1. Convert the following polar equations to their corresponding Cartesian equations (no \(\theta \)'s should survive):

 (a) \(\theta = \frac{5\pi}{6} \).

 (b) \(r = \sin(\theta) + \cos(\theta) \).

 (c) \(r = \frac{8}{\cos(\theta) + 2\sin(\theta)} \).

2. Sketch the following polar curves. Find the area and arc length (just the integral) of one “petal” of each of these.

 (a) \(r = \cos(3\theta) \).

 (b) \(r = \sin(2\theta) \).

 (c) \(r^2 = \cos(2\theta) \).

 (d) \(r = 1 + \sin(3\theta) \).

3. In this problem, we learn how to use polar equations to tilt curves.

 (a) Let \(k > 0 \) and consider the line \(x = k \). Find its polar equation.

 (b) Suppose you want to tilt the straight line counter-clockwise by \(\frac{\pi}{4} \). How should the equation in (a) be changed to do this? What about a general angle \(\phi \)?

 (c) Find the Cartesian equation of the \(\phi \)-tilted equation found in (b).