Notes on Uhlenbeck Theorem

Dashen Yan

May 14, 2021

1 Main Theorem

We identify \bar{B}^{4} with a hemisphere on S^{4} via the standard stereographic map m. We fix the standard metic on $\left(B^{4}, g\right)$ as the pull back metric of m. This is conformal to the flat metric. Therefore on B^{4} we have point-wise equality:

$$
|F|_{g}^{2} d V o l_{g}=|F|_{g_{\mathbb{R}^{4}}} d V o l_{g_{\mathbb{R}^{4}}}
$$

The use of this metric enables us to do computation on S^{4} and bypasses the difficulties when dealing with the boundary condition.

Theorem 1.1 (Uhlenbeck). There are constant $\epsilon_{1}, M>0$ such that any connection A (Here we work with $U(n)$ connection) over the trivial bundle over \bar{B}^{4} with $\left\|F_{A}\right\|_{L^{2}} \leq \epsilon_{1}$ is gauge equivalent to a connection \tilde{A} over B^{4} (the behavior near boundary may be bad) with

1. $d^{*} \tilde{A}=0$
2. $\|\tilde{A}\|_{H^{1}} \leq M\left\|F_{\tilde{A}}\right\|_{L^{2}}=M\left\|F_{A}\right\|_{L^{2}}$

The main ingredients of the proof is the following proposition:
Proposition 1.2 (Method of continuity). There is a constant $\zeta>0$ such that if $B_{t}^{\prime},(t \in$ $[0,1])$ is a one-parameter family of connections on trivial bundle over S^{4} with $\left\|F_{B_{t}^{\prime}}\right\|_{L^{2}}<\zeta$ and B_{0}^{\prime} be the trivial connection d, then for each t there exists a gauge transformation u_{t} such that $u_{t}\left(B_{t}^{\prime}\right)=B_{t}$ satisfies:

1. $d^{*} B_{t}=0$
2. $\left\|B_{t}\right\|_{H^{1}}<2 N\left\|F_{B_{t}}\right\|$. N can be chosen to equal to $2 c_{1}$, the constant appear in the following Sobolev inequality which we shall prove later $\|B\|_{H^{1}} \leq c_{1}\|d B\|_{L^{2}}$.

We break the proof of Uhlenbeck theorem into method of continuity and several regularity estimate. Let A as in the main theorem. Let $\delta_{t}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, x \mapsto t x, t \in[0,1]$. Let $A_{t}=\delta_{t}^{*} A$ be a one parameter family of connections such that $A_{0}=0$. Let r be reflection of S^{4} with respect to the plane $\left\{x_{5}=0\right\}$. We define $p: S^{4} \rightarrow \bar{B}^{4}$ such that p is the stereographic projection of north(south) pole on south(north) hemisphere respectively. Roughly speaking if we let $\left\|F_{A_{t}}\right\|_{L^{2}}$ small enough, $B_{t}=p^{*} A_{t}$ and "apply" continuity method to B_{t} we can "prove" the theorem, but p is mere a Lipschitz map from S^{4} to \bar{B}^{4}. To fix this problem we construct a family of smooth maps p_{ϵ} which converges to p in $W^{1, \infty}$ with ∇p_{ϵ} bounded and p_{ϵ} equal to p outside ϵ neighborhood of equatorial three-sphere. To do this we identify $S^{4} \cap\left\{x_{5} \leq 0\right\}$ with \bar{B}^{4} in \mathbb{R}^{4} and define:

$$
f_{\epsilon}: \bar{B}^{4} \rightarrow B^{4}, f_{\epsilon}(0)=0, f_{\epsilon}(x)=\frac{x \phi_{\epsilon}(|x|)}{|x|},|x|>0
$$

where ϕ_{ϵ} is a smooth non-decreasing function on $[0,1]$ such that

$$
\phi_{\epsilon}:[0,1] \rightarrow[0,1], \phi_{\epsilon}(r)=r, r \leq 1-\frac{\epsilon}{2} ; \phi_{\epsilon} \equiv 1-\frac{\epsilon}{3}, r \geq 1-\frac{\epsilon}{4}
$$

We define p_{ϵ} on the open hemisphere by $p_{\epsilon}=p \circ f_{\epsilon}$ and extend to the whole sphere smoothly. Therefore we have:

$$
\begin{equation*}
\int_{S^{4}}\left|F\left(p_{\epsilon}^{*} A_{t}\right)\right|^{2} d V o l_{g} \leq 2 \int_{B^{4}}|F(A)|^{2} d V o l_{g}+C(n) \epsilon\|F(A)\|_{L^{\infty}} \tag{1.1}
\end{equation*}
$$

To apply continuity method, we let $\epsilon_{1}<2^{-\frac{1}{2}} \zeta$ and $B_{t}^{\epsilon \prime}=p_{\epsilon}^{*} A_{t}$. We then get a gauge equivalent connection \tilde{B}^{ϵ} of $p_{\epsilon}^{*}(A)$. By restricting back to B^{4} we obtain A^{ϵ} satisfying $d^{*} A^{\epsilon}=0,\left\|A^{\epsilon}\right\|_{H^{1}\left(B^{4}\right)}<2 N\|F(\tilde{A})\|_{L^{2}}$. Moreover A^{ϵ} is gauge equivalent to A on $B^{4}(1-\epsilon)$. Therefore it is suffice to proof the continuity method and study the behavior of \tilde{B}^{ϵ} when $\epsilon \rightarrow 0$.

2 Rearrangement argument

Lemma 2.1. Let B be a connection on the trivial bundle over S^{4} in Coulomb gauge relative to the trivial connection $d\left(d^{*} B=0\right)$. There are constant $N, \eta>0$ such that if $\|B\|_{L^{4}}<\eta$ then $\|B\|_{H^{1}} \leq N\left\|F_{B}\right\|_{L^{2}}$.

Proof. Since $d^{*}+d$ is an elliptic operator, we then have the following elliptic estimate:

$$
\begin{equation*}
\|B\|_{H^{l}} \leq \tilde{c}_{1}\left(\|d B\|_{H^{l-1}}+\left\|d^{*} B\right\|_{H^{l-1}}+\|B\|_{L^{2}}\right) \tag{2.1}
\end{equation*}
$$

one the other hand since $H^{1}\left(S^{4}\right)=0$, Hodge theory implies:

$$
\Omega^{1}=\operatorname{Im}(\Delta)
$$

Therefore given $d^{*} B=0$ we will have $\|B\|_{L^{2}} \leq C\|d B\|_{L^{2}}$ for some constant independent on B. Otherwise $\exists B_{k}$ such that $\left\|B_{k}\right\|_{L^{2}}=1,\|d B\|_{L^{2}} \leq \frac{1}{k}$. The elliptic estimate and the Rellich compact embedding theorem implies B_{k} are uniformly H^{l} bounded and hence admit an H^{l-1} convergent subsequence (W.L.O.G. let B_{k} be the subsequence itself). We denote the limit as B_{∞}. It is easy to see $\left\|B_{\infty}\right\|_{L^{2}}=1$. For arbitrary smooth section η

$$
\left(B_{\infty}, \eta\right)=\left(B_{\infty}, \Delta \xi\right)=\lim _{k \rightarrow \infty}\left(B_{k}, \Delta \xi\right)=\lim _{k \rightarrow \infty}\left(d B_{k}, d \xi\right)=0
$$

Which draws contradiction. We obtain in particular:

$$
\begin{equation*}
\|B\|_{H^{1}} \leq c_{1}\|d B\|_{L^{2}} \tag{2.2}
\end{equation*}
$$

Using Cauchy Schwartz and Sobolev embedding we will have:

$$
\begin{equation*}
\|B \wedge B\|_{L^{2}} \leq c_{2}\|B\|_{L^{4}}\|B\|_{H^{1}} \tag{2.3}
\end{equation*}
$$

So

$$
\begin{equation*}
\|B\|_{H^{1}} \leq c_{1}\|F(B)\|_{H^{1}}+c_{1} c_{2}\|B\|_{L^{4}}\|B\|_{H^{1}} \tag{2.4}
\end{equation*}
$$

If $\|B\|_{L^{4}} \leq \frac{1}{2 c_{1} c_{2}},\|B\|_{H^{1}} \leq 2 c_{1}\|F(B)\|_{L^{2}}$.
Now we are able to deduce a higher order estimate of $\|B\|_{H^{l+1}}, l \geq 1$ in terms of the L^{∞} and H^{l} norm of $F(B)$. It should be remarked here that the gauge action on the curvature form does not change $|F(B)|$.

For a smooth connection connection B put:

$$
Q_{l}(B)=\|F(B)\|_{L^{\infty}}+\sum_{i=1}^{l}\left\|\nabla_{B}^{(i)} F(B)\right\|_{L^{2}}
$$

Lemma 2.2. There are constant $\eta^{\prime}>0$ such that if the connection matrix B of Lemma 2.1 has $\|B\|_{L^{2}}<\eta^{\prime}$ then for each $l \geq 1$ a bound,

$$
\begin{equation*}
\|B\|_{H^{l+1}} \leq f_{l}\left(Q_{l}(B)\right) \tag{2.5}
\end{equation*}
$$

where $f_{l}(0)=0$ are nondecreasing, smooth and are independent on B.
Proof. When $l \geq 3$ multiplication by B induce a bounded map from $H^{s} \rightarrow H^{s}, s \leq l$ with norm less than $C\|B\|_{H^{l}}$, where C is a constant depends only on l and the based compact manifold. The outline of the proof is that we first apply P.O.U. and use Sobolev inequality, Morrey inequality, Hölder inequality to get a local estimate. Then gathering the local estimate we obtain the global estimate of the norm.

$$
\begin{equation*}
\|B \wedge B\|_{H^{l}} \leq \text { const }\|B\|_{H^{l}}^{2} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|F\|_{H^{l}} \leq P_{l}\left(\|B\|_{H^{l}}\right) \sum_{i=0}^{l}\left\|\nabla_{B}^{(i)} F(B)\right\|_{L^{2}} \tag{2.7}
\end{equation*}
$$

For some polynomial P_{l} with $P_{l}(0)=0$. Therefore:

$$
\begin{equation*}
\|B\|_{H^{l+1}} \leq \operatorname{const}\left(\|B \wedge B\|_{H^{l}}+P_{l}\left(\|B\|_{H^{l}}\right) \sum_{i=0}^{l}\left\|\nabla_{B}^{(i)} F(B)\right\|_{L^{2}}\right) \tag{2.8}
\end{equation*}
$$

Which prove the case when $l \geq 3$
We now consider the case when $l=1$. Since $\nabla F=\nabla_{B} F-\left[B_{k}, F_{i j}\right] \otimes d x^{k} \otimes d x^{i} \otimes d x^{j}$

$$
\begin{array}{r}
\|B\|_{H^{2}} \leq \tilde{C}_{2}\left(\|F(B)\|_{H^{1}}+\|B \wedge B\|_{H^{1}}\right) \\
\leq \tilde{C}_{2}\left(\left\|\nabla_{B} F(B)\right\|_{L^{2}}+\|F(B)\|_{L^{2}}+\|F\|_{L^{\infty}}\|B\|_{L^{4}}+\|B\|_{H^{2}}\|B\|_{L^{4}}\right)
\end{array}
$$

Thus if $\|B\|_{L^{4}} \leq \frac{1}{2 \widetilde{C}_{2}}$ There is an independent constant C_{2} such that:

$$
\begin{equation*}
\|B\|_{H^{2}} \leq C_{2} Q_{1}(B) \tag{2.9}
\end{equation*}
$$

Similarly

$$
\begin{array}{r}
\|B\|_{H^{3}} \leq \tilde{C}_{3}\left(\|B\|_{L^{4}}\|B\|_{H^{3}}+\|B\|_{W^{1,4}}^{2}+\|F(B)\|_{H^{2}}\right) \\
\leq \tilde{C}_{3}\left(\|B\|_{L^{4}}\|B\|_{H^{3}}+\|B\|_{H^{2}}^{2}+\left\|\nabla_{B}^{2} F(B)\right\|_{L^{2}}+\left\|B \otimes \nabla_{B} F\right\|_{L^{2}}+\left\|\left(\nabla_{B} B\right) \otimes F\right\|_{L^{2}}\right. \\
\left.+\|B \otimes B \otimes F(B)\|_{L^{2}}+\left\|\nabla_{B} F(B)\right\|_{L^{2}}+\|F(B)\|_{L^{2}}+\|F\|_{L^{\infty}}\|B\|_{L^{4}}\right)
\end{array}
$$

Since the following inequality holds for some constant A_{3}, we will have:

$$
\begin{array}{r}
\|F(B)\|_{H^{2}} \leq A\left(\|B \otimes F(B)\|_{L^{2}}+\|B \otimes B \otimes F(B)\|_{L^{2}}+\left\|\left(\nabla_{B} B\right) F(B)\right\|_{L^{2}}+\|B\|_{L^{4}}\|F(B)\|_{H^{2}}\right) \\
+\left\|\nabla_{B}^{2} F(B)\right\|_{L^{2}}+\|F(B)\|_{H^{1}}
\end{array}
$$

Given $\|B\|_{L^{4}} \leq \min \left(\frac{1}{2 A}, \frac{1}{2 \tilde{C}_{3}}\right)$, we will have

$$
\begin{equation*}
\|B\|_{H^{3}} \leq C_{3}\left(\|B\|_{H^{2}}^{2}+\sum_{j=1}^{2}\left\|\nabla_{B}^{j} F(B)\right\|_{L^{2}}+\|F(B)\|_{L^{\infty}}\left(\|B\|_{H^{1}}+1\right)\right) \tag{2.10}
\end{equation*}
$$

Therefore we complete the whole proof. Here $\eta^{\prime} \leq \min \left(\eta, \frac{1}{2 \tilde{C}_{2}}, \frac{1}{2 \tilde{\tilde{C}_{3}}}, \frac{1}{2 A}\right)$

3 Proof of Method of Continuity

Let S be set of $t \in[0,1]$ such that u_{t} exists. S is nonempty.

3.1 S is closed

Proposition 3.1. If A_{i}, B_{i} are C^{∞}-bounded sequences of connections on a unitary bundle over a compact manifold X, and if A_{i}, B_{i} are gauge equivalent connection for each i, then there are subsequences converging to limiting connection A_{∞}, B_{∞}, and A_{∞} is Gauge equivalent to B_{∞}.

Proof. W.L.O.G. We can assume the vector bundle is trivial. By AA lemma we may assume $A_{i} \rightarrow A_{\infty}, B_{i} \rightarrow B_{\infty}$ and the compactness of the structure group implies $u_{i} \rightarrow u_{\infty}$ uniformly as continuous map.

$$
\begin{equation*}
d u_{i}=u_{i} A_{i}-B_{i} u_{i} \tag{3.1}
\end{equation*}
$$

Suppose u_{i} is C^{r} convergent then we can deduce that u_{i} is C^{r+1} convergent.
We can now get down to the proof of S is closed. We choose ζ so that $2 C N \zeta$ is less than η^{\prime}, η, where C is a Sobolev constant. Then if t lies in S we have:

$$
\begin{equation*}
\left\|B_{t}\right\|_{L^{4}} \leq C\left\|B_{t}\right\|_{H^{1}} \leq 2 N C\left\|F\left(B_{t}\right)\right\|_{L^{2}} \leq 2 N C \zeta \leq \min \left(\eta, \eta^{\prime}\right) \tag{3.2}
\end{equation*}
$$

We conclude from lemma 2.1 that $\|B\|_{H^{1}}$ is uniformly bounded We now prove that $Q_{l}(B)$ is invariant under Gauge transformation.

Lemma 3.2.

$$
\begin{equation*}
\left|\nabla_{B}^{(j)} F(B)\right|=\left|\nabla_{u(B)}^{(j)} F(u(B))\right| \tag{3.3}
\end{equation*}
$$

Proof. When $j=0, F(u(B))=u F(B) u^{-1}$ which is obvious. We assume the conclusion is true for $j \leq l$ we proof that the case $j=l+1$ is also correct.

$$
\begin{array}{r}
\nabla_{u(B)}\left(\nabla_{u(B)}^{(l)} F(u(B))\right)=\nabla_{u(B)} u\left(\nabla_{B}^{(l)} F(B)\right) u^{-1} \\
=\nabla_{u(B)}\left(u F_{i j ; k_{1} \cdots k_{l}} u^{-1} d x^{i} d x^{j} d x^{k_{1}} \cdots d x^{k_{l}}\right) \\
=\left(\nabla_{u(B)} u F_{i j ; k_{1} \cdots k_{l}} u^{-1}\right) d x^{i} d x^{j} d x^{k_{1}} \cdots d x^{k_{l}}+u F_{i j ; k_{1} \cdots k_{l}} u^{-1} \nabla^{T M} x^{i} d x^{j} d x^{k_{1}} \cdots d x^{k_{l}} \\
=u\left(\nabla_{B}^{(l+1)} F(B)\right) u^{-1}
\end{array}
$$

Suppose $\left\|\nabla_{B_{t}^{\prime}}^{(j)} F\left(B_{t}^{\prime}\right)\right\|_{L^{2}} \leq K_{j}$ is uniformly bounded we have $\left\|B_{t}\right\|_{H^{l}}$ for each $l \geq 0$ is uniformly bounded. By AA lemma and that lemma 2.1 is preserved under limit, we know S is closed.

Remark 3.3. We kwon from lemma 2.1 that $\|B\|_{H^{1}} \leq 2 N\|F(B)\|_{L^{2}}$ implies $\|B\|_{H^{1}} \leq$ $N\|F(B)\|_{L^{2}}$

3.2 S is open

Proof. Let $t_{0} \in S$, W.L.O.G. we can assume $B_{t_{0}}=B_{t_{0}}^{\prime}$ which we will just write B. Let $\operatorname{Ad}(\mathfrak{g})=P \times_{G} \mathfrak{g}$. We define: F_{l} be the space of H^{l} section of $\Omega^{1}(\operatorname{Ad}(\mathfrak{g}))$ respectively, and E_{l} to the space of H^{l} section of $\operatorname{Ad}(\mathfrak{g})$ with zero integral. The map H :

$$
\begin{equation*}
H: E_{l} \times F_{l-1} \rightarrow E_{l-2}: H(\chi, b)=d^{*}\left(e^{\chi}(B+b) e^{-\chi}-\left(d e^{\chi}\right) e^{-\chi}\right) \tag{3.4}
\end{equation*}
$$

We have $H(0,0)=0$. Let $(D H)_{0}$ be the linearization of H at $(0,0)$

$$
\begin{equation*}
(D H)_{0}(\chi, b)=-d^{*} d_{B} \chi+d^{*} b \tag{3.5}
\end{equation*}
$$

To prove the openness, it is suffice to show that: $d^{*} d_{B} \chi$ is surjective. Since $d^{*} d_{B}$ is elliptic and hence Fredholm, by Fredholm alternative, assuming $d^{*} d_{B}$ were not surjective, there would be a nonzero smooth section η such that:

$$
\begin{equation*}
\left(d^{*} d_{B} \chi, \eta\right)=0, \forall \chi \tag{3.6}
\end{equation*}
$$

set $\chi=\eta$, because $\int \eta=0$ we have for some Sobolev constant:

$$
\begin{equation*}
\|d \eta\|_{L^{2}}^{2} \leq|([B, \eta], d \eta)| \leq \text { const }\|d \eta\|_{L^{2}}^{2}\|B\|_{H^{1}} \tag{3.7}
\end{equation*}
$$

which gives a universal lower bound of the H^{1} norm of B. So we deduce that if ζ is small then the set S is open.

4 Proof of the Main Theorem

We claim that for any $D \Subset S^{4}-S^{3}$ and $l \geq 1$ there is a constant depends only on D, l such that.

$$
\begin{equation*}
\left\|\tilde{B}^{\epsilon}\right\|_{H^{l}(D)} \leq N_{l, D} \tag{4.1}
\end{equation*}
$$

The case $l=1$ follows by the second conclusion of the method of continuity. When $l>1$ we can apply the elliptic estimate for compact manifold with boundary:

$$
\begin{equation*}
\left\|\tilde{B}^{\epsilon}\right\|_{H^{l+1}(D)} \leq C\left(\left\|\tilde{B}^{\epsilon}\right\|_{H^{l}(D)}+\left\|d \tilde{B}^{\epsilon}\right\|_{H^{l}(D)}\right) \tag{4.2}
\end{equation*}
$$

Using arguments appeared in lemma 2.2, we can complete the proof of the first and the third conclusion in the theorem 1.1.

5 Application

Intuitively we want to solve the ASD equation:

$$
\begin{equation*}
F(A)^{+}=d^{+} A+(A \wedge A)^{+} \tag{5.1}
\end{equation*}
$$

The problem is that the operator d^{+}is not elliptic, since $F^{+}(A)=0$ is invariant under gauge transformation. Uhlenbeck theorem enable us to choose a suitable gauge under which the ASD solution satisfies a regularity estimate:

Theorem 5.1. There is a constant $\epsilon_{2}>0$ such that if \tilde{A} is any $A S D$ connection on the trivial bundle over B^{4} which satisfies the Coulomb gauge condition $d^{*} \tilde{A}=0$ and $\|\tilde{A}\|_{L^{4}} \leq \epsilon_{2}$, then for any interior domain $D \Subset B^{4}$ and $l \geq 1$ we have

$$
\begin{equation*}
\|\tilde{A}\|_{H^{l}(D)} \leq M_{l, D}\|F(A)\|_{L^{2}\left(B^{4}\right)} \tag{5.2}
\end{equation*}
$$

for a constant $M_{l, D}$ depending only on l,D
Combined with Uhlenbeck theorem, one can prove the following result:
Corollary 5.2. There exists a constant ϵ for any sequence of $A S D$ connection A_{a} over \bar{B}^{4} with $\left\|F\left(A_{a}\right)\right\| \leq \epsilon$ there exists a subsequence a^{\prime} and gauge equivalent connections $\tilde{A}_{a^{\prime}}$ which converge in C^{∞} in the open ball.

References

[1] The Geometry of Four-Manifold, S.K Donaldson, P.B. Kronheimer

