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Abstract

Let n be a large integer and M,, be an n by n complex matrix whose entries are independent
(but not necessarily identically distributed) discrete random variables. The main goal of this
paper is to prove a general upper bound for the probability that M, is singular.

For a constant 0 < p < 1 and a constant positive integer r, we will define a property p-
bounded of exponent r. Our main result shows that if the entries of M,, satisfy this property,
then the probability that M,, is singular is at most (pl/r + o(l))n. All of the results in this
paper hold for any characteristic zero integral domain replacing the complex numbers.

In the special case where the entries of M,, are “fair coin flips” (taking the values +1,—1
each with probability 1/2), our general bound implies that the probability that M, is singular

n
is at most (\/i5 + 0(1)) , improving on the previous best upper bound of (% + 0(1))", proved
by Tao and Vu [11].

In the special case where the entries of M,, are “lazy coin flips” (taking values +1, —1 each
with probability 1/4 and value 0 with probability 1/2), our general bound implies that the
probability that M, is singular is at most (% + 0(1))", which is asymptotically sharp.

Our method is a refinement of those from [4] and [11]. In particular, we make a critical use of
the Structure Theorem from [11], which was obtained using tools from additive combinatorics.

Introduction

Let n be a large integer and M,, be an n by n random matrix whose entries are independent (but not
necessarily identically distributed) discrete random variables taking values in the complex numbers.
The problem of estimating the probability that M, is singular is a basic problem in the theory of
random matrices and combinatorics. The goal of this paper is to give a bound that applies to a
large variety of distributions. The general statement (Theorem 2.2) is a bit technical, so we will

first discuss a few corollaries concerning special cases.
The most famous special case is when the entries of M,, are independent identically distributed

(i.i.d.) Bernoulli random variables (taking values +1 with probability 1/2). The following conjec-

ture has been open for quite some time:

Conjecture 1.1. For M4, an n by n matriz with each entry an i.i.d. Bernoulli random variable

taking the values +1 and —1 each with probability 1/2,

1 n
Pr(Miy 4, is singular) = <§ + o(l)) .



It is easy to verify that the singularity probability is at least (1/2)™ by considering the probability
that there are two equal rows (or columns).

Even in the case of i.i.d. Bernoulli random variables, proving that the singularity probability
is o(1) is not trivial. It was first done by Komlds in 1967 [5] (see also [6]; [9] generalizes Komlds’s
bound to other integer distributions). The first exponential bound was proven by Kahn, Komlés,
and Szemerédi [4], who showed that Pr(M4, , is singular) < .999". This upper bound was improved
upon by Tao and Vu in [10] to .958". A more significant improvement was obtained by the same
authors in [11]:

Pr(Mi, ,, is singular) < <z + 0(1)) . (1)

This improvement was made possible through the discovery of a new theorem [11, Theorem 5.2]
(which was called the Structure Theorem in [11]), which gives a complete characterization of a set
with certain additive properties. The Structure Theorem (to be more precise, a variant of it) will
play a critical role in the current paper as well.

Our general result has the following corollary in the Bernoulli case:

1 n
Pr(M. is singular) < | — + o(1 , 2
(M, i singalan) < (= -+o0) ®)
which gives a slight improvement over Inequality (1) (since 1/v/2 =~ 0.7071 < .75).

Let us now discuss a more general class of random matrices. Consider the random variable )
defined by

+1  with probability p/2
~ =0 with probability 1 — u (3)
—1  with probability p/2,
and let Mi“ )

I, be an n by n matrix with each entry an independent copy of ). The random
variable 7(”) plays an important role in [4, 10, 11], and the matrices Mj(_fl)’n are of interest in their
own right. In fact, giving zero a large weight is a natural thing to do when one would like to
(randomly) sparsify a matrix, a common operation used in randomized algorithms (the values of
+1, as the reader will see, are not so critical). Our general result implies the following upper

bounds:

1
Pr(Mi”l)ﬂ is singular) < (1 — u+ o(1))" for 0 <p < 5 (4)
2 1 " 1
Pr(Mj(_L“l),n is singular) < ( MZ_ + 0(1)> for 5 <p<l1 (5)

Pr(Mi”l)ﬂ is singular) < (\ [1—2u+ g/ﬂ + 0(1)) for 0 < p <1 (6)

Note that Inequality (5) implies Inequality (1) and that Inequality (6) implies Inequality (2) (in
both cases setting p = 1).



Figure 1 summarizes the upper bounds from Inequalities (4), (5), and (6) and also includes the
following lower bounds:

(I—p+o(1)" < Pr(Mi“l)’n is singular) for0<pu<1 (7)
3 n
(1 —2u+ 5#2 + 0(1)) < Pr(Mi“l)’n is singular) for 0 < p <1. (8)

These lower bounds can be derived by computing the probability that one row is all zeros (In-
equality (7)) or that there is a dependency between two rows (Inequality (8)). Note that in the
case where p < 1/2, the upper bound in Inequality (4) asymptotically equals the lower bound in
Inequality (7), and thus our result is the best possible in this case. We also used a Maple program
to derive the formulas for lower bounds resulting from a dependency between three, four, or five
rows; however, these lower bounds were inferior to those in Inequality (7) and Inequality (8).

We will now present another corollary of the main theorem that has a somewhat different flavor.
In this corollary, we treat partially random matrices, which may have many deterministic rows. Our
method allows us to obtain exponential bounds so long as there are still at most clnn random rows,
where ¢ > 0 is a particular constant.

Corollary 1.2. Let p be a real constant between 0 and 1, let ¢ be any positive constant less than
1/In(1/p), and let S C C be a set of complex numbers having cardinality |S| < O(1). Let Ny, be an
n by n complex matriz in which f < clnn rows contain fixed, non-random elements of S and where
the other rows contain entries that are independent random variables taking values in S. If the
fized rows are linearly independent and if for every random entry «, we have max, Pr(a = x) < p,
then

Pr(Ns,, is singular) < (y/p+o(1))".

Notice that the case f = 0 and p = 1/2 also implies Inequality (2).

Remark 1.3 (Other exponential bounds). The focus of this paper is optimizing the base of the
exponent in bounds on the singularity probability for discrete random matrices. One main tool in
this optimization is the use of a structure theorem similar to [11, Theorem 5.2] (see Theorem 6.1
below); however, using such a theorem requires additional assumptions to be placed on the values
that can appear as entries, and in particular, this is why we assume in Corollary 1.2 that the set S
has cardinality |S| < O(1) and that § < cInn. If one is interested in an exponential bound where
there are no conditions on f or on the set S (at the expense of having an unspecified constant for
the base of the exponential), one can follow the analysis in [10], which does not make use of a
structure theorem, along with ideas in this paper to get a result of the following form:

Theorem 1.4. For every e > 0 there exists § > 0 such that the following holds. Let Nj,, be an n
by n complex matriz in which § rows contain fixed, non-random entries and where the other rows
contain entries that are independent discrete random variables. If the fized rows have co-rank k
and if for every random entry o, we have max, Pr(a = x) < 1 — ¢, then for all sufficiently large n

Pr(Nj,, has co-rank > k) < (1 —68)" .

Note that Theorem 1.4 holds for any f and k, and so in particular, an exponential bound on the
singularity probability is achieved whenever k = 0 and | < ¢n, where ¢ < 1 is a constant. Also note
that the theorem allows the random entries to have discrete distributions taking infinitely many
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Figure 1: Let P(u) := ILm Pr (Mi’j)n is singular) l/n’ where Mi"l)n is the n by n matrix with
independent random entrrilesoiaking the value 0 with probability 1—u and the values +1 and —1 each
with probability p/2. The solid lines denote the upper bounds on P(u) given by Inequalities (4),
(5), and (6), and the dashed lines denote the lower bounds given by Inequalities (7) and (8). The
upper and lower bounds coincide for 0 < p < %, and the shaded area shows the difference between
the best known upper and lower bounds for % < u < 1. The straight line segments from the
point (0,1) to (1/2,1/2) and from the point (1/2,1/2) to (1,3/4) represent the best upper bounds
we have derived using the ideas in [11], and the curve 1 — 2u + %/ﬂ for 0 < p < 1 represents a
sometimes-better upper bound we have derived by adding a new idea. Note that the upper bounds
given here also apply to the singularity probability of a random matrix with independent entries
having arbitrary symmetric distributions in a set S of complex numbers, so long as each entry is 0

with probability 1 — p and the cardinality of S is |S| < O(1) (see Corollary 3.1).



values. Corollary 3.6 proves a version of Theorem 1.4 with a much better exponential bound, given
some additional conditions.

The structure of the rest of the paper is as follows. In Section 2 we define p-bounded of exponent
r and state the main theorem of this paper. In Section 3, we discuss some corollaries of Theorem 2.2.
In particular, we will:

(A) prove Inequalities (4), (5), and (6);

(B) prove general bounds on the singularity probability for discrete random matrices with entries
that have symmetric distributions and with entries that have asymmetric distributions;

(C) Prove a version of Corollary 1.2 (namely, Corollary 3.5) that holds for up to o(n) fixed rows,
assuming that the entries in the fixed rows take integer values between —C and C for any
positive constant C'; and

(D) prove that the probability that random matrices with integer entries have a rational eigenvalue
is exponentially small.

In Section 4, we discuss Lemma 4.1, a result that is proved in [13] using standard tools from
algebraic number theory and algebraic geometry. Lemma 4.1 reduces the question of bounding the
singularity probability of a random matrix with entries in C to a question of bounding the singularity
probability of a random matrix with entries in Z/QZ for some large prime @ (in fact, it is possible
to replace C with any characteristic zero integral domain). The proof of Theorem 2.2 is outlined
in Section 5, where we also prove some of the easier lemmas needed for the theorem. In Section 6,
we state a structure theorem (Theorem 6.1) that completes the proof of our Theorem 2.2 and that
is very similar to [11, Theorem 5.2] (which is the Structure Theorem in [11]). We discuss the proof
of Theorem 6.1, which uses discrete Fourier analysis and tools from additive combinatorics, in
Sections 7 and 8. Finally, in Section 9 we show that the entire argument proving Theorem 2.2 can
be generalized to random complex matrices with f rows of the matrix containing fixed, non-random
entries, so long as f < clnn for a particular constant ¢ > 0 (this leads to Corollary 1.2).

2 The general theorem

To prove the results in Inequalities (1) and (2) (and also the results in [4] and [10]), one basic idea
is to replace entries of a random matrix with independent copies of the random variable ’y(“) or
27y (see Equation (3)). One key idea in proving the more general results of the current paper
is replacing the entries of a random matrix with more complicated symmetric discrete random
variables.

A generalized arithmetic progression of rank v is a set of the form {vg + mivy + -+ + myv; :
|m;| < M;/2}, where the v; are elements of a Z-module and the m; and M; > 0 are integers. Note
that whenever the term “symmetric” is used in this paper, it will apply to the distribution of a
random variable or to a generalized arithmetic progression; in particular, the term will never apply
to matrices. Also, throughout this paper we will use the notation

e(z) := exp(2miz).

The following definition lies at the heart of our analysis.



Definition 2.1 (p-bounded of exponent 7). Let p be a positive constant such that 0 < p < 1
and let r be a positive integer constant. A random variable « taking values in the integers (or,
respectively, the integers modulo some large prime Q) is p-bounded of exponent r if

(i)  max, Pr(a=2x) <p, and

if there exists a constant ¢ where 0 < ¢ < p and a Z-valued (or, respectively, a Z/QZ-valued)
symmetric random variable S taking the value 0 with probability 1 — 4 = p such that the
following two conditions hold:

(ii) ¢ < min, Pr(8® = ) and max, Pr(3" = z) < p, and

(iii) the following inequality holds for every ¢t € R:
[E(e(at))|” < E (e(3%)1))

Here, if the values of o and 8" are in Z/QZ, we view those values as integers in the range
(—Q/2,Q/2) (note that each element in Z/QZ has a unique such integer representation).

We will define p-bounded of exponent r for collections of random variables below, but first we
note that the conditions above are easy to verify in practice. In particular, if we have a symmetric
random variable

by with probability ppg/2

by with probability up;/2
g ={o with probability 1 — (9)
—by  with probability up;/2

—by  with probability upe/2,

where by € Z for all s (or, respectively, bs € Z/QZ for all s), then condition (iii) becomes

¢
|E(e(at))|” <E <e(ﬁ(“)t)) =1-—pu+ ,uZps cos 27bst, (10)
s=1

where the equality on the right-hand side is a simple expected value computation.

We say that a collection of random variables {ajk}z w—1 is p-bounded of exponent r if each o
is p-bounded of exponent r with the same constants p, ¢, and r; and, importantly, the same value of
1 =1—p. We also make the critical assumption that the set of all values that can be taken by the

B}Z) has cardinality O(1) (a relaxation of this assumption is discussed in Remark 8.5). However,

the definition of B](.Z) is otherwise allowed to vary with j and k. Also, we will use S to denote the
set of all possible values taken by the random variables o, and we will assume that the cardinality
of S is at most |S| < n°™.

If o takes non-integer values in C, we need to map those values to a finite field of prime order
so that we may use Definition 2.1, and for this task we will apply Lemma 4.1, which was proved



in [13]. We say that « is p-bounded of exponent r if and only if for each prime @ in an infinite
sequence of primes produced by Lemma 4.1, we have ¢¢g(c) is p-bounded of exponent r, where ¢¢
is the ring homomorphism described in Lemma 4.1 that maps S, the finite set of all possible values
taken by the o, into Z/QZ in such a way that for any matrix N,, := (s;;) with entries in S, the
determinant of NN, is zero if and only if the determinant of ¢g(Ny) := (¢ (sjk)) is zero.

Theorem 2.2. Let p be a positive constant such that 0 < p < 1, let r be a positive integer
constant, and let S be a generalized arithmetic progression in the complex numbers with rank O(1)
(independent of n) and with cardinality at most |S| < n°™. Let N, be an n by n matriz with
entries oy, each of which is an independent random variable taking values in S. If the collection
of random variables {oji 1< k<n s p-bounded of exponent r, then

Pr(N, is singular) < (p"/" + o(1))".

In the motivating examples of Section 1 (excluding Corollary 1.2), we discussed the case where
the entries of the matrix are i.i.d.; however, in general the distributions of the entries are al-
lowed to differ (and even depend on n), so long as the entries all take values in the same struc-
tured set S described above. The condition that S has additive structure seems to be an arti-
fact of the proof (in particular, at certain points in the proof of Theorem 6.1, we need the set

zyzl xj:x; €S for all j} to have cardinality at most no(”)). The easiest way to guarantee that
S has the required structure is to assume that the set of values taken by all the a;, has cardinality
at most O(1), and this is the approach we take for the corollaries in Section 3, since it also makes
it easy to demonstrate that the collection of entries is p-bounded of exponent r.

Remark 2.3 (Strict positivity in Inequality (10)). Note that the constants p,ps,bs must be such
that the right-hand side of Equation (10) is non-negative. It turns out for the proof of Theorem 2.2
that we will need slightly more. At one point in the proof, we will apply Lemma 7.3, for which we
we must assume that there exists a very small constant e_; > 0 such that E(e(ﬂj(’;)t)) > e_ for all

t and for all ﬂj(.’,i) used in the definition of p-bounded of exponent r. Of course, if the expectations
are not strictly larger than e_;, we can simply reduce pu by e_; > 0. Then, since we are assuming

1 — p1 = p, we clearly have that all the o are (p + e_1)-bounded of exponent r (by using ﬂ](.’,;_g’l)

instead of ﬂ](.‘,;)) and we have that E(e(ﬂ](.g_g’l)t)) > e_1 > 0. Since Theorem 2.2 would thus yield
a bound of ((p + e_1)/" 4 0(1))” for every e_1 > 0, we can conclude a bound of (pl/r + 0(1))” by
letting e_; tend to 0. Thus, without loss of generality, we will assume that E(e(ﬂ](.g)t)) > e_ for

all ¢t and for all ﬂ](.‘,;) used in the definition of p-bounded of exponent r.

3 Some corollaries of Theorem 2.2

In this section, we will state a number of corollaries of Theorem 2.2, starting with short proofs
of Inequalities (4), (5), and (6). The two most interesting results in this section will be more
general: first (in Section 3.2), we will show an exponential bound on the singularity probability for
a matrix with independent entries each a symmetric random variable taking values in S C C, where
|S] < O(1) and assuming that each entry takes the value 0 with probability 1 — u; and second (in
Section 3.3), we will describe a similar (and sometimes better) bound when the condition that the
random variables have symmetric distributions is replaced with the assumption that no entry takes



a value with probability greater than p. In the first case, the bound will depend only the value of
1, and in the second case, the bound will depend only on the value of p. In Section 3.4, we will
show an exponential bound on the singularity probability for an n by n matrix with f = o(n) fixed
rows containing small integer values and with the remaining rows containing independent random
variables taking values in S C C, where |S| < O(1) (this is similar to Corollary 1.2, which is proved
in Section 9). Finally, in Section 3.5, we will prove an exponential upper bound on the probability
that a random integer matrix has a rational eigenvalue.

In each corollary, we will use the definition of p-bounded of exponent 1 and of exponent 2. The
definition of p-bounded of exponent 2 is particularly useful, since then the absolute value on the
left-hand side of Inequality (10) is automatically dealt with; however, when p is small (for example
whenever p < 1/2), one can get better bounds by using p-bounded of exponent 1. We have not yet
found an example where the best possible bound from Theorem 2.2 is found by using p-bounded
of an exponent higher than 2.

3.1 Proving Inequalities (4), (5), and (6)

To prove Inequality (4), we note for 0 < p < £ that (using the definition in Equation (3) of ()
‘E(e(’y(”)t))‘ =1— p+ pcos(2rt),
and thus 7 is (1 — p)-bounded of exponent 1 (i.e., take ) := () and so Inequality (4) follows

from Theorem 2.2.
To prove Inequality (5), we note for % < <1 that

‘E(e(fy(“)t))‘ = |1 — p+ pcos(2nt)| < <2,u;— 1> + (1 — p) cos(2mt) + <2,u4— 1> cos(4mt)

(the inequality above may be checked by squaring both sides and expanding as polynomials in
cos(27t)). Thus, we can take

+2  with probability 24—

—2  with probability 2t
ﬁ(#) =< +1 with probability 1_TM

. o 1—
—1  with probability —*
0 with probability %

2 1
to see that ’y(“) is <%>—boumded of exponent 1, and so Inequality (5) follows from Theorem 2.2.
To prove Inequality (6), we note for 0 < p < 1 that

2

2 3
‘ = |1 — p+4 peos(2rt)[* =1 — 2u + §,u2 + 2(1 — p)pcos(2nt) + (%) cos(4rt).

[E(e(71))



Thus, we can take

»

+2  with probability -
—2  with probability “72

AW = {41  with probability (1 — pu)u
—1  with probability (1 — pu)u

0  with probability 1 — 2u + 32

3
to see that v(¥ is <1 —2u+ §u2>—bounded of exponent 2, and so Inequality (6) follows from
Theorem 2.2.

3.2 Matrices with entries having symmetric distributions

In this subsection, we will prove a singularity bound for an n by n matrix Nf(L” ) for which each entry
is a symmetric discrete random variable taking the value 0 with probability 1 — p.

Corollary 3.1. Let S be a set of complex numbers with cardinality |S| < O(1). If Ny(ﬂ) is an n by
n matriz in which each entry is an independent symmetric complexr random variable taking values
in S and taking the value 0 with probability 1 — pu, then

(1 -+ o))" for 0 <

Pr(NW is singular) < (Lﬁl + 0(1)) for % <

(,/1_2u+g,ﬂ+o<1>) for0< pu<1.

In particular, the same upper bounds as in Inequalities (4), (5), and (6) (which are shown in

Figure 1) apply to the singularity probability for N,(L” ).

Proof. Let a;; be an entry of Ny(L” ). Since «;; is symmetric and takes the value 0 with probability
(1) (1)

1—p, we may write o;; = ’yif 1ij, where ’yif is an independent copy of (") as defined in Equation (3)
and 7;; is a random variable that shares no values with —n;;. This description of «;; was inspired
by [1], and it allows us to condition on 7;; and then use the remaining randomness in ’yi(“ ) to get a
bound on the singularity probability. In particular,

Pr(NW is singular) = Z Pr(NW is singular|[{n;; = ¢;; 1) Pr({n;; = cij}),
(¢ij)

where the sum runs over all (n?)-tuples (c;j)1<i j<n of possible values taken by random variables
;5. Since E(Cij_) Pr({ni; = cij}) = 1, we can complete the proof by proving an exponential bound

on Pr(Nr(L”) is singular|{n;; = ¢;;}), and we will use Theorem 2.2 for this task.

(1)

Consider the random matrix NT(L” )‘ , where the 7, j entry is the random variable c,-j’yij’-‘

{nij=cis}
) take values in S, a set with cardinality

for some constant c;;. Note that the entries of NT(L“ ) ,
Nij=Cij



O(1), and let ¢g be the map from Lemma 4.1, which lets us pass to the case where NT(L”)

{nij=ci;}
has entries in Z/QZ. Defining 0;; := 2n¢g(c;j), we compute
[Ee(6q(cin)t)| = 1 = o+ peos(0,51)]
1 — p+ pcos(Bt) forog,ugé,
< 2“%4“ + (1 — ) cos(B;5t) + (Lﬁ) cos(26;;t) for 2 <p <1, and
N 9 1/2
3 9 M
<1 —2u+ oH +2(1 — p)pcos(b5t) + 5 cos(20ijt)> for0 <p<1.
We have thus shown that the entries of NT(L” )‘ are
{nij=ci;}
1
(1 — p)-bounded of exponent 1 for 0 < p < 27
2 1 1
< Pt > -bounded of exponent 1 for 3 <u <1, and
3 9
1—2u+ ol -bounded of exponent 2 for 0 < p < 1.
Applying Theorem 2.2 completes the proof. O

Corollary 3.1 is tight for 0 < p < 1, since the probability of a row of all zeroes occurring is

29

(1 —=p+0(1))"; however, for any specific case, Theorem 2.2 can usually prove better upper bounds

than those given by Corollary 3.1.
(1)

For example, consider the case of a matrix M (241} with each entry an independent copy of

the symmetric random variable

(+2  with probability

—2  with probability
o= 41 with probability
—1  with probability
0 with probability 1 — u

IS IS IS

Corollary 3.2. For MW

(t2,41),0 95 defined above, we have

(1—p+ o(1)™ foro<p<it
PI‘(M(M)

is singular) < n
{£2.41}n ( 120t 22t 0(1)> for 0< p <1,

Proof. By the definition of o*) we have

16
‘Ee(a(”)t)‘ =1—p+ 5005(27?75) + % cos(4rt), for0 <pu< %

10



(i.e., the right-hand side of the equation above is non-negative for such u), which proves the first
bound.
Also, we have

2
‘Ee(a(”)t)‘ =1-2u+ Zuz + <u - Z,u2> cos(2mt) + <,u - g;ﬁ) cos(4mt)
5 5
+ vy cos(67t) + 3 cos(8t)
for 0 < p < 1, which proves the second bound. O
We also have the following lower bounds for the singularity probability of M{(i)z, Lyt
(1 —p+o(1)" (from one row of all zeroes) (11)
(1-2p+ 5u /4 + 0(1))" (from a two-row dependency) (12)

The results of Corollary 3.2 and the corresponding lower bounds are shown in Figure 2, and one
should note that the upper bounds are substantially better than those guaranteed by Corollary 3.1.

3.3 Random matrices with entries having arbitrary distributions

A useful feature of the definition of p-bounded of exponent 2 is that it lets one bound the singularity
probability of matrices with independent discrete random variables that are asymmetric.

Corollary 3.3. Let p be a constant such that 0 < p <1 and let S C C be a set with cardinality
IS| < O(1). If Ny, is an n by n matriz with independent random entries taking values in S such
that for any entry a, we have max, Pr(a = x) < p, then

Pr(N,, is singular) < (y/p+ o(1))".

We will need the following slightly more general corollary in Section 3.4. For a set A and an
integer m, we will use the notation mA == {3°7" | a; : a; € A} and A™ = {[['L, a; : a; € A}.

Corollary 3.4. Let p be a constant such that 0 < p <1, let S C C be a set with cardinality |S| <
0(1), and let X,, be an n by n matriz with fived, non-random entries in n°™ (S U {—1,0,1})°0).
If N,, is an n by n matrixz with independent random entries taking values in S such that for any
entry o, we have max, Pr(a = x) < p, then

Pr(X, + N, is singular) < (\/p + o(1))".
Note that that Corollary 3.4 implies Corollary 3.3 by taking X,, to be the matrix of all zeroes.

Proof of Corollary 3.4. Let a;; be an entry in IV,,. Our goal is to describe ;; in a two-step random
process, condition on one of the steps, and then use the randomness in the other step to bound the
singularity probability. The conditioning approach is the same as that used in the symmetric case
(Corollary 3.1) and was inspired by [1]. The conditioning argument is useful since some entries of
the random matrix may take some values with very small probability (i.e. probability less than any
constant); recall that while the entries of the random matrix always take values in a fixed set S of
cardinality O(1), the distributions of those random variables within S are allowed to vary with n.

11
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Figure 2: Let P(u) := lim, . Pr M{ﬂ Ly 8 singular , where M{iz L1y 1S the n by n

matrix with independent random entries taking the value 0 with probability 1 — u and the values
+2,—2,+1, —1 each with probability p/4. This figure summarizes the upper bounds on P(u) from
Corollary 3.2 and the lower bounds from Displays (11) and (12). The best upper bounds (shown
in thick solid lines) match the best lower bounds (thick dashed lines) for 0 < p < %; and it is not
hard to improve the upper bound a small amount by finding a bound (of exponent 1) to bridge
the discontinuity. One should note that even as stated above, the upper bounds are substantially
better than those given by Corollary 3.1 (which are shown in Figure 1). The shaded area represents

the gap between the upper and lower bounds.
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(Note that making use of Remark 8.5 would provide an alternate way of dealing with entries that
take some values with very small probability.)

Say that «a;; takes the values vq,...,v; with probabilities o1, ..., 0, respectively, where g1 >
02 > -+ > 04 Define new random variables 7;;, such that for some ig and i1, the values taken by
Nijk re Uiy, Vig41, - - - » Vig+i; With corresponding probabilities o, /pk, 0ig+1/Pks - - - » Oig+ir /D, Where
DE = 221:1 Oip+i- Thus, we can write

n;j1  with probability p;

n;jo  with probability ps
N L (13)

n;j¢  with probability py.

Furthermore, the 7;;;, can be constructed so that p;, < p for every k, so that p/2 < p;, for 1 <k <
¢ — 1, and so that no two 7, with different £’s ever take the same value.

There are two cases to consider for the technical reason that p, is not necessarily bounded below
by a constant. Let e > 0 be a very small constant, so for example p/2 > e. Case 1 is when € < py,
and in this case each p; is bounded below by e and above by p. We will consider Case 1 first and
then discuss the small changes needed to deal with Case 2.

As in the proof of Corollary 3.1, we will condition on the values taken by the 7;;; in order to
prove a bound on the singularity probability. We have that

Pr(X,, + N, is singular) = Z Pr(X, + N, is singular|{njx = cijr.}) Pr({nijx = cijr}),

(Cijk)
where the sum runs over all possible values (cijk) that the 7;;, can take. Thus, it is sufficient to
prove a bound on the singularity probability for the random matrix X,, + N, ( , which has

Nijk=Cijk
random entries
x;j +c;j1 with probability p
_ T;j + ¢;jo with probability po
Tij + oy = g . .

xij + c;j¢  with probability py,

where z;; and the c;;, are constants.
Note the entries of X,, + N, . , take values in n°™ (S U{-1,0,1})°Y a generalized
Nijk=Cijk
arithmetic progression with rank O(1) and cardinality at most n°™ | and let ¢ be the map from
has entries in Z/QZ. Defining
B B {Nijr=cijr}
Oij1 = 2mpg(cijr) and letting oz;j be an i.i.d. copy of &;j, we compute

Lemma 4.1, which lets us pass to the case where X,, + N,

Ee(pq(zi; + ai)t))* = Ee <¢Q($z‘j + Qyj — Tij — a;j)t) = Ee <¢Q(aij - a;j)t)

J4
=D P2 D Praprs cos((Osgy — Oige,)1)-
k=1 1<k <koa<¥l
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Thus, z;; + a;; is (Zi:l pi)—bounded of exponent 2 (using the constant ¢ = €2 in Definition 2.1,
so g does not depend on n). Given that 0 < pr < p for every k, it is not hard to show
that Zizl pi < p < p+e¢, and so from Definition 2.1, we see that the collection {z;; + a;; :
@;j has corresponding probability p, > €} is (p + €)-bounded of exponent 2. We are thus finished
with Case 1.

Case 2 is when the decomposition of «;; given in Equation (13) has py < e. In this case we need
to modify Equation (13) slightly, deleting 7;;, and replacing Mij(e—1) with a new variable T’;j(f—l)
that takes all the values previously taken by 7;;, and by 7;;,—1) with the appropriate probabilities.
Thus, in Case 2, we have that p/2 < p, < p+e€ for all 1 < k < ¢ — 1, showing that each py is
bounded below by a constant and is bounded above by p + € (here we are using py_; to denote the
probability that «;; draws a value from the random variable 7723'(6—1))'

For Case 2, we use exactly the same reasoning as in Case 1 above to show that such entries of
X, + N, . , are (Ef;_:ll pi)-bounded of exponent 2 (using the constant ¢ = ¢ < p?/4 in

Nijk=Cijk
Definition 2.1, so ¢ does not depend on n). Noting that Zf;_:ll pi < p + € and using Definition 2.1,
we see that the collection {x;; + &;; : &;; has corresponding probability p, < €} is (p + €)-bounded
of exponent 2.
Combining Case 1 and Case 2, we have that the collection {z;; + @;;} is (p + €)-bounded of

exponent 2, and so by and by Theorem 2.2 we have that Pr(X,, + Nn‘ is singular) <

. {Nijr=cijr}
(vVpFe+o(1)".

The constant € > 0 was chosen arbitrarily, and so letting e tend to zero, we get that

Pr(X,, + N, is singular|{n;;x = cijr}) < (/p+o(1))".

3.4 Partially random matrices

In this subsection, we prove a bound on the singularity probability for partly random matrices
where many rows are deterministic.

Corollary 3.5. Let p be a real constant between 0 and 1, let K be a large positive constant, and
let S C C be a set of complex numbers having cardinality |S| < K. Let Nj, be an n by n matriz
in which { rows contain fived, non-random integers between —K and K and where the other rows
contain entries that are independent random variables taking values in S. If § < o(n), if the § fized
rows are linearly independent, and if for every random entry o, we have max, Pr(a = x) < p, then

Pr(Nj,, is singular) < (v/p+o(1))" 1.

Corollary 3.5 applies to partly random matrices with f = o(n) fixed, non-random rows containing
integers bounded by a constant and with random entries taking at most O(1) values in the complex