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Abstract. We study the empirical spectral distribution (ESD) in the limit where n → ∞ of a fixed n by n matrix Mn plus small
random noise of the form f (n)Xn, where Xn has iid mean 0, variance 1/n entries and f (n) → 0. It is known for certain Mn,
in the case where Xn is iid complex Gaussian, that the limiting distribution of the ESD of Mn + f (n)Xn can be dramatically
different from that for Mn. We prove a general universality result showing, with some conditions on Mn and f (n), that the limiting
distribution of the ESD does not depend on the type of distribution used for the random entries of Xn. We use the universality result
to exactly compute the limiting ESD for two families where it was not previously known. The proof of the main result incorporates
the Tao–Vu replacement principle and a version of the Lindeberg replacement strategy, along with the newly-defined notion of
stability of sets of rows of a matrix.

Résumé. Nous étudions la distribution spectrale empirique (DSE) dans la limite n → ∞ d’une matrice Mn, de taille n par n, plus
un petit bruit aléatoire de la forme f (n)Xn, où Xn a des entrées iid centrées, avec variance 1/n, et f (n) → 0. Il est connu que
pour certaines matrices Mn, dans le cas où Xn a des entrées complexes gaussiennes iid, alors la distribution limite de la DSE de
Mn + f (n)Xn peut être radicalement différente de celle de Mn. Nous prouvons un résultat général d’universalité en montrant,
sous quelques conditions sur Mn et f (n), que la distribution limite de la DSE ne dépend pas du type de la distribution des entrées
aléatoires de Xn. Nous utilisons ce résultat d’universalité pour calculer exactement la limite de la DSE pour deux familles pour
lesquelles le résultat n’était pas connu auparavant. La preuve du résultat principal incorpore le principe de remplacement de Tao–
Vu et une version de la stratégie de remplacement de Lindeberg, avec une notion nouvelle de stabilité d’ensembles de lignes d’une
matrice.
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1. Introduction

Given an n by n complex matrix A, we define the empirical spectral distribution (which we will abbreviate ESD), to
be the following discrete probability measure on C:

μA(z) := 1

n

n∑
j=1

δλj
,

where λ1, λ2, . . . , λn are the eigenvalues of A with multiplicity and δx is the Dirac measure centered at x. For a
sequence of random matrices An, we say that μAn converges in probability to another probability measure μ if for
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every smooth, compactly supported test function g : C → C we have that
∫
C

g dμAn converges in probability to∫
C

g dμ.
Questions about the limiting distribution of the ESD of random matrices started in the 1950s and have generated

much recent interest. The circular law states that the ESD of a random n by n matrix Xn with iid mean 0, variance
1/n entries converges to the uniform measure on the unit disk. The circular law was proven following a long line
of work including Mehta [17] (complex Gaussian case), Girko [11,12] (introducing the Hermitization approach),
Edelman [8] (real Gaussian case), Bai [2] and Bai–Silverstein [1] (continuous case with bounded (2 + δ)th moment,
for δ > 0), Götze–Tikhomirov [13] (sub-Gaussian case) and [14] (bounded (2 + δ)th moment, for δ > 0), Pan–Zhao
[18] (bounded 4th moment), and Tao–Vu [23] (bounded (2 + δ)th moment, for δ > 0), with the circular law as stated
above proved by Tao and Vu in [25]. (For more, see the surveys [5,20] and references therein.) Low rank perturbations
of random matrices with iid entries do not change the limiting bulk ESD, even for perturbations up to rank o(n) (see
[25, Corollary 1.12], [6], and [4]); however, such perturbations can produce outlier eigenvalues – see [21,22].

Limiting distributions of ESDs of an entirely different type of random matrix – based on uniform Haar measure –
have also generated much interest, including the recent work [15] proving the Single Ring Theorem (there is an
interesting outlier phenomenon for the Single Ring Theorem as well, see [3]). It is shown in [15, Proposition 4] that
adding polynomially small iid complex Gaussian noise expands the class of random matrices to which the Single Ring
Theorem applies, essentially removing a hypothesis about the smallest singular value. This fact inspired further work
[16] studying how adding polynomially small iid complex Gaussian noise can change the limiting ESD – in some
cases quite dramatically – of a sequence of fixed matrices, and that it turn lead the current paper to study the effects
on the ESD of adding small iid non-Gaussian random noise.

We will consider the case where Mn is a fixed sequence of n by n complex matrices, to which we will add small
random noise to get An = Mn + f (n)Xn, where Xn is a random complex n by n matrix with iid mean 0, variance
1/n entries, and f (n) → 0 as n → ∞. We will refer to the case where f (n) = n−γ for some γ > 0 as polynomially
small random noise, and we will refer to the general case as random noise scaled by f (n). The initial motivation for
this paper is the fact that, in some natural cases, the ESDs of the perturbed matrix An and fixed matrix Mn are very
different, even when the random perturbation is very small, e.g. f (n) = n−100. For example, the n by n nilpotent
matrix

Tn =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . 0 1

0
. . .

. . .
. . . 0

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

has only zero as an eigenvalue, with multiplicity n. However, if one sets f (n) = n−γ for some γ > 0 and Xn has iid
complex Gaussian entries scaled by 1/n, then the ESD of An = Mn +f (n)Xn converges in probability to the uniform
distribution on the unit circle {z : |z| = 1} (proven in [16]; see also [19]). Figure 1 plots the eigenvalues for γ = 10
and n = 50, 500, and 5000.

Interestingly, the ESD of Tn remains unstable even after polynomially small noise is added, in the sense that a
low-rank perturbation (namely rank o(n)) of Tn + n−γ Xn can change the limiting ESD – see [16, Corollary 8]. This
contrasts with low-rank perturbations of the circular law, in which case any rank o(n) perturbation added to the random
matrix Xn still has ESD that converges to uniform on the unit disk (see [25, Corollary 1.12], [6], and [4]).

The matrix Tn shows that the ESD can be very sensitive to small perturbations (this has been noted before; see
[16,19]). In this paper, we approach the related universality question: “Is the ESD of a fixed matrix sensitive to the
type of randomness in a small perturbation?” For example, in Figure 1, would the ESD plots look the same if the
perturbation Xn had iid entries that were Bernoulli +1/

√
n or −1/

√
n each with probability 1/2, rather than complex

Gaussian?
The first step towards answering this question was taken in [16, Remark 3], where it is noted (thanks to a comment

by R. Vershynin) that in fact the main result of [16] extends to the case where the noise matrix has entries that are iid
and possess a bounded density. Of course, the bounded density assumption excludes Bernoulli random matrices. The
approach in the current paper will not require entries to have bounded density.
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Fig. 1. The eigenvalues of Tn (see Equation (1)) plus n−10Xn, where Xn is an n by n random iid Gaussian matrix. A circle is of radius 1 centered
at the origin is plotted for comparison (not visible when n = 5000). With no perturbation, all eigenvalues of Tn equal zero.

In [25], Tao and Vu (with an appendix by Krishnapur) develop a general replacement principle (Theorem 6 below)
that shows convergence of ESDs for random matrix models An and Bn if the log-determinants of An + zIn and
Bn + zIn converge for almost every fixed complex number z, where In is the n by n identity matrix. This is the
framework for the approach in the current paper: if a small perturbation does not change the log-determinant of
An + zIn, we can use the replacement principle to prove convergence of the ESDs.

Our focus is on matrices Mn + zIn where some (usually many) of the rows satisfy the following stability condition
for almost every complex number z.

Definition 1 (ε-stable). A set of vectors {v1,v2, . . . ,vk} is ε-stable if

dist
(
vj ,Span{vi : 1 ≤ i ≤ k, i �= j})≥ ε

for all 1 ≤ j ≤ k. In general, ε will be a function of n and other parameters.

A set of vectors that contains a linear dependence is always ε-stable only for ε = 0, and a set of linearly independent
vectors is always ε-stable for some positive (though possibly very small) ε. For example, the n by n matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
. . .

...

0 0 . . . 0 1 0√
1−ε2

n−1

√
1−ε2

n−1 . . . . . .

√
1−ε2

n−1 ε

⎞⎟⎟⎟⎟⎟⎟⎟⎠
has rows that are all length 1, and the set of rows is ε-stable, but is not δ-stable for any δ > ε; furthermore, ε may be
chosen arbitrarily small in this example. One can think of ε as quantifying the linear independence of set of vectors,
for example, the last row in the matrix M above is only ε away from being linearly dependent on the first n − 1 rows.

The ε-stable property is reasonably general; for example, a random matrix Rn with iid mean zero, variance 1/n

entries – thus the row vectors each have expected norm one – contains a set of n(1 − o(1)) rows that are ε-stable for
ε ≥ n−1/12/2 (see Proposition 12); this is also true if zIn is added to the matrix.

The ε-stability property quantifies the smallest amount one vector would have to be perturbed in order to fall into
the span of the remaining vectors. Intuitively, one might think that the ESD of a matrix with all rows ε-stable would
not change much under a perturbation that was much smaller than ε. For example, the set of all rows of a diagonal
matrix Dn plus zIn is always at least Θ(1)-stable for almost every z ∈C (note z is a constant); thus, one would expect
(correctly) that a small o(1) perturbation of Dn has no effect on the limiting ESD (this follows from the Geršgorin
Circle Theorem [10,26], for example).

However, having many ε-stable rows is not the whole story. By inductive computation, the first n − 1 rows of the
matrix Tn + zIn are Θ(1)-stable (see Lemma 20); and yet, a small perturbation results in a dramatic change to the



1880 P. M. Wood

ESD as shown in Figure 1. The issue is that when |z| is small, the last row of Tn + zIn is only distance O(|z|n) from
the span of the first n − 1 rows, allowing a small perturbation to produce large changes in the ESD.

It turns out that we can use bounds on the smallest singular value from [23] and the replacement principle approach
from [25] to ignore a small fraction of the rows (in fact, any number g(n) = o(n/ logn) can be ignored). This allows
us to use the ε-stability property on the remaining rows to show that the limiting ESD does not depend on the type
of randomness in the perturbation. Our main result (Theorem 2) shows for a large class of matrices Mn and for
small perturbations that while the ESDs of Mn + f (n)Xn and Mn may differ, the limiting distribution of the ESD of
Mn + f (n)Xn is unchanged if the random noise Xn is replaced by a different random matrix ensemble with iid mean
0, variance 1 entries.

Theorem 2 (Universality of small random noise). Let Mn be sequence of complex n by n matrices satisfying

sup
n

1

n
‖Mn‖2

2 < ∞. (2)

Let x and y be complex random variables with mean 0 and variance 1, and let Φn and Ψn be n by n matrices having
iid entries x/

√
n and y/

√
n, respectively.

Let An = Mn + n−γ Φn and let Bn = Mn + n−γ Ψn, where γ > 1.5 is a constant. Assume for almost every z ∈ C

that there is a set S of at least n − n/ log1.1 n rows of Mn + zI that is ε-stable, where

n3/4−γ /2 logn

ε
→ 0 as n → ∞.

Then μAn − μBn converges in probability to zero as n → ∞.

The function n/ log1.1 n above can be replaced by any function that is o(n/ logn) without changing the proof. Also,
while the constraint γ > 1.5 is needed here, it is likely an artifact.

In Section 2 we will use Theorem 2 to compute the exact limiting ESD for two families of fixed matrices Mn;
both results are new. The two families are block-diagonal matrices Mn, where the diagonal blocks each equal Tk

for some value k. In Theorem 3, when the diagonal blocks are small (k 
 logn), all the rows in the matrix Mn are
ε-stable with ε large enough that the limiting ESD is equal to the limiting ESD of the original matrix Mn (namely
all zeros). In Theorem 5, when the diagonal blocks are large (k � logn), Theorem 2 shows that the limiting ESD
Mn plus any polynomial small random noise is equal to the limiting ESD of Tn plus complex Gaussian polynomially
small random noise (which is uniform on the unit circle {z : |z| = 1} by [16], see also [19]). These families of block-
diagonal matrices were introduced in [16], where the case k = c logn for c a positive constant was also studied. In
[16], it was shown that the limiting spectral radius when k = c logn of the block diagonal matrix Mn plus random
noise scaled by n−γ with γ > 5/2 is strictly less than 1, with probability approaching 1 as n → ∞. The same families
of fixed matrices are studied by Feldheim, Paquette and Zeitouni [9] in the case of iid Gaussian small random noise
using a different approach than that used in the current paper. Feldheim, Paquette and Zeitouni [9] prove a theorem
generalizing Theorem 3 and Theorem 5 in the Gaussian case, while also allowing the block size to vary. For the iid
Gaussian noise case, Feldheim, Paquette and Zeitouni [9] also determine the limiting ESD explicitly, including in
the case where k = c logn for constant c, which is especially interesting since the limiting ESD depends on γ for
polynomially small Gaussian noise scaled by n−γ . (Note that the methods of the current paper do not directly apply
when k = c logn, since then there too many rows (namely n/(c logn)) that must be excluded from the ε-stable set in
order for ε to be large enough.)

In [19], it is shown that there exists a scaling tn of iid complex Gaussian noise (with tn → 0) such that ESD of
the matrix Mn plus the tn-scaled Gaussian noise converges almost surely to the Brown measure. No bounds on tn are
given, however. In [16] it is shown that polynomially small noise is a sufficient: the distribution of the ESD of a matrix
Mn plus polynomially small iid complex Gaussian noise converges in probability to the Brown measure of the matrix
Mn, so long as the matrix Mn and the Brown measure each satisfy a certain regularity property. Theorem 2 shows that,
if Mn satisfies (2) and the ε-stability condition and random noise is polynomially small, then the requirement that the
perturbation Φn be complex Gaussian may be removed: in fact, any Φn with iid mean zero, variance one entries will
suffice. Theorem 2 has an additional benefit in that it applies to cases where the ESD does not converge to the Brown
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measure; in fact Theorem 3 is an example of just such a situation. The proof of Theorem 2 uses an approach that does
not use the free probability machinery that features in [16,19].

Topics are organized as follows. We can apply Theorem 2 to our motivating question, proving that the limiting ESD
of Tn plus polynomially small random noise is always uniform on the unit circle; see Section 2. In Section 2 we also
discuss the block-diagonal class of matrices generalizing Tn (introduced in [16]) and use Theorem 2 to compute the
limiting ESD in two cases where it was previously unknown. In Section 3, we will discuss the replacement principle
approach to proving universality developed by Tao and Vu [25] (see also [27]). In Section 5, we will prove that
small perturbations of ε-stable sets of vectors remain (ε/2)-stable, and we will show how this relates to the tools in
Section 3. The proof of Theorem 2 is in Section 4.

No effort is made to optimize constants, and we will often choose explicit constants to make computations clearer.
All logarithms are natural unless otherwise noted. Also, we will use ‖A‖2 = tr(A∗A)1/2 to denote the Hilbert–Schmidt
norm (also called the Frobenius norm).

2. Application to a class of non-normal matrices

In this section, we will give sketches of how the main theorem (Theorem 2) can be applied to a class of nilpotent
matrices generalizing Tn that has interesting behaviors when small random noise is added. The ESDs of these matrices
plus small random noise were studied in [16] (see also [19]) and also in [9].

Let b be a positive integer, and define Tb,n to be an n by n block diagonal matrix with each b + 1 by b + 1 block
on the diagonal equal to Tb+1 (as defined above in Equation (1)). If b + 1 does not divide n evenly, an additional
block equal to Tk where k ≤ b is inserted at bottom of the diagonal (in particular, k = n −  n

b+1�(b + 1), and if k = 0,
then no additional block is needed). Thus, every entry of Tb,n is zero except for entries on the superdiagonal (the
superdiagonal is the list of entries with coordinates (i, i + 1) for 1 ≤ i ≤ n− 1), and the superdiagonal of Tb,n is equal
to

(1,1, . . . ,1︸ ︷︷ ︸
b

,0,1,1, . . . ,1︸ ︷︷ ︸
b

,0, . . . ,1,1, . . . ,1︸ ︷︷ ︸
b

,0,1,1, . . . ,1︸ ︷︷ ︸
≤b

).

(Note that Tb,n was defined slightly differently in [16], in that the last (possibly non-existent) diagonal block contained
all zeros.) Recall that the spectral radius of a matrix is the maximum absolute value of the eigenvalues. In [16], it was
proven that the distribution of the ESD of Tn plus polynomially small Gaussian noise converges in probability to
uniform on the unit circle, and it was shown for γ > 5/2 that the spectral radius of Tlogn,n, plus random noise scaled
by n−γ is strictly less than 1, with probability approaching 1 as n → ∞.

The matrix Tb,n + zI has a large set of rows that are ε-stable for constant ε (depending on z), namely the set of all
rows of the form (0, . . . ,0, z,1,0, . . . ,0), a set having size at least n − n/(b + 1)� (see Lemma 20). However, the
ε-stability of the set of all rows of Tb,n +zI is much smaller, having size Θ(|z|b+1) for small z, which is exponentially
small when b = Θ(n) (see Lemma 21).

We can apply our main theorem to prove the following two results about the limiting ESD of Tb,n plus polynomially
small random noise, for different sizes of b.

Theorem 3 (Small blocks). Let Tb,n be as defined above, with b = o(logn), and let Φn be a random matrix with iid
mean 0 variance 1/n entries.

Then, the distribution of the ESD of Tb,n + n−γ Φn, where γ > 1.5, converges in probability to the Dirac measure
δ0, with mass 1 at the origin.

Sketch. Blocks of size b = o(logn) are small enough that the ε-stability of all the rows of the matrix is reasonably
high, namely ε > Ω(no(1)) (see Lemma 21). We can apply the proof approach for the main result (Theorem 2) to
show that the distribution of the ESD of Tb,n + n−γ Φn converges in probability to the ESD of Tb,n, which has all
eigenvalues equal to zero. The full details appear in Section 6. �

In the case where bn → ∞ (e.g., bn = log logn), Sniady’s result [19] shows that the distribution of the ESD of the
perturbation of Tb,n converges almost surely to uniform on the unit circle {z : |z| = 1} (matching the Brown measure),
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if one perturbs with random iid complex Gaussian noise scaled by some particular tn, where tn → 0. Theorem 3 shows
that, for polynomially small random noise, the distribution of the ESD of the perturbed matrix does not converge to
the Brown measure, but rather converges in probability to the limiting ESD of Tb,n without perturbation (namely, the
Dirac measure δ0). Two interesting questions one might ask are what is the scaling tn so that the ESD converges to
uniform on the unit circle, and whether universality holds for that scaling tn.

Remark 4. One could conceive of a of Theorem 2 where the random noise was scaled by an arbitrary function f (n)

with f (n) → 0 as n → ∞, rather than by n−γ . The singular value bound (from [23], which is restated in Theorem 9)
hold in a useful form if f (n) ≥ n−γ (e.g. f (n) = 1/ logn), but it would not be useful for exponentially small f (n).
Conversely, the ε-stability condition would likely be fine for f (n) ≤ n−γ (including f (n) exponentially small) but is
likely to be problematic when f (n) � n−γ (e.g. f (n) = 1/ logn), requiring in the latter case that ε is much larger
than practical. Nonetheless, in principle, we expect – supported by some computer experimentation – that universality
of the form in Theorem 2 is very robust and should hold without conditions on the size of the random noise.

Theorem 5 (Large blocks). Let Tb,n be as defined above with b � logn (i.e., b/ logn → ∞ as n → ∞), and let Φn

be a complex iid random matrix where each entry has mean 0 and variance 1/n.
Then, the distribution of the ESD of Tb,n +n−γ Φn, where γ > 1.5, converges in probability to the uniform measure

on the unit circle {z : |z| = 1}. In particular, by setting b = n − 1, we have that the distribution of the ESD of Tn +
n−γ Φn, where γ > 1.5, converges in probability to the uniform measure on the unit circle.

Sketch. In this case, there are only o(n/ logn) rows of Tb,n that differ from the corresponding rows of Tn. We
can ignore these rows using the replacement principle approach from [25] (see Section 3), thus showing that the
distribution of the ESD of Tb,n + n−γ Φn converges in probability to the distribution of the ESD of Tn + n−γ Φn.

Next, we can apply Theorem 2, noting that if the last row is excluded, the remaining rows are ε-stable for constant
ε (Lemma 20), to show that the ESD of Tn + n−γ Φn converges in probability to the ESD of Tn + n−γ Ψn, where Ψn

has iid complex Gaussian entries with mean 0 and variance 1/n. This ESD in turn converges in probability to uniform
on the unit circle by [16]. �

3. The replacement principle approach to proving universality

In [25], Tao and Vu (with an appendix by Krishnapur) prove a general result giving sufficient conditions for the ESDs
of two matrices to become close to each other.

Theorem 6 ([25]). Suppose for each n that An,Bn ∈Mn(C) are ensembles of random matrices. Assume that

(i) The expression

1

n
‖An‖2

2 + 1

n
‖Bn‖2

2

is bounded in probability (resp. almost surely).
(ii) For almost all complex numbers z,

1

n
log
∣∣det(An + zI)

∣∣− 1

n
log
∣∣det(Bn + zI)

∣∣
converges in probability (resp. almost surely) to zero. In particular, for each fixed z, these determinants are non-
zero with probability 1 − o(1) for all n (resp. almost surely non-zero for all but finitely many n).

Then, μAn − μBn converges in probability (resp. almost surely) to zero.
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Note that Theorem 6 makes no assumption about the type of randomness in An and Bn, or even whether the entries
are independent. We will eventually require independence of the entries in order to use bounds on the smallest singular
value.

Lemma 7. For γ > 0 and Φn and Mn as in Theorem 2, the matrix An = Mn + n−γ Φn satisfies 1
n
‖An‖2

2 is almost
surely bounded, and the same statement holds with An replaced by Bn = Mn + n−γ Ψn.

Proof. Paraphrasing [25, Lemma 1.9], the result follows by combining (2) with the triangle inequality, and using the
law of large numbers along with the fact the second moments of the entries in

√
nΦn are finite. �

As noted in [25], one fact that makes Theorem 6 particularly useful is that there are a number of different ways to
express |det(A)|. For example, for an n by n matrix A

∣∣det(A)
∣∣= n∏

i=1

|λi | =
n∏

i=1

σ(A) =
n∏

i=1

di(A), (3)

where λ1, . . . , λn are the eigenvalues of A (with multiplicity), where σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) ≥ 0 are the singu-
lar values of A, and where di(A) is the distance from the ith row of A to the span of the first i − 1 rows. Combining
Equation (3) with a result such as Lemma 7 reduces proving universality of the ESD to a question about the dis-
tance from a perturbed vector to a span of perturbed vectors. In particular, one can prove Theorem 2 using Lemma 7,
Theorem 6, and the following proposition:

Proposition 8. Let Xi be the rows of An +zI and let Yi be the rows of Bn +zI , where An and Bn are as in Theorem 2.
For almost all complex numbers z,

1

n

n∑
i=1

log dist
(
Xi,Span{X1, . . . ,Xi−1}

)− log dist
(
Yi,Span{Y1, . . . , Yi−1}

)
(4)

converges in probability to zero.

Proving Proposition 8 is the goal of Section 3.1, Section 4 and Section 5.

3.1. Singular values for polynomially small random noise

As shown in [25], a bound on the singular values allows one to bound the highest-dimensional distances in (4).
For an n by n matrix Mn, let ‖Mn‖ denote the spectral norm of Mn (which is also the largest singular value of

Mn), namely

‖Mn‖ = sup
|v|=1

|Mnv|.

For a matrix M , let the singular values be denoted

σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) ≥ 0.

Theorem 9 (Least singular value bound, [23]). Let A,B,γ be positive constants, and let x be a complex-valued
random variable with non-zero finite variance (in particular, the second moment is finite). Then there are positive
constants C1 and C2 such that the following holds: if Xn is the random n by n matrix whose entries are iid copies of
x, and Mn is a deterministic n by n matrix with spectral norm ‖Mn‖ ≤ nB−γ , then,

P
(
σn

(
Mn + n−γ Xn

)≤ n−C1−γ
)≤ C2n

−A.
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The above is a restatement of [23, Theorem 2.1] using the fact that σn(Mn + n−γ Xn) ≤ n−C1−γ is equivalent to
σn(n

γ Mn + Xn) ≤ n−C1 . Applying Theorem 9 to the matrices An and Bn from the statement of Theorem 2, we have
with probability 1 that

σn(An), σn(Bn) ≥ n−O(1), (5)

for all but finitely many n. As pointed out in [25], a polynomial upper bound

σn(An), σn(Bn) ≤ nO(1) (6)

holds with probability 1 for all but finitely many n. (The upper bound follows from (2), the bounded second moments
of x and y, and the Borel–Cantelli lemma.)

Lemma 10. Let Xi be the rows of An + zI and let Yi be the rows of Bn + zI , where An and Bn are as in Theorem 2.
For almost all complex numbers z and with probability 1,∣∣log dist

(
Xi,Span{X1, . . . ,Xi−1}

)∣∣≤ O(logn)

and ∣∣log dist
(
Yi,Span{Y1, . . . , Yi−1}

)∣∣≤ O(logn)

for all but finitely many n.

The above lemma follows from (5), (6) and [25, Lemma A.4]. When bounding a sum such as (4), Lemma 10 allows
one to ignore up to o(n/ logn) rows, since a sum of o(n/ logn) numbers that are each at most O(logn) is at most
o(n), which converges to zero when scaled by 1/n.

4. Proof of Proposition 8

We will now prove Proposition 8, thereby completing the proof of Theorem 2. In the proof, we will use tools described
above along with Proposition 11 below which we will prove in Section 5 as Proposition 19.

Note that Proposition 8 can be restated in terms of determinants (see (3)), and thus Proposition 8 is equivalent to the
same statement with the rows and corresponding columns of the matrices reordered in the same way (since reordering
rows and columns has no effect on the determinant). Recall that An + zI = Mn + n−γ Φn + zI and Bn + zI =
Mn + n−γ Ψn + zI , and note that reordering rows and columns of Φn and Ψn has no effect since the entries are iid.
Thus, in proving Proposition 8, we may reorder the rows and corresponding columns as is convenient. In particular, we
may reorder so that Z1, . . . ,Zm are the first m rows of Mn + zI and are ε-stable with the same ε from the assumption
in Theorem 2. We may further require that the reordering satisfies ‖Z1‖2 ≥ ‖Z2‖2 ≥ · · · ≥ ‖Zm‖2.

Proposition 11. Let Mn + zI be an n by n matrix, let Φn and Ψn be n by n complex matrices with each row a
random complex vector with mean 0 and variance 1, and let Z1, . . . ,Zm be the first m rows of Mn + zI , where
m = n− 2n

log1.1 n
�. Assume that ‖Z1‖2 ≥ ‖Z2‖2 ≥ · · · ≥ ‖Zm‖2. If {Z1, . . . ,Zm} is ε-stable and there exists a constant

γ > 1.5 so that

δn,ε := n−γ /2+3/4 log1/4(n)
√

max1≤i≤m{1,‖Zi‖2}
ε

→ 0 as n → ∞,

then with probability at least 1 − 1/ logn we have,∣∣∣∣∣1n
m∑

i=1

logdi

(
Mn + zI + n−γ Φ

)− logdi

(
Mn + zI + n−γ Ψ

)∣∣∣∣∣≤ 20δn,ε

for all sufficiently large n, where di(A) is the distance from the ith row of a matrix A to the span of rows 1,2, . . . , i −1.
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The proof approach of Proposition 11 is to add up the errors from perturbing each row with polynomially small
random noise. If the set of rows is ε-stable with ε enough larger than the polynomially small random noise, then
the sum of all the errors can be shown to be small. See Section 5 and Proposition 19 (which is a restatement of
Proposition 11) for details.

To prove Proposition 8, we will first exclude rows from {Z1, . . . ,Zm} that are large. From the assumption (2) that
supn

1
n
‖Mn‖2

2 < ∞, we know that all but at most n

log1.1 n
rows of Mn + zI satisfy ‖Zi‖2 > O(log0.55 n). We will

exclude the first n

log1.1 n
rows from the stable set, focusing instead on the set {Zi : n

log1.1 n
< i ≤ m} which is ε-stable

and satisfies

‖Zi‖2 ≤ O
(
log0.55 n

)
, for

n

log1.1 n
≤ i ≤ m.

Next, we will reorder the rows and corresponding columns so that the set {Zi : n

log1.1 n
< i ≤ m} is the first m′ =

m − n

log1.1 n
� = n − 2n

log1.1 n
� rows of the reordered matrix.

Recall that to prove Proposition 8 we must show for almost every z ∈ C that

1

n

n∑
i=1

logdi

(
Mn + zI + n−γ Φ

)− logdi

(
Mn + zI + n−γ Ψ

)
(7)

converges to zero in probability, where di(A) is the distance from the ith row of matrix A to the span of the first i − 1
rows.

Lemma 10 shows that the portion of the sum in (7) for m′ < i ≤ n converges to zero in probability, and Proposi-
tion 11 proves that portion of the sum in (7) for 1 ≤ i ≤ m′ = n − 2n/ log1.1 n� also converges to zero in probability

(note that δn,ε <
n3/4−γ /2 logn

ε
→ 0 as n → ∞ by assumption).

5. The stability approach for small random noise

Using Theorem 6, we see that one way to prove universality is to control quantities of the form

dist
(
Zi + f (n)ϕn,Span

{
Z1 + f (n)ϕ1, . . . ,Zi−i + f (n)ϕi−1

})
,

where Zj is a row of Mn and ϕj is a random n-dimensional vector with iid mean zero, variance 1/n entries.
As a warm-up, we show in the proposition below that most matrices satisfy the ε-stable condition given in Theo-

rem 2 when one takes γ > 5/3.

Proposition 12. Let Rn be a random matrix where the entries are iid copies of x/
√

n, where x is a mean zero, variance
1 complex random variable. Then, with probability one, Rn contains a set of n − n5/6 rows that is (n−1/12/2)-stable,
for all but finitely many n. Furthermore, the same result holds for Rn + zIn where z is a fixed complex number and In

is the n by n identity matrix.

Proof. Since we may take z = 0, it suffices to prove the result for Rn + zIn. We will show that the first m rows of
Rn +zIn form a stable set. Let di,m(Rn +zIn) be the distance from the ith row to span of the first m rows not including
row i. Assuming that m ≤ n − n5/6, we can apply [27, Proposition 4.2] (see also [25, Proposition 5.1]) to get

P
(
di,m(Rn + zIn) ≤ n−1/12/2

)≤ 6 exp
(−n1/2),

for each 1 ≤ i ≤ m, for all sufficiently large n. By the union bound, the probability that any of the m = n − n5/6 rows
in the stable set satisfy di,m(Rn + zIn) ≤ n−1/12/2 is at most 6m exp(−n1/2) ≤ 6n exp(−n1/2). This probability is
summable in n, and so the Borel–Cantelli lemma completes the proof. �
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5.1. Small perturbations of one row

Lemma 13. Let Z1, . . . ,Zi and ϕi be n-dimensional complex vectors, and let fi(n) be a non-negative real function
of n. Then∣∣dist

(
Zi,Span{Z1, . . . ,Zi−1}

)− dist
(
Zi + fi(n)ϕi,Span{Z1, . . . ,Zi−1}

)∣∣≤ fi(n)‖ϕi‖2.

Proof. The result follows from the triangle inequality. �

Lemma 14. Let Z1, . . . ,Zi and ϕ1 be n-dimensional complex vectors, and let f1(n) be a non-negative real function
of n. Assume that

d1 := dist
(
Z1,Span{Z2, . . . ,Zi−1}

)
> f1(n)‖ϕ1‖2.

Then∣∣dist
(
Zi,Span{Z1, . . . ,Zi−1}

)− dist
(
Zi,Span

{
Z1 + f1(n)ϕ1,Z2, . . . ,Zi−1

})∣∣
≤ ‖Zi‖2f1(n)‖ϕ1‖2

(
4d1 + 2f1(n)‖ϕ1‖2

(d1 − f1(n)‖ϕ1‖2)2

)
.

Furthermore, if one assumes that d1 ≥ ε > 2f1(n)‖ϕ1‖2, then one can simplify the upper bound noting that(
4d1 + 2f1(n)‖ϕ1‖2

(d1 − f1(n)‖ϕ1‖2)2

)
≤ 20

ε
.

Proof. Let u2, . . . , ui−1 be an orthonormal basis for Z2, . . . ,Zi−1, let

u1 = Z1 −
i−1∑
j=2

uj 〈Z1, uj 〉,

where 〈·, ·〉 is the standard complex inner product (so ‖u1‖2 = d1). Also, let

ũ1 = Z1 + f1(n)ϕ1 −
i−1∑
j=2

uj

〈
Z1 + f1(n)ϕ1, uj

〉
.

Note that∣∣dist
(
Zi,Span{Z1, . . . ,Zi−1}

)− dist
(
Zi,Span

{
Z1 + f1(n)ϕ1,Z2, . . . ,Zi−1

})∣∣
≤
∥∥∥∥ u1

‖u1‖2
2

〈Zi,u1〉 − ũ1

‖ũ1‖2
2

〈Zi, ũ1〉
∥∥∥∥

2
,

and thus the current lemma can be proven by studying u1, ũ1, and Zi . Let e = ũ1 −u1 = f1(n)(ϕ1 −∑i−1
j=2 uj 〈ϕ1, uj 〉),

and note that ‖e‖2 ≤ f1(n)‖ϕ1‖2.
We may write

ũ1

‖ũ1‖2
2

〈Zi, ũ1〉 − u1

‖u1‖2
2

〈Zi,u1〉

= u1
〈Zi,u1〉

‖u1 + e‖2
2

+ e
〈Zi,u1 + e〉
‖u1 + e‖2

2

+ u1
〈Zi, e〉

‖u1 + e‖2
2

− u1

‖u1‖2
2

〈Zi,u1〉

= u1

‖u1‖2
2

〈Zi,u1〉
( ‖u1‖2

2

‖u1 + e‖2
2

− 1

)
+ e〈Zi,u1 + e〉 + u1〈Zi, e〉

‖u1 + e‖2
2

.
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Using Cauchy–Schwartz, the triangle inequality, and the fact that ‖u1 + e‖2 = ‖u1‖2 + c0‖e‖2 for some constant
−1 ≤ c0 ≤ 1, we can compute that the above vector has length at most

‖Zi‖2

(∣∣∣∣‖u1‖2
2 − ‖u1 + e‖2

2

‖u1 + e‖2
2

∣∣∣∣+ ‖e‖2

‖u1 + e‖2
+ ‖u1‖2‖e‖2

‖u1 + e‖2
2

)
= ‖Zi‖2

(‖u1‖2 + c0‖e‖2)2

(∣∣−2c0‖u1‖2‖e‖2 − c2
0‖e‖2

2

∣∣+ ‖e‖2
(‖u1‖2 + c0‖e‖2

)+ ‖u1‖2‖e‖2
)

≤ ‖Zi‖2

(‖u1‖2 + c0‖e‖2)2

((
2|c0| + 2

)‖u1‖2‖e‖2 + ‖e‖2
2

(
c2

0 + c0
))

.

Using the assumption that ‖u1‖2 = d1 > f1(n)‖ϕ1‖2 and the facts that −1 ≤ c0 ≤ 1 and ‖e‖2 ≤ f1(n)‖ϕ1‖2, the
above distance is at most

‖Zi‖2
(4‖u1‖2f1(n)‖ϕ1‖2 + 2f1(n)2‖ϕ1‖2

2)

(‖u1‖2 − f1(n)‖ϕ1‖2)2
,

which completes the proof. �

5.2. Stability and its changes in the presence of small random noise

Lemma 15. Let Z1, . . . ,Zk and ϕ1 be n-dimensional complex vectors, and let f1(n) be a non-negative real function
of n. Assume that {Z1, . . . ,Zk} is ε-stable and that ε > 2f1(n)‖ϕ1‖2.

Then {Z1 + f1(n)ϕ1,Z2, . . . ,Zk} is(
ε − f1(n)‖ϕ1‖2 max

2≤i≤k

{
1,‖Zi‖2

(
20

ε

)})
-stable.

Proof. By Lemma 13, we know that∣∣dist
(
Z1,Span{Z2, . . . ,Zk}

)− dist
(
Z1 + f1(n)ϕ1,Span{Z2, . . . ,Zk}

)∣∣≤ f1(n)‖ϕ1‖2.

For 2 ≤ i ≤ k, let Z2, . . . , Ẑi , . . . ,Zk denote the set {Zj : 2 ≤ j ≤ k, j �= i}. By Lemma 14 we know that∣∣dist
(
Zi,Span{Z1,Z2, . . . , Ẑi , . . . ,Zk}

)− dist
(
Zi,Span

{
Z1 + f1(n)ϕ1,Z2, . . . , Ẑi , . . . ,Zk

})∣∣
≤ ‖Zi‖2f1(n)‖ϕ1‖2

(
4d1 + 2f1(n)‖ϕ1‖2

(d1 − f1(n)‖ϕ1‖2)2

)
, (8)

where d1 = dist(Z1,Span{Z2, . . . , Ẑi , . . . ,Zk}). By the ε-stable assumption, d1 ≥ ε > 2f1(n)‖ϕ1‖2, so the bound in
(8) is at most ‖Zi‖2f1(n)‖ϕ1‖2(20/ε). �

Lemma 16 (Continued stability). Let Z1, . . . ,Zk and ϕ1, . . . , ϕk be n-dimensional complex vectors, and let
f1(n), . . . , fk(n) be non-negative real functions of n. Assume that {Z1, . . . ,Zk} is ε-stable and that

20 ≥ ε >

√
40k max

1≤i≤k

{
fi(n)‖ϕi‖2

}(
max

1≤i≤k

{
1,‖Zi‖2

}+ max
1≤i≤k

{
fi(n)‖ϕi‖2

})
.

Then, for each 1 ≤ j ≤ k, we have that

{Z̃1, Z̃2, . . . , Z̃j ,Zj+1,Zj+2, . . .Zk}
is (ε/2)-stable, where Z̃i = Zi + f1(n)ϕi .
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Proof. We will prove the following stronger statement by induction on j :

{Z̃1, Z̃2, . . . , Z̃j ,Zj+1,Zj+2, . . .Zk} is

(
ε − jε

2k

)
-stable,

for j = 0,1, . . . , k.
For the base case of j = 0, the set of vectors {Z1, . . . ,Zk} is ε-stable by assumption.
For the induction step, assume that

{Z̃1, Z̃2, . . . , Z̃j ,Zj+1,Zj+2, . . .Zk} is

(
ε − jε

2k

)
-stable.

By Lemma 15, we have that

{Z̃1, Z̃2, . . . , Z̃j+1,Zj+2,Zj+3, . . .Zk}
is (

ε − jε

2k
− fj+1(n)‖ϕj+1‖2

(
20

ε

)
max

{
ε/20,‖Z̃1‖2, . . . ,‖Z̃j‖2,‖Zj+1‖2, . . . ,‖Zj+1‖2

})
-stable.

By the assumed lower bound on ε, we have that

ε − jε

2k
− fj+1(n)‖ϕj+1‖2

(
20

ε

)
max

{
ε/20,‖Z̃1‖2, . . . ,‖Z̃j‖2,‖Zj+1‖2, . . . ,‖Zj+1‖2

}
≥ ε − jε

2k
−
(

20

ε

)
max

1≤i≤k

{
fi(n)‖ϕi‖2

}(
max

1≤i≤k

{
ε/20,‖Zi‖2

}+ max
1≤i≤k

{
fi(n)‖ϕi‖2

})
≥ ε − jε

2k
− ε

2k
= ε − (j + 1)ε

2k
. �

Proposition 17. Let v,Z1, . . . ,Zk and ϕ1, . . . , ϕk be n-dimensional complex vectors, let f1(n), . . . , fk(n) be non-
negative real functions of n, and let Z̃i = Zi + fi(n)ϕi for each 1 ≤ i ≤ k. If {Z1, . . . ,Zk} is ε-stable and

20 ≥ ε/2 >

√
40k max

1≤i≤k

{
fi(n)‖ϕi‖2

}(
max

1≤i≤k

{
1,‖Zi‖2

}+ max
1≤i≤k

{
fi(n)‖ϕi‖2

})
(9)

then ∣∣dist
(
v,Span{Z1, . . . ,Zk}

)− dist
(
v,Span{Z̃1, Z̃2, . . . , Z̃k}

)∣∣
≤
(

40

ε

)
k‖v‖2 max

1≤i≤k

{
fi(n)‖ϕi‖2

}
≤ ‖v‖2

√
10k max1≤i≤k{fi(n)‖ϕi‖2}

max1≤i≤k{1,‖Zi‖2} .

Proof. The proposition follows from adding the perturbations one at a time (similar versions of the Lindeberg trick
have been of recent use in random matrix theory, see for example [7,24,25]). We will use Lemmas 16 and 14 to bound
the successive differences, showing that the sum of the successive differences is at most the desired bound.

By Lemma 16, we know that for each 0 ≤ j ≤ k that

{Z̃1, Z̃2, . . . , Z̃j ,Zi+1, . . . ,Zk}
is (ε/2)-stable. Our plan is now to apply Lemma 14 repeatedly, noting that ε/2 > 2fi(n)‖ϕi‖2 follows assumption
(9).
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Let

h(0) = dist
(
v,Span{Z1, . . . ,Zk}

)
,

h(i) = dist
(
v,Span{Z̃1, . . . , Z̃i ,Zi+1, . . . ,Zk}

)
,

h(k) = dist
(
v,Span{Z̃1, . . . , Z̃k}

)
.

To prove the proposition we must bound |h(0) − h(k)|.
We note that

∣∣h(0) − h(k)
∣∣ ≤ k∑

i=1

∣∣h(i − 1) − h(i)
∣∣

≤
k∑

i=1

40

ε
fi(n)‖v‖2‖ϕi‖2 (by Lemma 14)

≤ k

(
40

ε

)
‖v‖2 max

1≤i≤k

{
fi(n)‖ϕi‖2

}
≤ ‖v‖2

√
10k max1≤i≤k{fi(n)‖ϕi‖2}

max1≤i≤k{1,‖Zi‖2}
(
using (9)

)
completing the proof. �

Corollary 18. Let v,Z1, . . . ,Zk be n-dimensional complex vectors, let ϕ1, . . . , ϕk be random complex vectors with
mean zero and variance 1, and let Z̃i = Zi + n−γ ϕi for each 1 ≤ i ≤ k. If {Z1, . . . ,Zk} is ε-stable where

20 ≥ ε/2 >

√
40kn−γ

√
k logn

(
max

1≤i≤k

{
1,‖Zi‖2

}+ n−γ
√

k logn
)

then with probability at least 1 − 1/ logn we have∣∣dist
(
v,Span{Z1, . . . ,Zk}

)− dist
(
v,Span{Z̃1, Z̃2, . . . , Z̃k}

)∣∣
≤ ‖v‖2

√
10kn−γ

√
k logn

max1≤i≤k{1,‖Zi‖2} .

Proof. Combine Proposition 17 with the fact that max1≤i≤k ‖ϕi‖2 ≤ √
k logn with probability at least 1 − 1/ logn

(from Chebyshev’s inequality and the union bound). �

In applying the small noise results such as Corollary 18 or Proposition 19 (below) to determine the limiting ESD,
reordering the rows and corresponding columns has no effect on the eigenvalues. This allows assumptions such as
the rows being ordered by decreasing norm to be easily met. Recall that Proposition 11 was a key part in proving
Theorem 2. Before proving Proposition 11 below, will restate the result as Proposition 19. For notational simplicity,
we will absorb the zI term in Proposition 11 into Mn in the proposition below, which also lets us state the proposition
in a self-contained way without referencing z.

Proposition 19 (Same statement as Proposition 11). Let Mn be an n by n matrix, let Φn and Ψn be n by n complex
matrices with each row a random complex vector with mean 0 and variance 1, and let Z1, . . . ,Zm be the first m rows
of Mn, where m = n − 2n

log1.1 n
�. Assume that ‖Z1‖2 ≥ ‖Z2‖2 ≥ · · · ≥ ‖Zm‖2. If {Z1, . . . ,Zm} is ε-stable and there

exists a constant γ > 1.5 so that

δn,ε := n−γ /2+3/4 log1/4(n)
√

max1≤i≤m{1,‖Zi‖2}
ε

→ 0 as n → ∞,
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then with probability at least 1 − 1/ logn we have,∣∣∣∣∣1n
m∑

i=1

logdi

(
Mn + n−γ Φ

)− logdi

(
Mn + n−γ Ψ

)∣∣∣∣∣≤ 20δn,ε

for all sufficiently large n, where di(A) is the distance from the ith row of a matrix A to the span of rows 1,2, . . . , i −1.

Proof. The main tool here is repeated application of Corollary 18. Throughout, we will use the fact (as in the proof
of Corollary 18) that max1≤i≤m ‖ϕi‖2 ≤ √

n logn with probability at least 1 − 1/ logn.
To start, let di(Mn + n−γ Φ) = di(Mn) + ai and di(Mn + n−γ Ψ ) = di(Mn) + bi , where ai and bi are error terms.

We can use Corollary 18 and Lemma 13 to bound these error terms:

|ai |, |bi | ≤ ‖Zi‖2√
max1≤j≤i{1,‖Zj‖2}

√
10n−γ /2+3/4 log1/4 n + n−γ+1/2 log1/2 n

≤ ‖Zi‖1/2
2 4n−γ /2+3/4 log1/4 n,

where the second inequality holds for sufficiently large n.
We note that

∣∣logdi

(
Mn + n−γ Φ

)− logdi

(
Mn + n−γ Ψ

)∣∣= log

(
1 + ai − bi

di(M) + bi

)
,

and, furthermore, that the fraction ai−bi

di (M)+bi
tends to zero. In particular

∣∣∣∣ ai − bi

di(M) + bi

∣∣∣∣ ≤ ‖Zi‖1/2
2 8n−γ /2+3/4 log1/4 n

ε − ‖Zi‖1/2
2 4n−γ /2+3/4 log1/4 n

≤ ‖Zi‖1/2
2 8δn,ε√

max1≤i≤m{1,‖Zi‖2} − ‖Zi‖1/2
2 4δn,ε

≤ 8δn,ε

1 − 4δn,ε

→ 0

as n → ∞, by the assumption on δn,ε . Thus, we can use the approximation log(1 + x) ≤ 2|x|, which holds for
−0.797 ≤ x, to write

∣∣logdi

(
Mn + n−γ Φ

)− logdi

(
Mn + n−γ Ψ

)∣∣= log

(
1 + ai − bi

di(M) + bi

)
≤ 2

∣∣∣∣ 8δn,ε

1 − 4δn,ε

∣∣∣∣< 20δn,ε,

for sufficiently large n.
Using the triangle inequality and the above approximation, we have∣∣∣∣∣1n

m∑
i=1

logdi

(
Mn + n−γ Φ

)− logdi

(
Mn + n−γ Ψ

)∣∣∣∣∣≤ m

n
20δn,ε ≤ 20δn,ε.

�

6. Proofs of applications

We first state two lemmas describing the ε-stability of subsets of the rows of Tb,n + zI and then give the proofs of
Theorems 3 and 5 in Section 6.1 and Section 6.2 below.
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Lemma 20. Let ei denote the standard basis vector in Cn with a 1 in position i and zeros elsewhere. Let m ≤ n − 1,
let J be a subset of {1,2, . . . ,m}, and consider the set S = {zei + ei+1 : i ∈ J }, where z ∈ C and |z| �= 1. Then

S is min
{
1,
∣∣1 − |z|2∣∣1/2}

-stable.

Sketch. One proceeds by finding an orthogonal basis for S and then minimizing over the distance from one vector in
S to the rest. Details appear in Section 6.3. �

Lemma 21. Let S = {v1, . . . ,vn} be the set of the rows of Tb,n + zI , where z ∈ C. Then

S is

{ ||z|2 − 1|1/2-stable if |z| > 1,

|z|b+1|1 − |z|2|1/2-stable if |z| < 1.

Sketch. The proof uses a similar approach to Lemma 20, with the change that rows of form zei make orthogonalizing
much simpler, resulting in parts of the orthogonal basis being equal to a rescaling of the standard basis. Details appear
in Section 6.4. �

6.1. Proof of Theorem 3

By Lemma 21, for each constant |z| �= 1, we know that the set of all rows of Tb,n + zI is ε-stable for a constant ε

when |z| > 1, and we know that the set of all rows is ε-stable for some ε > Ω(no(1)) where o(1) → 0 as n → ∞ when
|z| < 1. Thus, by Proposition 11,∣∣∣∣∣1n

n∑
i=1

logdi

(
Tb,n + n−γ Φ

)− logdi(Tb,n)

∣∣∣∣∣≤ δn,ε,

where δn,ε ≤ O(n1.5−γ−o(1)) → 0 as n → ∞. The above shows that An = Tb,n and Bn = Tb,n + n−γ Φ satisfy condi-
tion (ii) of Theorem 6, and it can also be shown (similarly to Lemma 7) that the same An and Bn satisfy condition (i)
of Theorem 6. Thus, the ESD of Tb,n + n−γ Φ converges in probability to the ESD of Tb,n, which is the Dirac delta δ0

with mass 1 at the origin.

6.2. Proof of Theorem 5

First we show that the ESD of Tb,n + n−γ Φn is the same as the ESD of Tn + n−γ Φn. Note that there are less
than n/(b + 1) = o(n/ logn) rows of Tb,n that contain all zeros. Thus, there are at most o(n/ logn) rows of Tb,n +
n−γ Φn that differ from the corresponding rows of Tn +n−γ Φn. Combining Theorem 6, Proposition 8, and Lemma 10
(reordering rows and columns of the matrices so that the rows that differ are the last rows), we see that the difference
of the ESDs of Tb,n + n−γ Φn and Tn + n−γ Φn converges to zero in probability.

Second, we will show that the ESD of Tn + n−γ Φn is the same as the ESD of Tn + n−γ Gn, where
√

nGn is an
iid Ginibre matrix, so each entry of

√
nGn is complex Gaussian with mean zero and variance one. Here we apply

Theorem 2, noting that the set of the first n − 1 rows is ε-stable for a constant ε (where ε depends on z), thus proving
that the difference of the ESDs of Tn + n−γ Φn and Tn + n−γ Gn converges to zero in probability.

Finally, it was proved in [16] (see also [19]) that the ESD of Tb,n + n−γ Gn converges in probability to uniform on
the unit circle, completing the proof.

6.3. Proof of Lemma 20

Note that if S is a subset of T and T is ε-stable, then S is also ε-stable. Thus, it is sufficient to show that S =
{zei + ei+1 : 1 ≤ i ≤ m} is εz,m-stable, where εz,m = min{1, |1 − |z|2|1/2}.
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Fix � ∈ {1,2, . . . ,m}. We need to show that

dist
(
ze� + e�+1,Span{zei + ei+1 : 1 ≤ i ≤ m and i �= �})≥ εz,m. (10)

We will find orthogonal bases for {zei + ei+1 : 1 ≤ i ≤ �− 1} and for {zei + ei+1 : �+ 1 ≤ i ≤ m}, noting that together
they form an orthogonal basis for {zei +ei+1 : 1 ≤ i ≤ m and i �= �}. Then we will use the orthogonal basis to compute
the distance in (10) explicitly.

Lemma 22. The vectors {zei + ei+1 : 1 ≤ i ≤ � − 1} where ei is the ith standard basis vector, have an orthogonal
basis {w1, . . . ,w�−1} where

wk = ek+1 + z(|z|2(k−1)ek + (−z)|z|2(k−2)ek−1 + (−z)2|z|2(k−3)ek−2 + · · · + (−z)k−1e1)

1 + |z|2 + |z|4 + · · · + |z|2k−2

= ek+1 + z∑k−1
i=0 |z|2i

(
k−1∑
j=0

(−z)k−1−j |z|2j ej+1

)
.

Proof. We proceed by induction on �. For the base case � = 2, we have that w1 = e2 + ze1, as it should.
For the induction step, assume the result for � − 1 where � ≥ 3, which gives an orthogonal basis {w1, . . . ,w�−2}

with the form above for the set {zei + ei+1 : 1 ≤ i ≤ � − 2}. We will now orthogonalize ze�−1 + e� with respect to
{w1, . . . ,w�−2}, showing that the resulting vector equals w�−1 with the form above.

To orthogonalize v := ze�−1 +e� we compute v − w�−2
‖w�−2‖2

z (since 〈v,wi〉 = 0 for 1 ≤ i ≤ �−3 and 〈v,w�−2〉 = z).
Note that

‖w�−2‖2
2 = 1 + |z|2

(
∑�−3

i=0 |z|2i )2

�−3∑
j=0

|z|2(�−2)−2j−2|z|4j

= 1 + |z|2(�−2)
∑�−3

j=0 |z|2j

(
∑�−3

i=0 |z|2i )2
= 1 + |z|2(�−2)∑�−3

i=0 |z|2i

=
∑�−2

j=0 |z|2j∑�−3
i=0 |z|2i

. (11)

Thus the orthogonalization of v with respect to {w1, . . . ,w�−2} is

w�−1 := e� + ze�−1 − z

∑�−3
i=0 |z|2i∑�−2
j=0 |z|2j

(
e�−1 + z∑�−3

i=0 |z|2i

(
�−3∑
j=0

(−z)�−2−1−j |z|2j ej+1

))

= e� + ze�−1

(
1 −

∑�−3
i=0 |z|2i∑�−2
j=0 |z|2j

)
+ z∑�−2

i=0 |z|2i

(
�−3∑
j=0

(−z)�−2−j |z|2j ej+1

)

= e� +
(

z∑�−2
j=0 |z|2j

)
|z|2(�−2)e�−1 + z∑�−2

i=0 |z|2i

(
�−3∑
j=0

(−z)�−2−j |z|2j ej+1

)

= e� + z∑�−2
i=0 |z|2i

(
�−2∑
j=0

(−z)�−2−j |z|2j ej+1

)
.

This is the desired form for w�−1, completing the proof by induction. �
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Lemma 23. The vectors {zei + ei+1 : � + 1 ≤ i ≤ m} where ei is the ith standard basis vector, have an orthogonal
basis {w�+1, . . . ,wm} where

wk = zek + ek+1 − zek+2 + z2ek+3 + · · · + (−z)m−kem+1

1 + |z|2 + |z|4 + · · · + z2m−2k

= zek + 1∑m−k
i=0 |z|2i

(
m+1∑

j=k+1

(−z)j−k−1ej

)
.

Proof. We proceed by induction on �. For the base case of � = m − 1, there is only one vector, thus w�+1 = wm =
zem + em+1, as it should.

For the induction step, we will assume the result for � + 2 and show that it must also hold for � + 1. We will
orthogonalize ze�+1 + e�+2 with respect to {w�+2, . . . ,wm}, assuming w�+2, . . . ,wm have the form above. Thus, we
have

w�+1 := ze�+1 + e�+2 − 〈ze�+1 + e�+2,w�+2〉 w�+2

‖w�+2‖2
2

.

Note that

‖w�+2‖2
2 = |z|2 +

∑m+1
j=�+3 |z|2j−2(�+2)−2

(
∑m−(�+2)

i=0 |z|2i )2
= |z|2 + 1∑m−(�+2)

i=0 |z|2i
=
∑m−(�+1)

i=0 |z|2i∑m−(�+2)
i=0 |z|2i

. (12)

Thus

w�+1 = ze�+1 + e�+2 − z

∑m−(�+2)
i=0 |z|2i∑m−(�+1)
i=0 |z|2i

(
ze�+2 + 1∑m−(�+2)

i=0 |z|2i

(
m+1∑

j=�+2+1

(−z)j−(�+2)−1ej

))

= ze�+1 + e�+2
1∑m−(�+1)

i=0 |z|2i
+ −z∑m−(�+1)

i=0 |z|2i

(
m+1∑

j=�+2+1

(−z)j−(�+2)−1ej

)

= ze�+1 + 1∑m−(�+1)
i=0 |z|2i

(
m+1∑

j=�+2

(−z)j−(�+2)ej

)
.

Thus w�+1 has the desired form, completing the proof by induction. �

We will now use Lemmas 22 and 23 to explicitly compute the distance on the left side of (10), which will lead to a
proof that {zei + ei+1 : 1 ≤ i ≤ m} is (εz,m)-stable. We will consider 3 cases: where � = 1, where 2 ≤ � ≤ m − 1, and
where � = m.

For the � = 1 case, the distance from ze1 + e2 to Span{zei + ei+1 : 2 ≤ i ≤ m} is the length of w1 using Lemma 23,
which is (see (12))

‖w1‖2 =
( ∑m

i=0 |z|2i∑m−1
i=0 |z|2i

)1/2

=
(

1 − |z|2m+2

1 − |z|2m

)1/2

,

assuming |z| �= 1. When |z| < 1, we have ‖w1‖2 ≥ 1; and when |z| > 1, we have ‖w1‖2 ≥ (|z|2m+2/|z|2m)1/2 =
|z| > 1. Thus, assuming |z| �= 1, the distance on the left side of (10) is at least 1 when � = 1.

For the � = m case, the distance from zem + em+1 to Span{zei + ei+1 : 1 ≤ i ≤ m − 1} is the length of wm using
Lemma 22, which is (see (11))

‖wm‖2 =
(∑m

j=0 |z|2j∑m−1
i=0 |z|2i

)1/2

=
(

1 − |z|2m+2

1 − |z|2m

)1/2

,
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assuming |z| �= 1. When |z| < 1, we have ‖wm‖2 ≥ 1; and when |z| > 1, we have ‖wm‖2 ≥ (|z|2m+2/|z|2m)1/2 =
|z| > 1. Thus, assuming |z| �= 1, the distance on the left side of (10) is at least 1 when � = m.

For the 2 ≤ � ≤ m−1 case, the distance from ze� +e�+1 to Span{zei +ei+1 : 1 ≤ i ≤ m, i �= �} is more complicated.
The orthogonal basis for {zei + ei+1 : 1 ≤ i ≤ m, i �= �} is {w1, . . . ,w�−1} ∪ {w�+1, . . . ,wm}, where the first � − 1
vectors are orthogonalized using Lemma 22 and the last m − � vectors are orthogonalized using Lemma 23. The
distance in question is equal to the norm of v where

v := ze� + e�+1 − zw�−1

‖w�−1‖2
2

− zw�+1

‖w�+1‖2
2

= ze� − z

∑�−2
i=0 |z|2i∑�−1
j=0 |z|2j

(
e� + z∑�−2

i=0 |z|2i

(
�−2∑
j=0

(−z)�−2−j |z|2j ej+1

))

+ e�+1 − z

∑m−(�+1)
i=0 |z|2i∑m−�

i=0 |z|2i

(
ze�+1 + 1∑m−(�+1)

i=0 |z|2i

(
m+1∑

j=�+2

(−z)j−(�+1)−1ej

))

= z∑�−1
i=0 |z|2i

(
�−1∑
j=0

(−z)�−1−j |z|2j ej+1

)
+ 1∑m−�

i=0 |z|2i

(
m+1∑

j=�+1

(−z)j−(�+1)ej

)
.

The above vector v has norm-squared

‖v‖2
2 = |z|2�∑�−1

i=0 |z|2i
+ 1∑m−�

i=0 |z|2i

= |z|2�(1 − |z|2)
1 − |z|2�

+ 1 − |z|2
1 − z2m−2�+2

= (1 − |z|2)(−1 + 1

1 − |z|2�
+ 1

1 − |z|2m−2�+2

)
assuming |z| �= 1. If |z| > 1, then ‖v‖2 ≥ (|z|2 − 1)1/2; and if |z| < 1, then ‖v‖2 ≥ (1 − |z|2)1/2. Thus, assuming
|z| �= 1, the distance on the left side of (10) is at least |1 − |z|2|1/2 when 2 ≤ � ≤ m − 1.

Putting together the three cases above, we have proven (10) with εz,m = min{1, |1 −|z|2|1/2}, completing the proof
of Lemma 20.

6.4. Proof of Lemma 21

Recall that Tb,n + zI is a block diagonal matrix in which b + 1 by b + 1 each block has the form⎛⎜⎜⎜⎜⎜⎝
z 1 0 . . . 0

0 z 1 0
...

...
. . .

. . .
...

0 . . . z 1
0 0 . . . 0 z

⎞⎟⎟⎟⎟⎟⎠ .

If b + 1 does not divide n evenly, the last block is a smaller k by k block (where k ≤ b) also having the form above.
The blocks are orthogonal, so to compute the distance from a given row to the span of the other rows in Tb,n + zI , it
is sufficient to compute the distance from the given row to the span of the other rows in the same block. Thus, we will
show that

dist
(
zeb+1,Span{zei + ei+1 : 1 ≤ i ≤ b})≥ εz,b (13)
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and that

dist
(
ze� + e�+1,Span

({zei + ei+1 : 1 ≤ i ≤ b, i �= �} ∪ {zeb+1}
))≥ εz,b, (14)

where εz,m ≥ ||z|2 − 1|1/2 if |z| > 1 and εz,m ≥ |z|b+1|1 − |z|2|1/2 if |z| < 1.
To prove (13), we orthogonalize {zei + ei+1 : 1 ≤ i ≤ b} the basis {w1, . . . ,wb} with the form in Lemma 22 (letting

� = b + 1). The distance from zeb+1 to Span{zei + ei+1 : 1 ≤ i ≤ b} is thus the length of the vector

v := zeb+1 − 〈zeb+1,wb〉 wb

‖wb‖2
2

= zeb+1 − z

∑b−1
i=0 |z|2i∑b
j=0 |z|2j

(
eb+1 + z∑b−1

i=0 |z|2i

(
b−1∑
j=0

(−z)b−1−j |z|2j ej+1

))

= z∑b
i=0 |z|2i

(
b∑

j=0

(−z)b−j |z|2j ej+1

)
.

Thus we have

‖v‖2
2 = |z|2(b+1)∑b

i=0 |z|2i
= |z|2(b+1) 1 − |z|2

1 − |z|2(b+1)
,

assuming |z| �= 1. If |z| > 1, then ‖v‖2 ≥ ||z|2 − 1|1/2; and if |z| < 1, then ‖v‖2 ≥ |z|b+1|1 − |z|2|1/2.
To prove (14), we will orthogonalize {zei + ei+1 : 1 ≤ i ≤ b, i �= �} ∪ {zeb+1} in two parts. The set {zei + ei+1 :

1 ≤ i ≤ � − 1} has an orthogonal basis {w1, . . . ,w�−1} with the form in Lemma 22, and, as we will show below, the
remaining vectors have an orthogonal basis that is as rescaling of the standard basis.

Lemma 24. The vectors {zei + ei+1 : � + 1 ≤ i ≤ b} ∪ {zeb+1}, where ei is the ith standard basis vector, have an
orthogonal basis {zei : � + 1 ≤ i ≤ b + 1}, which is a rescaling of the standard basis.

Proof. Let the orthogonal basis be w1, . . . ,wb+1. We orthogonalize starting with the vector wb+1 = zeb+1. Let k <

b + 1 be and integer, and assume by induction that wj = zej for k + 1 ≤ j ≤ b + 1. Then

wk = zek + ek+1 − 〈zek + ek+1,wk+1〉 wk+1

‖wk+1‖2
2

= zek,

completing the proof by induction. �

We will now compute the distance on the left side of (14) explicitly using the orthogonal basis {w1, . . . ,w�−1,

ze�+1, ze�+2, . . . , zeb+1}, where the wi have the form described in Lemma 22. The distance is the length of the vector
v where

v = ze� + e�+1 − 〈ze� + e�+1, ze�+1〉ze�+1

|z|2 − 〈ze� + e�+1,w�−1〉 w�−1

‖w�−1‖2
2

= ze� − 〈ze�,w�−1〉 w�−1

‖w�−1‖2
2

= z∑�−1
i=0 |z|2i

(
b∑

j=0

(−z)�−1−j |z|2j ej+1

)
.

Thus we have

‖v‖2
2 = |z|2�∑b

i=0 |z|2i
= |z|2� 1 − |z|2

1 − |z|2�
,



1896 P. M. Wood

assuming |z| �= 1. If |z| > 1, then ‖v‖2 ≥ ||z|2 − 1|1/2; and if |z| < 1, then ‖v‖2 ≥ |z|�|1 − |z|2|1/2. Since � < b by
assumption, we have proved (14).

Finally, note that in case where b + 1 does not evenly divide n, there is a last diagonal block in Tb,n + zI equal to
Tk + zIk where k ≤ b. The arguments above apply to this block as well, with b + 1 being replaced by k, and we need
only note that the final lower bounds on εz,k−1 are the same when |z| ≥ 1 and slightly better when |z| < 1 than the
corresponding bounds on εz,b . This completes the proof of Lemma 21.
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[19] P. Śniady. Random regularization of Brown spectral measure. J. Funct. Anal. 193 (2) (2002) 291–313. MR1929504
[20] T. Tao. Topics in Random Matrix Theory. Graduate Studies in Mathematics 132. American Mathematical Society, Providence, RI, 2012.

MR2906465
[21] T. Tao. Erratum to: Outliers in the spectrum of iid matrices with bounded rank perturbations. Probab. Theory Related Fields 157 (1–2) (2013)

511–514. MR3101855
[22] T. Tao. Outliers in the spectrum of iid matrices with bounded rank perturbations. Probab. Theory Related Fields 155 (1–2) (2013) 231–263.

MR3010398
[23] T. Tao and V. Vu. Random matrices: The circular law. Commun. Contemp. Math. 10 (2) (2008) 261–307. MR2409368
[24] T. Tao and V. Vu. Random matrices: The distribution of the smallest singular values. Geom. Funct. Anal. 20 (1) (2010) 260–297. MR2647142
[25] T. Tao, V. Vu and M. Krishnapur. Universality of ESDs and the circular law. Ann. Probab. 38 (5) (2010) 2023–2065. MR2722794
[26] R. S. Varga. Geršgorin and His Circles. Springer Series in Computational Mathematics 36. Springer-Verlag, Berlin, 2004. MR2093409
[27] P. M. Wood. Universality and the circular law for sparse random matrices. Ann. Appl. Probab. 22 (2012) 1266–1300. MR2977992

http://www.ams.org/mathscinet-getitem?mr=2567175
http://www.ams.org/mathscinet-getitem?mr=1428519
http://arxiv.org/abs/arXiv:1308.3064
http://www.ams.org/mathscinet-getitem?mr=2772389
http://www.ams.org/mathscinet-getitem?mr=2908617
http://www.ams.org/mathscinet-getitem?mr=2735731
http://www.ams.org/mathscinet-getitem?mr=2294976
http://www.ams.org/mathscinet-getitem?mr=0964668
http://www.ams.org/mathscinet-getitem?mr=3417690
http://www.ams.org/mathscinet-getitem?mr=2085255
http://arxiv.org/abs/arXiv:math/0702386v1
http://www.ams.org/mathscinet-getitem?mr=2663633
http://www.ams.org/mathscinet-getitem?mr=2831116
http://www.ams.org/mathscinet-getitem?mr=MR3134007
http://www.ams.org/mathscinet-getitem?mr=0220494
http://www.ams.org/mathscinet-getitem?mr=2575411
http://www.ams.org/mathscinet-getitem?mr=1929504
http://www.ams.org/mathscinet-getitem?mr=2906465
http://www.ams.org/mathscinet-getitem?mr=3101855
http://www.ams.org/mathscinet-getitem?mr=3010398
http://www.ams.org/mathscinet-getitem?mr=2409368
http://www.ams.org/mathscinet-getitem?mr=2647142
http://www.ams.org/mathscinet-getitem?mr=2722794
http://www.ams.org/mathscinet-getitem?mr=2093409
http://www.ams.org/mathscinet-getitem?mr=2977992

	Introduction
	Application to a class of non-normal matrices
	The replacement principle approach to proving universality
	Singular values for polynomially small random noise

	Proof of Proposition 8
	The stability approach for small random noise
	Small perturbations of one row
	Stability and its changes in the presence of small random noise

	Proofs of applications
	Proof of Theorem 3
	Proof of Theorem 5
	Proof of Lemma 20
	Proof of Lemma 21

	Acknowledgements
	References

