Math 54 Worksheet 4

1. Determine whether the following subsets of \mathbb{R}^2 is a subspace of \mathbb{R}^2.
 a. $\{(x, y)|xy = 0\}$.
 b. $\{(x, y)|x + y = 1\}$.
 c. $\{(x, y)|x + y = 0\}$.
 d. $\{(x, y)|y = \sin x\}$.
 e. The column space of a 2×2 matrix.
 f. The null space of a 2×2 matrix.
 g. What does a general subspace of \mathbb{R}^2 look like? How about a subspace of \mathbb{R}^3.

*2. Let V, W be two subspace of \mathbb{R}^n, Are their intersection, union again subspaces?

3. Let $v_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$, $v_2 = \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix}$, $v_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $v_4 = \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}$.
 a. Is $\{v_1, v_2, v_3\}$ a basis for \mathbb{R}^3? Is $\{v_1, v_2, v_3\}$ a basis for Col A? Where A is the matrix $[v_1 \ v_2 \ v_3]$.
 b. Is $\{v_1, v_2, v_4\}$ a basis for \mathbb{R}^3? Is $\{v_1, v_2, v_4\}$ a basis for Col A? Where A is the matrix $[v_1 \ v_2 \ v_4]$.
 c. Is $\{v_1, v_2\}$ a basis for \mathbb{R}^3? Is $\{v_1, v_2\}$ a basis for Col A? Where A is the matrix $[v_1 \ v_2]$.
 d. Is $\{v_1, v_2, v_3, v_4\}$ a basis for \mathbb{R}^3? Is $\{v_1, v_2, v_3, v_4\}$ a basis for Col A? Where A is the matrix $[v_1 \ v_2 \ v_3 \ v_4]$.

4. Find basis for Col A and Null A. And check the Rank Theorem for A.
 a. $A = \begin{bmatrix} 3 & -4 & 2 \\ -9 & 12 & -6 \\ -6 & 8 & -4 \end{bmatrix}$
 b. A is the matrix in problem 3.

Reference:
Lay, Nagle, Saff, Snider - Linear algebra and differential equations