Notes on Uhlenbeck Theorem

Dashen Yan

May 14, 2021

1 Main Theorem

We identify \bar{B}^4 with a hemisphere on S^4 via the standard stereographic map m. We fix the standard metric on (B^4,g) as the pull back metric of m. This is conformal to the flat metric. Therefore on B^4 we have point-wise equality:

$$|F|_q^2 dVol_g = |F|_{g_{\mathbb{R}^4}} dVol_{g_{\mathbb{R}^4}}$$

The use of this metric enables us to do computation on S^4 and bypasses the difficulties when dealing with the boundary condition.

Theorem 1.1 (Uhlenbeck). There are constant $\epsilon_1, M > 0$ such that any connection A (Here we work with U(n) connection) over the trivial bundle over \bar{B}^4 with $||F_A||_{L^2} \leq \epsilon_1$ is gauge equivalent to a connection \tilde{A} over B^4 (the behavior near boundary may be bad) with

$$1. d^*\tilde{A} = 0$$

2.
$$\|\tilde{A}\|_{H^1} \leq M \|F_{\tilde{A}}\|_{L^2} = M \|F_A\|_{L^2}$$

The main ingredients of the proof is the following proposition:

Proposition 1.2 (Method of continuity). There is a constant $\zeta > 0$ such that if B'_t , $(t \in [0,1])$ is a one-parameter family of connections on trivial bundle over S^4 with $||F_{B'_t}||_{L^2} < \zeta$ and B'_0 be the trivial connection d, then for each t there exists a gauge transformation u_t such that $u_t(B'_t) = B_t$ satisfies:

1.
$$d^*B_t = 0$$

2. $||B_t||_{H^1} < 2N||F_{B_t}||$. N can be chosen to equal to $2c_1$, the constant appear in the following Sobolev inequality which we shall prove later $||B||_{H^1} \le c_1 ||dB||_{L^2}$.

We break the proof of Uhlenbeck theorem into method of continuity and several regularity estimate. Let A as in the main theorem. Let $\delta_t : \mathbb{R}^4 \to \mathbb{R}^4, x \mapsto tx, t \in [0,1]$. Let $A_t = \delta_t^* A$ be a one parameter family of connections such that $A_0 = 0$. Let r be reflection of S^4 with respect to the plane $\{x_5 = 0\}$. We define $p: S^4 \to \bar{B}^4$ such that p is the stereographic projection of north(south) pole on south(north) hemisphere respectively. Roughly speaking if we let $\|F_{A_t}\|_{L^2}$ small enough, $B_t = p^*A_t$ and "apply" continuity method to B_t we can "prove" the theorem, but p is mere a Lipschitz map from S^4 to \bar{B}^4 . To fix this problem we construct a family of smooth maps p_ϵ which converges to p in $W^{1,\infty}$ with ∇p_ϵ bounded and p_ϵ equal to p outside ϵ neighborhood of equatorial three-sphere. To do this we identify $S^4 \cap \{x_5 \leq 0\}$ with \bar{B}^4 in \mathbb{R}^4 and define:

$$f_{\epsilon}: \bar{B}^4 \to B^4, f_{\epsilon}(0) = 0, f_{\epsilon}(x) = \frac{x\phi_{\epsilon}(|x|)}{|x|}, |x| > 0$$

where ϕ_{ϵ} is a smooth non-decreasing function on [0,1] such that

$$\phi_{\epsilon}: [0,1] \to [0,1], \phi_{\epsilon}(r) = r, r \le 1 - \frac{\epsilon}{2}; \phi_{\epsilon} \equiv 1 - \frac{\epsilon}{3}, r \ge 1 - \frac{\epsilon}{4}$$

We define p_{ϵ} on the open hemisphere by $p_{\epsilon} = p \circ f_{\epsilon}$ and extend to the whole sphere smoothly. Therefore we have:

$$\int_{S^4} |F(p_{\epsilon}^* A_t)|^2 dVol_g \le 2 \int_{B^4} |F(A)|^2 dVol_g + C(n)\epsilon ||F(A)||_{L^{\infty}}$$
(1.1)

To apply continuity method, we let $\epsilon_1 < 2^{-\frac{1}{2}}\zeta$ and $B_t^{\epsilon\prime} = p_{\epsilon}^*A_t$. We then get a gauge equivalent connection \tilde{B}^{ϵ} of $p_{\epsilon}^*(A)$. By restricting back to B^4 we obtain A^{ϵ} satisfying $d^*A^{\epsilon} = 0$, $||A^{\epsilon}||_{H^1(B^4)} < 2N||F(\tilde{A})||_{L^2}$. Moreover A^{ϵ} is gauge equivalent to A on $B^4(1-\epsilon)$. Therefore it is suffice to proof the continuity method and study the behavior of \tilde{B}^{ϵ} when $\epsilon \to 0$.

2 Rearrangement argument

Lemma 2.1. Let B be a connection on the trivial bundle over S^4 in Coulomb gauge relative to the trivial connection d ($d^*B = 0$). There are constant $N, \eta > 0$ such that if $||B||_{L^4} < \eta$ then $||B||_{H^1} \le N||F_B||_{L^2}$.

Proof. Since $d^* + d$ is an elliptic operator, we then have the following elliptic estimate:

$$||B||_{H^{l}} \le \tilde{c}_{1}(||dB||_{H^{l-1}} + ||d^{*}B||_{H^{l-1}} + ||B||_{L^{2}})$$
(2.1)

one the other hand since $H^1(S^4) = 0$, Hodge theory implies:

$$\Omega^1 = Im(\Delta)$$

Therefore given $d^*B = 0$ we will have $||B||_{L^2} \le C||dB||_{L^2}$ for some constant independent on B. Otherwise $\exists B_k$ such that $||B_k||_{L^2} = 1$, $||dB||_{L^2} \le \frac{1}{k}$. The elliptic estimate and the Rellich compact embedding theorem implies B_k are uniformly H^l bounded and hence admit an H^{l-1} convergent subsequence (W.L.O.G. let B_k be the subsequence itself). We denote the limit as B_{∞} . It is easy to see $||B_{\infty}||_{L^2} = 1$. For arbitrary smooth section η

$$(B_{\infty}, \eta) = (B_{\infty}, \Delta \xi) = \lim_{k \to \infty} (B_k, \Delta \xi) = \lim_{k \to \infty} (dB_k, d\xi) = 0$$

Which draws contradiction. We obtain in particular:

$$||B||_{H^1} \le c_1 ||dB||_{L^2} \tag{2.2}$$

Using Cauchy Schwartz and Sobolev embedding we will have:

$$||B \wedge B||_{L^2} \le c_2 ||B||_{L^4} ||B||_{H^1} \tag{2.3}$$

So

$$||B||_{H^1} \le c_1 ||F(B)||_{H^1} + c_1 c_2 ||B||_{L^4} ||B||_{H^1}$$
(2.4)

If
$$||B||_{L^4} \le \frac{1}{2c_1c_2}$$
, $||B||_{H^1} \le 2c_1||F(B)||_{L^2}$.

Now we are able to deduce a higher order estimate of $||B||_{H^{l+1}}, l \ge 1$ in terms of the L^{∞} and H^l norm of F(B). It should be remarked here that the gauge action on the curvature form does not change |F(B)|.

For a smooth connection connection B put:

$$Q_l(B) = ||F(B)||_{L^{\infty}} + \sum_{i=1}^{l} ||\nabla_B^{(i)} F(B)||_{L^2}$$

Lemma 2.2. There are constant $\eta' > 0$ such that if the connection matrix B of Lemma 2.1 has $||B||_{L^2} < \eta'$ then for each $l \ge 1$ a bound,

$$||B||_{H^{l+1}} \le f_l(Q_l(B)) \tag{2.5}$$

where $f_l(0) = 0$ are nondecreasing, smooth and are independent on B.

Proof. When $l \geq 3$ multiplication by B induce a bounded map from $H^s \to H^s, s \leq l$ with norm less than $C\|B\|_{H^l}$, where C is a constant depends only on l and the based compact manifold. The outline of the proof is that we first apply P.O.U. and use Sobolev inequality, Morrey inequality, Hölder inequality to get a local estimate. Then gathering the local estimate we obtain the global estimate of the norm.

$$||B \wedge B||_{H^l} \le const ||B||_{H^l}^2$$
 (2.6)

and

$$||F||_{H^{l}} \le P_{l}(||B||_{H^{l}}) \sum_{i=0}^{l} ||\nabla_{B}^{(i)} F(B)||_{L^{2}}$$
(2.7)

For some polynomial P_l with $P_l(0) = 0$. Therefore:

$$||B||_{H^{l+1}} \le const \left(||B \wedge B||_{H^l} + P_l(||B||_{H^l}) \sum_{i=0}^l ||\nabla_B^{(i)} F(B)||_{L^2} \right)$$
(2.8)

Which prove the case when $l \geq 3$

We now consider the case when l=1. Since $\nabla F=\nabla_B F-\left[B_k,F_{ij}\right]\otimes dx^k\otimes dx^i\otimes dx^j$

$$||B||_{H^2} \le \tilde{C}_2 \bigg(||F(B)||_{H^1} + ||B \wedge B||_{H^1} \bigg)$$

$$\le \tilde{C}_2 \bigg(||\nabla_B F(B)||_{L^2} + ||F(B)||_{L^2} + ||F||_{L^{\infty}} ||B||_{L^4} + ||B||_{H^2} ||B||_{L^4} \bigg)$$

Thus if $||B||_{L^4} \leq \frac{1}{2\tilde{C}_2}$ There is an independent constant C_2 such that:

$$||B||_{H^2} \le C_2 Q_1(B) \tag{2.9}$$

Similarly

$$||B||_{H^{3}} \leq \tilde{C}_{3} \left(||B||_{L^{4}} ||B||_{H^{3}} + ||B||_{W^{1,4}}^{2} + ||F(B)||_{H^{2}} \right)$$

$$\leq \tilde{C}_{3} \left(||B||_{L^{4}} ||B||_{H^{3}} + ||B||_{H^{2}}^{2} + ||\nabla_{B}^{2} F(B)||_{L^{2}} + ||B \otimes \nabla_{B} F||_{L^{2}} + ||(\nabla_{B} B) \otimes F||_{L^{2}} + ||B \otimes B \otimes F(B)||_{L^{2}} + ||\nabla_{B} F(B)||_{L^{2}} + ||F(B)||_{L^{2}} + ||F||_{L^{\infty}} ||B||_{L^{4}} \right)$$

Since the following inequality holds for some constant A_3 , we will have:

$$||F(B)||_{H^{2}} \leq A \left(||B \otimes F(B)||_{L^{2}} + ||B \otimes B \otimes F(B)||_{L^{2}} + ||(\nabla_{B}B)F(B)||_{L^{2}} + ||B||_{L^{4}} ||F(B)||_{H^{2}} \right) + ||\nabla_{B}^{2}F(B)||_{L^{2}} + ||F(B)||_{H^{1}}$$

Given $||B||_{L^4} \leq \min(\frac{1}{2A}, \frac{1}{2\tilde{C}_3})$, we will have

$$||B||_{H^3} \le C_3 \left(||B||_{H^2}^2 + \sum_{j=1}^2 ||\nabla_B^j F(B)||_{L^2} + ||F(B)||_{L^\infty} (||B||_{H^1} + 1) \right)$$
(2.10)

Therefore we complete the whole proof. Here $\eta' \leq \min(\eta, \frac{1}{2\tilde{C}_2}, \frac{1}{2\tilde{C}_3}, \frac{1}{2A})$

3 Proof of Method of Continuity

Let S be set of $t \in [0,1]$ such that u_t exists. S is nonempty.

3.1 S is closed

Proposition 3.1. If A_i , B_i are C^{∞} -bounded sequences of connections on a unitary bundle over a compact manifold X, and if A_i , B_i are gauge equivalent connection for each i, then there are subsequences converging to limiting connection A_{∞} , B_{∞} , and A_{∞} is Gauge equivalent to B_{∞} .

Proof. W.L.O.G. We can assume the vector bundle is trivial. By AA lemma we may assume $A_i \to A_{\infty}$, $B_i \to B_{\infty}$ and the compactness of the structure group implies $u_i \to u_{\infty}$ uniformly as continuous map.

$$du_i = u_i A_i - B_i u_i \tag{3.1}$$

Suppose u_i is C^r convergent then we can deduce that u_i is C^{r+1} convergent.

We can now get down to the proof of S is closed. We choose ζ so that $2CN\zeta$ is less than η', η , where C is a Sobolev constant. Then if t lies in S we have:

$$||B_t||_{L^4} \le C||B_t||_{H^1} \le 2NC||F(B_t)||_{L^2} \le 2NC\zeta \le \min(\eta, \eta')$$
(3.2)

We conclude from lemma 2.1 that $||B||_{H^1}$ is uniformly bounded We now prove that $Q_l(B)$ is invariant under Gauge transformation.

Lemma 3.2.

$$|\nabla_B^{(j)} F(B)| = |\nabla_{u(B)}^{(j)} F(u(B))| \tag{3.3}$$

Proof. When j = 0, $F(u(B)) = uF(B)u^{-1}$ which is obvious. We assume the conclusion is true for j < l we proof that the case j = l + 1 is also correct.

$$\begin{split} \nabla_{u(B)}(\nabla^{(l)}_{u(B)}F(u(B))) &= \nabla_{u(B)}u(\nabla^{(l)}_{B}F(B))u^{-1} \\ &= \nabla_{u(B)}(uF_{ij;k_{1}\cdots k_{l}}u^{-1}dx^{i}dx^{j}dx^{k_{1}}\cdots dx^{k_{l}}) \\ &= (\nabla_{u(B)}uF_{ij;k_{1}\cdots k_{l}}u^{-1})dx^{i}dx^{j}dx^{k_{1}}\cdots dx^{k_{l}} + uF_{ij;k_{1}\cdots k_{l}}u^{-1}\nabla^{TM}x^{i}dx^{j}dx^{k_{1}}\cdots dx^{k_{l}} \\ &= u(\nabla^{(l+1)}_{B}F(B))u^{-1} \end{split}$$

Suppose $\|\nabla_{B'_t}^{(j)}F(B'_t)\|_{L^2} \leq K_j$ is uniformly bounded we have $\|B_t\|_{H^l}$ for each $l \geq 0$ is uniformly bounded. By AA lemma and that lemma 2.1 is preserved under limit, we know S is closed.

Remark 3.3. We kwon from lemma 2.1 that $||B||_{H^1} \le 2N||F(B)||_{L^2}$ implies $||B||_{H^1} \le N||F(B)||_{L^2}$

3.2 S is open

Proof. Let $t_0 \in S$, W.L.O.G. we can assume $B_{t_0} = B'_{t_0}$ which we will just write B. Let $Ad(\mathfrak{g}) = P \times_G \mathfrak{g}$. We define: F_l be the space of H^l section of $\Omega^1(Ad(\mathfrak{g}))$ respectively, and E_l to the space of H^l section of $Ad(\mathfrak{g})$ with zero integral. The map H:

$$H: E_l \times F_{l-1} \to E_{l-2}: H(\chi, b) = d^*(e^{\chi}(B+b)e^{-\chi} - (de^{\chi})e^{-\chi})$$
 (3.4)

We have H(0,0) = 0. Let $(DH)_0$ be the linearization of H at (0,0)

$$(DH)_0(\chi, b) = -d^*d_B\chi + d^*b \tag{3.5}$$

To prove the openness, it is suffice to show that: $d^*d_B\chi$ is surjective. Since d^*d_B is elliptic and hence Fredholm, by Fredholm alternative, assuming d^*d_B were not surjective, there would be a nonzero smooth section η such that:

$$(d^*d_B\chi,\eta) = 0, \forall \chi \tag{3.6}$$

set $\chi = \eta$, because $\int \eta = 0$ we have for some Sobolev constant:

$$||d\eta||_{L^2}^2 \le |([B, \eta], d\eta)| \le const ||d\eta||_{L^2}^2 ||B||_{H^1}$$
(3.7)

which gives a universal lower bound of the H^1 norm of B. So we deduce that if ζ is small then the set S is open.

4 Proof of the Main Theorem

We claim that for any $D \in S^4 - S^3$ and $l \ge 1$ there is a constant depends only on D, l such that.

$$\|\tilde{B}^{\epsilon}\|_{H^{l}(D)} \le N_{l,D} \tag{4.1}$$

The case l = 1 follows by the second conclusion of the method of continuity. When l > 1 we can apply the elliptic estimate for compact manifold with boundary:

$$\|\tilde{B}^{\epsilon}\|_{H^{l+1}(D)} \le C(\|\tilde{B}^{\epsilon}\|_{H^{l}(D)} + \|d\tilde{B}^{\epsilon}\|_{H^{l}(D)})$$
 (4.2)

Using arguments appeared in lemma 2.2, we can complete the proof of the first and the third conclusion in the theorem 1.1.

5 Application

Intuitively we want to solve the ASD equation:

$$F(A)^{+} = d^{+}A + (A \wedge A)^{+} \tag{5.1}$$

The problem is that the operator d^+ is not elliptic, since $F^+(A) = 0$ is invariant under gauge transformation. Uhlenbeck theorem enable us to choose a suitable gauge under which the ASD solution satisfies a regularity estimate:

Theorem 5.1. There is a constant $\epsilon_2 > 0$ such that if \tilde{A} is any ASD connection on the trivial bundle over B^4 which satisfies the Coulomb gauge condition $d^*\tilde{A} = 0$ and $\|\tilde{A}\|_{L^4} \leq \epsilon_2$, then for any interior domain $D \in B^4$ and $l \geq 1$ we have

$$\|\tilde{A}\|_{H^{l}(D)} \le M_{l,D} \|F(A)\|_{L^{2}(B^{4})}$$
 (5.2)

for a constant $M_{l,D}$ depending only on l,D

Combined with Uhlenbeck theorem, one can prove the following result:

Corollary 5.2. There exists a constant ϵ for any sequence of ASD connection A_a over \bar{B}^4 with $||F(A_a)|| \leq \epsilon$ there exists a subsequence a' and gauge equivalent connections $\tilde{A}_{a'}$ which converge in C^{∞} in the open ball.

References

[1] The Geometry of Four-Manifold, S.K Donaldson, P.B. Kronheimer