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1 Main Theorem

We identify B̄4 with a hemisphere on S4 via the standard stereographic map m. We fix
the standard metic on (B4, g) as the pull back metric of m. This is conformal to the flat
metric. Therefore on B4 we have point-wise equality:

|F |2gdV olg = |F |gR4dV olgR4

The use of this metric enables us to do computation on S4 and bypasses the difficulties
when dealing with the boundary condition.

Theorem 1.1 (Uhlenbeck). There are constant ε1,M > 0 such that any connection A
(Here we work with U(n) connection) over the trivial bundle over B̄4 with ‖FA‖L2 ≤ ε1 is
gauge equivalent to a connection Ã over B4 (the behavior near boundary may be bad) with

1. d∗Ã = 0

2. ‖Ã‖H1 ≤ M‖FÃ‖L2 = M‖FA‖L2

The main ingredients of the proof is the following proposition:

Proposition 1.2 (Method of continuity). There is a constant ζ > 0 such that if B′
t, (t ∈

[0, 1]) is a one-parameter family of connections on trivial bundle over S4 with ‖FB′
t
‖L2 < ζ

and B′
0 be the trivial connection d, then for each t there exists a gauge transformation ut

such that ut(B
′
t) = Bt satisfies:

1. d∗Bt = 0

2. ‖Bt‖H1 < 2N‖FBt‖. N can be chosen to equal to 2c1, the constant appear in the
following Sobolev inequality which we shall prove later ‖B‖H1 ≤ c1‖dB‖L2.

We break the proof of Uhlenbeck theorem into method of continuity and several reg-
ularity estimate. Let A as in the main theorem. Let δt : R4 → R4, x %→ tx, t ∈ [0, 1]. Let
At = δ∗tA be a one parameter family of connections such that A0 = 0. Let r be reflection
of S4 with respect to the plane {x5 = 0}. We define p : S4 → B̄4 such that p is the stereo-
graphic projection of north(south) pole on south(north) hemisphere respectively. Roughly
speaking if we let ‖FAt‖L2 small enough, Bt = p∗At and ”apply” continuity method to Bt

we can ”prove” the theorem, but p is mere a Lipschitz map from S4 to B̄4. To fix this
problem we construct a family of smooth maps pε which converges to p in W 1,∞ with ∇pε
bounded and pε equal to p outside ε neighborhood of equatorial three-sphere. To do this
we identify S4 ∩ {x5 ≤ 0} with B̄4 in R4 and define:

fε : B̄
4 → B4, fε(0) = 0, fε(x) =

xφε(|x|)
|x| , |x| > 0
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where φε is a smooth non-decreasing function on [0, 1] such that

φε : [0, 1] → [0, 1],φε(r) = r, r ≤ 1− ε

2
;φε ≡ 1− ε

3
, r ≥ 1− ε

4

We define pε on the open hemisphere by pε = p ◦ fε and extend to the whole sphere
smoothly. Therefore we have:

!

S4

|F (p∗εAt)|2dV olg ≤ 2

!

B4

|F (A)|2dV olg + C(n)ε‖F (A)‖L∞ (1.1)

To apply continuity method, we let ε1 < 2−
1
2 ζ and Bε

t
′ = p∗εAt. We then get a gauge

equivalent connection B̃ε of p∗ε (A). By restricting back to B4 we obtain Aε satisfying
d∗Aε = 0, ‖Aε‖H1(B4) < 2N‖F (Ã)‖L2 . Moreover Aε is gauge equivalent to A on B4(1− ε).

Therefore it is suffice to proof the continuity method and study the behavior of B̃ε when
ε → 0.

2 Rearrangement argument

Lemma 2.1. Let B be a connection on the trivial bundle over S4 in Coulomb gauge
relative to the trivial connection d (d∗B = 0). There are constant N, η > 0 such that if
‖B‖L4 < η then ‖B‖H1 ≤ N‖FB‖L2.

Proof. Since d∗ + d is an elliptic operator, we then have the following elliptic estimate:

‖B‖Hl ≤ c̃1(‖dB‖Hl−1 + ‖d∗B‖Hl−1 + ‖B‖L2) (2.1)

one the other hand since H1(S4) = 0, Hodge theory implies:

Ω1 = Im(∆)

Therefore given d∗B = 0 we will have ‖B‖L2 ≤ C‖dB‖L2 for some constant independent
on B. Otherwise ∃Bk such that ‖Bk‖L2 = 1, ‖dB‖L2 ≤ 1

k . The elliptic estimate and
the Rellich compact embedding theorem implies Bk are uniformly H l bounded and hence
admit an H l−1 convergent subsequence (W.L.O.G. let Bk be the subsequence itself). We
denote the limit as B∞. It is easy to see ‖B∞‖L2 = 1. For arbitrary smooth section η

(B∞, η) = (B∞,∆ξ) = lim
k→∞

(Bk,∆ξ) = lim
k→∞

(dBk, dξ) = 0

Which draws contradiction. We obtain in particular:

‖B‖H1 ≤ c1‖dB‖L2 (2.2)

Using Cauchy Schwartz and Sobolev embedding we will have:

‖B ∧B‖L2 ≤ c2‖B‖L4‖B‖H1 (2.3)

So
‖B‖H1 ≤ c1‖F (B)‖H1 + c1c2‖B‖L4‖B‖H1 (2.4)

If ‖B‖L4 ≤ 1
2c1c2

, ‖B‖H1 ≤ 2c1‖F (B)‖L2 .

Now we are able to deduce a higher order estimate of ‖B‖Hl+1 , l ≥ 1 in terms of the L∞

and H l norm of F (B). It should be remarked here that the gauge action on the curvature
form does not change |F (B)|.

For a smooth connection connection B put:

Ql(B) = ‖F (B)‖L∞ +

l"

i=1

‖∇(i)
B F (B)‖L2
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Lemma 2.2. There are constant η′ > 0 such that if the connection matrix B of Lemma
2.1 has ‖B‖L2 < η′ then for each l ≥ 1 a bound,

‖B‖Hl+1 ≤ fl(Ql(B)) (2.5)

where fl(0) = 0 are nondecreasing, smooth and are independent on B.

Proof. When l ≥ 3 multiplication by B induce a bounded map from Hs → Hs, s ≤ l
with norm less than C‖B‖Hl , where C is a constant depends only on l and the based
compact manifold. The outline of the proof is that we first apply P.O.U. and use Sobolev
inequality, Morrey inequality, Hölder inequality to get a local estimate. Then gathering
the local estimate we obtain the global estimate of the norm.

‖B ∧B‖Hl ≤ const‖B‖2Hl (2.6)

and

‖F‖Hl ≤ Pl(‖B‖Hl)

l"

i=0

‖∇(i)
B F (B)‖L2 (2.7)

For some polynomial Pl with Pl(0) = 0. Therefore:

‖B‖Hl+1 ≤ const

#
‖B ∧B‖Hl + Pl(‖B‖Hl)

l"

i=0

‖∇(i)
B F (B)‖L2

$
(2.8)

Which prove the case when l ≥ 3
We now consider the case when l = 1. Since ∇F = ∇BF −

%
Bk, Fij

&
⊗ dxk ⊗ dxi ⊗ dxj

‖B‖H2 ≤ C̃2

#
‖F (B)‖H1 + ‖B ∧B‖H1

$

≤ C̃2

#
‖∇BF (B)‖L2 + ‖F (B)‖L2 + ‖F‖L∞‖B‖L4 + ‖B‖H2‖B‖L4

$

Thus if ‖B‖L4 ≤ 1
2C̃2

There is an independent constant C2 such that:

‖B‖H2 ≤ C2Q1(B) (2.9)

Similarly

‖B‖H3 ≤ C̃3

#
‖B‖L4‖B‖H3 + ‖B‖2W 1,4 + ‖F (B)‖H2

$

≤ C̃3

#
‖B‖L4‖B‖H3 + ‖B‖2H2 + ‖∇2

BF (B)‖L2 + ‖B ⊗∇BF‖L2 + ‖(∇BB)⊗ F‖L2

+‖B ⊗B ⊗ F (B)‖L2 + ‖∇BF (B)‖L2 + ‖F (B)‖L2 + ‖F‖L∞‖B‖L4

$

Since the following inequality holds for some constant A3, we will have:

‖F (B)‖H2 ≤ A

#
‖B ⊗ F (B)‖L2 + ‖B ⊗B ⊗ F (B)‖L2 + ‖(∇BB)F (B)‖L2 + ‖B‖L4‖F (B)‖H2

$

+‖∇2
BF (B)‖L2 + ‖F (B)‖H1

Given ‖B‖L4 ≤ min( 1
2A ,

1
2C̃3

), we will have

‖B‖H3 ≤ C3

#
‖B‖2H2 +

2"

j=1

‖∇j
BF (B)‖L2 + ‖F (B)‖L∞(‖B‖H1 + 1)

$
(2.10)

Therefore we complete the whole proof. Here η′ ≤ min(η, 1
2C̃2

, 1
2C̃3

, 1
2A)
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3 Proof of Method of Continuity

Let S be set of t ∈ [0, 1] such that ut exists. S is nonempty.

3.1 S is closed

Proposition 3.1. If Ai, Bi are C∞-bounded sequences of connections on a unitary bundle
over a compact manifold X, and if Ai, Bi are gauge equivalent connection for each i,
then there are subsequences converging to limiting connection A∞, B∞, and A∞ is Gauge
equivalent to B∞.

Proof. W.L.O.G. We can assume the vector bundle is trivial. By AA lemma we may
assume Ai → A∞, Bi → B∞ and the compactness of the structure group implies ui → u∞
uniformly as continuous map.

dui = uiAi −Biui (3.1)

Suppose ui is C
r convergent then we can deduce that ui is C

r+1 convergent.

We can now get down to the proof of S is closed. We choose ζ so that 2CNζ is less
than η′, η, where C is a Sobolev constant. Then if t lies in S we have:

‖Bt‖L4 ≤ C‖Bt‖H1 ≤ 2NC‖F (Bt)‖L2 ≤ 2NCζ ≤ min(η, η′) (3.2)

We conclude from lemma 2.1 that ‖B‖H1 is uniformly bounded We now prove that Ql(B)
is invariant under Gauge transformation.

Lemma 3.2.
|∇(j)

B F (B)| = |∇(j)
u(B)F (u(B))| (3.3)

Proof. When j = 0, F (u(B)) = uF (B)u−1 which is obvious. We assume the conclusion is
true for j ≤ l we proof that the case j = l + 1 is also correct.

∇u(B)(∇
(l)
u(B)F (u(B))) = ∇u(B)u(∇

(l)
B F (B))u−1

= ∇u(B)(uFij;k1···klu
−1dxidxjdxk1 · · · dxkl)

= (∇u(B)uFij;k1···klu
−1)dxidxjdxk1 · · · dxkl + uFij;k1···klu

−1∇TMxidxjdxk1 · · · dxkl

= u(∇(l+1)
B F (B))u−1

Suppose ‖∇(j)
B′

t
F (B′

t)‖L2 ≤ Kj is uniformly bounded we have ‖Bt‖Hl for each l ≥ 0 is

uniformly bounded. By AA lemma and that lemma 2.1 is preserved under limit, we know
S is closed.

Remark 3.3. We kwon from lemma 2.1 that ‖B‖H1 ≤ 2N‖F (B)‖L2 implies ‖B‖H1 ≤
N‖F (B)‖L2

3.2 S is open

Proof. Let t0 ∈ S, W.L.O.G. we can assume Bt0 = B′
t0 which we will just write B. Let

Ad(g) = P ×G g. We define: Fl be the space of H l section of Ω1(Ad(g)) respectively, and
El to the space of H l section of Ad(g) with zero integral. The map H:

H : El × Fl−1 → El−2 : H(χ, b) = d∗(eχ(B + b)e−χ − (deχ)e−χ) (3.4)

We have H(0, 0) = 0. Let (DH)0 be the linearization of H at (0, 0)

(DH)0(χ, b) = −d∗dBχ+ d∗b (3.5)
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To prove the openness, it is suffice to show that: d∗dBχ is surjective. Since d∗dB is elliptic
and hence Fredholm, by Fredholm alternative, assuming d∗dB were not surjective, there
would be a nonzero smooth section η such that:

(d∗dBχ, η) = 0, ∀χ (3.6)

set χ = η, because
'
η = 0 we have for some Sobolev constant:

‖dη‖2L2 ≤ |([B, η], dη)| ≤ const‖dη‖2L2‖B‖H1 (3.7)

which gives a universal lower bound of the H1 norm of B. So we deduce that if ζ is small
then the set S is open.

4 Proof of the Main Theorem

We claim that for any D ⋐ S4 − S3 and l ≥ 1 there is a constant depends only on D, l
such that.

‖B̃ε‖Hl(D) ≤ Nl,D (4.1)

The case l = 1 follows by the second conclusion of the method of continuity. When l > 1
we can apply the elliptic estimate for compact manifold with boundary:

‖B̃ε‖Hl+1(D) ≤ C(‖B̃ε‖Hl(D) + ‖dB̃ε‖Hl(D)) (4.2)

Using arguments appeared in lemma 2.2, we can complete the proof of the first and the
third conclusion in the theorem 1.1.

5 Application

Intuitively we want to solve the ASD equation:

F (A)+ = d+A+ (A ∧A)+ (5.1)

The problem is that the operator d+ is not elliptic, since F+(A) = 0 is invariant under
gauge transformation. Uhlenbeck theorem enable us to choose a suitable gauge under
which the ASD solution satisfies a regularity estimate:

Theorem 5.1. There is a constant ε2 > 0 such that if Ã is any ASD connection on
the trivial bundle over B4 which satisfies the Coulomb gauge condition d∗Ã = 0 and
‖Ã‖L4 ≤ ε2, then for any interior domain D ⋐ B4 and l ≥ 1 we have

‖Ã‖Hl(D) ≤ Ml,D‖F (A)‖L2(B4) (5.2)

for a constant Ml,D depending only on l, D

Combined with Uhlenbeck theorem, one can prove the following result:

Corollary 5.2. There exists a constant ε for any sequence of ASD connection Aa over
B̄4 with ‖F (Aa)‖ ≤ ε there exists a subsequence a′ and gauge equivalent connections Ãa′

which converge in C∞ in the open ball.
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