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Abstract. Let f(n, m) be the cardinality of largest subset of {1, 2, . . . , n} which does not
contain a subset whose elements sum to m. In this note, we show that

f(n, m) = (1 + o(1))
n

snd(m)

for all n(log n)1+ε ≤ m ≤ n2

9 log2 n
, where snd(m) is the smallest integer that does not divide

m. This proves a conjecture of Alon posed in [1].

1. Introduction

For n a large positive integer and m an integer between n and n2, we define f(n, m) to
be the maximum cardinality of a set A ⊂ {1, 2, . . . , n} such that no subset B ⊂ A satisfies∑

b∈B b = m. In 1986, Erdős and Graham [4] observed that f(n, m) ≥
(

1
2 + o(1)

)
n

log n . (Here,
and throughout this paper, log denotes the natural logarithm unless otherwise specified, so
log x := loge x. The asymptotic notation is used under the assumption that n →∞.)

For s a positive integer not dividing m, it is clear that f(n, m) ≥
⌊

n
s

⌋
, since any sum

of elements of the set
{
s, 2s, 3s, 4s, . . . ,

⌊
n
s

⌋
s
}

cannot divide (and hence cannot equal) m.
Letting snd(m) denote the smallest positive integer that does not divide m, we thus have

⌊
n

snd(m)

⌋
≤ f(n, m).(1)

By the prime number theorem, we know that snd(m) ≤ (2 + o(1)) log n, and so (1) matches
the lower bound observed by Erdős and Graham [4]. In 1987, Alon [1] made the following
conjecture, which essentially states that the lower bound is asymptotically sharp.

Conjecture 1.1. If n1.1 ≤ m ≤ n1.9, then

f(n, m) = (1 + o(1))
n

snd(m)
.

There have been several partial results concerning this conjecture. In [1], Alon (using
extremal graph theory, a theorem due to Moser and Scherk [8], and Roth’s Theorem [11])
proved

Theorem 1.2. [1] For every ε > 0 there exists a constant c = c(ε) ≥ 1 such that for every n
and

n1+ε ≤ m ≤ n2

log2 n
,

we have
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⌊
n

snd(m)

⌋
≤ f(n, m) ≤ cn

snd(m)
.

Later, Lipkin [7] (using analytic methods along the lines of those in [5]) showed

Theorem 1.3. [7] There exist positive constants c and C such that the following holds for
all positive integers n and m. If

cn log6 n < m <
n3/2

log3 n
,

then

f(n, m) ≤ n

snd(m)
+ C

n log(snd(m))
snd(m) log2 n

= (1 + o(1))
n

snd(m)
.

In another paper, Alon and Freiman [2] (again using analytic methods) determined the
precise value of f(n, m) for large m,

Theorem 1.4. [2] For every ε > 0 there is a constant n0 = n0(ε) such that the following
holds. If n ≥ n0 and

3n5/3+ε < m <
n2

20 log2 n
,

then

f(n, m) =
⌊

n

snd(m)

⌋
+ snd(m)− 2.

In this note, we prove Conjecture 1.1 in full using a theorem of Sárközy (see Theorem 2.1)
and elementary arguments.

Theorem 1.5. For any constants c > 0 and ε > 0, there is a constant n0 = n0(c, ε) such
that the following holds. If n ≥ n0 and

cn(log n)1+ε ≤ m ≤ n2

9 log2 n
,

then

f(n, m) = (1 + o(1))
n

snd(m)
.

Our methods can be used to prove the following inverse result, which characterizes the
structure of relatively large sets A where no subsum sums up to m. Similar results have been
obtained for finite fields (see [16, 9, 10] or [18] for a survey), but the arguments here are quite
different. This result essentially says that the example giving the lower bound in (1) is the
only way for a reasonably large subset of {1, 2, . . . , n} to avoid containing a subset that sums
up to m.

Theorem 1.6. Let c, δ, ε1, and ε2 be positive constants such that 0 < ε1 < ε2, and let m
and n be integers satisfying

cn(log n)1+ε2 ≤ m ≤ δ2n2

8(log n)2+2ε1
,

where we assume that n is sufficiently large. If
δn

(log n)1+ε1
≤ |A|
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and if no subset B ⊂ A satisfies
∑

b∈B b = m, then A contains (1 − o(1)) |A| elements that
are congruent to 0 mod d, where d is an integer that does not divide m.

2. Long arithmetic progressions in iterated sumsets

Given a set A of integers, we define

`A := {a1 + a2 + · · ·+ a` : ai ∈ A},
`∗A := {a1 + a2 + · · ·+ a` : the ai are distinct elements of A}, and

SA :=

{
m : there exists B ⊂ A satisfying

∑
b∈B

b = m

}
.

Notice that `∗A ⊂ SA.
The key fact that lets us prove Theorem 1.5 is that iterated sumsets `A and `∗A exhibit

more and more arithmetic structure as ` increases, and they even exhibit substantial struc-
ture for relatively small values of `. The first results on arithmetic progressions in `A were
produced by Freiman, Halberstam, and Ruzsa [6], by Bourgain [3], and by Sárközy [12].
Later results in this direction also applied to `∗A, for example those of Sárközy [13, 14] and
recently those of Szemerédi and Vu [16, 15, 17].

The main tool we will use is the following result due to Sárközy [14].

Theorem 2.1. [14] Let n ∈ N be such that n > 2500, let A′ ⊂ {1, 2, . . . , n}, and say∣∣A′∣∣ > 100
√

n log n.

Then, for every L ∈ N such that

n ≤ L ≤ 10−4 |A′|2

log(13n/ |A′|)
,

there exists d, `, and L0 such that

1 ≤ d ≤ 4828n

|A′|
,

1 ≤ ` ≤ 8496L

|A′|
,

and l∗A′ contains a homogeneous arithmetic progression of length L. (A homogeneous arith-
metic progression has the form {(L0 + 1)d, (L0 + 2)d, . . . , (L0 + L)d}.)

Recently, Szemerédi and Vu [15] showed that one can guarantee the existence of a (not
necessarily homogeneous) arithmetic progression of comparable length under a weaker (and
optimal) assumption that |A′| ≥ C

√
n, where C is a sufficiently large constant. It is an

interesting problem to prove (or disprove) the common strengthening of these two results.

We will apply Theorem 2.1 in conjunction with the lemma below, which allows us to
refine an arithmetic progression so that is has relatively small common difference, all while
increasing the number of terms compared to the original arithmetic progression.

Lemma 2.2. Let A′ ⊂ {1, 2, . . . , n} and let P ⊂ SA′ be an arithmetic progression with length
L = n

γ , where 0 < γ < 1
2 is a constant, and with common difference d such that each element

of P is congruent to 0 mod d. Assume that there exist d − 1 elements {a1, a2, . . . , ad−1}
of {1, 2, . . . , n} \ A′ such that ai ≡ r mod d for each i, where r is an integer satisfying
1 ≤ r ≤ d − 1. Then, the set P + S{a1,a2,...,ad−1} ⊂ SA′∪{a1,a2,...,ad−1} contains an arithmetic
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progression P ′ with common difference d′ := gcd(r, d) of length at least (1 − γ)
(

d
d′

)
L > L

such that each element of P ′ is congruent to 0 mod d′.

Note that the reason for the hypothesis 0 < γ < 1
2 is so that (1− γ) d

d′ > 1 (since d/d′ ≥ 2).

Proof. Consider the sequence of arithmetic progressions

Pk :=

{
P if k = 0,

P +
∑k

i=1 ai if 1 ≤ k ≤ d− 1.

Let p0 be the smallest element in P. Then the largest element in P0 is at least p0 + Ld,
while the smallest element in Pd−1 is at most p0 + (d− 1)n. Note that in the range

I := [p0 + (d− 1)n, p0 + Ld],

every integer that is congruent to kr mod d is contained in Pk. Thus, inside of I, every
integer that is congruent to 0 mod d′, where d′ := gcd(r, d), is contained in some Pk. Thus,⋃d−1

k=0 Pk, which is a subset of P + S{a1,a2,...,ad−1}, contains an arithmetic progression P ′ with
common difference d′ and with length at least

p0 + Ld− (p0 + (d− 1)n)
d′

≥ (L− n)
d

d′
= (1− γ)

d

d′
L + (γL− n)

d

d′
.

By assumption (1 − γ) d
d′ > 1 and γL − n ≥ 0, and by construction, every element of P ′ is

congruent to 0 mod d′. �

3. Proof of the main results

3.1. Proof Theorem 1.5. We may restate Theorem 1.5 as follows:

Theorem 3.1. For any constant c > 0, there exists a constant C = C(c) > 0 such that the
following holds for all ε > 0 and all integers m and n satisfying

cn(log n)1+ε ≤ m ≤ n2

9 log2 n
,

where we assume that n is sufficiently large with respect to ε and c. If A ⊂ {1, 2, . . . , n} has
cardinality

|A| ≥ n

snd(m)
+

Cn

(log n)1+ε
= (1 + o(1))

n

snd(m)
,

then m can be represented as a sum of distinct elements of A.

Proof. Let C ′ := 7·104

c , and let C := C ′ + 1. Let A′ ⊂ A such that |A′| = C′n
(log n)1+ε . By

Theorem 2.1, we have that there is an arithmetic progression P of length L = 5n ≤ 10−4|A′|2
log n

and common difference d such that each element in P is congruent to 0 mod d and such that
P ⊂ `∗A′ ⊂ SA′ , where ` ≤ 8496L/ |A′| ≤ 5c

7 (log n)1+ε. Also, we have that d ≤ 4828n/ |A′| ≤
c
7(log n)1+ε. Now consider the following process.

Step 0: Set A′
0 := A′, set B0 := A \A′

0, set P0 := P, and set d0 := d.
Step i: (a) Look at the elements of Bi modulo di. If for each 1 ≤ r ≤ di − 1 there are at

most di − 2 elements in Bi congruent to r mod di, then STOP. Otherwise, go
to (b).
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(b) Let 1 ≤ r ≤ di − 1 be an integer such that there are at least di − 1 elements of
Bi congruent to r mod di and such that gcd(r, di) is as small as possible. Call
this set of di − 1 elements B′

i ⊂ Bi. By Lemma 2.2 (with γ = 1/5), we know
that Pi +SB′

i
⊂ SA′

i∪B′
i
contains an arithmetic progression Pi+1 of length at least

L and with common difference di+1 := gcd(r, di). Set A′
i+1 := A′

i ∪ B′
i and set

Bi+1 := A \A′
i+1. Now go to step i + 1.

Note that di+1 ≤ di/2, and thus the algorithm can take at most log2 d = O(log n) steps.
Thus, at the final step, say t, we have

|Bt| ≥ |A| −
∣∣A′∣∣− d(1 + 1/2 + 1/4 + · · ·+ 1/2t−1)

≥ n

snd(m)
+

Cn

(log n)1+ε
− C ′n

(log n)1+ε
− 2 · c

7
(log n)1+ε

≥ n

snd(m)
+

3
4

(
n

(log n)1+ε

)
,

for sufficiently large n.
Also note that at the final step t, at most (d− 1)2 ≤ c2

49(log n)2+2ε elements of Bt are not
congruent to 0 mod dt. Thus, Bt contains at least

|Bt| −
c2

49
(log n)2+2ε ≥ n

snd(m)
+

1
2

(
n

(log n)1+ε

)
>

n

snd(m)

elements that are congruent to 0 mod dt (again, assuming that n is sufficiently large). But
{1, 2, . . . , n} contains only n/dt elements congruent to 0 mod dt, and so we must have that
dt < snd(m). This key fact implies, by the definition of snd(m), that dt divides m.

Now, let {b1, b2, . . . , bk0} be elements of Bt congruent to 0 mod dt, where k0 =
⌊

n
snd(m)

⌋
.

We will “grow” the arithmetic progression so that it is long enough to contain m. Recall
that Pt is the final arithmetic progression constructed by the process above, and consider the
sequence of arithmetic progressions

Qk :=

{
Pt if k = 0,

Pt +
∑k

i=1 bi if 1 ≤ k ≤ k0.

Note that Qk−1 overlaps with Qk for all 1 ≤ k ≤ k0, since Pt has length greater than n and
since all elements in Pt and in {b1, b2, . . . , bk0} are congruent to 0 mod dt. Thus, SA contains
an arithmetic progression Q =

⋃k0
k=0Qk with common difference dt < snd(m) and with each

element of the arithmetic progression congruent to 0 mod dt.
The largest element in Q is at least

k0+1∑
i=1

i ≥ n2

2 snd(m)2
≥ n2

9 log2 n
,

using the fact that (by the prime number theorem) snd(m) ≤ (2 + o(1)) log n. On the other
hand, the smallest element in Q (which is the same as the smallest element in Pt) is at most

n(` + d(1 + 1/2 + · · ·+ 1/2t−1)) ≤ n(` + 2d) ≤ c(log n)1+ε

By assumption, we have cn(log n)1+ε ≤ m ≤ n2

9 log2 n
, and so we see that Q contains m,

completing the proof. �
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3.2. Proof of Theorem 1.6. We may restate Theorem 1.6 as follows:

Theorem 3.2. For any constant c > 0, there exists a constant C = C(c) > 0 such that the
following holds for all constants 0 < ε1 < ε2, for all δ > 0, and for all integers m and n
satisfying

cn(log n)1+ε2 ≤ m ≤ δ2n2

8(log n)2+2ε1
,

where we assume that n is sufficiently large with respect to c, ε1, ε2, and δ. If A ⊂ {1, 2, . . . , n}
has cardinality

|A| ≥ δn

(log n)1+ε1

and if m cannot be represented as a sum of distinct elements in A, then A contains at least
δn

(log n)1+ε1
− Cn

(log n)1+ε2
= (1− o(1)) |A|

elements that are congruent to 0 mod d, where d is an integer that does not divide m.

One can prove Theorem 3.2 using the same proof as for Theorem 3.1 (with a few small
changes). Here we only sketch the proof. For a set A satisfying the conditions of theorem
3.2, let A′ ⊂ A be such that |A′| = Cn

3(log n)1+ε2
. By Theorem 2.1 we can find a long arithmetic

progression P ⊂ SA′ and refine it by Lemma 2.2. If the refining process ends after t steps
then we have an arithmetic progression Pt with common difference dt. The set Bt ⊂ A will
contain at least

δn

(log n)1+ε1
− Cn

(log n)1+ε2
(2)

elements that are congruent to 0 mod dt. After “growing” Pt using these elements we have a
long arithmetic progression Q with elements that are congruent to 0 mod dt, with common
difference dt, and containing elements both smaller and larger than m. If m is congruent to
0 mod dt then m ∈ Q ⊂ SA, a contradiction; thus, dt does not divide m and the theorem is
proved.
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