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Motivation

Quantum Geometry and Integ rable SYStemS [Okounkov et al]  [Pushkar, Zeitlin, Smirnov]
[PK, Pushkar, Smirnov, Zeitlin]

BPS/CFT Correspondence [Nekrasov Shatashvili]
Geometric g-Langlands Correspondence [Frenkel] [Aganagic, Frenkel, Okounkov]
ODE/l M Correspondence [Bazhanov, Lukyanov, Zamolodchikov]

[Dorey, Tateo]



[Nekrasov Shatashvili]

I. QUiver Va rieties from Bra nes [PK Pushkar Smirnov Zeitlin]

Physically: 3d N=4 quiver gauge theory

: 020202020

0
Hom(V;, W; Hom(V;, V14 Hom(V;,V;)| 0 0
0 ;J

Quiver Variety from Hanany-Witten

1 1 1 3
moment map
p:T*R — Lie(G)" L(v,w) = p~*(0)
0
0 0
Y =L(v,w)/oG = L(v,w)ss/G 3
automorphism group H GL(W;) x (C;;
Classical K-theory of X is formed by tensorial polynomials of tautological bundles and their duals
The equivariant K-theory of X is a module over the ring of equivariant constants R = K—r() = Z[OJI_L, I a,,j,fl, hil]
K-theory classes (V) = V®2 _ A3V ) 11
( ) 7(51,"',Sk):(31—|—'°'—|—8k) _ Z Sil Sig Sig

Relations (si—a;) =0, i=1---k

n 1<21<12<13<k
=1

J



Quantum K-theory

&1 S . g )
Quantum equivariant K-theory of Nakajima quiver varieties 4 < O e f """"""""" R

W, W, W . W,
A®B:A®B+§:A®d32d - o
- \ARE Z Vs, x (0% @ T oy s QMionging p )2 € K (X)ioe[2]
Saddle point limit yields Bethe equations for XXZ
i— 0 z—l—l = b=1

Can be written as QQ-system

EQ(h2)Q; (2) — &imQ; (2)Q; (hz) = Mi(2)Q;", (h2)Q] (%)
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Quantum/Classical Duality from Branes

[PK Gaiotto]

[PK Zeitlin]
Quiver representation data « » Linking Numbers

ri = #D3(R) — #D3(L) + #D5(L)

r; = #D3(L) — #D3(R) + #NS5(R)
3d N=2* qui e | R? x St x I7

=2* quiver theory < » 4d N=2* theory on interval L.R
Quantum K-theory of X < » Calogero-Moser Space AMT —TM = u® v
QKr(X) = C({&}, {ai}v h) ({p’t}) Cotangent bundle to complete flag variety:
(det (w — T({pi}, {ai}, b)) — f(u,{&}, b)) n-particle tRS

IS Lax Matrix = @ @




Calogero-Moser Space

Let V be an N-dimensional vector space over C. Let ' be the subset of GL(V) X GL(V) X V X V* consisting of elements
(M, T, u,v) such that

gMT —TM = u @ v’
The group GL(N; C) = GL(V) acts on /' by conjugation
(M, T, u,v) — (gMg™',gTg™", gu,vg™")
The quotient of ' by the action of GL(V) is called Calogero-Moser space .7/

M,, = {A, B,C}/GL(n;C)

Also can be understood as moduli space of flat
connections on punctured torus ABA Bl =C
< >
C =diag(q, ....q,q"™")

Integrable Hamiltonians are ~TrT*




Hierarchy of Models oty X Kot S

rational trigonometric elliptic

rational CMS € ~[Y trigonometric CMS, |, elliptic CMS

g
—=ereiantum cohomology
R — Of ?ﬂ fR — 0 fR — 0
rational RS €20 p+ 0 elliptic RS

—== trigonometric RS

(dual trig. CMS) ~== quantum K-theory

S/ -

PV DELL
dual elliptic CMS dual elliptic RS Elliptic Cohomology

&3 March 8th-11th 2022 over Zoom

https://math.berkeley.edu/~pkoroteev/workshop2.html
2022 Workshop on Elliptic Integrable Systems



https://math.berkeley.edu/~pkoroteev/workshop2.html

[PK Gaiotto]

Gi

Cz—l—l

Quantum

, L 7'-,«/ St/

SU(n) XXZ spin chain on n sites w/ anisotropies
and twisted periodic boundary conditions

Planck’s constant h

twist eigenvalues Zi

equivariant parameters (anisotropies) a;

oY
Bethe Ansatz Equations: — = ()
aGi
Vi—1 1 Vz'—l—l 1
1
p=1 7i"LA 1/2"“* f#a h‘”ﬁ ~Cia ) Oit1, — /2000

QQ-Systems ¢

= (-1

Classical q-Opers
K K Dals,
f
P
'

n-particle trigonometric
Ruijsenaars-Schneider model

Coupling constant 7

coordinates =<;

energy (eigenvalues of Hamiltonians) €i(af,;)

Energy level equations

T;(z,h) = e;(a),

r=1,....n



[PK Gaiotto]

Quantum/Classical Duality

[PK Zeitlin]
dpt  d¢&  dp®  da
o1 Symplectic form () = % A —f — ZZ’ -
01 —1 D &i 2 a;
0 2
_ ’ tRS momenta § oY a oY
{ . — €X ] - — X
1 4 2 2 tRS energy relations
N N
l det(u — 1) = u— aj), det(u — M) = u— &
M x M »C,u ( ) };[1( ) ( ) Z1;[1( )

> 15— T =tie

!
/| — Y=Y Jc{1,..,.L} i€ " meJ
J)=k  JI¢I
£ 3d mirror symmetry
T ‘CM Eigenvalues of M and Slodowy formon T
L Eigenvalues of T and Slodowy form on
T

Solutions of Bethe equations — intersection points

[Dimofte Gaiotto van der Veen] XXZ/tRS duality! Can we generalize it?

- -



Hierarchy of Models

Etingof Diamond

e tRS «— tRS XXZ ~— XXZ
l l l l l l
C, xC +—— C x C> rRS «— tCM XXX «— tGaudin

l l l l l l

CxC +«—— CxC, rCM —— 1rCM rGaudin «—— rGaudin



Il. g-Opers — SL(2) Example

Consider vector bundle E over Pl Map of vector bundles A:-F — F4
Upon trivialization A(z) € gl(N,C(z2))

My : P! — P! q< o (o]
2 gz g-gauge transformation (Z)HQ(QZ) (z)g (Z)

Difference equation Dq(s) = As

Definition: A meromorphic (GL(N), q)-connection over P! is a pair (E, A), where

E is a (trivializable) vector bundle of rank N over P! and A is a meromorphic section of
the sheaf Homg , (£, E7) for which A(z) is invertible, i.e. lies in GL(NNV,C(z)). The pair

(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.



q-Opers

Definition: A (GL(2), q)-oper on P! is a triple (E, A, £), where (E, A) is a (GL(2), q)-
connection and £ is a line subbundle such that the induced map A : L — (F/£)? is an
isomorphism. The triple is called an (SL(2), q)-oper if (F, A) is an (SL(2), q)-connection.

in a trivialization S(QZ) /\ A(Z)S(Z) # 0

Definition: A (SL(2), q)-oper with reqular singularities at the points z1,...,zr # 0,00
with weights k1, ... k&, is a meromorphic (SL(2), ¢)-oper (E, A, £) for which A is an isomor-
phism everywhere on P!\ {0, co} except at the points zm, ¢ ' 2m, ¢ *2m, .., ¢ "1z, for
m € {1,..., L}, where it has simple zeros.
. . 0 . ® o 0 |'I
q " Zn q “zn q Zn “n \

Finally, (SL(2),9)-oper is Z-twisted in A(z) is gauge equivalent to a diagonal matrix Z



Miura g-Opers

Miura (SL(2),q)-oper is a quadruple (E, A, L, ﬁ) where (E, A, L) is an (SL(2),q)-oper and L is preserved by the g-connection A

Chose trivialization of L
S(Z) _ <Q—I—(Z)>

Q-_(2) Twist element 7 = diag(¢, (™)

g-Oper condition — SL(2) QQ-system

—1
CQ—(Z)Q-I- (ZC]) o C Q—(ZQ)Q—|— (Z) — A(Z) singularities
L rp—1
One of the polynomials ke _ 4
can be made monic Q+(2) = H(Z — W) A(z) H H (2 =q72)
k—1 p=1 jp=0
A
From QQ-system to Bethe equations A(q(ui]:jk) = —C2 Q??;qus}l) k=1,....m
rﬁwk_ql szp CZ mﬁqwk_wj L 1
q — —C (g 9 — 1, o TTY
WE — Q%2 W — qW,;



g-Miura Transformation

z) Az
A(z) = <g(0) g(z( —)1> Z-twisted g-oper condition A(2) = v(zq) Zv(2) 1, 4 = (g <91>
auge transformation reads p— y(z) O 1 Q—T—(z) p— y(z) _y(z) Q—T—(z>
Gaug f d fU(z) — ( 0 y(Z>_1> (() Ql( )) — ( 0 y(Z)Q_l( )
We find g(z) — Czy(zq)y(z)_l Al2) — p - ( Q—(Z) —1 Q(ZQ)>
(2) = y(2)y(zq) CQ+(Z) ¢ 0r(o0)

The g-oper condition becomes the SL(2) QQ-system (Q-(2)Q+(2q) — C_lQ_(zq)Q+ (z) = A(2)

Difference Equation D,(s) = As D,(s1) = A(2)s2

A(qz
after elimination (Dz —T(qz)D, (4 )> s1 =20



tRS Hamiltonians

Recover 2-body tRS Hamiltonian from a g-Oper

Let Q-=z—p- and Qi =c(z—p+)

ZQ_E_C_qc_lp | QC_C_lp Iplp :(Z—Z )(Z—Z )
g ¢C—¢1TT (= ¢ T /q " )
qOper condition vyields T T

tRS Hamiltonians!



. (G,q)-Connection

G-simple simply-connected complex Lie group

Principal G-bundle F¢ over P! M, - Pl — pl
Z gz
A meromorphic (G,q)-connection on 37(; is a section A of Hom@U (9’(;, 3’%) U-Zariski open dense set

Choose U so that the restriction Fg|y of Fg to U isisomorphic to a trivial G-bundle

A(z) € G(C(2)) on UﬁMq_l(U)

Change of trivialization ~ A(z) — Q(QZ)A(Z)Q(Z)_l



(G,q)-Opers

A meromorphic (G,g)-oper on P! is a triple (Fg, A, Fp_)
A is a meromorphic (G, ¢)-connection

S'VB_ is a reduction of F» to B_

Oper condition: Restriction of the connection on some Zariski open dense set U
. q —1
A.&"GH?GtoUﬂMq (U)
takes values in the double Bruhat cell

B_(ClU N Mq_l(U)])cB_((C[U N Mq_l(U)]) Coxeter element: ¢ = []; s

d ¢i(z) € C(2) and n(z),n’(z) € N_(z)



Miura (G,q)-Opers

Definition: A Miura (G, q)-oper on P! is a quadruple (Fg, A, Fp_,Fp, ), where (Fq, A, Fp_)
is a meromorphic (G, g)-oper on P! and Fp, is a reduction of the G-bundle F¢ to B, that
is preserved by the g-connection A.

It can be shown that the two flags Fp_ and Jg, arein generic relative position for some dense set V

The fiber Fg x of ¢ at x is a G-torsor with reductions Fg_ x and I,
to B_ and B, respectively. Choose any trivialization of J¢ «, 1.e. an
isomorphism of G-torsors g x >~ G. Under this isomorphism, Ip_
gets identified with aB_ C G and I, x with bB;.

Then a~'b is a well-defined element of the double quotient B_\G/B;,
which is In bijection with Wg.

We will say that ¥g_ and Fg, have a generic relative position at x € X
if the element of W assigned to them at x is equal to 1 (this means
that the corresponding element a~'b belongs to the open dense Bruhat

cell 6_ - B+ C G)



Structure Theorems

Theorem 1: For any Miura (G, q)-oper on P!, there exists a trivialization of the under-
lying G-bundle T on an open dense subset of P! for which the oper q-connection has the
form

A(z) € N-(2) | [((¢i(2)*si)N-(2) N By.(2),

[

Theorem 2: ~ Let F be any field, and fix \; € F*,i=1,...,r. Then every element of the
set N_ ], \;"si N N B4 can be written in the form

- %1
Qs — €4 X
||giZ€gz 9 giGFv

where each t; € F'* 1s determined by the lifting s;.



Adding Singularities and Twists

Consider family of polynomials {AZ’ (Z) }izlj,“,rp

(G,q)-oper with regular singularities can be written as

Using structure theorem every Miura (G,q)-oper with singularities reads
5 A;(z o
(8% () ©1 X
A(z) = | | gi(2)* e9il=) ™ gi(z) € C(z)
7

(G.q)-oper is Z-twisted if it is equivalent to a constantelementof G 7 € H C H(z) Zisregularsemisimple. There are Wea

B Miura (G,q)-opers for each (G,q)-opers
A(z) = g(qz)Zg(2) "

Z-twisted Miura (G,q)-oper if gauge transform is from Borel

A(2) = v(q2) Zv(2) 71, v(z) € Bi(2)



Plucker Relations

V" irrep of G with highest weight w); Line L; C V; stableunder B

Plucker relations: for two integral dominant weights L4, C V)4, 1s the image of Ly ® L, C V\ ® V,,

under canonical projection V) & Vu — V)\—|—,u

Conversely, for a collection of lines Ly C V) satisfying Plucker relations 3B C (G suchthat L) is stabilized by B for all A

A choice of B is equivalent to a choice of B, -torsor in GG

. ® o
Let v, be a generator of the line L; C V;. Thisis a vector of weight w; wrt H C B.
The subspace of V; of weight w; — «; is one-dimensional and spanned f; * Vo, ' f l
‘ i Yo

Thus the 2d subspace spanned by {V,., fi - Uy, } is a B-invariant subspace of V; / \




Miura-Plucker (G,q)-Opers

let (Fg,A,F_,TFp,) be a Miura (G, g)-oper with regular singularities {Ai(2) bim1,r
Associated vector bundle V; = 9TB+ ; Vi = F¢ é Vi contains rank-two subbundle W; = 973+ §< W
+ +
associated to W; C V;, and W; in turn contains a line subbundle £L£; = Jp L X L;
By
Using structure theorems we obtain r Miura (GL(2),q)-opers gz(z) AZ(Z) Hj>z' 9j (Z)_aji

AZ(Z) —
0 g; () [z 95(2) %

Z-twisted Miura-Plucker (G,q)-oper is meromorphic Miura (G,qg)-oper on P1 such that for each Miura (GL(2),9)-oper

Ai(2) = v(2q) Zv(2) Hw, = vi(2q) Zivi(2) ™1 where v;(2) = v(2)|lw, and Z; = Z|w



QQ-System

There 1s a one-to-one correspondence between the set of nondegenerate Z -
twisted Miura-Plicker (G, q)-opers and the set of nondegenerate polynomaial solutions of the

QQ-system

Theorem:

EQ(2)Q(q2) — Q" (g2)Q', (2) =
yE [T Qe TTI @] 7 =

71>1 1<

s=allg” a=¢'1Ig™

J>1 1<t
r r Q" (2) i (
Proof uses v(z) = Hyz(z)o‘@ H e GET , 9i(2) = Gi—; )
_|_

1=1 1=1



XXZ Bethe Ansatz Equations for G

roots of Q+
; . ; —Qjq . ; — Qg4
QLav) 17 o _ Ai(wi) T | @ (qui) | Ty | @ (w))]
i (y—1,,k 7 ; ] T ] e
g he) 5 Ailg i) TTjsy @4 (i) | Ty | @ (g wh)
Space of nondegenerate solutionsof| . . |Nondegenerate Z-twisted Miura-Plucker (G,q)-opers
QQ-system for G with regular singularities

?

Space of nondegenerate solutions of o Nondegenerate Z-twisted Miura (G,q)-opers
XXZ for G . with regular singularities



Quantum Backlund Transformation

Theorem: Consider the following g-gauge transformation | —aj;
] [@L)

A AW — eﬂi(qz)fiA(Z)e_Hi(z)fi’ where p1;(2) = J7 .
QY (2)QL(2)

. . ~i Al i—1 A it r
changes the set QL (2) = QL (2), J # 1, {Q =1, ={Q1,...,Qy ,Q_, Q" ..., QL }
of Q-functions QY (2) = Q' (2),  Z— si(Z) {ZY=tr={z,.. .z, |27, 2}

Now the strategy is to successively apply Backlund transformations according to the reduced
decomposition of the element of the Weyl group

Consider longest element Wwo = Siy - -+ Sy,

Theorem: Every Z-twisted Miura-Plucker (G,q)-oper is Z-twisted Miura (G,q)-oper

The proof based on properties of double Bruhat cells addresses existence of the diagonalizing element v(z) (to be constructed later)



The QQ-system

g-Oper condition

(SL(N),q)-Opers

§idi(z) — Sir10i(qz) = pi(2)

v(gz) " A(z) = Zu(z) ™

Diagonalizing element

1

Q; (2)

Q15(2)

QY (2)

Q3 (2)
Q7 (2)

Q3 (2)

Q7 (2)
Q3 (2)

Q7 (2)

> (2)

Q7 (2)

.....

.....

)

)

)

oou,

oooooo

form extended QQ-system



I¥. Quantum Wronskians

(SL(N),q)-oper can also be constructed from flag of subbundles (FE, A, L,) such that the induced maps 14_1@ : Li/Li_l — LY /ﬁg are isomorphisms

The quantum determinants Di(s) =eg A= Nepp1_p A Zk_ls(z) A\ Zk_QS(qz) ANRIA Zs(qk_2) A\ S(qk_lz)

vanish at g-oper singularities Wi(s) = Pi(2) - PQ(QQZ) e Pk(qk_lz), Pi(z) =AArq-- - Arii1(2)

Diagonalizing condition

Components of the section of the
line subbundle are the Q-polynomials!

2,J
1 = §r—1 &r Erti
V1 V2 ______ Vn 1 Vn
W, W, W . Wh
A1, 15501 w,y Ay, » A w,

1+1



Quantum/Classical Duality

Consider T*G/B .
______ Construct the corresponding space of (SL(N),h)-opers

n
. . _ _ Q, (0)
Specify components of the section of L1 s1(2) =2 =p1s ooy Skar(2) = 2= PRy Plrtitmp = - Qp,(0)
p—
Then the space of functions on the space of such h-opers Fun(h()p) (FIFZL)) ~ { ({ } {S(}{E%})a {CLi }(a {pi}a h) })
H;(1pjr,&if, 1) =e€ilar,...,aLy)i=1,...L
is described by trigonometric Ruijsenaars-Schneider 7, — 52 — ﬁfj
model with n particles k — Z H | H Pm
RN

Jc{1,...,L} <€J meJ

J=k J¢J



Generalized Wronskians

Consider big cell in Go = IN_ HN, VL irrep of G with highest weight W;

Bruhat decomposition
— + — [h]wiyT
g — N— h TL_|_ hywi o [h] Vc,uit

Define principal minors for group element g

For SL(N) they are standard minors of matrices

Then generalized minors are regular functions on G Auwi,vwi (g) = A*" (ﬂ_lg@) u,v e Wg
Proposition Action of the group element on the highest weight vector in
qg - u:;; — Z Ayw; w; (g)W - V:; + ...,
weW

where dots stand for the vectors, which do not belong to the orbit Oy .



Generalized Minors and QQ-system

The set of generalized minors {Ay., w; Jwew:i=1....r Creates a set of coordinates on G/B™,
known as generalized Plucker coordinates. In particular, the set of zeroes of each of Ay ., w,
is a uniquely and unambiguously defined hypersurface in G/B. |

Proposition For a W -generic Z-twisted Miura-Plucker (G, q)-oper with g-connection

A(2) = v(qz)Zv(z)~ L, where v(2) € B_(z) we have the following relation:

A, w; (U_l(z)) — Qrﬁuﬁz(z)
for any w € W.
r QZ:_(Z)

proof:  Since A%i(v!(2) = Q) ()  Disgonalizing sauge -1,y _ [T 0" [ |

transformation -
1=

v_l(z)y(ji = Qi(z)u(jz + Qv (2) fivg + ...

(&

i=1

1

(2)




Fundamental Relation for Generalized Minors

[Fomin Zelevinsky]

Proposition 4.8. Let, u,v € W, such that fori € {1,...,r}, L(uw;) = b(u) + 1, L(vw;) =
f(v)+ 1. Then

I I CLjZ'
(47) Au-wi,v-wi Auwi-wi,vwi-wi o Auwi-wi,v Wy u Wi , VW4 Wy Au wj,v-wja
JF1

Can we make sense of this relation using our approach of g-Opers?



Generalized Wronskians

The approach is similar to Miura-Plucker g-Opers

Let v ~ be a generator of the line [PL C V+ V.t irrep of G with highest weight W;

(

The subspace LT .. of V; of weight ¢! - w; is one-dimensional and is spanned by s~ v »

’L

Associated vector bundle Vi=Fp, x VI =Fcx V7"
By G
ins i + _ + + _ +
Contains line subbundles LT = F 1y I>j<[ L', Lc,i = T I>j<[ LC)Z.

Define generalized Wronskian on P! as quadruple (F¢, IB.,9,7)

¢ is a meromorphic section of a principle bundle F¢g

s.t. for sections 1V; , }z 1,...r oflinebundles {£., L+ iYiz1,..r on U N M-HU)

%qv Z%U



Adding Singularities

Effectively the above definition means that the Wronskian, written as an element of G(z), satisfies

79 (qz) v =9(2) - sp(2)" -1

Wi Ws

Define generalized Wronskian with regular singularities if inv

Fomin-Zelevinsky relations then read A
Ws ,Ws wi-wi,c—l-wi_ Wy Wy ,W5 wi,c_l-wi

wji,c 1w

1<1=1]

L1

1 >1=1]

Wj,Wq



q-Opers and g-Wronskians

Theorem1:

Theorem 2: For a given Z-twisted (G, q)-Miura oper, there exists a unique gener-
alized q- Wronskian

W (z) € B_(z)woB_(z) N By (2)wgB1(z) C G(2),
satisfying the system of equations

W(qkﬂz)% = 7" (2)s 1 (2)s 1 (qz). .. s_l(qkz)uji ,
(4.32) 1 =1,...,r, k=0,1,...,h — 1,

where h is the Coxeter number of G.



Examples: SL(2)

In terms of Q-polynomials W(Z) o (Q+ (Z) C_lA(Z)—lQ—F (QZ

CQT(2)Q (g2) = (' Q™ (q2)Q (2) = A(2)
is equivalent to det” (z) = 1.



Examples SL(N)

W (z) = (Aww,w|Aww781w

Lift for standard ordering along the Dynkin diagram

7(2) = (@)
where F;(z) = H§:1 Aj(z) L.

ZF(2)Q7*(qz)

Aot ) ((2)

spt(z) =5[] AT

Zr—lFr_l (qr—lz)Qw-w(qr—lz))

-




Lewis Carroll Identity

In Type A FZ relation reduces to

Auwi,fuwi Ausiwi,vsiwi D Ausiwi,vwi UwW; , vs;W; Auwi_l,fuwi_lAuwiJrl,vwiJrl

M{M? — M!M; = M{# M



