A translation method for finding combinatorial bijections

Philip Matchett Wood
Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110

Frelinghuysen Rd, Piscataway, NJ 08854-8019, USA

matchett@math.rutgers.edu

Doron Zeilberger
Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110
Frelinghuysen Rd, Piscataway, NJ 08854-8019, USA

zeilberg@math.rutgers.edu

February 2, 2007

Abstract

Consider a combinatorial identity that can be proved by induction. In this paper, we describe
a general method for translating the inductive proof into a recursive bijection. Furthermore,
we will demonstrate that the resulting recursive bijection can often be defined in a direct, non-
recursive way. Thus, the translation method often results in a bijective proof of the identity
that helps illuminate the underlying combinatorial structures.

This paper has two main parts: first, we describe the translation method and accompanying
Maple code; and second, we give a few examples of how the method has been used to discover
new bijections.

1 Introduction

In 1981 Garsia and Milne [2, 3] broke new ground by translating an analytic proof of an identity
into a bijective proof (see [8] for a brief exposition). Inspired by their work, we will describe a
method in this paper for translating an inductive proof into a bijective proof.

In this paper we will consider families of integer identities parameterized by an integer n. For
example, one can think of the following identity for concreteness (see Identity 7 from [1]):

3fn = fn+2 + fn—2 for n > 1, (1)

where f; is the k-th Fibonacci number, ie. fr = fyr_1 + fr_o for £k > 2 and fo = f1 = 1, so
(fo, f1, fo, f3, fa, f5,--.) = (1,1,2,3,5,8,...) (our definition of f; follows the combinatorial conven-
tion and should not to be confused with the number-theorical and more common definition Fj,
which takes F; = 1 and F» = 1, and so fx = Fi41). Given an integer identity, there is sometimes a
combinatorial interpretation for each side of the equation; that is, each side of the equation is the
cardinality of a set of combinatorial objects. For example, a combinatorial interpretation for fj is
the cardinality of the set Fi, which consists of all finite sequences of 1’s and 2’s that sum to k.
Thus, one can interpret the left hand side of Equation (1) as the cardinality of the set {1,2,3} x F,

and one can interpret the right hand side as the cardinality of the set Fp o W F,,_o, where W is
disjoint union.

Given a combinatorial interpretation for an identity, it is often desirable to find a bijection
between the sets of objects counted by each side of the equation. For example, in Equation (1) we
would like to find a bijection

{1’273} X]:n) = n+2w«7:n—27

and we say that such a bijection provides a combinatorial proof (or bijective proof) of the identity.
Of course, we are considering a family of identities parameterized by n, and so a bijective proof
actually consists of a family of bijections also parameterized by n. Throughout this paper, we will
use “identity” to refer to a family of identities and “bijection” to refer to a corresponding family
of bijections.

In Section 2, we describe a method that, given a combinatorial identity with an inductive proof,
produces a recursive bijection for the identity. By recursive bijection, we mean that the definition
of the k-th bijection in the family depends on the definitions of the i-th bijections for some values
of i < k. On the other hand, in a direct bijection, the k-th bijection in the family does not depend
on the bijection for smaller cases, but instead is defined purely by the underlying structures of
the relevant sets. When seeking a bijective proof of an identity, we always want to find a direct
bijection, not a recursive one.

One should note that we did not attempt to define “direct bijection” and “recursive bijection” in
a completely formal, logically rigorous way. Rather, the purpose of these terms used to informally
distinguish between two sorts of bijections: recursively defined bijections, which can be cumbersome
and hard to understand; and directly defined bijections, which are natural, elegant, and clever. Of
course, our goal is to discover bijections of the latter sort. The purpose of this paper is to show that
our translation method often leads to natural direct bijections, with a recursively defined bijection
being created as an intermediate step.

In Section 3, we will demonstrate through a number of examples that often the recursive bijec-
tion translated from an inductive proof can be defined as a natural direct bijection; thus providing
a bijective proof for the combinatorial identity. Finding the non-recursive definition (if one exists)
of a recursive bijection usually requires studying the behavior of the bijection on small cases. It
is interesting that recursive bijections constructed via the translation method are often easy to
define as direct bijections, and heuristically this seems to indicate that an inductive proof of a
combinatorial identity may depend on the underlying combinatorial structure in a subtle way.

Our translation method for constructing a recursive bijection from an inductive proof is al-
gorithmic. In particular, each step in the inductive proof—addition, multiplication, subtraction,
and applying the inductive hypothesis—is translated into a corresponding bijection; and then these
bijections are composed to complete the combinatorial proof. Addition corresponds to disjoint
union, multiplication to Cartesian set product, and induction to recursion. Subtraction is per-
haps the trickiest operation to deal with; however, the alternating paths algorithm gives a natural
corresponding bijection. Using the alternating paths algorithm in this way can be traced to an
“involution principle” underlying the work of Garsia and Milne (see [2] and [3]).

Our paper is accompanied by four Maple packages BijTools, Examples, Fibonacci, and
TransMethodZeck (see [6]). BijTools provides general Maple functions for constructing bijections
via the translation method, and Fibonacci provides some basic functions for the Fibonacci numbers
including the standard combinatorial interpretation. Examples implements the recursive bijections
constructed in Sections 2 and 3 along with the corresponding natural direct bijections. Finally,

TransMethodZeck implements the recursive bijections described in Subsection 3.7, for which the cor-
responding natural direct bijections are described in [5] and implemented in ZeckFibBijections.
The Maple code may be found online at
http://www.math.rutgers.edu/~matchett/Publications/Maple.html

In Subsection 2.1, we will demonstrate the translation method on Equation (1), eventually ar-
riving at a natural bijective proof. In Subsection 2.2, we will describe the translation method in
general, and in Subsection 2.3, we will give a primer on the Maple code written for this paper.
In Section 3, we discuss three applications of the translation method to previously open prob-
lems: Cassini’s Fibonacci Identity (see Subsection 3.1) which was first proven bijectively in [7];
a Fibonacci identity for which finding a bijection was stated as an open problem in [1] (see Sub-
section 3.2) and which was first proven bijectively in [4]; and certain Zeckendorf Family Identities
(see Sections 3.3, 3.4, 3.5, 3.6, and 3.7), also from [1], for which the first bijective proofs were
found in [5] (note Equation (1) is a simple example of a Zeckendorf Family Identity). Constructing
recursive bijections that lead to the most natural direct bijections for a Zeckendorf Family Identity
requires a combinatorial interpretation of the Fibonacci numbers with negative indices (see Sub-
sections 3.3, 3.4, and 3.5). The basic idea is that if we start with smaller base cases (which have
negative indices), then there will be fewer arbitrary choices, resulting in a more natural bijection.
In Subsection 3.6 we revisit the motivating example and Subsection 2.1 (which is a simple example
of a Zeckendorf Family Identity) and construct a unique recursive bijection using negative indices,
and in Subsection 3.7, we discuss how to construct bijective proofs for general Zeckendorf Family
Identities.

2 The translation method

2.1 A motivating example

We will begin by demonstrating the translation method on Equation (1), which has the following
easy inductive proof:

3fn =3fn-1+ 3fn—2 (definition of Fibonacci numbers) (2)
=for1+ fostfnt fona (induction hypothesis, twice) (3)
= fot2 + fn—2 (definition of Fibonacci numbers, twice). (4)

The base cases of n = 1 and n = 2 are also easy: 3-1=3f1 = f_1+ f3 = 0+ 3 (note that defining
f—1 = 0 is consistent with the other Fibonacci numbers, and interpreting F_; as the empty set is
then natural), and 3-2 =3fy = fo+ fa =1+5.

Notice that each of Equations (2), (3), and (4) is a combinatorial identity, for example, Equa-
tion (4) is the identity fr+1 + fn—3 + fn + fn—a = fn+2 + fn—2. Thus, if we can find bijections for
Equations (2), (3), and (4), we can compose them to get a bijection ®,, : [3] X F;, = FpioWFp_o for
Equation (1). The resulting bijection will, of course, be recursive, since the bijection for Equation (3)
will simply consist of applying recursion twice. We will now construct bijections for Equations (2),
(3), and (4) explicitly, using the notation from the introduction.

For Equation (2), the translation of 3f, = 3f,_1 + 3fn—2 into sets is:

¢(2)5” : {1’2’3} X -7:71 — {15253} X '7:71—1 2 {152,3} X fn—Z-

The bijection ¢, can easily be thought of as the “multiplication” (via Cartesian product) of the
identity bijection on {1,2,3} with the defining bijection for the Fibonacci numbers (which is 9, :

Fn — Fn—1WF,_o defined by deleting the last element in the list, i.e. [¢1,..., 4] — [f1,...,4r—1]).
Thus, for i € {1,2,3} and L = [44,...,4,] € Fp, we define

deyn (4, L) — (4,1, ..., Lr—1])-
For Equation (3), the translation of 3f,_1 + 3fp—2 = fat1 + fu—3 + fn + frn_a into sets is
dayn:{1,2,3} X Frma W{1,2,3} X Frmg — Fpp1 W Fp_s 6 Fpy W Fpy,
which may easily be defined by “adding” (via disjoint union) the two recursively defined bijections

D, 1 2{1, 2,3} X Fpo1 — fn—l—l W F,—3 and
By 5 {1,2,3} X Fn 2 —> Fud Fo_s.

Thus, for (i, L) in {1,2,3} x Fp_1 W {1,2,3} X F,_2, we define

®, 1((i,L)) ifLeF,, and
b (i, L) = " 1((2.) 1 nol A
@n_g((Z,L)) if L € Fp_o.
For Equation (4), the translation of f, 41 + fn—3 + fn + fn—a = fauy2 + fn_2 into sets is:
¢(4),n : fn—kl WF,_swWF, W F, 4 _>fn+2L+JFn—2a

which is naturally defined by “adding” (via disjoint union) the inverse of the defining bijection for
the Fibonacci numbers for n + 2 and n — 2. That is, we “add” the two bijections:

to FnWFnp1 —> Fnyz and
0l s W Fn g — Fnoo.
Thus, for L in F, 11 W Fp_3 W Fp W Fp_y, we define

0,40(L) if L € Fp W Fpyq, and

:L—
baym {D;IQ(L) ifLeFuq4WF,_3.

Finally, we can compose to get a bijection for Equation (1), namely ®, := ¢)n © dz)n © P2),n-
Of course, since ®,, is a recursive bijection, we must also define the base cases ®; and ®,.
Define:

(1,[1,1]) — [1,1,1,1]
D [LL1] LED = 112
(L,[1]) = [1,1,
2,[L,1]) = [2,1,1]
© 0 (2,[1]) = [2,1] and @ :
(3, [1) — [1,2] 2,02) =~ [22]
(3,[1,1]) =~ [1,2,1]
B,[2) +~ -

Note that the choices for these base cases may seem arbitrary (out of 3!- 6! possibilities); however,
in Subsection 3.3, we will show that these base cases are the only “natural” choices in a certain
sense.

At this point, having defined a recursive bijection ®,, for Equation (1), we should study the
behavior of @, for small n in hopes of finding a non-recursive definition for ®,. While of course

4

Figure 1

The code for the base cases (n =1 and n =2, respectively):

Id7egBasel:=proc() local B:

B:=table([
[1,0111 = [1,1,1],
[2,[11] = [2,1],
(3,011 = [1,2]

D;

B:

end:

Id7egBase2:=proc() local B:

B:= table([[1,[1,1]] = [1,1,1,1],
[1,02]1 = [1,1,2],
[2,01,111 = [2,1,1],
[2,0211 = [2,2],
[3,[1,111 = [1,2,1],
[3,0211 =10

n;

B:

end:

The code for the recursive cases (n > 2):

Id7eg:=proc(n) local B;
if n=1 then
return Id7egBasel():
elif n=2 then
return Id7egBase2():
elif n>2 then
Induction Step
#3 fn=3f_{n-1} + 3 £_{n-2}
B[1]:=MultBij(IdBij({1,2,3}), FibDef(n));

3 f_{n-1} + 3 £f_{n-2} = f_{n+1} + f_{n-3} + f_n + f_{n-4}
B[3]:=AddBij(Id7eg(n-1), Id7eg(n-2)):

f_{n-3} + f_{n-4} + f_n + f_{n+1} = f_{n-2} + £f_{n+2}
B[4] :=InvBij(AddBij(FibDef (n-2),FibDef (n+2))):

3 f.n =3 f_{n-1} + 3 £_{n-2} \\
= f_{n+1} + f_{n-3} + f_n + f_{n-4} \\
= f_{n-2} + f_{n+2}

B[5] :=ComposeBij(B[4],ComposeBij(B[3],B[1])):
return B[5]:

fi:

function should never reach this point.

return FAIL:

end:

Figure 1: Above is the Maple code used to generate a recursive bijection for Equation (1). Notice
how closely the inductive step (starting below “## Induction Step ##” near the middle of this
page) mirrors the inductive proof in Equations (2), (3), and (4). The bijection, called Id7eg, is
stored as a table in Maple, thus a line of the form “[1, [11] = [1,1,1]” means that in the bijection,
(1,[1]) = [1,1,1]. Also, Id7eg calls the two base cases as sub-functions. See [6, Examples] for the
full code.

this could be done by hand, in practice it is easier to generate the data with a computer. The code
in Figure 1 was used to generate the output below for the case n = 3 (see [6, Examples]| for the full
code):

(1,[1,1,1]) = [1,1,1,1,1]
1,[L2) =~ [1,1,1,2]
1,[2,1]) = [1,1,2,1]
(2,[1,1,1]) ~ [2,1,1,1]
@3: (2,[L,2) ~ [2,1,2]
(2,[2,1]) =~ [2,2,1]
(3,[1,1,1]) = [1,2,1,1]
3,0L2D) — [1,2,2]
3,021 ~ [1]

From the output for ®3 and a few other small cases, it is not hard to guess that ®, can be
defined as a direct bijection as follows:

[1,1,61,....6] ifi=1
[2,41,...,4] ifi=2
[1,2,49,...,4,] ifl;=1andi=3
[£2, ..., 2] if ¢y =2 and i = 3.

®, : (i,[l1,-..,4]) — (5)

It is easy to see that Display (5) does indeed define a direct bijection, and thus provides a
bijective proof of Equation (1). In fact, the direct bijection in Display (5) is the same as that
described in [1, page 6] (except in [1], the output lists are all reversed compared to our notation).
The Maple code [6, Examples| includes an implementation of the directly-defined bijection &,
and one can verify for any specific n that the two definitions lead to the same bijection using
the function tsBijEqual in [6, BijTools] (of course, the algorithm for constructing the recursive
bijection is exponential, so it is impractical to use BijEqual for n much larger than 15).

2.2 A general description of the translation method

Recall that the translation method converts each step of an inductive proof into a set-theoretic
analog. Consider two bijections @ : A — B and v : C' — D where the cardinalities of A, B, C,
and D are, respectively, a, b, ¢, and d. Below we will describe how to translate statements in an
inductive proof into bijections.

Addition becomes disjoint union. Consider the statement “a = b and ¢ = d implies a+c = b+d”.
In set-theoretic terms, this can be phrased

A—>B and C —=D implies AwC—>BuwD,

afr) ifzeA
y(z) ifzeC’

Multiplication becomes Cartesian product. Consider the statement “a = b and ¢ = d implies
ac = bd”. In set-theoretic terms, this becomes

where we define o(z) := {

A—:>B and C—:;>D implies AXC—:>BXD,

where we define o(z,y) = (a(z),v(y)) for z € A and y € C.

Induction becomes recursion. At the step in the inductive proof that uses the induction hy-
pothesis, we simply have the bijection that we are trying to define, say ®,,, call itself recursively at
values i1, ...,1%,, each smaller than n.

Subtraction becomes combinatorial inversion via the alternating paths algorithm. Assume that
¢ < aand d < b and consider the statement “a = b and ¢ = d implies a—c = b—d”. In set-theoretic
terms, this becomes:

Assume C C A and D C B.
Then A—— B and C—:>DimpliesA\C—:>B\D, (6)

where o is defined using the alternating paths algorithm (see next paragraph). The idea of using
the alternating paths algorithm in this way may be traced to an implicit “involution principle” that
underlies the work of Garsia and Milne [2, 3].

We now define the bijection o in Display (6). Specifically, let a € A\ C. Then we define
o(a) := (ey~H*a(a), where

l)k 1 1 -1

(avi =y "oay " o---oqQy

7

~~

k times

and k is the smallest non-negative integer such that (ay~')*a(a) € B\ D. It is easy to see that o
is well-defined and a bijection, and we give a pictorial representation of ¢ in Figure 2. This process
for defining o is known as the alternating paths algorithm.

The recursive definition of a bijection derived via the translation method can often be quite
ungainly. The goal of the translation method is to study the output of such a recursive bijection
(often with the help of a computer) and find an elegant and direct definition for the same bijection.
In Section 3 we will demonstrate a number of examples were the translation method does, in fact,
lead to a natural direct bijection.

2.3 Primer on accompanying Maple code

In this subsection, we will describe the main parts of the Maple code that accompanies this paper.
We will focus on the general tools in BijTools, and a few functions relating to the Fibonacci
numbers in Fibonacci (see [6]).

For the purposes of the Maple implementation, a bijection is simply a table, with the indices
forming the domain and the entries forming the range. For example,

B:= table([a =1,
b 2,
c 3

1);

defines a bijection B with domain {a,b,c} and range {1,2,3}, where B[a] returns 1, B[b] returns
2, and B|c| returns 3.

Below we list the basic Maple functions for building bijections (all are found in [6, BijTools]
except for FibDef which is in [6, Fibonacci]).

IdBij(S) Given a set S, returns the identity bijection on S.
FibDef (n) Given n an integer, returns 0y, : F, — Fp,—1 W F, 2. (See Subsection 2.1 for
the definition of 9,,.)

Figure 2: the Alternating Paths Algorithm

€Y
A B
aq b1
(b)
(45} b2
as bs as ¢--""" ° bs
D C e y) D
a4 b4 Q4 RN e - b4
as bs as ¢ e bs
(c) (d)
A\ C B\ D
e.._ @
a a1 RGPS by
a9 Q9 d e bg
as
Q4
as

Figure 2: Given C C A and D C B and given bijections @ : A — B (shown with solid lines in
(a) above) and v : C — D (shown with dashed lines in (b) above), this figure describes how to
derive a bijection § : A\ C — B\ D (shown with dot-dashed lines in (d) above). In (c), we show
how to determine the image of a; using the alternating paths algorithm, and (c) also demonstrates
where this algorithm its its name. The alternating paths algorithm is implemented as SubtBij
in [6, BijTools] as a way of subtracting bijections. Note that the alternating paths algorithm is
essential if the bijection o does not map ¢ onto D (as above). See Subsection 3.6 for a practical
example where using the alternating paths algorithm (as implemented in the function SubtBij) is
essential.

AddBij(a,7y) Given a: A — B and v : C — D bijections with ANC =0 and BN D =0,
returns a bijection ¢ : AW B — C' & D as described above.

SumBij ([aq,...,ar]) Given a list of bijections [a1,...,a;], iteratively applies AddBij. E.g., if
r = 3, returns AddBij(AddBij (o, a2) ,a3).

MultBij (a,7y) Given a: A — B and 7 : C — D bijections, returns 0 : A x C — B x D as
described above.
SubtBij(a,vy) Given o : A — B and v : C — D bijections where C C A and D C B,

returns a bijection o : A\ C — B\ D using the alternating paths algorithm
described above (also see Figure 2).
InvBij () Returns the inverse bijection o *.

ComposBij (8, a) Given oo : A — B and 8 : B — C, returns the bijection foa: A — C.

See Figure 1 and Figure 3 for examples of how to use the above Maple functions.

3 Applications of the translation method to Fibonacci identities

3.1 Cassini’s Fibonacci Identity

Cassini’s Fibonacci Identity

f2 = foiifoo1 + (D)7, (7)

which is also known as Simson’s Formula, was first proven bijectively in 1986 [7]. Cassini’s Identity
is Identity 8 of [1, page 8], and a good exposition of the bijection may also be found there. The
original proof in [7] was, in fact, discovered by the translation method described in Section 2. In
this subsection, we will demonstrate how the translation method easily leads to a direct bijection
for Equation (7).

Consider the following inductive proof of Equation (7):

fr = fa(fao1 + f2) (defn of Fibonacci numbers)
= fnfn—1+ fafa—2
= fofn1+ fﬁ,l — (=)™t (inverse of Cassini for n — 1)
= (fa+ fo-1)foa + (=1)"
= fp+1fn—1 + (=1)" (inverse defn of Fibonacci numbers).

When finding a bijection for an identity, it is best to have all quantities in the equation be positive;
thus, we will construct a recursive bijection in two cases, showing that

Fow {1} = Frp1 X Faa when n is odd, and

Va5 = (Fog1 X Fa1) W {1} when 7 is even.

We must also consider what to do with the base case (note that only one base case is necessary,
since the odd-n bijection will recursively call the even-n bijection and vice versa). Thus, the natural
choice for the base case—that is, the value of n where both sides of Equation (7) are as small as
possible—is n = 0, giving us the formula 12 = f2 = fif 1 +1=1.0+1.

To translate the base case into a bijection, we need to represent f_; as the cardinality of a set,
and since f 1 = 0, the natural choice is the empty set; hence F 1 := (). (In Section 3.3, we will

discuss a case where it is useful to find sets to represent f,, for other negative values of n.) Note
that for the base case of n = 0, there is only one choice for the bijection for Equation (7), and
thus only one possible bijection may be derived from the given inductive proof via the translation
method.

A recursive bijection for Equation (7) may now be readily constructed. The Maple code in
Figure 3 for the bijection mirrors that of the inductive proof given at the start of this section (see
[6] for complete code and related files).

Studying the output for some small cases leads us to the directly-defined “tail-swapping” bi-
jection described in [1, page 8] and [7]. (see Figure 4). An implementation for the “tail-swapping”
bijection is given in [6, Examples], and for a given n, it can be verified to be the same as the recursive-
bijection using the BijEqual function. We should emphasize here that the “tail-swapping” bijection
is very elegant—so much so that it is one of the first bijections described in [1]—which shows that
while the translation method may seem complicated, it often produces bijections that are simple
and natural.

3.2 A recently solved problem from Proofs that really count [1]
The Fibonacci Identity

Jfopa+ fi+2fo+---+nfn=(Mn+1)fu2+3 (8)

was stated in 2003 [1, page 14] as an identity with no known bijective proof, and in 2006 [4] a
direct bijective proof was discovered using the translation method of Section 2. In [4], the base
case of n = 0 was used; however, it is more natural to use the base case of n = —1 and interpret
Equation (8) as fpta+—1f_1+0fo+ fi+2fo+---+nf, = (n+1)frr2+3. With this interpretation
the n = —1 case of the formula becomes 3 = f3 = (=14 1)f1 + 3 = 0 + 3 and the corresponding
bijection, say

[1,1,1] — 1
[,2] =~ 2
[2,1] ~ 3,

is unique up to renaming the symbols “1”7, “2” and “3”.

A recursive bijection from an inductive proof for Equation (8) is implemented in [6, Examples],
as is a directly defined analog (see functions IdRec and IdDirect, respectively). For an exposition
of the direct bijection, we refer readers to [4], and in the remainder of this section we will discuss
the slight changes one needs to make to the bijection in [4] so that it matches the bijections defined
by IdRec and IdDirect (which are of course the same) [6, Examples|. The bijection defined in
IdDirect will be called ¢, and that defined in [4] will be called ¢.

In [4], the bijection

¢: Fara U (] x Fi) — {1,2,3} U ([n + 1] X Fo)
k=1

10

Figure 3

The code for the base case of n = 0:

Id8Base0:=proc() local B:
B:=table([[[],[1] =1 1);
B:

end:

The code for the base inductive step if n is odd:

Id8:=proc(n) local B:
if n = 0 then
return Id8Base0():
elif (n mod 2 = 1) then # n is odd
£n°2 +1 = f_n(f_{n-1} + £_{n-2}) + 1
B[1]:= AddBij(MultBij(IdBij(Fn(n)),FibDef(n)) , IdBij({1})):

the below is an identity of sets, so no bijection needed.
f_n(f_{n-1} + £_{n-2}) + 1 = £_n f_{n-1} + f_n f_{n-2} + 1

fnf {n-1} + f.n f_ {n-2} + 1 = f_n f_{n-1} + f_{n-1}"2
B[2]:= AddBij(MultBij(IdBij(Fn(n)),IdBij(Fn(n-1))),
InvBij(Id8(n-1))):

the below is an identity of sets, so no bijection needed.
fn f {n-1} + £ {n-1}"2 = (f_n + f_{n-1}) £_{n-1}

(f_n + £_{n-1}) f_{n-1} = f_{n+1} £_{n-1}
B[3]:= MultBij(InvBij(FibDef(n+1)), IdBij(Fn(n-1))):

fn°2 +1 = £ n(f_{n-1} + £_{n-2}) + 1
=f n f_{n-1} + f_{n-1}"2
= f_{n+1} f_{n-1}

B[4] := ComposeBij(B[3],ComposeBij(B[2],B[1])):
return(B[4]):

elif (n mod 2 = 0) then # n is even

Rest of even-n case omitted.

Figure 3: Above is the Maple code used to generate a recursive bijection for Equation (7). Again,
note how closely the code above mirrors the inductive proof given in Subsection 3.1. The bijection,
called 1d8, is stored as a table in Maple, thus a line of the form “[[1,[]] = 1” means that in the
bijection, ([],[]]) — 1. See [6, Examples] for the full code.

11

Figure 4

mutual faults

\

rightmost mutual faults
—

| W m>

1 2 3 45 6'7 8 9 1011 }% 1 2 3 45 6'7 8 9 1011
I B e N []

I I I I
1 2 3 45 6 7 8 9 1011 1

1T]

!

| | [[| W [T
1 2'3 45 6 7 8 9 1011 }% 1 2'3 45 6 7 8 9 1011
EN [[[| >

Figure 4: Above are a few examples describing the “tail-swapping” bijection for Equation (7).
Each element of F,, is represented by a sequence of dominoes and monomios of total length n. For
example, that the pair of tilings of length 10 in the upper left corner of this figure represent the
element ([1,2,1,1,2,1,2],[1,2,2,1,2,2]) € Fio X Fio- The tails of a pair tilings are defined to be
the portion of tilings to the right of the rightmost mutual fault. The bijection works by simply
taking the tail from one tiling and swapping it with the tail from the other tiling in the pair. If
there is no mutual fault, then the pair of tilings corresponds to the symbol “1”. For a complete
description of the bijection, see [1, page 8].

12

was defined using five special cases, namely

n n+2
¢: [1,1,1,1, 1,1,....1] —~ (1,[1,1,...,1])
n
¢ [2,1,1, 1,1,...,1] ~ 1
n
¢: [1,2,1, 1,1,...,1] — 2
n
¢ [1,1,2, 1,1,...,1] ~ 3
n n
b 12,2, 1,1,....,1] ~ (1,[2,1,1,...,1])

These five special cases were a byproduct of having used n = 0 as the base case, since for n = 0
Equation (8) becomes 5 = f; = 1- fo +3 = 2+ 3. In writing the current paper, it was noticed that

using the base case n = —1 is more natural, and so for ¢ the five special cases above become

n

¢: [1,1,1,1, 1,1,...1] — 1
n

o: [1,2,1, 1,1,...,1] — 2
n

¢: [2,1,1, 1,1,...,1] —~ 3
n n+2

6: [1,1,2, 1,1,...,1] —» (L[L1,...,1]) (©)
n n

¢ [2,2, o1 = (4L,]2,1,1,..,1]).

The only difference between the bijections ¢ and d~> is on the five cases displayed above. Thus,
the remainder of the definition of gg is given by Case 1 and Case 2 on page two of [4]. We argue
that ¢ is more natural, since the two boxed cases in Display (9) are no longer special—they are
now covered by the general case of how ¢ behaves on other elements of F,, 4 (see Case 1 of [4, page
2]).

In this way, {5 also gives a combinatorial interpretation for the 3 in Equation (8), namely the
three elements F, 14 ending in at least (n+1) 1’s. Thus, Equation (8) might be more natural if the
3 were replaced by f3 and the elements 1,2, 3 in the range of $ were replaced by [1,1,1],[1, 2], [2, 1],
respectively.

—

—

3.3 Zeckendorf Family Identities

The ¢-th Zeckendorf Family Identity is defined to be an equation of the form

efn = Z fn—|—t

teSy

that holds for all integers n, where Sy is a finite set of integers depending only on ¢ containing no
two adjacent integers. Note that the ¢-th Zeckendorf Family Identity exists and is unique for every
£ > 1 (see [5, Section 3] for more discussion of Zeckendorf Family Identities). The validity of a given
Zeckendorf Family Identity may easily be proven by induction; for example Equation (1) is the 3rd

Zeckendorf Family Identity and is proven by induction in Equations (2), (3), and (4). In [1], the
5th through 12th Zeckendorf Family Identities were stated as identities in need of bijective proofs.
Using the translation method in the same way as in Subsection 2.1, it is not hard to construct
direct bijections for any specific Zeckendorf Family Identity, and such direct bijections for the 5th
through 12th Zeckendorf Family Identities are described in [5].

The rest of this section is devoted to discussing an issue not mentioned in [5], namely how to
choose the base case so that the recursive bijection derived from the translation method may be
defined in a natural, direct way. For example, when defining the base case ¢2 in Subsection 2.1,
there were apparently 6! suitable choices. We will demonstrate below that, in fact, there is only
one natural candidate. The general approach is to take advantage of the fact that the Fibonacci
numbers can be defined for negative indices. To define the Fibonacci numbers with negative indices,
we use the relation f,_o = f, — frn—1 and the base case fo = fi = 1, and thus we have the following
table as n decreases:

n |[L]0|-1|-2|-3]-4|-5|-6]-T]-
fafftfirfo 1 f-1]2]=3[5[-8]- .

With this definition, the ¢-th Zeckendorf Family Identity holds for all integers n. We then make the
heuristic assumption that any “natural” recursive bijection for the ¢-th Zeckendorf Family Identity
must be built up from the base cases where both sides of the identity are as small as possible. In

particular, if we consider the case where n = —1, the £-th Zeckendorf Family Identity becomes:
0="Lf 1= Z fo1+t (10)
tesS,

where the Fibonacci numbers on the right-hand side sum to zero since some of them are negative.
In Subsection 3.4, we will discuss a way to interpret Fibonacci numbers with negative indices as
sets, thus making Equation (10) a combinatorial identity for any £. It is then straightforward to use
the translation method to construct a recursive bijection for all n, building up from an arbitrarily
chosen base case bijection for n = —1. Of course, we actually need to define two base cases (as in
Subsection 2.1); however, the different base cases possible for n = 0 amount to simply re-naming the
symbols 1,2, ..., £ (note that the domain for the n = 0 case is [£] xFo = {(1,[]), (2,[]),---, &, [])}.)-
Thus, we consider recursive bijections differing only in the choice of a base case for n = 0 to be
formally equivalent (see [5, Section 3] for more discussion of formal equivalence).

3.4 Interpreting Fibonacci numbers with negative indices as sets

For n > 0, we will interpret the Fibonacci number f_, as the set F_, of all lists [—2,a1,...,ak]
such that —2 + Z?Zl a; = —n and each a; € {—1,—-2}. We will call f_,, for n > 3 and n odd a
negative Fibonacci number since f_, < 0. If n > 2 is even, then f_, is a positive integer and is
equal to the cardinality of F_,. If n > 3 is odd, then —1- f_,, is a positive number and is equal to
the cardinality of F_,,. For example:

f-1=0 and Foi=A{}
fo2=1 and F_o ={[-2]}
fa=-1 and Fo3={[-2,-1]}
fos=2 and Foyg={[-2,-1,-1],[-2, -2}
fos=-3 and F_s ={[-2,-1,-1,-1],[-2,-1,-2],[-2, -2, -1]}

14

Because the cardinality of F_,, is always equal to (—1)"f_, for n > 0, we can always rearrange
terms in a Zeckendorf Family Identity so that any negative Fibonacci number is multiplied by —1.
For example, the 3rd Zeckendorf Family Identity at n = —1 becomes

—fa1—2+3f1=f-142 (11)

(instead of 3f_1 = f_142 4+ f-1-2 since f_3 is negative); and the 5th Zeckendorf Family Identity
(namely 5f, = fni3 + fn—1 + fn—4) at n = —1 becomes

—fo1—a+0f1 = fo143+ fo1-1. (12)

Equation (11) may be interpreted (uniquely) as the bijection [—2, —1] — [1], since the sets corre-
sponding to each side of Equation (11) each have cardinality 1. Equation (12), on the other hand,
has 3! equally valid interpretations as a bijection, one of which is

[-2,-1,-1,—1] + [1,1]
[[_25 _13 _2]] = |I2]]
[-2,-2,—-1] — [-2].

Note that 3f_1 and 5f_1 are both interpreted as the empty set.

In Subsection 3.5 below, we will discuss the defining bijection for the Fibonacci numbers when
negative indices are involved; and in Subsection 3.6, we will discuss how to apply the translation
method when the base cases involve negative Fibonacci numbers (for example, if Equation (11) or
(12) were a base case).

3.5 The defining bijection 0_, for Fibonacci numbers when n > 0

In this section we will describe the defining bijection 0_,, for the Fibonacci numbers when n > 0.
Our definitions below are motived by two things: first by interpreting the formula f_, = f_,_1 +
f—n—2 for n > 0 (see Subsection 3.4), and second by the definition of 9,, when n > 1.

For n = 0 we have fo = f_1 + f_2 which we interpret as the bijection

% : {1} = {y w{l-2[}
[0 [-2I.

Forn = 1 we have f_; = f_o+ f_3 which we re-write as —f_3+f_1 = f_5 (since —f_3, f_1, f—2 > 0)
and interpret as the bijection

o1 {[=2, -1 w{} = {[-2]}
[-2,-1] — [-2].

In general, for n > 2 and n even, we have f_,, = f_,_1+f_n_2 which we re-writeas —f , 1+ f , =
f-n—2 (since —f_o9_1, f—n, f-n—2 > 0) and interpret as the bijection

0 F i WF_, > F_9
[[—2,&1,. .. ,ak]] = [—2,(11,... ,ak,—l]] if [[—2,a1,. .. ,ak]] € F_n-1
[[—2,0,1,. .. ,ak]] = |I—2,(1,1,... ,ak,—Q]] if [[—2,0,1,. .. ,ak]] € F_p.

15

Finally, for general n > 3 with n odd, we have f_,, = f_,,_1+ f—n_2 which we re-write as —f_,_o =
fen-1— f—n (since —f_p_9, f_n_1,—f—n > 0) and interpret as the bijection

0 pn:Fpo2>Fp1WF g,
[-2,a1,...,ak] — [-2,a1,-..,ak-1]-

The definition given above for d_, (for n > 0) is natural given our interpretation as sets of
Fibonacci numbers with negative indices. Also, as we will see in the Subsection 3.6 below, this
definition of 0_,, works well for applying the translation method to Zeckendorf Family Identities.

3.6 The translation method with negative Fibonacci numbers: An example

In this subsection we will revisit the motivating example of Subsection 2.1, and we will demonstrate
how to use the translation method to construct a bijection for 3f, = fn+2+4 fn—2 (the 3rd Zeckendorf
Family Identity, and also Equation (1)) using the base cases of n = —1 and n = 0. By extending
the 3rd Zeckendorf Family Identity to Fibonacci numbers with negative indices, we will be able to
show that the direct bijection derived in Subsection 2.1 is (in some sense) the only natural bijection
for the 3rd Zeckendorf Family Identity derivable via the translation method. Also, the alternating
paths algorithm for “subtracting bijections” is an essential tool for constructing recursive bijections
for Zeckendorf Family Identities, as we will see below.

We will define the base cases for n = —1 and n = 0 first and then discuss how to build the
bijection recursively. For n = —1, we re-write 3f, = fni+2 + fn—2 as —f_3+3f_1 = f1 and define

b_1: F_3—F
[-2,-1] = [1].

For n = 0, we write 3f, = fni2 + fn—2 as 3fo = fo + f_2 and define

Dp: {1,2,3} x Fp > Fa W F o
(L) - [1,1]
) - 2]
G, = [-2]-

Note that there is only one possible bijection for the case n = —1, and for the case n = 0, choosing
another of the 3! possible bijections amounts to re-naming the symbols 1, 2, and 3. Thus, there
is only one natural way to choose the base cases for the 3rd Zeckendorf Family Identity, and since
the base cases determine the rest of the bijection by the translation method, we see that there is
only one natural bijection derivable via the translation method.

For the induction step, we will have to consider the case of n = 1 separately because we must
always re-arrange the terms so that all quantities are non-negative. In particular, if we attempt to
proceed as in Equations (2), (3), and (4), we would have

3fi=3fo+3f 1 (definition of Fibonacci numbers)
=fotfatfit+f-3 (recursion),

which is not useful since f_3 is negative. Instead we will use the following chain of equalities in

16

which all terms are positive.

—f 3+3fi=3fo+3f 1—f3 (definition of Fibonacci numbers)
(13)
—fo+fo+fi (recursion, using 3fo = fo+ f_o and —f_5+ 3fo = f1)
(14)
= ot g —fos (deﬁEition _of Fibonacci numbers, using fo + f1 = f3 and'
f-2=f-1—f-3)
(15)

If we now subtract the positive quantity —f_s from both sides of —f_3+3f1 = fs+ f-1 — f—3, we
get the desired identity:

3fi=fa+ f-1.

If the bijection corresponding to —f_3 + 3f1 = f3 + f-1 — f—3 mapped the set F_3 to itself,
then subtracting —f_3 would be trivial—we could simply restrict the domain of the bijection to
{1,2,3} x Fi. However, this is not the case, and so we must use the alternating paths algorithm to
subtract the bijections. Since all of the terms in this derivation were non-negative, we can easily
interpret each equality as a bijection of sets. The maple code for the cases n = —1,0, and 1 is given
in Figure 5.

Finally, for n > 2, we may recursively construct a bijection in exactly the same way as in Subsec-
tion 2.1, since f,_4 > 0 for all n > 2 and n—4 is the smallest index to appear when constructing the
bijection recursively (see Equations (2)—(4) or Figure 1 below the line “## Induction Step ##7).
The resulting recursive bijection is the same as the one defined in Subsection 2.1, and so it can be
defined in the same direct, non-recursive way.

3.7 The /-th Zeckendorf Family Identity in general

The approach described in Subsection 3.6 above can be carried out in general for the ¢-th Zeckendorf
Family Identity. Recursive bijections for the £-th Zeckendorf Family Identity for £ = 5,6,...,12
are implemented in Maple in [6, TransMethodZeck], and their directly defined counterparts are
described in [5] with Maple implementation give in [6, ZeckFibBijections]. As we saw in Subsec-
tion 3.6, a recursive bijection for the £-th Zeckendorf Family Identity is determined (up to formal
equivalence—see [5]) by the definition of the bijection in the n = —1 base case. For example, the
5th Zeckendorf Family Identity is

5fn = fa+3 + fa—1 + fn-a

which has the base case of —f 1 4 = f 143+ f 11 =3, and hence there are 3! distinct choices for
the base case bijection mapping F_5 — Fo W F_o. Each of the 3! choices leads to a distinct (in the
sense of formal equivalence) bijection that may be directly defined.

The bijections given in [5] and implemented in [6, TransMethodZeck,ZeckFibBijections| repre-
sent an arbitrary selection among the many possibilities. Finding a canonical choice for a bijection
for the ¢-th Zeckendorf Family Identity remains open (see [5] for other possible further directions).
We close this section with a chart showing how many distinct bijections (up to formal equiva-
lence) may be generated for the ¢-th Zeckendorf Family Identity by the translation method for
£=06,7,...,12.

17

Figure 5

The code for the base cases (n=—1 and n =0, respectively):

Id7Base_nl:=proc() local B:
B:=table([[-2,-1] = [1] 1);
B:

end:

Id7Base0:=proc() local B:

B:= table([[1,[1] = [1,1],
[2,011 = [2],
(3,011 = [-2]

D

B:

end:

The code for the m =1 case and the recursive cases (n > 2):

Id7:=proc(n) local B;
if n=-1 then
return Id7Base_ni():
elif n=0 then
return Id7Base0():
elif n=1 then
3 f.1=3f{0} +3f_{-1}
B[1]:=MultBij(IdBij({1,2,3}), FibDef(n));

3 f_1 - f_ {-3}=3 £_{0} + 3 £_{-1} - £_{-3} ## note f_{-3} < 0.
B[2] :=AddBij(B[1],IdBij(Fn(-3))):

3 £ {0} + 3 £_{-1} - £_{-3} = £_{2} + £_{-2} + f_1
B[3]:=AddBij(Id7(n-1), Id7(n-2)):

£2+ f 1+ f {-2}=£3+f_{-1} - £_{-3}
B[4] :=InvBij(AddBij(FibDef (n-2) ,FibDef(n+2))):

3 f_1-f_{-3} =3 f_{0} + 3 f_{-1} - £_{-3} \\
= f_{2} + f_{-2 + f_1 \\
=f_3 + f_{-1} - £_{-3}

B[5] :=ComposeBij(B[4],ComposeBij(B[3],B[2])):

#$3f 1= £3+f_{-1}$
B[6]:=SubtBij(B[5],IdBij(Fn(-3))):
return B[6]:

elif n>1 then
Induction Step

Figure 5: Above is the Maple code used to generate a recursive bijection for Equation (1), starting
with the base cases n = —1 and n = 0. Notice how closely the code above mirrors the inductive
proof described Equations (13), (14), and (15) and the sentence following Equation (15). This
figure should be compared with Figure 1. The primary difference between the code here and that
in Figure 1 is that here we added the positive quantity —f_ 3 to both sides, and then later sub-
tracted using SubtBij in the line starting with B[6]. Using the function SubtBij here is essential,
since the bijection B[5] does not map F_3 to itself. Also, note that the omitted code follow-
ing “## Induction Step ##” above is identical to the code following “## Induction Step ##”
shown in Figure 1. See [6, Examples]| for the full code.

18

£ | £-th Zeckendorf Family Identity Base Case (n = —1) gil;::lt)iirnsd
6 6fn = frn3 + frs1 + fra —faia=fas+ fan =3 3!
T | Tfn=forat fna —f1a=f 144 =3 3!
8 | 8fn="Jfotat+ fn+ faa —faa=famat+fa =3 3!
9 Yn = frnra+ fos1 + fo2+ foa —faaa—fao=fa4a+fon = 4!
10 | 10fn = fata + fot2 + fn—2 + fa-a —fo1ma—foa—2 = forpa+ forge = 4!
11 | 11fy = fagat foot fot oot foa| ~faoa—fae=faputfaetfn =4 4!
12 112fn = fags + fn-1 + fn—3 + fn—s —fa1—6 = fo145+ fo1m1 + fo-s =38 8!
References

[1] Benjamin, Arthur T.; Quinn, Jennifer J. Proofs that really count. The art of combinatorial proof.

[2]

[3]

[4]

[5]

[6]

[7]

(8]

The Dolciani Mathematical Expositions, 27. Mathematical Association of America, Washington,
DC, 2003.

Garsia, A. M.; Milne, S. C. A Rogers-Ramanujan bijection. J. Combin. Theory Ser. A. 31
(1981), no. 3, 289-339.

Garsia, A. M.; Milne, S. C. Method for constructing bijections for classical partition identities.
Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 4, part 1, 2026-2028.

Wood, Philip Matchett. A bijective proof of f,, 14 + f1 +2fo+ -+ nfy, = (n+1)fnia + 3.
Integers 6 (2006), A2, 4 pp.

Wood, Philip Matchett. Bijective proofs for Fibonacci identities related to Zeckendorf’s Theo-
rem. (submitted).

Wood, Philip Matchett. Five Maple packages: BijTools, Examples, Fibonacci,
TransMethodZeck, ZeckFibBijections, online at
http://www.math.rutgers.edu/~matchett/Publications/Maple.html

Werman, M.; Zeilberger, D. A bijective proof of Cassini’s Fibonacci identity. Discrete Math. 58
(1986), no. 1, 109.

Zeilberger, D. Enumerative and Algebraic Combinatorics, to appear in Princeton Companion
of Mathematics (T. Gowers, ed.), Princeton University Press, Princeton, NJ.

19

