Problem 1. Find the range and zeros of:

(a) \(x^2 + 2x - 3 \)

Solution: Completing the square gives: \(x^2 + 2x - 3 = (x + 1)^2 - 4 \). The range is \([-4, \infty)\) and the roots are \((x + 1)^2 = 4 \Rightarrow x = 1, -3\).

(b) \(x^4 - 4x^2 + 1 \)

Solution: Let \(u = x^2 \) to get \(u^2 - 4u + 1 \). Completing the square gives: \(u^2 - 4u + 1 = (u - 2)^2 - 3 = (x^2 - 2)^2 - 3 \). The range is \([-3, \infty)\) and the roots are \((x^2 - 2)^2 = 3 \Rightarrow x^2 = 2 + \sqrt{3}, 2 - \sqrt{3} \Rightarrow x = \sqrt{2 + \sqrt{3}}, \sqrt{2 - \sqrt{3}}\).

(c) \(2 \cos^2(x) + \sin(x) - 2 \)

Solution: Using \(\cos^2(x) = 1 - \sin^2(x) \), we get: \(2 - 2\sin^2(x) + \sin(x) - 2 = -2\sin^2(x) + \sin(x) = -2u^2 + u = u(-2u + 1) \). So, the zeros are \(u = 0, u = 1/2 \). Therefore, \(\sin(x) = 0, 1/2 \Rightarrow x = 0, \pi/6 (+2\pi z \text{ for any integer } z) \)

Completing the square gives: \(-2(u^2 - \frac{1}{2}u) = -2((u - \frac{1}{4})^2 - \frac{1}{16}) = -2(u - \frac{1}{4})^2 + \frac{1}{8} \). Note that \(u = \sin(x) \) can only take values in \([-1, 1]\). So the minimal value is \(-2(-1-1/4)^2+1/8 = -25/8 + 1/8 = -3 \). Therefore, the range is \([-3, 1/8]\).

(d) \(x^2 + 2|x| + 2 \)

Solution: Note that \(u = |x| \) gives \(u^2 + 2u + 2 = (u + 1)^2 + 1 \). This has no zeros. Furthermore, note that \(u = |x| \geq 0 \), so \((u + 1)^2 \geq 1\). Therefore, the range is \([2, \infty)\).
Problem 2. Compute the following trigonometric values:

(a) $\sin(\pi/3 + \pi/4)$

Solution: By the addition formula, $\sin(\pi/3 + \pi/4) = \sin(\pi/3 \cos(\pi/4) + \sin(\pi/4) \cos(\pi/3)$

\[= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \frac{1}{2} = \frac{\sqrt{2} + \sqrt{6}}{4} \]

(b) $\cos(\pi/4 - \pi/6)$

Solution: By the addition formula, $\cos(\pi/4 + (-\pi/6)) = \cos(\pi/4) \cos(-\pi/6) - \sin(\pi/4) \sin(-\pi/6)$

\[= \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \left(-\frac{1}{2}\right) = \frac{\sqrt{2} + \sqrt{6}}{4} \]

(c) $\sin(\sin^{-1}(x) + \cos^{-1}(x))$

Solution: By the addition formula, $\sin(\sin^{-1}(x) + \cos^{-1}(x)) = \sin(\sin^{-1}(x)) \cos(\cos^{-1}(x)) + \sin(\cos^{-1}(x)) \cos(\sin^{-1}(x))$

Note that $\sin(\cos^{-1}(x)) = \sin \theta$, where $\theta = \cos^{-1}(x)$ is the angle of a triangle whose cosine is x. Therefore, the ratio of the adjacent to hypotenuse is x, so if the hypotenuse has length 1, then the adjacent edge has length x. By Pythagorean, the opposite edge has length $\sqrt{1-x^2}$. Therefore, $\sin(\cos^{-1}(x)) = \sqrt{1-x^2}$.

Similarly, $\cos(\sin^{-1}(x)) = \sin \theta$, where $\theta = \sin^{-1}(x)$ is the angle of a triangle whose sine is x. The ratio of the opposite to hypotenuse is x, so going through the steps, we get $\cos(\sin^{-1}(x)) = \sqrt{1-x^2}$.

\[\sin(\sin^{-1}(x) + \cos^{-1}(x)) = \sin(\sin^{-1}(x)) \cos(\cos^{-1}(x)) + \sin(\cos^{-1}(x)) \cos(\sin^{-1}(x))\]

\[= (x)(x) + (\sqrt{1-x^2})(\sqrt{1-x^2}) = x^2 + 1 - x^2 = 1\]

(d) $\cos(\sin^{-1}(x) + \cos^{-1}(x))$

Solution: Let $\theta = \sin^{-1}(x) + \cos^{-1}(x)$ and we know from (c) that $\sin \theta = 1$. Therefore, $\cos^2 \theta = 1 - \sin^2 \theta = 0 \Rightarrow \cos \theta = 0$.