, 0, 1).

Now everything in the proof of Lemma 12 goes through for S̃, except that
we conclude from (6) that |g| ≤ C for some constant C > 0 and (7) becomes
λ ≤M |f | for some constant M > 0. Completeness is used to guarantee that
every divergent path has infinite length. The rest of the proof are identical
with the proof of Bernstein’s theorem. �

6.3. Parametrize Minimal Surfaces by Riemann Surfaces. In this
section we want to say a little more about the alternative description for
minimal surfaces introduced in Section 2, which has been used in both our
first and second proofs.

Recall that we have a minimal surface Σ ⊂ Rn equipped with a global
isothermal parametrization x(ξ) : D → Σ, where D is a domain in R2. The
functions φk = ∂1xk − i∂2xk are holomorphic and satisfy (1)(2).

How about the converse? Suppose we have arbitrary holomorphic function
φ1, · · · , φn defined on a domain D ⊂ C = R2 satisfying

∑n
k=1 φ

2
k = 0 and∑n

k=1 |φk|2 > 0, when can we recover the original surface Σ ⊂ Rn (and the
parametrization x(ξ))? Clearly, if we can recover Σ, then up to constant,
xk has to satisfy (3). But when D is not simply connected, these integrals
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are not necessarily well-defined. Another problem is that, even if (3) are
well-defined for all xk, we have no guarantee that x(ξ) is an embedding.

The following proposition addresses these two issues, while generalize the
domain of parametrization to a more general setting of a Riemann surface.
Note that the proposition essentially provides an alternative definition for
minimal surfaces immersed in some Rn, see [1].

Proposition 25. Let S0 be a Riemann surface, αk be holomorphic 1-forms
on S0, k = 1, · · · , n. Let ζ be a local complex coordinate on S0 and write
αk = φkdζ. Assume that xk := Re

∫
αk are well-defined and that

n∑
k=1

φ2
k = 0; (9)

n∑
k=1

|φk|2 > 0. (10)

Then the parametrization

x = (x1, · · · , xn) : S0 → Rn (11)

gives an immersed minimal surface.

Conversely, for any minimal surface Σ immersed in Rn, we can find such
S0 and αk such that Σ is parametrized by S0 via (11).

Proof. Let S0, αk, xk be given. To check minimality it suffices to work locally.
Write αk = φkdζ for a complex coordinate ζ = ξ1 + iξ2 on S0. Then xk are
harmonic in ξ1, ξ2 and that φk = ∂1xk − i∂2xk.

Now

0 <
n∑
k=1

|φk|2 = g11 + g22

shows that the parametrized surface Σ is regular;

0 =

n∑
k=1

φ2
k = g11 − g22 − 2ig12.

shows g11 = g22, g12 = 0, hence ξ1, ξ2 are isothermal coordinates on Σ.
Finally, by computation in the proof of Proposition 2,

2λ2H = ∆x = 0,

which implies H = 0, i.e. Σ is minimal.

Conversely, let Σ ⊂ Rn be an immersed minimal surface. Then the sub-
manifold metric on Σ descends to a conformal structure which makes Σ a
Riemann surface, denoted S0. Let x1, · · · , xn denotes the coordinates in Rn.
For each k = 1, · · · , n, let αk = 2∂xk be a 1-form. Then xk = Re

∫
αk. Let

ζ = ξ1 + iξ2 be a complex coordinate, we see that αk are in fact holomorphic
1-forms on S0 since

2∂̄αk = (∆xk)dζ ∧ dζ̄ = 0.
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Here the last step we again used Proposition 2 together with minimality of
Σ.

Finally, write αk = φkdζ, then φk = ∂1xk − i∂2xk. As before
n∑
k=1

φ2
k = g11 − g22 − 2ig12 = 0;

n∑
k=1

|φk|2 = g11 + g22 > 0.

Thus the Riemann surface S0, holomorphic 1-forms αk, together with the
immersion x : S0 ↪→ Rn satisfy the requirements. �
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