"When everybody keeps score, you’re afraid you’re gonna lose. Just ignore ’cuz they don’t know the real you.”

Problem 1. Circle True or False. (1pt each)

a. (True or False) For any \(x \in (-\infty, \infty) \), \(\sin^{-1}(\sin(x)) = x \).

Solution: False. Note that \(\sin^{-1}(\sin(2\pi)) = \sin^{-1}(0) = 0 \)

b. (True or False) For any \(x \in (-\infty, \infty) \), \(\tan(\tan^{-1}(x)) = x \).

Solution: True.

Problem 2. Find the range and zeros of \(e^{2x} - 4e^x + 3 \) (4pts)

Solution: Let \(u = e^x \), then our expression becomes \(u^2 - 4u + 3 = (u - 2)^2 - 1 \). Therefore, the zeros are \(u = 1, 3 \Rightarrow x = 0, \ln(3) \). Since \(u = 2 \) gives the minimum of this quadratic, the range is \([-1, \infty)\).
Problem 3. Find $\sin(2 \tan^{-1}(x))$ (4pts)

Solution: Let $\theta = \tan^{-1}(x)$. Then, the triangle with angle θ has opposite to adjacent ratio of x, so let the opposite side have length x and adjacent side have length 1. Then, note that $\sin \theta = \frac{x}{\sqrt{x^2+1}}$, $\cos \theta = \frac{1}{\sqrt{x^2+1}}$.

Therefore, $\sin(2\theta) = 2 \sin \theta \cos \theta = \frac{2x}{x^2+1}$.