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1 Main Theorem

We identify B* with a hemisphere on S* via the standard stereographic map m. We fix
the standard metic on (B*,g) as the pull back metric of m. This is conformal to the flat
metric. Therefore on B* we have point-wise equality:
2
|F'|,dVoly = |F|g,dVolg,
The use of this metric enables us to do computation on S* and bypasses the difficulties
when dealing with the boundary condition.

Theorem 1.1 (Uhlenbeck). There are constant e, M > 0 such that any connection A
(Here we work with U(n) connection) over the trivial bundle over B* with ||Fal|;2 < €1 is
gauge equivalent to a connection A over B* (the behavior near boundary may be bad) with

1. d&*A=0
2. ||All g < M||F4ll 2 = M| Fal 2
The main ingredients of the proof is the following proposition:

Proposition 1.2 (Method of continuity). There is a constant ¢ > 0 such that if B, (t €
[0,1]) s a one-parameter family of connections on trivial bundle over S* with [Epllrz < ¢

and B|) be the trivial connection d, then for each t there exists a gauge transformation u,
such that uy(Bj) = By satisfies:

1. d*B; =0

2. ||Bellgr < 2N||Fp,||. N can be chosen to equal to 2ci, the constant appear in the
following Sobolev inequality which we shall prove later || Bl < ci||dBl| 2.

We break the proof of Uhlenbeck theorem into method of continuity and several reg-
ularity estimate. Let A as in the main theorem. Let &; : R* — R* z + ta,t € [0,1]. Let
Ay = 67 A be a one parameter family of connections such that Ay = 0. Let r be reflection
of S* with respect to the plane {z5 = 0}. We define p : S* — B* such that p is the stereo-
graphic projection of north(south) pole on south(north) hemisphere respectively. Roughly
speaking if we let ||Fla,||z2 small enough, B; = p*A; and ”apply” continuity method to By
we can "prove” the theorem, but p is mere a Lipschitz map from S* to B*. To fix this
problem we construct a family of smooth maps p. which converges to p in W1> with Vp,
bounded and p. equal to p outside € neighborhood of equatorial three-sphere. To do this
we identify S* N {z5 < 0} with B* in R* and define:

fe: Bt — B47f€(0) =0, fE(‘/L‘) = T» |ZL“ >0



where ¢, is a smooth non-decreasing function on [0, 1] such that

¢e 1 [0,1] = [0,1], pe(r) =7, r <1 — ,¢5_1 5 r>1—§

We define p. on the open hemisphere by p. = p o fe and extend to the whole sphere
smoothly. Therefore we have:

/ [F(p Ay PdV ol, <2/ [F(A)dVol, + C(n)el| F(A)]| (1.1)

To apply continuity method, we let ¢; < 27 2{ and By’ = pfA;. We then get a gauge
equivalent connection B¢ of p*(A). By restricting back to B* we obtain A€ satisfying
d*A® =0, || A g1y < IN||F(A)| 2. Moreover A€ is gauge equivalent to A on B*(1 —¢).
Therefore it is suffice to proof the continuity method and study the behavior of B¢ when
e — 0.

2 Rearrangement argument

Lemma 2.1. Let B be a connection on the trivial bundle over S* in Coulomb gauge
relative to the trivial connection d (d*B = 0). There are constant N,n > 0 such that if
[Blls <n then || Bl g < N|[Fal|L2-

Proof. Since d* + d is an elliptic operator, we then have the following elliptic estimate:
1Bl < e1([ldB|| -1 + [|[d" Bl gri-1 + [| B 12) (2.1)
one the other hand since H'(S%) = 0, Hodge theory implies:
Q' = Im(A)

Therefore given d*B = 0 we will have ||B||;2 < C||dB]||r2 for some constant independent
on B. Otherwise 3By such that ||Bg|z2 = 1,[|dB| ;2 < 7. The elliptic estimate and
the Rellich compact embedding theorem implies By, are uniformly H' bounded and hence
admit an H'~! convergent subsequence (W.L.O.G. let By, be the subsequence itself). We
denote the limit as Boo. It is easy to see || Bxl||r2 = 1. For arbitrary smooth section 7

(Boo:n) = (Boo, A§) = lim (B, Af) = lim (dBy, d§) =0
k—o00 k—o00
Which draws contradiction. We obtain in particular:
Bl < c1lldB| 2 (2.2)

Using Cauchy Schwartz and Sobolev embedding we will have:

|B A B2 < ol B|pa]| B g1 (2.3)

So
1Bl < erl|[F(B)|[r + crcal| Bl pal| Bll g (2.4)
If | Bllot < gergys 1Bl < 2a1]|F(B)] 2. O

Now we are able to deduce a higher order estimate of || B|| gi+1,! > 1 in terms of the L™
and H'! norm of F(B). It should be remarked here that the gauge action on the curvature
form does not change |F(B)|.

For a smooth connection connection B put:

l .
QU(B) = |F(B)ll= + >_ IV F(B)] 2

=1



Lemma 2.2. There are constant ' > 0 such that if the connection matriz B of Lemma
2.1 has ||B||z2 <7 then for each 1 > 1 a bound,

[Blgri+1 < fi(Qu(B)) (2.5)

where f1(0) = 0 are nondecreasing, smooth and are independent on B.

Proof. When [ > 3 multiplication by B induce a bounded map from H® — H® s <[
with norm less than C||B| g, where C is a constant depends only on ! and the based
compact manifold. The outline of the proof is that we first apply P.O.U. and use Sobolev
inequality, Morrey inequality, Holder inequality to get a local estimate. Then gathering
the local estimate we obtain the global estimate of the norm.

|B A Bl < const|| B3 (2.6)
and l
1Fl e < P(IBl) Y IV F(B)| 2 (2.7)
=0

For some polynomial P, with P;(0) = 0. Therefore:

l
1Bl s < const(nBABqu (B Y ||v§;>F<B>HL2) (2.8)
1=0

Which prove the case when | > 3
We now consider the case when [ = 1. Since VF = VgF — [Bk, Fij} ®dz* @ dx' @ da?

1Bl < GQ(HF<B>||H1 ; ||BAB||H1)
< c?z(HvBmB)HLz B2 + | F ]| Bll s + HBHH2|rBHL4)

Thus if | B||ps < % There is an independent constant Cy such that:
2

Bz < C2Q1(B) (2.9)

Similarly
1Bllas < C“s(HBHmHB!HB +IBfya + HF(B)Hm)
< é3<HB||L4||B|H3 +IBl32 + IVBEB)| 2 + [|BR VpF| 2+ [[(VBB) ® F| 12
+[B® B® F(B)|2 + [VBEF(B)|lL2 + [|F(B)]| 2 + ”F||L°°||B”L4>
Since the following inequality holds for some constant A3, we will have:

I1E(B)|lg2 < A(\IB R F(B)|2 +[1B®B® F(B)|12 +[(VB)F(B)|| 2 + ||B||L4||F(B)”H2>
HIVEF(B)llzz + | F(B)|

Given ||B||zs < min(5y, %), we will have
3

2
1Bl s < C3<!BH?{2 + > IVEEB) Iz + 1 F(B) | zoo (|1 Bl i1 + 1)> (2.10)
j=1
Therefore we complete the whole proof. Here ' < min(n, ﬁ, ﬁ, ﬁ) O



3 Proof of Method of Continuity

Let S be set of ¢ € [0, 1] such that u; exists. S is nonempty.

3.1 S is closed

Proposition 3.1. If A;, B; are C*°-bounded sequences of connections on a unitary bundle
over a compact manifold X, and if A;, B; are gauge equivalent connection for each i,
then there are subsequences converging to limiting connection Aso, Boo, and A is Gauge
equivalent to Byo.

Proof. W.LL.O.G. We can assume the vector bundle is trivial. By AA lemma we may
assume A; — Ay, B; = By, and the compactness of the structure group implies u; — uo
uniformly as continuous map.

dui = uiAi — Biui (3.1)
Suppose u; is C" convergent then we can deduce that u; is C™! convergent. O

We can now get down to the proof of S is closed. We choose ¢ so that 2C'N( is less
than 7', n, where C' is a Sobolev constant. Then if ¢ lies in S we have:

IBellps < ClIBillmn < 2NC|F(By)||p2 < 2NCC < min(n, n') (3.2)

We conclude from lemma 2.1 that || B|| g1 is uniformly bounded We now prove that Q;(B)
is invariant under Gauge transformation.

Lemma 3.2. ‘ ‘
VY F(B)| = [V Flu(B)) (33)

Proof. When j = 0, F(u(B)) = uF(B)u~! which is obvious. We assume the conclusion is
true for j <1 we proof that the case j =1+ 1 is also correct.

l l —
V() (Vi) F(u(B))) = Vy(yu(VE F(B))u™"
= Vun) (qu-j;kl...klu_ldazidacjdmkl e d:z:kl)
= (VU(B)uFij;kl...klu_l)dxid:cjda:kl coodah 4 uFZ'j;kl...klu_IVTM:L‘idxjd:ckl o dxh
= u(VEYFB) 0!
Suppose HVg)F(B;)HLg < Kj is uniformly bounded we have ||By||f for each | > 0 is
t

uniformly bounded. By AA lemma and that lemma 2.1 is preserved under limit, we know
S is closed. O

Remark 3.3. We kwon from lemma 2.1 that ||B||g1 < 2N||F(B)||2 implies ||B||g <
N|E(B)|| 2

3.2 S is open

Proof. Let ty € S, W.L.O.G. we can assume By, = Bj; which we will just write B. Let
Ad(g) = P xg g. We define: F} be the space of H' section of Q'(Ad(g)) respectively, and
E to the space of H! section of Ad(g) with zero integral. The map H:

H:E xFi_1— E_o:H(x,b) =d"(eX(B+b)e X — (deX)e X) (3.4)
We have H(0,0) = 0. Let (DH)o be the linearization of H at (0,0)

(DH)o(x,b) = —d"dpx +d'b (3.5)



To prove the openness, it is suffice to show that: d*dpyx is surjective. Since d*dp is elliptic
and hence Fredholm, by Fredholm alternative, assuming d*dp were not surjective, there
would be a nonzero smooth section 7 such that:

(d*dpx,n) = 0,Vx (3.6)
set x =), because [ 1 = 0 we have for some Sobolev constant:
ldnl|7= < [([B,n], dn)| < const||dnl|72(| B i (3.7)

which gives a universal lower bound of the H! norm of B. So we deduce that if ¢ is small
then the set S is open. O

4 Proof of the Main Theorem

We claim that for any D € S* — S% and [ > 1 there is a constant depends only on D,
such that. 3
1B g1(py < Ni.p (4.1)

The case [ = 1 follows by the second conclusion of the method of continuity. When [ > 1
we can apply the elliptic estimate for compact manifold with boundary:

1Bl sr11 0y < CUBE sty + 14BN 1)) (4.2)

Using arguments appeared in lemma 2.2, we can complete the proof of the first and the
third conclusion in the theorem 1.1.

5 Application

Intuitively we want to solve the ASD equation:
FA)T=d A+ (ANA)T (5.1)

The problem is that the operator d* is not elliptic, since F*(A) = 0 is invariant under
gauge transformation. Uhlenbeck theorem enable us to choose a suitable gauge under
which the ASD solution satisfies a regularity estimate:

Theorem 5.1. There is a constant e > 0 such that if A is any ASD connection on
the trivial bundle over B* which satisfies the Coulomb gauge condition d*A = 0 and
|Al| 2 < €2, then for any interior domain D € B* and | > 1 we have

HAHHZ(D) < My pl|F(A)| 24 (5.2)
for a constant M; p depending only on I, D
Combined with Uhlenbeck theorem, one can prove the following result:

Corollary 5.2. There exists a constant € for any sequence of ASD connection A, over
B* with |F(A,)|| < € there exists a subsequence a’ and gauge equivalent connections Ay
which converge in C* in the open ball.
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