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I.    q-Opers — SL(2) Example

Mq : P1 ! P1

z 7! qz

Consider vector bundle E over P1 Map of vector bundles
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permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.

Upon trivialization 
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permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.

q-gauge transformation
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permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.

Difference equation
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permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.
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permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.

q

Definition:



q-Opers
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permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.
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4. (SL(N), q)-opers

4.1. Definitions. We now discuss the generalization of (SL(2), q)-opers to SL(N).

Definition 4.1. A (GL(N), q)-oper on P1 is a triple (E, A,L•), where (E, A) is a (GL(N), q)-
connection and L• is a complete flag of subbundles such that A maps Li into L

q
i+1

and the
induced maps Āi : Li/Li�1 �! L

q
i+1

/L
q
i are isomorphisms for i = 1, . . . , N � 1. The triple

is called an SL(N)-oper if (E, A) is an (SL(N), q)-connection.

To make this definition more explicit, consider the determinants

(4.1)
⇣
s(qi�1

z) ^ A(qi�2
z)s(qi�2

z) ^ · · · ^
⇣ i�2Y

j=0

(A(qi�2�j
z)
⌘
s(z)

⌘����
⇤iL

qi�1

i

for i = 1, . . . , N , where s is a local section of L1. Then (E, A,L•) is a q-oper if and only
if at every point, there exists local sections for which each Wi(s)(z) is nonzero. It will be
more convenient to consider determinants with the same zeros as those in (4.1), but with
no q-shifts:

(4.2) Wi(s)(z) =
⇣
s(z) ^ A(z)�1

s(qz) ^ · · · ^
⇣ i�2Y

j=0

(A(qjz)�1

⌘
s(qi�1

z)
⌘����

⇤iLi

.

As in the classical setting, we need to relax these conditions to allow for regular singular-
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Z-lattices they generate
are pairwise disjoint. We associate a dominant integral weight �m =

P
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l
j
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Figure 1. Weight of the singularity zn as q-monodromy around the cylin-
der (P1 with 0 and 1 removed).

In order to express the locations of the roots of the Wi(s)’s, it is convenient to introduce
the polynomials

(4.3) ⇤i =
LY

m=1

`im�1Y

j=`i�1
m

(z � q
�j

zm)
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permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.

in a trivialization
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The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q
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all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q
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zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q
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Finally, (SL(2),q)-oper is Z-twisted in A(z) is gauge equivalent to a diagonal matrix Z

Definition:

Definition:
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Z = g(qz)A(z)g(z)�1
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Next, we define twisted q-opers; these are q-analogues of the opers with a double pole
singularity considered in Section 2.4. Let Z = diag(⇣, ⇣

�1) be a diagonal matrix with
⇣ 6= ±1.

Definition 3.5. A (SL(2), q)-oper (E, A,L) with regular singularities is called a Z-twisted
q-oper if A is gauge-equivalent to Z

�1.

Finally, we will need the notion of a Miura q-oper. As in the classical case, this is a
quadruple (E, A,L, L̂) where (E, A,L) is a q-oper and L̂ is a line bundle preserved by A.

For the rest of Section 3, (E, A,L) will be a Z-twisted (SL(2), q)-connection with regular
singularities at z1, . . . , zL 6= 0, 1 having (nonnegative) weights k1, . . . kL.

3.2. The quantum Wronskian and the Bethe ansatz. Choose a trivialization for
which the q-connection matrix is Z

�1. Since L is trivial on P1 \ 1, it is generated by a
section

(3.2) s(z) =

✓
Q+(z)
Q�(z)

◆
,

where Q+(z) and Q�(z) are polynomials without common roots. The regular singularity
condition on the q-oper becomes an explicit equation for the quantum Wronskian:

(3.3) ⇣
�1

Q+(z)Q�(qz) � ⇣Q+(qz)Q�(z) = ⇢(z) :=
LY

m=1

km�1Y

j=0

(z � q
�j

zm).

We can assume that ⇢ is monic, since we can multiply s by a nonzero constant. We are also
free to perform a constant diagonal gauge transformation, since this leaves the q-connection
matrix unchanged. Thus, we may assume that Q� is monic, say Q�(z) =

Ql�
i=1

(z � wi).
We now restrict attention to nondegenerate q-opers. This means the q

Z-lattices generated
by the roots of ⇢ and Q� do not overlap, i.e., q

Z
zm \ q

Z
wi = ? for all m and i. Note that

this condition implies that wj 6= qwi for all i, j; if wj = qwi, then (3.3) shows that wi would
be a common zero of ⇢ and Q�.

Evaluating (3.3) at q
�1

z gives ⇢(q�1
z) = ⇣

�1
Q+(q�1

z)Q�(z) � ⇣Q+(z)Q�(q�1
z). If we

divide (3.3) by this equation and evaluate at the zeros of Q�, we obtain the following
constraints:

(3.4)
⇢(wi)

⇢(q�1wi)
= �⇣

�2
Q�(qwi)

Q�(q�1wi)
,

or more explicitly, setting k =
P

km,

(3.5) q
k

LY

m=1

wi � q
1�kmzm

wi � qzm
= �⇣

�2

l�Y

j=1

qwi � wj

q�1wi � wj
.

Rewriting this equation, we obtain the sl2 XXZ Bethe equations (see e.g. [R1]):

(3.6)
LY

m=1

wi � q
1�kmzm

wi � qzm
= �⇣

�2
q
l��k

l�Y

j=1

qwi � wj

wi � qwj
, i = 1, . . . , l�.

We call a solution of the Bethe equations nondegenerate if the q
Z lattices generated by

the wi’s and zm’s are disjoint for all i and m. We have proven the following theorem:

where
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Z lattices generated by
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is an (SL(2),q)-oper and L̂ is preserved by the q-connection A

Chose trivialization of L
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Z lattices generated by

the wi’s and zm’s are disjoint for all i and m. We have proven the following theorem:

q-Oper condition — SL(2) QQ-system

Z = diag(⇣, ⇣�1)Twist element

One of the polynomials

can be made monic

From QQ-system to Bethe equations
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where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
nomial. Formula (5.1) then yields

g(z) = ζiy(zq)y(z)
−1

and

(5.3) Λ(z) = y(z)y(zq)

(
ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.

Nondegeneracy (see Definition 4.6) means that Λ(z) and y(z) are polynomials whose roots
are q-distinct from each other. This can only be satisfied if y(z) equals a scalar multiple
of Q+(z). Since we have the freedom to rescale y(z), without loss of generality we can and
will assume that y(z) = Q+(z). Equation (5.3) then becomes

(5.4) ζQ−(z)Q+(zq)− ζ−1Q−(zq)Q+(z) = Λ(z).

We call equation (5.4) the QQ-system associated to SL(2). (See the last paragraph of
Section 5.2 and Section 6.2 for a discussion of the origins of this system in the XXZ model.)
Here, Λ(z) is fixed: it is the polynomial used in the definition of a Miura (SL(2), q)-opers
which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),
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k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:
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Λ(wk)
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= −ζ2

Q+(qwk)
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where the zp’s are mutually q-distinct and non-zero. Setting r =
∑L

p=1 tp, the equations
(5.5) become

(5.7) qr
L∏

p=1

wk − q1−rpzp
wk − qzp

= −ζ2qm
m∏

j=1

qwk − wj

wk − qwj
, k = 1, . . . ,m.

This is a more familiar form of the Bethe Ansatz equations in the XXZ model (see e.g.
[FH1], Section 5.6).

Let us call a solution Q+(z) of the system of Bethe Ansatz equations (5.5) nondegenerate
if Q+(z) is a monic polynomial whose roots are q-distinct from the roots of Λ(z). It is clear
that if {Q+(z), Q−(z)} is a nondegenerate solution of (5.4), then Q+(z) is a nondegenerate
solution of (5.5), and vice versa. The above calculation, combined with Theorem 5.1, proves
the following result.

Theorem 5.2. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the Bethe Ansatz equations (5.5).

It is known that the Bethe Ansatz equations (5.5) parametrize the spectra of the quantum
transfer-matrices in the XXZ model corresponding to Uq′ ŝl2, where q′ = q−2, with the

space of states being the tensor product of finite-dimensional representations of Uq′ ŝl2 (see
e.g. [FH1]). The polynomial Λ(z) is the product of the Drinfeld polynomials of these
representations, up to multiplicative shifts by powers of q. Furthermore, we expect that
the QQ-system (5.4) can be derived from the QQ̃-relation in the Grothendieck ring of the

category O of Uq′ ŝl2 proved in [FH2].

5.3. An approach using the q-Wronskian. In [KSZ], the equations (5.4) and (5.5)
were derived in a slightly different way, and analogous results were also obtained for G =
SL(n). We now make an explicit connection between this approach and the approach of the
preceding section.

Recall Definition 4.2 of (GL(2), q)-opers. Adding the condition that the underlying rank
two vector bundle W can be identified with the trivial line bundle so that det(A) = 1, we
obtain the definition of Miura (SL(2), q)-opers. The oper condition is now expressed as the

existence of a line subbundle L̃ ⊂ W for which Ā : L̃ −→ W/L̃ is an isomorphism on a open
dense subset of P1. Choose any trivialization of W on an open dense subset U , and let s(z)

be a section of W on this subset that generates the line subbundle L̃. The q-connection
A(z) then satisfies the condition

s(qz) ∧A(z)s(z) %= 0

on a Zariski open dense subset V of U . This is the definition of a general meromorphic
(SL(2), q)-oper.

From this perspective, (SL(2), q)-opers with regular singularities are defined in [KSZ] as
follows.

Definition 5.3. An (SL(2), q)-oper with regular singularities determined by Λ(z) is a mero-

morphic (SL(2), q)-oper (E, A, L̃) such that s(qz) ∧A(z)s(z) = Λ(z).

This definition is equivalent to Definition 2.8.
Consider a diagonal matrix Z = diag(ζ, ζ−1) with ζ %= ±1. Recall that an (SL(2), q)-oper

(E, A, L̃) is a Z-twisted q-oper if A is gauge equivalent to Z. (We remark that in [KSZ], a
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4.6. Dependence on the Coxeter element. We end this section with a preliminary re-
sult on the dependence of our results on the specific Coxeter element fixed in the definition
of q-opers. We will see later in Section 7.4 that the QQ-systems obtained from different
choices of Coxeter element are equivalent. Here, we show that if two Coxeter elements c
and c′ are related by a cyclic permutation of their simple reflection factors, then the corre-
sponding spaces of (G, q)-opers with regular singularities are isomorphic via a map defined
in terms of B+(z)-gauge transformations. Moreover, this map preserves nondegeneracy.

Proposition 4.10. Let c and c′ be two Coxeter elements that differ by a cyclic permutation
of their simple reflection factors. Then, there is an isomorphism between the spaces of Z-
twisted Miura (G, q)-opers with regular singularities defined in terms of c and c′ of the form
A(z) !→ fA(qz)A(z)fA(z)−1, where fA ∈ B+(z). This isomorphism takes nondegenerate
opers to nondegenerate opers.

Proof. Without loss of generality, we may assume that c = wi1 . . . wir and c′ = wi2 . . . wirwi1 .
Given

A(z) =
r∏

j=1

gij (z)
α̌ij e

Λij
(z)

gij
(z) eij

,

set

fA(qz) =

(

gi1(z)
α̌i1 e

Λi1
(z)

gi1
(z) ei1

)−1

.

The effect of gauge transformation by fA(z) is to move the q−1-shift of the i1 component
of A to the end of the product, thereby giving the order corresponding to c′. The new yi’s
and Λi’s are the same except for the q−1-shift of yi1 and Λi1 , so it is obvious that the new
q-oper also has regular singularities and is nondegenerate if the original q-oper was. It is
also clear that this map is an isomorphism. !

5. (SL(2), q)-opers and the Bethe Ansatz equations

Our goal is to establish a bijection between the set of nondegenerate Z-twisted Miura-
Plücker (G, q)-opers and the set of nondegenerate solutions of a system of Bethe Ansatz
equations. In this section, we show this for G = SL(2), which corresponds to the XXZ model.
This was already shown in [KSZ], in which a slightly different definition of (SL(2), q)-opers
was used. Below, we explain the connection to the formalism used in [KSZ].

5.1. From non-degenerate (SL(2), q)-opers to the QQ-system. Suppose we have a Z-
twisted nondegenerate Miura (equivalently, a Miura-Plücker) (SL(2), q)-oper. As explained
in Section 4.4, the underlying q-connection may be written in the form

A(z) =

(
g(z) Λ(z)
0 g(z)−1

)
,

and furthermore, there exists v(z) ∈ B+(z) such that

(5.1) A(z) = v(zq)Zv(z)−1, Z =

(
ζ 0
0 ζ−1

)
.

Write

(5.2) v(z) =

(
y(z) 0
0 y(z)−1

)(
1 −Q−(z)

Q+(z)

0 1

)
=

(
y(z) −y(z)Q−(z)

Q+(z)

0 y(z)−1

)
,
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in Section 4.4, the underlying q-connection may be written in the form

A(z) =

(
g(z) Λ(z)
0 g(z)−1

)
,

and furthermore, there exists v(z) ∈ B+(z) such that

(5.1) A(z) = v(zq)Zv(z)−1, Z =

(
ζ 0
0 ζ−1

)
.

Write
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where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
nomial. Formula (5.1) then yields

g(z) = ζiy(zq)y(z)
−1

and

(5.3) Λ(z) = y(z)y(zq)

(
ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.

Nondegeneracy (see Definition 4.6) means that Λ(z) and y(z) are polynomials whose roots
are q-distinct from each other. This can only be satisfied if y(z) equals a scalar multiple
of Q+(z). Since we have the freedom to rescale y(z), without loss of generality we can and
will assume that y(z) = Q+(z). Equation (5.3) then becomes

(5.4) ζQ−(z)Q+(zq)− ζ−1Q−(zq)Q+(z) = Λ(z).

We call equation (5.4) the QQ-system associated to SL(2). (See the last paragraph of
Section 5.2 and Section 6.2 for a discussion of the origins of this system in the XXZ model.)
Here, Λ(z) is fixed: it is the polynomial used in the definition of a Miura (SL(2), q)-opers
which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),
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permuting the standard basis. Hence, the associated Miura opers are parameterized by the
Weyl group.

3. (SL(2), q)-opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a di↵erence equation version of connections and opers.

Fix q 2 C⇤. Given a vector bundle E over P1, let E
q denote the pullback of E under

the map z 7! qz. We will always assume that E is trivializable. Consider a map of vector
bundles A : E �! E

q. Upon picking a trivialization, the map A is determined by a matrix
A(z) 2 gl(N, C(z)) giving the linear map Ez �! Eqz in the given bases. A change in
trivialization by g(z) changes the matrix via

(3.1) A(z) 7! g(qz)A(z)g�1(z);

thus, q-gauge change is twisted conjugation. Let Dq : E �! E
q be the operator that takes

a section s(z) to s(qz). We associate the map A to the di↵erence equation Dq(s) = As.

Definition 3.1. A meromorphic (GL(N), q)-connection over P1 is a pair (E, A), where
E is a (trivializable) vector bundle of rank N over P1 and A is a meromorphic section of
the sheaf HomOP1 (E, E

q) for which A(z) is invertible, i.e. lies in GL(N, C(z)). The pair
(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a meromor-
phic (G, q)-connection over P1 as a pair (G, A) where G is a principal G-bundle over P1 and
A is a meromorphic section of HomOP1 (G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper on P1 is a triple (E, A,L), where (E, A) is a (GL(2), q)-
connection and L is a line subbundle such that the induced map Ā : L �! (E/L)q is an
isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

The condition that Ā is an isomorphism can be made explicit in terms of sections. Indeed,
it is equivalent to

s(qz) ^ A(z)s(z) 6= 0

for s(z) any section generating L over either of the standard a�ne coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue of

the opers considered in Section 2.4. First, we introduce the notion of a q-oper with regular
singularities. Let z1, . . . , zL 6= 0, 1 be a collection of points such that q

Z
zm \ q

Z
zn = ? for

all m 6= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL 6= 0, 1
with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā is an isomor-
phism everywhere on P1 \{0, 1} except at the points zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for

m 2 {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over P1 \1:
s(qz) ^ A(z)s(z) has simple zeros at zm, q

�1
zm, q

�2
zm, . . . , q

�km+1
zm for every m 2

{1, . . . , L} and has no other finite zeros.

Dq(s1) = ⇤(z)s2

after elimination

✓
D2

q � T (qz)Dq �
⇤(qz)

⇤(z)

◆
s1 = 0
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⇣
1 0

a(z)/⇢(z) 1

⌘
; this brings the q-connection into the form

(3.10) Â(z) =

✓
0 ⇢(z)

�⇢
�1(z) T (qz)⇢�1(qz)

◆
.

If
⇣

f1
f2

⌘
is a solution of the corresponding di↵erence equation, then we have Dq(f1) = ⇢(z)f2

and Dq(f2) = �⇢
�1(z)f1 +T (qz)⇢�1(qz)f2. Simplifying, we see that f1 is a solution of the

second-order scalar di↵erence equation

(3.11)

✓
D

2

q � T (qz)Dq � ⇢(qz)

⇢(z)

◆
f1 = 0.

Summing up, we have

Theorem 3.7. Nondegenerate Z-twisted (SL(2), q)-opers with regular singularities at the
points z1, . . . , zn 6= 0, 1 with weights k1, . . . kn may be represented by meromorphic q-
connections of the form (3.10) or equivalently, by the second-order scalar di↵erence opera-
tors (3.11).

3.4. Embedding of the tRS model into q-opers. We now explain a connection between
nondegenerate twisted (SL(2), q)-opers and the two particle trigonometric Ruijsenaars-
Schneider model. More precisely, we show that the integrals of motion in the tRS model
arise from nondegenerate twisted opers with two regular singularities of weight one and
with Q� linear.

Consider Z-twisted opers with two regular singularities z±, both of weight one, so ⇢ =
(z � z+)(z � z�). For generic q, the degree of the quantum Wronskian equals deg(Q+) +
deg(Q�). Here, we will only look at q-opers for which deg(Q±) = 1, say Q� = z � p� and
Q+ = c(z � p+). Here, c is a nonzero constant for which the quantum Wronskian is monic;
an easy calculation shows that c = q

�1(⇣�1 � ⇣)�1.
Setting the quantum Wronskian equal to ⇢ gives us the equation

(3.12) z
2 � z

q


⇣ � q⇣

�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p�

�
+

p+p�
q

= (z � z+)(z � z�) .

Comparing powers of z on both sides, we obtain

(3.13)

⇣ � q⇣
�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p� = q(z+ + z�)

p+p�
q

= z+z� .

Upon introducing coordinates ⇣+, ⇣� such that ⇣ = ⇣+/⇣� and viewing ⇣±, p± as the
positions and momenta in the two particle tRS model, we see that (3.13) are just the
trigonometric Ruijsenaars-Schneider equations [KPSZ1705]. In fact, the set of Z-twisted
opers with weight one singularities at z± is just the intersection of two Lagrangian sub-
spaces of the two particle tRS phase space: the subspace determined by (3.13) and the
subspace with the ⇣± fixed constants satisfying ⇣ = ⇣+/⇣�. As we will see in Section 7,
this construction can be generalized to higher rank.
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Recover 2-body tRS Hamiltonian from a q-Oper



Calogero-Moser Space
Let V be an N-dimensional vector space over . Let  be the subset of  consisting of elements 

 such that 
ℂ ℳ′￼ GL(V) × GL(V) × V × V*

(M, T, u, v)

qMT − TM = u ⊗ vT

The group  acts on  by conjugationGL(N; ℂ) = GL(V ) ℳ′￼

(M, T, u, v) ↦ (gMg−1, gTg−1, gu, vg−1)

The quotient of  by the action of  is called Calogero-Moser space ℳ′￼ GL(V ) ℳ

Also can be understood as moduli space of flat 

connections on punctured torus ABA�1B�1 = C

Mn = {A,B,C}/GL(n;C)

C = diag(q, …, q, qn−1)
Integrable Hamiltonians are ~TrTk
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.
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and call the corresponding ring quantum K-theory of Nk,n. The word “deformation”
here means that for two K-theory classes A,B we have

A!B = A⊗B +
∞∑

d=1

A!dBzd,

so that if the deformation parameter is equal to zero z → 0 (this special case is usually
referred to as classical limit), the quantum product ! coincides with the classical
tensor product ⊗. The definition of the quantum product follows closely the definition
of the product in quantum cohomology: the classes A !d B ∈ KT(N(n)) (quantum
corrections) are given by certain degree d curve counting in Nk,n.

Next, for a tautological bundle τ ∈ KT(Nk,n) as above, we define a deformation
which will be referred to as quantum tautological bundle:

τ̂ (z) = τ +
∞∑

d>0

τdz
d ∈ KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multipli-
cation by quantum tautological bundles. The following Theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 1. The eigenvalues of operators of quantum multiplication by τ̂ (z) are given
by the values of the corresponding Laurent polynomials τ(s1, · · · , sk) evaluated at the
solutions of the following equations:

n∏
j=1

si − aj
!aj − si

= z !−n/2
k∏

j=1
j !=i

si!− sj
si − sj!

, i = 1 · · ·k.(4)

When z = 0 we return to the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (4) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[31], [7] for a more detailed outline.

Let us consider a system of n interacting magnetic dipoles (usually refered to as
spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⊗ C2 ⊗ · · ·⊗ C2.(5)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = −
n∑

i=1

σi
x ⊗ σi+1

x + σi
y ⊗ σi+1

y +∆ σi
z ⊗ σi+1

z ,(6)

where ∆ = !1/2 + !−1/2 is the parameter of anisotropy and σi
m are the standard Pauli

matrices acting in the i-th factor of (5). The periodic boundary conditions are imposed

is ([Oko15] Section 7.2). Using equivariant localization, we can thus make
the following definition.

Definition 6. The bare vertex function with descendant ⌧ inserted at p1 is
the formal power series

V(⌧)(z) =
X

d

evp2,⇤( bOd
vir ⌦ ⌧ |p1 ,QM

d
nonsing p2)z

d
2 KT⇥C⇥

q
(X)loc[[z]]

where bOd
vir is the symmetrized virtual structure sheaf on QMd

nonsing p2 .

In what follows, we will omit the superscript (⌧) in the bare vertex func-
tion when ⌧ = 1.

2.5

Definition 7. The capping operator is the formal series

 (z) =
X

d

evp1,⇤ ⌦ evp2,⇤( bOd
vir,QM

d
relative p1
nonsing p2

)zd
2 K

⌦2
T (X)loc[[z]]

where bOd
vir denotes the symmetrized virtual structure sheaf on QMd

relative p1
nonsing p2

The standard pairing on equivariant K-theory

(F ,G) = �(F ⌦ G)

allows us to interpret  (z) as a linear map

�(z) : KT(X)loc[[z]] ! KT(X)loc[[z]]

We have the following theorem:

Theorem 2. ([Oko15] Section 7.4) The capping operator satisfies the equa-
tion

V̂(⌧)(z) =  (z)V(⌧)(z)

9

Quantum classes satisfy interesting difference equations in equivariant parameters and Kahler parameters  qKZ, Dynamical equation

After symmetrization they can be rewritten as eigenvalue equations for trigonometric Ruijsenaars-Schneider (tRS) system [PK, Zeitlin]

[Okounkov, Smirnov]

In terms of string/gauge theory tRS eigenproblem is Ward identity [Gaiotto, PK] [Bullimore, Kim, PK]
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and the contour Cp runs around points corresponding to chamber C and the shifted variable

z! = z(−!
1/2)det(P). Here z! =

∏n−1
i=1 z!i , so that z!i = zi(−!

1/2)v
′

i .

In [PSZ], [KPSZ] we found these formulas to be useful to study their asymptotics at
q → 1 which lead to Bethe ansatz equations, producing the relations for the quantum
K-theory ring. In this article, we however will leave parameter q intact.

4. Trigonometric RS Difference Operators

Proposition 3.2 provides integral formulas for vertex functions Vp of X which depend on
the choice of the contour Cp. In this section we study properties of integral (3.1) without
explicitly specifying the contour. In particular, we shall demonstrate that for a properly
chosen contour (3.1) solves quantum difference equations of the trigonometric Ruijsenaars-
Schneider model. In this work we shall only study difference equations in equivariant
parameters of X, see [Kor18] (Theorem 2.6).

In full generality tRS Hamiltonians read4

(4.1) Tr(a) =
∑

I⊂{1,...,n}
|I|=r

∏

i∈I
j /∈I

t ai − aj
ai − aj

∏

i∈I

pi ,

where a = {a1, . . . , awn−1}, the shift operator pif(ai) = f(qai) and we denoted t = q
! .

In order to understand how the above difference operators act on integrals of the form
(3.1) we need to study in detail how they act on the ingredients of the integrand. In what
follows we shall describe these actions for vertex functions of quiver variety X in question.
The analysis for cotangent bundles to complete flag varieties was performed in [HR12] and
in [BKK15].

Consider the following function

(4.2) Hvn,vn+1(sn, sn+1) =
vn∏

k=1

vn+1∏

j=1

ϕ
(
q
!

sn,k

sn+1,j

)

ϕ
(

sn,k

sn+1,j

) ,

were sn = {sn,1, . . . , sn,vn} and sn+1 = {sn+1,1, . . . , sn+1,vn+1}. The following lemma de-
scribes action of the difference operator pn,k

(4.3) pn,kf(sn,1, . . . , sn,k, . . . sn,vn) = f(sn,1, . . . , qsn,k, . . . sn,vn) .

on this function.

Lemma 4.1. Let H be given in (4.2) then

(4.4) pn,kHvn,vn+1(sn, sn+1) =

vn+1∏

j=1

sn+1,j − sn,k
sn+1,j −

q
!sn,k

·Hvn,vn+1(sn, sn+1) .

4In this section we use slightly different normalization of the tRS operators than in [KPSZ].
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Proof. Consider sn,k where k ∈ I from the definition of difference operators Tr (4.1).
Assuming that we do not hit any poles, we shift the contour of integration by sn,k → q−1sn,k
only for k ∈ I. This operation can be expressed via acting with the inverse shift p−1

n,k on
the integrand of the left hand side of (4.15)

(4.16)

∫

C

vn∏

i=1

dsn,i
sn,i

∑

I⊂{1,...,n}
|I|=r

[
∏

k∈I

p−1
n,k · E(sn,i)f(sn)

]

·
∏

i∈I
j /∈I

tq−1 sn,i − sn,j
q−1sn,i − sn,j

· g(sn) .

Using (4.5) and (4.14) we arrive to the right hand side of (4.15). !

4.1. tRS Difference Equations. Now we shall use the lemmas which we have just proven
to construct a solution for the quantum difference tRS equations. First, let us change
quantum parameters in K-theory as follows

z!1 =
ζ1
ζ2

,

z!i =
ζi

ζi+1
, i = 2, . . . , n− 2

z!n−1 =
ζn−1

ζn
.(4.17)

Theorem 4.8. The following function constructed for the cotangent bundle to the partial
flag variety X labelled by v1, . . . , vn−1,wn−1

(4.18)

V(a, "ζ) =
e

log ζn
∑n−1

i=1 log ai
log q

2πi

∫

C

n−1∏

m=1

vm∏

i=1

dsm,i

sm,i
E(sm,i) e

−
log ζm/ζm+1·log sm,i

log q ·

vm+1∏

j=1

Hvm,vm+1 (sm,i, sm+1,j) ,

where contour C is chosen in such a way that shifts of the contour s → q±1
s do not

encounter any poles, satisfies tRS difference relations

(4.19) Tr(a)V(a, "ζ) = Sr("ζ, t)V(a, "ζ) , r = 1, . . . ,wn−1

where function Sr is r-symmetric polynomial of the following
∑n

k=1 ksk variables

(4.20) {tv
′

1−1ζ1, . . . , t
−v

′

1+1ζ1, . . . . . . , t
v
′

n−1−1ζn, . . . , t
−v

′

n−1+1ζn} ,

where v
′
i = vi+1 − vi for i = 1, . . . n− 2 and v

′
n−1 = wn−1 − vn−1.

Proof. First, we need to justify that contour C can be always chosen in such a way that its
shifts do not result in any additional residues and that Lemma 4.7 can be applied. Indeed,
in any given complex plane sn,i poles in the integrand of (4.18) are located at sn,i = σq−dn,i

for some σ (different for each plane). The contour can be safely chosen to avoid the collision
with poles. Indeed, suppose q is real so various poles of the integrand are located on lines
which are parallel to the real axis. The contour is therefore chosen to go above and below
the above string of poles. Since the contour is parallel to the real axis it won’t be affected
by the q-shift.

[PK]

Figure 8: Di↵erent boundary conditions obtained from the A3 theory with labels (2, 3), (1, 1), (1, 1)
whose brane diagram is depicted in the center. The diagram in the lower left corner represents

T [U(8)]
⇢
_
1

⇢1 theory with ⇢1 = (3, 2, 1, 1, 1) and ⇢_1 = (3, 3, 1, 1). In the lower right corner we have

T [U(12)]
⇢
_
2

⇢2 theory with ⇢2 = (3, 3, 3, 2, 1) and ⇢_2 = (4, 4, 2, 2).

A3 component of the gauge field. These fields satisfy a set of first-order di↵erential equations
called Nahm equations, with appropriate boundary conditions at domain walls. If we only
care about the complex structure of the Higgs branch, the equations reduce to the statement
that the complex field X = X1

H
+ iX2

H
is covariantly constant.

The Nahm boundary conditions force X to live in the so-called Slodowy slice for ⇢, i.e.

X = t+
⇢
+ x⇤ (2.75)

where t+
⇢

is the raising generator of the su(2) embedding and the matrix x⇤ should be a
lowest weight for the su(2) action.

The boundary condition which is given by coupling to the triangular quiver T [U(Q)]⇢
_

forces X to coincide with the moment map for the U(Q)H flavour symmetry of T [U(Q)]⇢
_
.

The moment map parameterizes faithfully the Higgs branch of T [U(Q)]⇢
_
, and lies in a

specific nilpotent orbit of GL(Q), labelled by the transposed partition ⇢_
T
to ⇢_. Overall, the

Higgs moduli space of vacua of a general linear quiver T [U(Q)]⇢
_

⇢
is the intersection of the

Slodowy slice for ⇢ and the nilpotent orbit for ⇢_
T
. By S-duality, the Coulomb branch has

the opposite characterization.

3 BPS Boundary Conditions and S-duality

In this section we investigate moduli spaces of N = 2⇤ 3d gauge theories from a di↵erent
perspective, namely we start with the N = 4 super Yang-Mills theory in four dimensions and
study the moduli space upon compactification on a circle and N = 2⇤ mass deformation. We
then introduce BPS boundary conditions and domain walls and study their moduli space of
vacua.

29

Saddle point limit yields Bethe equations for XXZ



ClassicalQuantum

SU(n) XXZ spin chain on n sites w/ anisotropies 

and twisted periodic boundary conditions

n-particle trigonometric  

Ruijsenaars-Schneider model

coordinatestwist eigenvalues

energy (eigenvalues of Hamiltonians)equivariant parameters (anisotropies)

T1 =
nX

i=1

Y

j 6=i

~zi � zj
zi � zj

pi

[Ti, Tj ] = 0

zi

⌦ =
X

i

dpi
pi

^ dzi
zi

zi

Ti(z, ~) = ei(a), i = 1, . . . , n
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we arrive at the following set of equations which is equivalent to (23)

ζ1
ζ2

·
v1∏

β !=α

!σ1,α − σ1,β
!σ1,β − σ1,α

·
v2∏

β=1

σ1,α − !
1/2σ2,β

σ2,β − !
1/2σ1,α

= (−1)δ1 ,

ζi
ζi+1

·

vi−1∏

β=1

σi,α − !
1/2σi−1,β

σi−1,β − !
1/2σi,α

·
vi∏

β !=α

!σi,α − σi,β
!σi,β − σi,α

·

vi+1∏

β=1

σi,α − !
1/2σi+1,β

σi+1,β − !
1/2σi,α

= (−1)δi ,(30)

ζn−1

ζn
·

vn−2∏

β=1

σn−1,α − !
1/2σn−2,β

σn−2,β − !
1/2σn−1,α

·

vn−1∏

β !=α

!σn−1,α − σn−1,β

!σn−1,β − σn−1,α
·

wn−1∏

β=1

σn−1,α − !
1/2αβ

αβ − !
1/2σn−1,α

= (−1)δn−1 ,

where in the middle equation i = 2, . . . , n − 2 and δi = vi−1 + vi + vi+1 − 1. The reader
may notice that we use slightly non-standard notation for Bethe equations, in particular,
parameters aβ appear in the last equation i = n − 1 (instead of the first equation). Sign
factors (−1)δi in the right hand sides are artifacts of this choice. However, as we saw in
the previous section this way of writing the equations is more convenient from geometric
point of view. Later we shall see that this framework will be convenient in the derivation
of the Lax matrix of the trigonometric Ruijsenaars-Schneider model.

Meanwhile, if we denote v0 = 0 ,vn = wn−1, σn,β = αβ for β = 1, . . . ,wn−1 then (30)
can be written more uniformly as follows

(31)
ζi
ζi+1

vi−1∏

β=1

σi,α − !
1/2σi−1,β

σi−1,β − !
1/2σi,α

·
vi∏

β !=α

!σi,α − σi,β
!σi,β − σi,α

·

vi+1∏

β=1

σi,α − !
1/2σi+1,β

σi+1,β − !
1/2σi,α

= (−1)δi .

Following (26) let us write eigenvalues Qi(u) of Baxter operators in terms of the new
variables and couplement it with Qn(u), being the generating function for elementary
symmetric functions of equivariant parameters.

(32) Qi(u) =
vi∏

α=1

(u− σi,α) , P (u) = Qn(u) =

wn−1∏

a=1

(u− αa) .

In addition, we define shifted polynomials when their arguments are multiplied by !−
1
2 to

the corresponding power: Q(n)(u) = Qi(!
−n

2 u), etc.
Then Bethe equations (31) can be expressed in terms of these polynomials as follows

Lemma 4.1. The equation for Bethe root σi,α in (31) arises as u = σi,α locus of the
following equation

(33) !
∆i
2

ζi
ζi+1

Q(1)
i−1Q

(−2)
i Q(1)

i+1

Q(−1)
i−1 Q(2)

i Q(−1)
i+1

= −1 ,

where ∆i = vi+1 + vi−1 − 2vi.

Note that sign δi disappeared.
In order to proceed further we need to rewrite (33) in a slightly different way.

Bethe Ansatz Equations: 
∂Y
∂σi

= 0
Energy level equations

ai ei(ai)

Planck’s constant ℏ Coupling constant ℏ

QQ-Systems q-Opers[PK Gaiotto]



Quantum/Classical Duality

 

 

 

 

Lµ

L�

W = �W

Figure 10: Two Lagrangian submanifolds L
⇢

L,µ
and L

⇢
_

R,⌧
intersect at loci which coincide with the

moduli space of vacua for the corresponding T [U(Q)]⇢
_

⇢ theory. The e↵ective twisted superpotential
W for the XXZ chain and its mirror dual W

_ coincide at those loci.

3d N = 2⇤ AL quiver 4d U(Q) N = 2⇤ SYM
gauge theory on segment with 1

2 BPS b.c.

Moduli space of vacua Intersection of Lagrangians

of a quiver theory L L
⇢

L,µ
\ L

⇢
_

R,⌧

Twisted masses µi Eigenvalues of M
Complexified FI parameters ⌧a Eigenvalues of T

Twisted mass for U(1)✏ R-symmetry Eigenvalue of E
Color and flavor labels Embeddings su(2) ,! u(Q)

(Ni,Mi) ⇢ and ⇢_

Table 1: The duality table between quiver gauge theories and segment compactifications of SYM
theories.

4 Applications to Integrable Systems

In the last couple of decades dualities between various integrable systems have been discussed
extensively [37–39]. The network of dualities between various integrable systems we are about
to present widely generalizes results from the literature. In the main text we have connected
XXZ spin chains and tRS models in a rich circle of dualities. See figure Fig. 11 for a sketch
of the gauge theory origin of these dualities. We can summarize it as follows. A reasonable
starting point is the Lax matrix description of the tRS model: the Hamiltonians of the tRS
model are built from the positions ↵i and the momenta pi

↵
by taking traces of powers of the

Lax matrix T described by (3.20) and (3.21). The Lax matrix and the diagonal matrix M
built out of the ↵i satisfy the flatness condition (3.26), which treats M and T in a symmetric
fashion (up to ⌘ ! �⌘�1).

This suggests a natural question: how do we map into each other the phase spaces of the
original tRS model, and of the S-dual tRS_ model which is defined by a gauge transformation
to a basis where T is diagonal? Our analysis gives a surprising answer to this question: this
LS Lagrangian submanifold in the product of the two phase spaces M ⇥ M

_ coincides with
the moduli space of the T [U(Q)] theory (for Q particles in the tRS model), i.e. with the
solution of Bethe equations for an XXZ SU(Q) spin chain with Q fundamental spins, in

42
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Figure 17. 3d mirror dual quivers with their labels.

According to the mirror map (6.24) also describes the magnetic frame of X
�

�! where ⇠i

are mapped to ai, ai are sent to xi, and ~ is inverted.

6.3.4. Self-Dual Family Xk,l. Consider quiver variety Xk,l with Kähler parameters ⇣i = ⇠i
⇠i+1

,
equivariant parameters ak, . . . , ak+r�1 and ak+r,1, . . . ak+r,k+1, and scaling weight of the
cotangent fibers is ~ (see top of Fig. 18). On the bottom of Fig. 18 we see quiver variety
X

!

k,l
has equivariant parameters a1,1,, . . . , a1,k+1 and a2 . . . ar as well as Kähler parameters

zi = ⇠i
⇠i+1

and ~! for the weight of the C⇥ action.
Thus we have the following Theorem.

Theorem 6.9. Under 3d mirror symmetry quiver varieties Xk,l and X
!

k,l
are dual to each

other. Moreover

(6.25) KT (Xk,l) ' KT !(X !

k,l
) ,

where the Kähler and equivariant tori parameters of Xk,l and X
!

k,l
are mapped to each other

as follows

⇠j = ak+l,j , j = 1, . . . , k + 1, ⇠k+i = ai , i = 2, . . . , l

ak+l,j = ⇠j , j = 1, . . . , k + 1, ai = ⇠k+i, i = 2, . . . , l ,(6.26)

as well as ~! = ~�1.
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We refer to (�i, p
�

i
) as electric frame for tRS system and (⇢i, p

⇢

i
) as its magnetic frame

we call the map i
em the electric-magnetic map. Notice, that we already established the

isomorphism of Lemma 6.1 in a di↵erent manner, when we discussed the ring KT (FFlL)
in its electric an oper magnetic frames formulation, which coincide with the electric and
magnetic frames of tRS systems. As a consequence we obtain the following statement,
previously discussed in [GK,KPSZ]:

Theorem 6.2. The contangent bundle to the full flag variety is 3d Mirror self-dual.

Remark 6.3. Consider the product of two N -body tRS model phase spaces M ⇥ M
!. Recall

that tRS momenta can be obtained from the XXZ Yang-Yang function for full flag variety:
Y = Y ({si,k}, {ai}, {⇠i}, ~), which depends on Bethe variables, which provides the relation

(6.3) p
⇠

i
= exp

@Y

@⇠i

, p
a

i = exp
@Y

@ai

.

It turns out the Yang-Yang function serves as a generating function on Lagrangian subva-
riety L ⇢ M⇥M

! which is specified by the choice of eigenvalues of tRS Lax matrices T and
M above with the symplectic form

(6.4) ⌦ =
NX

i=1

dp
⇠

i

p
⇠

i

^ d⇠i

⇠i

� dp
a

i

p
a

i

^ dai

ai

vanishes. From this geometric viewpoint transition from M to the dual phase space M
! is

a canonical transformation of type I.

We will describe mirror maps for quiver varieties from this statement by applying de-
generation constraints on Kähler and equivariant parameters. Previously we described the
recursive procedure how to e↵ectively degenerate the electric frame version of the K

q

T
(FFlL)

to produce K
q

T
(Yv,w). The first step in that procedure is to degenerate it to the partial flag

X
� by imposing the relations on Kähler parameters ⇠i. One can use the map i from Lemma

6.1 to produce what we call a ‘true magnetic frame’ for the partial flag. Namely, we have

Proposition 6.4. Consider the electric frame formulation of K
q

T
(X�), i.e. using matrix

T as a Lax matrix. Let Fun�(~Op)(FFlL) be the space of Z-twisted Miura ~-opers corre-
sponding to the quiver FFlL with Z-twist components given by the eigenvalues of the tRS
matrix M and regular singularities given by the equivariant parameters of X

�. Then we
have the following isomorphism:

K
q

T
(X�) ⇠= Fun�(~Op)(FFlL)(6.5)

Proof. Indeed, let us apply map i in the case of M with these degenerate eigenvalues. It
still works, since tRS Hamiltonians do not produce any singularities upon the degenerations
produced by the electric frame for partial flag. Then through Wronskian realization in the
Theorem 3.3 we obtain the corresponding oper space ~Op(FFlL). ⇤

We call the roots of the monomials of section s in the Wronskian formulation of ~Op�(FFlL)
as true magnetic momenta. Then one can interpret the space Fun�(~Op)(FFlL) as the space
of functions on the intersection of two Lagrangian subvarieties in the space with coordinates
(p�

i
, �i)i=1,...,L by setting �i to be equal to the eigenvalues of matrix M for the electric frame

formulation of K
q

T
(X�) and the second is given by the tRS Hamiltonians set to be equal to

the symmetric functions of the parameters of regular singularities.
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Clearly, one would like to construct the similar set of coordinates for general quiver. We
will call such set of coordinates a true magnetic frame. The key to construct it is through
the “dual” system of coordinates which we called electric frame, directly related to tRS
model.

For the electric frame we started from a partial flag quiver. In this case we established
the isomorphism between the algebra of functions on the space of Miura (SL(r + 1), ~)-
opers and the algebra of functions on the intersection of two Lagrangian subvarieties in
the symplectic space with coordinates {⇢i, p

⇢

i
}i=1,...,L. where the first one is determined by

{⇢i = ai}1,...,L and the second one is deterimined by the tRS Hamiltonians set to be equal
to the elementary symmetric functions of {�i = ⇠ki~li}i=1,...,L, where {ki, li} are determined
by partial flag labels. Of course, this is a degeneration of the algebra corresponding the full
flag quiver, where we imposed the condition �i = ~kij�j for some integers kij .

Remarkably, one can reproduce this tRS realization of the equivariant quantum K-theory
by means of the recursive procedure of Section 4 by imposing degeneration conditions on
the {ai} parameters.

Given all this information, we will define a map from electric frame to a true magnetic
frame using the explicit structure of tRS model (as was suggested in Sections 3 and 4 of
[GK]).

6.2. tRS variables, the Mirror Map and the True Magnetic Frame. As we know,
the Lax matrix of the tRS model admits two di↵erent realizations – it can be either matrix
M or matrix T in (4.1). This can be achieved by diagonalization of each of the matrices
so we can pick a g such that M is diagonal with eigenvalues �1, . . . , �N or T diagonal with
eigenvalues ⇢1, . . . , ⇢N . Assume for now that ⇢i 6= ~Z

⇢j for i 6= j. As we discussed above,
upon diagonalization of M , T can be written in the form of Lax matrix: (4.5). Notice
that the same can be done for M matrix, the only di↵erence is that one has to exchange
~ ! ~�1. Let us reformulate this nontrivial relation in the following way.

Consider the symplectic spaces M
e with coordinates (⇢i, p

⇢i) and M
m with coordinates

(�i, p
�i). The tRS relation between M , T matrices produces a Lagrangian subvariety L

e
� ⇢

M described by setting the tRS Hamiltonians to be the symmetric functions of � variables.
On the other hand, it produces a Lagrangian subvariety L

m
⇢ ⇢ M with tRS Hamiltonians

under the transformation ~ �! ~�1.

Lemma 6.1. The transformation of the tRS system with

det(u � T ) =
NY

i=1

(u � ai) , det(u � M) =
NY

i=1

(u � ⇠i) ,

which maps

(6.1) i
em : M �! T , T �! M , ~ �! ~�1

.

corresponds to the following symplectic map

M
e �! M

m : (⇢i, p
⇢

i
) ! (�i, p

�

i
) ,

which produces a one-to-one correspondence between the intersections of the pairs of La-
grangian subvarieties:

(6.2) i
em : {⇢i = ai} \ L

e

⇠
�! {�i = ⇠i} \ L

m

a .

tRS energy relations
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One can explicitly check that the above relations holds provided that �a is given by the
second relation in (4.20) and tRS momenta are as in (4.21). ⇤

At the next step of the recursion, we introduce the new set of Bethe roots sr�1,1, . . . , sr�1,vr�1

and define the collection of momenta p
s

i
analogously to the first relation in (4.21) (with ⇠r+1

replaced by ⇠r, ai’s replaced by sr,i and sr,i’s replaced by sr�1,is)

(4.23) p
s

i =
⇠r

~vr�1

vr�1Y

j=1

sr,i � ~sr�1,j

sr�1,j � sr,i

.

This way the Lax matrix T
0 has the canonical form (4.5). We thus can get the first set of

Bethe equations from (4.16) for the sr,i roots by comparing the above expression with the
second relation in (4.21)

(4.24) ~2vr�L�vr�1
⇠r+1

⇠r

·
vr�1Y

j=1

sr�1,j � sr,i

sr,i � ~sr�1,j

·
vrY

k 6=i

~sr,i � sr,k

sr,i � ~sr,k

·
LY

b=1

sr,i � ~ab

sr,i � ab

= 1 .

Recursive application of this reasoning completes the proof in one direction.

It remains to be shown that for every solution of tRS equations with given degeneracy
of the right hand side there exists a solutions of Bethe equations (4.16). For simplicity
consider X

� in the case r = 1, v1 = k, L = n. A generalization to other partitions � is
straightforward. The eigenvalues read

(4.25) ⇠2, . . . , ⇠2~n�k�1
, ⇠1, . . . , ⇠1~k�1

Consider relations in (4.13) expanded in z

(4.26)
nX

i=0

(�1)i
z

n�i
Ti =

 
kX

l=0

(�1)l
z

l�l
el(⇠1, . . . , ⇠1~k�1)

! 
n�kX

m=0

(�1)m
z

n�k�m
em(⇠2, . . . , ⇠2~n�k�1)

!
,

where T0 = 1, T1, . . . Tn are the tRS Hamiltonians and el are elementary symmetric functions
of their arguments. We can impose ⇠2 = ⇣⇠1. Rescaling all momenta by ⇠1 give the RHS of
each of the equaltions for Tiin (4.26) expressed in terms of polynomials of ⇣ degree k. That
leaves at most k independent degrees of freedom for Ti and thus for pi, since transofrmation
from pi to Ti is generally non-degenerate. Thus formula (4.23) provides a faithful change
of variables.

⇤
To summarize, the relations for Fun(~Op)(X�) are as follows:

(4.27)
X

I⇢{1,...,L}
|I|=k

Y

i2I

j /2I

ai � ~ aj

ai � aj

Y

m2I

pm = `k(⇠i) ,

where symmetric functions `k were introduced in Theorem 3.7. We will refer to the the set
of variables {pi}, {ai} as electric frame momenta and coordinates correspondingly.

Remark 4.7. It may seem that electric momenta pi are disconnected from the ~-oper for-
malism we described in the previous section. However, this is not the case. For the
(SL(r + 1), ~)-oper the natural coordinate system is provided by the ~-Miura transfor-
mation, which is given by the ~-gauge transformation from B�(z) ⇢ SL(r + 1)(z) which
moves diagonal elements to the bottom row in the ~-connection matrix. The elements of

[PK Gaiotto]

Lµ

L⌧

Eigenvalues of M and Slodowy form on T

Eigenvalues of T and Slodowy form on M

Solutions of Bethe equations — intersection points
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We refer to (�i, p
�

i
) as electric frame for tRS system and (⇢i, p

⇢

i
) as its magnetic frame

we call the map i
em the electric-magnetic map. Notice, that we already established the

isomorphism of Lemma 6.1 in a di↵erent manner, when we discussed the ring KT (FFlL)
in its electric an oper magnetic frames formulation, which coincide with the electric and
magnetic frames of tRS systems. As a consequence we obtain the following statement,
previously discussed in [GK,KPSZ]:

Theorem 6.2. The contangent bundle to the full flag variety is 3d Mirror self-dual.

Remark 6.3. Consider the product of two N -body tRS model phase spaces M ⇥ M
!. Recall

that tRS momenta can be obtained from the XXZ Yang-Yang function for full flag variety:
Y = Y ({si,k}, {ai}, {⇠i}, ~), which depends on Bethe variables, which provides the relation

(6.3) p
⇠

i
= exp

@Y

@⇠i

, p
a

i = exp
@Y

@ai

.

It turns out the Yang-Yang function serves as a generating function on Lagrangian subva-
riety L ⇢ M⇥M

! which is specified by the choice of eigenvalues of tRS Lax matrices T and
M above with the symplectic form

(6.4) ⌦ =
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dp
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⇠
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ai

vanishes. From this geometric viewpoint transition from M to the dual phase space M
! is

a canonical transformation of type I.

We will describe mirror maps for quiver varieties from this statement by applying de-
generation constraints on Kähler and equivariant parameters. Previously we described the
recursive procedure how to e↵ectively degenerate the electric frame version of the K

q

T
(FFlL)

to produce K
q

T
(Yv,w). The first step in that procedure is to degenerate it to the partial flag

X
� by imposing the relations on Kähler parameters ⇠i. One can use the map i from Lemma

6.1 to produce what we call a ‘true magnetic frame’ for the partial flag. Namely, we have

Proposition 6.4. Consider the electric frame formulation of K
q

T
(X�), i.e. using matrix

T as a Lax matrix. Let Fun�(~Op)(FFlL) be the space of Z-twisted Miura ~-opers corre-
sponding to the quiver FFlL with Z-twist components given by the eigenvalues of the tRS
matrix M and regular singularities given by the equivariant parameters of X

�. Then we
have the following isomorphism:

K
q

T
(X�) ⇠= Fun�(~Op)(FFlL)(6.5)

Proof. Indeed, let us apply map i in the case of M with these degenerate eigenvalues. It
still works, since tRS Hamiltonians do not produce any singularities upon the degenerations
produced by the electric frame for partial flag. Then through Wronskian realization in the
Theorem 3.3 we obtain the corresponding oper space ~Op(FFlL). ⇤

We call the roots of the monomials of section s in the Wronskian formulation of ~Op�(FFlL)
as true magnetic momenta. Then one can interpret the space Fun�(~Op)(FFlL) as the space
of functions on the intersection of two Lagrangian subvarieties in the space with coordinates
(p�

i
, �i)i=1,...,L by setting �i to be equal to the eigenvalues of matrix M for the electric frame

formulation of K
q

T
(X�) and the second is given by the tRS Hamiltonians set to be equal to

the symmetric functions of the parameters of regular singularities.

Symplectic form
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3d mirror symmetry

4d UV and IR theories in the bulk.

The most basic property we would expect from a BPS RG domain wall is that UV bulk

BPS line operators brought to the interface should match with their bulk IR description,

brought to the interface from the opposite side. The correspondence between UV and IR

descriptions of a BPS line defect was discussed in detail in [21], and thus we have in our hands

an infinite set of constraints which the RG domain walls should obey. These constraints can

be made more manageable by inserting the line defects inside a protected calculation, such as

an ellipsoid partition function, or a sphere index. Alternatively, we can compare their vevs

when the theory is compactified on a circle.

The correspondence between UV and IR operators will work automatically for our candi-

date RG domain walls, for a simple geometric reason. The UV line operators are associated to

closed loops on the Riemann surface C [22], and their vevs to the trace of the holonomy along

the loops of a flat PSL(2, C) connection on C [21]. The 3d geometry is selected in such a way

that the same holonomy can be computed along a corresponding loop on the big boundary

region in terms of certain “edge coordinates.” The edge coordinates coincide with the vevs

of IR line operators and the relation between holonomies and edge coordinates is known to

encode the relation between UV and IR line defects [21]. The role of the 3d geometry is to

allow us to transport the UV line operators from the UV end of the geometry to the IR end

of the geometry, where the triangulation and edge coordinates live.

A

A' A

A'

Figure 8. Shrinking A- and A0-cycles on both the inner and outer boundaries of M to create Mp,p0 .
The resulting Mp,p0 here can be thought of as the complement of a trivalent “Hopf network” in S3.
It is the 3-manifold that gives rise to the theory T [SU(2)].

A closely related modification of the trivial cobordism M = C ⇥ I shrinks a set of A-

cycles on both ends, according to two di↵erent pants decompositions of C: p and p0. Call

the resulting manifold Mp,p0 . Then the 3d theory T2[Mp,p0 ] couples naturally to two copies

of T2[C] in di↵erent weakly coupled UV descriptions, corresponding to p and p0. We obtain

a concrete Lagrangian formulation for the domain wall that implements the N = 2 S-duality

of [1], in direct analogy with the N = 4 S-duality domain walls of [9].

The simplest example of such an S-duality domain wall is for 4d N = 2⇤ theory. The

– 9 –

[Dimofte Gaiotto van der Veen]
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2. (G, q)-opers with regular singularities

2.1. Group-theoretic data. Let G be a connected, simply connected, simple algebraic
group of rank r over C. We fix a Borel subgroup B− with unipotent radical N− = [B−, B−]
and a maximal torus H ⊂ B−. Let B+ be the opposite Borel subgroup containing H. Let
{α1, . . . ,αr} be the set of positive simple roots for the pair H ⊂ B+. Let {α̌1, . . . , α̌r} be
the corresponding coroots; the elements of the Cartan matrix of the Lie algebra g of G are
given by aij = 〈αj , α̌i〉. The Lie algebra g has Chevalley generators {ei, fi, α̌i}i=1,...,r, so
that b− = Lie(B−) is generated by the fi’s and the α̌i’s and b+ = Lie(B+) is generated by
the ei’s and the α̌i’s. Let ω1, . . .ωr be the fundamental weights, defined by 〈ωi, α̌j〉 = δij .

LetWG = N(H)/H be the Weyl group of G. Let wi ∈ W , (i = 1, . . . , r) denote the simple
reflection corresponding to αi. We also denote by w0 be the longest element of W , so that
B+ = w0(B−). Recall that a Coxeter element of W is a product of all simple reflections in
a particular order. It is known that the set of all Coxeter elements forms a single conjugacy
class in WG. We will fix once and for all (unless otherwise specified) a particular ordering
(αi1 , . . . ,αir) of the simple roots. Let c = wi1 . . . wir be the Coxeter element associated to
this ordering. In what follows (unless otherwise specified), all products over i ∈ {1, . . . , r}
will be taken in this order; thus, for example, we write c =

∏
iwi. We also fix representatives

si ∈ N(H) of wi. In particular, s =
∏

i si will be a representative of c in N(H).
Although we have defined the Coxeter element c using H and B−, it is in fact the case

that the Bruhat cell BcB makes sense for any Borel subgroup B. Indeed, let (Φ,∆) be the
root system associated to G, where ∆ is the set of simple roots as above and Φ is the set of
all roots. These data give a realization of the Weyl group of G as a Coxeter group, i.e., a
pair (WG, S), where S is the set of Coxeter generators wi of WG associated to elements of
∆. Now, given any Borel subgroup B, set b = Lie(B). Then the dual of the vector space
b/[b, b] comes equipped with a set of roots and simple roots, and this pair is canonically
isomorphic to the root system (Φ,∆) [CG, §3.1.22]. The definition of the sets of roots and
simple roots on this space involves a choice of maximal torus T ⊂ B, but these sets turn
out to be independent of the choice. Accordingly, the group N(T )/T together with the set
of its Coxeter generators corresponding to these simple roots is isomorphic to (WG, S) as a
Coxeter group. Under this isomorphism, w ∈ WG corresponds to an element of N(T )/T by
the following rule: we write w as a word in the Coxeter generators of WG corresponding to
elements of S and then replace each Coxeter generator in it by the corresponding Coxeter
generator of N(T )/T . Accordingly, the Bruhat cell BwB is well-defined for any w ∈ WG.

2.2. Meromorphic q-opers. The definitions given below can be given for an arbitrary
algebraic curve equipped with an automorphism of infinite order. For the sake of definitive-
ness, we will focus here on the case of the curve P1 and its automorphism Mq : P1 −→ P1

sending z '→ qz, where q ∈ C× is not a root of unity.
Given a principal G-bundle FG over P1 (in the Zariski topology), let F

q
G denote its

pullback under the map Mq : P1 −→ P1 sending z '→ qz. A meromorphic (G, q)-connection
on a principal G-bundle FG on P1 is a section A of HomOU

(FG,F
q
G), where U is a Zariski

open dense subset of P1. We can always choose U so that the restriction FG|U of FG to U is
isomorphic to the trivial G-bundle. Choosing such an isomorphism, i.e. a trivialization of
FG|U , we also obtain a trivialization of FG|M−1

q (U). Using these trivializations, the restriction

A U-Zariski open dense set

Change of trivialization 
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).

on
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).

A(z) 2 G(C(z))
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).

is a reduction of 
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
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is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
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where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
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where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
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q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
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Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).



Miura (G,q)-Opers

q-OPERS, QQ-SYSTEMS, AND BETHE ANSATZ 9

of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
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We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
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Therefore, u+ = h′(z)
∏

i e
ai(z)ei , where h ∈ H and ai(z) "= 0 for all i = 1, . . . , r. Such an

element u+ can belong to wN+w−1 only if w−1 maps all positive simple roots to positive
roots, i.e. if it preserves the set of positive roots. But this can only happen for w = 1. This
completes the proof. !

Corollary 2.4. For any Miura (G, q)-oper on P1, there exists a trivialization of the under-
lying G-bundle FG on an open dense subset of P1 for which the oper q-connection has the
form

(2.6) A(z) ∈ N−(z)
∏

i

((φi(z)
α̌isi)N−(z) ∩ B+(z).

Proof. In the course of the proof of Theorem 2.3, we showed that we can choose a trivial-
ization of FG so that the oper q-connection has the form

Ã(z) = g(zq)n′(z)
∏

i

(φi(z)
α̌i si)n(z)g(z)

−1,

where n(z), n′(z) ∈ N−(z) and g(z) = b+(z)n−(z), with b+(z) ∈ B+(z), n−(z) ∈ N−(z).
Therefore, changing the trivialization by b+(z), we obtain the q-connection

A(z) = b+(zq)
−1Ã(z)b+(z) ∈ N−(z)

∏

i

((φi(z)
α̌isi)N−(z) ∩ B+(z).

!

2.4. Explicit representatives. Our proof of Theorem 2.3 relies on the following general
result, which might be of independent interest.

For a field F , consider the group G(F ) and the corresponding subgroups N−(F ), B+(F ),
and H(F ). As before, we denote by si a lifting of wi ∈ WG to G(F ).

Theorem 2.5. Let F be any field, and fix λi ∈ F×, i = 1, . . . , r. Then every element of the
set N−

∏
i λ

α̌i
i siN− ∩ B+ can be written in the form

(2.7)
∏

i

gα̌i
i e

λiti
gi

ei , gi ∈ F×,

where each ti ∈ F× is determined by the lifting si.

We start with the following

Lemma 2.6. Every element of λα̌i
i siN− may be written in either of the following two forms:

n−λ
α̌i
i si or n−g

α̌ie
λiti
g

ei

for some n− ∈ N−(F ), g ∈ F×, and with each ti ∈ F× determined by the lifting si.

Proof. First, note that λα̌i
i sieafi with a "= 0 is of the form n−gα̌ie

λiti
g

ei , where n− ∈ N− and
g = aλiti. This follows from the equality of 2× 2 matrices

(
λi 0
0 λ−1

i

)(
0 ti

−t−1
i 0

)(
1 0
a 1

)
=

(
1 0
n− 1

)(
aλiti λiti
0 (aλiti)−1

)
,

where n− = − 1
at2i λ

2
i
.

An arbitrary element u of N− can be expressed as a product

u =
∏

k

eakfk
∏

s<r

eas,r [fs,fr] . . . ,

Theorem 1:
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for some n− ∈ N−(F ), g ∈ F×, and with each ti ∈ F× determined by the lifting si.

Proof. First, note that λα̌i
i sieafi with a "= 0 is of the form n−gα̌ie

λiti
g

ei , where n− ∈ N− and
g = aλiti. This follows from the equality of 2× 2 matrices

(
λi 0
0 λ−1

i

)(
0 ti

−t−1
i 0

)(
1 0
a 1

)
=

(
1 0
n− 1

)(
aλiti λiti
0 (aλiti)−1

)
,

where n− = − 1
at2i λ

2
i
.

An arbitrary element u of N− can be expressed as a product

u =
∏

k

eakfk
∏

s<r

eas,r [fs,fr] . . . ,

Theorem 2:
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We now specialize to the case of the Coxeter element c. The factorization in Theorem 2.5
yields an explicit version of the Fomin-Zelevinsky factorization for C c̃

0, where c̃ =
∏
λα̌i
i si.

Theorem 2.5 thus implies that C c̃
0 = C c̃ and Gc

0 = Gc, i.e., in this case, the Fomin-Zelevinsky
map (2.9) gives a factorization for the entire double Bruhat cell. In fact, the same argument
applies to show Gw

0 = Gw for any w whose reduced decompositions do not involve repeated
simple reflections. We remark that this statement is apparently known to specialists and
may also be proved using cluster algebra techniques.2

2.6. q-opers and Miura q-opers with regular singularities. Let {Λi(z)}i=1,...,r be a
collection of nonconstant polynomials.

Definition 2.8. A (G, q)-oper with regular singularities determined by {Λi(z)}i=1,...,r is a
q-oper on P1 whose q-connection (2.2) may be written in the form

(2.10) A(z) = n′(z)
∏

i

(Λi(z)
α̌i si)n(z), n(z), n′(z) ∈ N−(z).

Definition 2.9. A Miura (G, q)-oper with regular singularities determined by polynomials
{Λi(z)}i=1,...,r is a Miura (G, q)-oper such that the underlying q-oper has regular singularities
determined by {Λi(z)}i=1,...,r.

According to Corollary 2.4, we can write the q-connection underlying such a Miura (G, q)-
oper in the form

A(z) ∈ N−(z)
∏

i

((Λi(z)
α̌isi)N−(z) ∩ B+(z).

Recall Theorem 2.5. Observe that we can choose liftings si of the simple reflections
wi ∈ WG in such a way that ti = 1 for all i = 1, . . . , r. From now on, we will only consider
such liftings.

The following theorem follows from Theorem 2.5 in the case F = C(z) and gives an
explicit parametrization of generic elements of the above intersection.

Theorem 2.10. Every element of N−(z)
∏

i(Λi(z))α̌isi)N−(z) ∩ B+ may be written in the
form

(2.11) A(z) =
∏

i

gi(z)
α̌i e

Λi(z)
gi(z)

ei , gi(z) ∈ C(z)×.

Corollary 2.11. For every Miura (G, q)-oper with regular singularities determined by the
polynomials {Λi(z)}i=1,...,r, the underlying q-connection can be written in the form (2.11).

3. Z-twisted q-opers and Miura q-opers

Next, we consider a class of (Miura) q-opers that are gauge equivalent to a constant
element of G (as (G, q)-connections). Let Z be an element of the maximal torus H. Since
G is simply connected, we can write

(3.1) Z =
r∏

i=1

ζ α̌i
i , ζi ∈ C

×.

2We thank Greg Muller for a discussion of these matters.
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Using structure theorem every Miura (G,q)-oper with singularities reads
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(G,q)-oper is Z-twisted if  it is equivalent to a constant element of G
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Definition 3.1. A Z-twisted (G, q)-oper on P1 is a (G, q)-oper that is equivalent to the
constant element Z ∈ H ⊂ H(z) under the q-gauge action of G(z), i.e. if A(z) is the
meromorphic oper q-connection (with respect to a particular trivialization of the underlying
bundle), there exists g(z) ∈ G(z) such that

A(z) = g(qz)Zg(z)−1.(3.2)

Definition 3.2. A Z-twisted Miura (G, q)-oper is a Miura (G, q)-oper on P1 that is equiv-
alent to the constant element Z ∈ H ⊂ H(z) under the q-gauge action of B+(z), i.e.

A(z) = v(qz)Zv(z)−1, v(z) ∈ B+(z).(3.3)

3.1. From Z-twisted q-opers to Miura q-opers. It follows from Definition 3.1 that any
Z-twisted (G, q)-oper is also Z ′-twisted for any Z ′ in the WG-orbit of Z. However, if we
endow it with the structure of a Z-twisted Miura (G, q)-oper (by adding a B+-reduction
FB+ preserved by the oper q-connection), then we fix a specific element in this WG-orbit.

Indeed, suppose that (FG, A,FB−) is a Z-twisted (G, q)-oper. Choose a trivialization of
FG on a Zariski open dense subset U of P1 with respect to which A is equal to Z. Then
a choice of an A-invariant B+-reduction FB+ of FG on a Zariski open dense subset V ⊂ U
is the same as a choice of a Z-invariant B+-reduction of the fiber FG,v of FG at any point
v ∈ V . Our trivialization of FG|U identifies FG,v with G, and hence a B+-reduction of
FG,v with a right coset gB+ of G. The Z-invariance of this B+-reduction means that gB+,
viewed as a point of the flag variety G/B+, is a fixed point of Z. This is equivalent to
Z ∈ gB+g−1 or g−1Zg ∈ B+.

Adding the B+-reduction FB+ corresponding to a coset gB+ satisfying this property to
our (G, q)-oper (FG, A,FB−), we endow it with the structure of a Miura (G, q)-oper. A choice
of trivialization of FB+ is equivalent to a choice of an identification of the coset gB+ with
B+, which is the same as a choice of an element of this coset (this element corresponds to
1 ∈ B+ under the given isomorphism B+ # gB+). Without loss of generality, we denote this
element also by g. Then, with respect to the corresponding trivialization of the (G, q)-oper
bundle FG, the q-connection becomes equal to g−1Zg ∈ B+. However, note that because
we can multiply g on the right by any element of B+, we still have the freedom to conjugate
g−1Zg by an element of B+, and there is a unique element in the B+-conjugacy class of
g−1Zg of the form w−1Zw, where w ∈ WG. Denote this element by Z ′. We now conclude
that the Miura (G, q)-oper obtained by endowing our (G, q)-oper with the B+-reduction
FB+ corresponding to gB+ is Z ′-twisted.

As a result, we also construct a map µZ from (G/B+)Z = {f ∈ G/B+ | Z · f = f}
to WG · Z, sending gB+ with g−1Zg ∈ B+ to the unique element Z ′ of WG · Z that is
B+-conjugate to g−1Zg. According to the above construction, the set of points of the
fiber µ−1

Z (Z ′) of µZ over a specific Z ′ ∈ WG · Z is in bijection with the set of A-invariant
B+-reductions FB+ on our (G, q)-oper such that the corresponding Miura (G, q)-oper is
Z ′-twisted.

Thus, we have proved the following result.

Proposition 3.3. Let Z ∈ H. For any Z-twisted (G, q)-oper (FG, A,FB−) and any choice
of B+-reduction FB+ of FG preserved by the oper q-connection A, the resulting Miura (G, q)-
oper is Z ′-twisted for a particular Z ′ ∈ WG · Z.

Moreover, the set of A-invariant B+-reductions FB+ on the (G, q)-oper (FG, A,FB−)
making it into a Z ′-twisted Miura (G, q)-oper is in bijection with the set of points of µ−1

Z (Z ′).
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Z is regular semisimple. WGThere are

Miura (G,q)-opers for each (G,q)-opers
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It is also the case that AH(z) determines the yi(z)’s uniquely up to scalar. Indeed, if
∏

i

ỹi(qz)
α̌iZ

∏

i

ỹi(z)
−α̌i = Z

as well, then
∏

i

(
ỹi(qz)

yi(qz)

)α̌i

Z
∏

i

(
ỹi(z)

yi(z)

)−α̌i

= Z.

The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is

Line stable under B+

Plucker relations: for two integral dominant weights
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It is also the case that AH(z) determines the yi(z)’s uniquely up to scalar. Indeed, if
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is

under canonical projection

Conversely, for a collection of lines
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ỹi(z)
−α̌i = Z

as well, then
∏

i

(
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ỹi(z)

yi(z)

)−α̌i

= Z.

The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is

satisfying Plucker relations 9B ⇢ G such that
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is
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It is also the case that AH(z) determines the yi(z)’s uniquely up to scalar. Indeed, if
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is

This is a vector of weight
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is

!i wrt
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
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satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
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satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi isis one-dimensional and spanned 
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the

Thus the 2d subspace spanned by {⌫!i , fi · ⌫!i}
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the

νωi

fi νωi

}Wi
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the

Associated vector bundle
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the

contains rank-two subbundle
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the

q-OPERS, QQ-SYSTEMS, AND BETHE ANSATZ 17

one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the

Using structure theorems we obtain r Miura (GL(2),q)-opers
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Z-twisted Miura-Plucker (G,q)-oper is meromorphic Miura (G,q)-oper on P1 such that for each Miura (GL(2),q)-oper  
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For example, this holds for all i if all yj(z), j = 1, . . . , r, are polynomials, an observation we
will use below.

4.2. Z-twisted Miura-Plücker q-opers. Recall Definition 3.2 of Z-twisted Miura (G, q)-
opers, where Z is a regular semisimple element of the maximal torus H. These are Miura
(G, q)-opers whose underlying q-connection can be written in the form (3.3):

(4.8) A(z) = v(qz)Zv(z)−1, v(z) ∈ B+(z).

We will now relax this condition using the Miura (GL(2), q)-opers Ai(z) (or equivalently,
the Miura (SL(2), q)-opers Ai(z)) associated to A(z). Instead, we will require that there
exists an element v(z) from B+(z) such that Ai(z) satisfies formula (4.8) with v(z) replaced
by vi(z) = v(z)|Wi ∈ GL(2) and Z replaced by Z|Wi for all i = 1, . . . , r.

Definition 4.3. A Z-twisted Miura-Plücker (G, q)-oper is a meromorphic Miura (G, q)-oper
on P1 with underlying q-connection A(z) satisfying the following condition: there exists
v(z) ∈ B+(z) such that for all i = 1, . . . , r, the Miura (GL(2), q)-opers Ai(z) associated to
A(z) by formula (4.1) can be written in the form

(4.9) Ai(z) = v(zq)Zv(z)−1|Wi = vi(zq)Zivi(z)
−1,

where vi(z) = v(z)|Wi and Zi = Z|Wi .

The difference between Z-twisted Miura (G, q)-opers and Z-twisted Miura-Plücker (G, q)-
opers may be explained as follows: the former is a quadruple (FG, A, FB− ,FB+) as in
Definition 2.2 such that there exists a trivialization of FB+ with respect to which the q-
connection A is a constant element of G(z) equal to our element Z ∈ H. For the latter, we
only ask that there exists a trivialization of FB+ with respect to which the q-connections
Ai(z) are constant elements of GL(2)(z) equal to Zi for all i = 1, . . . , r.

Thus, every Z-twisted Miura (G, q)-oper is automatically a Z-twisted Miura-Plücker
(G, q)-oper, but the converse is not necessarily true if G "= SL(2).

Note, however, that it follows from the above definition that the (H, q)-connection AH(z)
associated to a Z-twisted Miura-Plücker (G, q)-oper can be written in the same form (4.2)
as the (H, q)-connection associated to a Z-twisted Miura (G, q)-oper.

4.3. H-nondegeneracy condition. We now introduce two nondegeneracy conditions for
Z-twisted Miura-Plücker q-opers. The first of them, called the H-nondegeneracy condition,
is applicable to arbitrary Miura q-opers with regular singularities. Recall from Corollary
2.11 that the underlying q-connection can be represented in the form (2.11).

In what follows, we will say that v,w ∈ C× are q-distinct if qZv ∩ qZw = ∅.

Definition 4.4. A Miura (G, q)-oper A(z) of the form (2.11) is called H-nondegenerate if
the corresponding (H, q)-connection AH(z) can be written in the form (3.8), where for all
i, j, k with i "= j and aik "= 0, ajk "= 0, the zeros and poles of yi(z) and yj(z) are q-distinct
from each other and from the zeros of Λk(z).

4.4. Nondegenerate Z-twisted Miura (SL(2), q)-opers. Next, we define the second
nondegeneracy condition. This condition applies to Z-twisted Miura-Plücker (G, q)-opers.
In this subsection, we give the definition for G = SL(2). (Note that Z-twisted Miura-Plücker
(SL(2), q)-opers are the same as Z-twisted Miura (SL(2), q)-opers.) In the next subsection,
we will give it in the case of an arbitrary simply connected simple complex Lie group G.
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Thus, we have arrived at a nondegenerate Z-twisted Miura (SL(2), q)-oper in the sense

of Section 4: A(z) = gα̌(z)e
Λ(z)
g(z) e, where g(z) = ζQ+(zq)Q+(z)−1.

6. Miura-Plücker q-opers, QQ-system, and Bethe Ansatz equations

In this section, we generalize the results of the previous section to an arbitrary simply
connected simple complex Lie group G. We establish a one-to-one correspondence between
the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the set of nondegenerate
solutions of a system of Bethe Ansatz equations associated to G. A key element of the
construction is an intermediate object between these two sets: the set of nondegenerate
solutions of the so-called QQ-system.

6.1. Miura (G, q)-opers and the QQ-system. First, we construct a one-to-one corre-
spondence between the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the
set of nondegenerate solutions of the QQ-system.

Recall that we have chosen a set of non-zero polynomials {Λi(z)}i=1,...,r, which we will
assume from now on to be monic, and a set of non-zero complex numbers {ζi}i=1,...,r that
correspond to a regular element Z of the maximal torus H ⊂ G by formula (3.1). In this
section, these data are assumed to be fixed. (In the next section, we will also consider
elements w(Z) of the orbit of Z under the action of the Weyl group WG of G and the
corresponding ζi’s.)

From now on, we will assume that our element Z =
∏

i ζ
α̌i
i ∈ H satisfies the following

property:

(6.1)
r∏

i=1

ζ
aij
i /∈ qZ, ∀j = 1, . . . , r .

Since
∏r

i=1 ζ
aij
i $= 1 is a special case of (6.1), this implies that Z is regular semisimple.

Introduce the following system of equations:

(6.2) ξ̃iQ
i
−(z)Q

i
+(qz)− ξiQ

i
−(qz)Q

i
+(z) =

Λi(z)
∏

j>i

[
Qj

+(qz)
]−aji ∏

j<i

[
Qj

+(z)
]−aji

, i = 1, . . . , r,

where

(6.3) ξ̃i = ζi
∏

j>i

ζ
aji
j , ξi = ζ−1

i

∏

j<i

ζ
−aji
j

and we use the ordering of simple roots from the definition of (G, q)-opers.
We call this the QQ-system associated to G and a collection of polynomials Λi(z), i =

1, . . . , r.
A polynomial solution {Qi

+(z), Q
i
−(z)}i=1,...,r of (6.2) is called nondegenerate if it has

the following properties: condition (6.1) holds for the ζi’s; for all i, j, k with i $= j and
aik, ajk $= 0, the zeros of Qj

+(z) and Qj
−(z) are q-distinct from each other and from the

zeros of Λk(z); and the polynomials Qi
+(z) are monic.

Recall Definition 4.3 of nondegenerate Z-twisted Miura-Plücker (G, q)-opers.

Theorem 6.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted Miura-Plücker (G, q)-opers and the set of nondegenerate polynomial solutions of the
QQ-system (6.2).
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Theorem 6.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted Miura-Plücker (G, q)-opers and the set of nondegenerate polynomial solutions of the
QQ-system (6.2).
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26 E. FRENKEL, P. KOROTEEV, D.S. SAGE, AND A.M. ZEITLIN

Thus, we have arrived at a nondegenerate Z-twisted Miura (SL(2), q)-oper in the sense

of Section 4: A(z) = gα̌(z)e
Λ(z)
g(z) e, where g(z) = ζQ+(zq)Q+(z)−1.

6. Miura-Plücker q-opers, QQ-system, and Bethe Ansatz equations

In this section, we generalize the results of the previous section to an arbitrary simply
connected simple complex Lie group G. We establish a one-to-one correspondence between
the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the set of nondegenerate
solutions of a system of Bethe Ansatz equations associated to G. A key element of the
construction is an intermediate object between these two sets: the set of nondegenerate
solutions of the so-called QQ-system.

6.1. Miura (G, q)-opers and the QQ-system. First, we construct a one-to-one corre-
spondence between the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the
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Theorem 6.1. There is a one-to-one correspondence between the set of nondegenerate Z-
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Proof uses 
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Proof. Let A(z) be a nondegenerate Z-twisted Miura-Plücker (G, q)-oper. According to
Corollary 2.11, it can be written in the form (2.11):

(6.4) A(z) =
∏

i

gi(z)
α̌i e

Λi(z)
gi(z)

ei , gi(z) ∈ C(z)×,

and there exists v(z) ∈ B+(z) such that for all i = 1, . . . , r, the Miura (GL(2), q)-opers
Ai(z) associated to A(z) by formula (4.1) can be written in the form (4.9):

(6.5) Ai(z) = vi(zq)Zivi(z)
−1, i = 1, . . . , r,

where vi(z) = v(z)|Wi and Zi = Z|Wi .
The element v(z) can be expressed in the form

(6.6) v(z) =
r∏

i=1

yi(z)
α̌i

r∏

i=1

e
−

Qi
−(z)

Qi
+(z)

ei
. . . ,

where the dots stand for the exponentials of higher commutator terms in n+ = LieN+ (these
terms will not matter in the computations below) and Qi

+(z), Q
i
−(z) are relatively prime

polynomials with Qi
+(z) monic for each i = 1, . . . , r. Formula (6.5) shows that, without loss

of generality, we can and will assume that each yi(z) is a monic polynomial.
Acting on the two-dimensional subspace Wi introduced in Section 4.1, v(z) has the form

(6.7) v(z)|W i =

(
yi(z) 0

0 y−1
i (z)

∏
j #=i y

−aji
j (z)

)(
1 −

Qi
−(z)

Qi
+(z)

0 1

)

while Z has the form

(6.8) Z|Wi =

(
ζi 0

0 ζ−1
i

∏
j #=i ζ

−aji
j

)
.

We now apply (4.1) and (6.5)to relate the yi(z)’s and Qi
±(z)’s. First, comparing the

diagonal entries on both sides of (6.5) gives formula (3.9):

(6.9) gi(z) = ζi
yi(qz)

yi(z)
.

Second, by comparing the upper triangular entries on both sides of (6.5), we obtain

(6.10) Λi(z)
∏

j>i

gj(z)
−aji =

yi(z)yi(qz)
∏

j #=i

yj(z)
aji



ζi
Qi

−(z)

Qi
+(z)

− ζ−1
i

∏

j #=i

ζ
−aji
j

Qi
−(qz)

Qi
+(qz)



 .

Since Λi(z) and yi(z) are monic polynomials, the nondegeneracy conditions can only be
satisfied if

(6.11) yi(z) = Qi
+(z), i = 1, . . . , r.

Substituting (6.11) into (6.10), we see that the polynomials Qi
+(z), Q

i
−(z), i = 1, . . . , r,

satisfy the system of equations (6.2). Thus, we obtain a map from the set of nondegenerate
Miura (G, q)-opers to the set of nondegenerate solutions of (6.2).

To show that this map is a bijection, we construct its inverse. Suppose that we are given
a nondegenerate solution {Qi

+(z), Q
i
−(z)}i=1,...,r of the system (6.2). The nondegeneracy
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condition implies that the polynomials Qi
+(z) and Qi

−(z) are relatively prime. We then
define A(z) by formula (6.4), where we set

gi(z) = ζi
Qi

+(qz)

Qi
+(z)

,

i.e.

A(z) =
∏

j

[

ζj
Qj

+(qz)

Qj
+(z)

]α̌j

e

Λj (z)Q
j
+(z)

ζjQ
j
+(qz)

ei
(6.12)

=
∏

j

[
ζjQ

j
+(qz)

]α̌j

e

Λj (z)

ζjQ
j
+(qz)Q

j
+(z)

ej[
Qj

+(z)
]−α̌j

.(6.13)

We also set

(6.14) v(z) =
r∏

i=1

yi(z)
α̌i

r∏

i=1

e
−

Q
j
−(z)

Q
j
+(z)

ei
.

Equations (6.5) are satisfied for all i = 1, . . . , r. Using Proposition 4.8, we check that the
nondegeneracy conditions on A(z) are satisfied. Therefore, A(z) defines a nondegenerate
Z-twisted Miura-Plücker (G, q)-oper. This completes the proof. !

Remark 6.2. The system (6.2) depends on our choice of ordering of the simple roots of
G. In Section 7.4 we will show that the systems corresponding to different orderings are
equivalent. !

6.2. Prior work on the QQ-system. The system (6.2) has an interesting history. As
far as we know, for G = SL(2) the corresponding equation (5.4) with Λ(z) = 1 was first
written by Bazhanov, Lukyanov, and Zamolodchikov [BLZ] in their study of the quantum
KdV system. It was then generalized to the case G = SL(3) (also with Λi(z) = 1) in [BHK].
However, in both of these works, the conditions imposed on Qi

±(z) are different from those
considered here; they are not polynomials, but rather entire functions in z with a particular
asymptotic behavior as z → ∞.

For a general simply laced G, the system (6.2) with Λi(z) = 1 is equivalent to a system
that, as far as we know, was first proposed by Masoero, Raimondo, and Valeri in [MRV1],
in their study of (differential) affine opers introduced in [FF]. (For G = SL(n), a Yangian
version of this system is closely related to the system introduced in [BFL+]; see Remark
3.4 of [FH2].) The goal of [MRV1] was to generalize the results of [BLZ] in light of the
conjecture of [FF] (see also [FH2]) linking the spectra of quantum ĝ-KdV system and affine
Lĝ-opers on P1 of a special kind. Here, Lĝ is the affine Kac-Moody algebra that is Langlands
dual to ĝ, i.e., its Cartan matrix is the transpose of that of ĝ. If g is simply laced, then
Lĝ = ĝ. The authors of [MRV1] considered the simplest of the ĝ-opers proposed in [FF],
those corresponding to the ground states of the quantum ĝ-KdV system, and associated
to each of them a solution of a system equivalent to (6.2) with Λi(z) = 1. (This was
subsequently generalized in [MR] by Masoero and Raimondo to the ĝ-opers conjectured
in [FF] to correspond to the excited states of the quantum ĝ-KdV system.) However, the
meaning of this system from the point of view of quantum integrable systems remained
unclear.
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Upon making the substitution Qi
±(z) = Qi

±(q
N−i
2 z) and Λi(z) = Λi(q

N−i−1
2 z), we obtain a

more symmetric form of the system which was considered in [KSZ]:

Λi(z)Q
i+1
+ (z)Qi−1

+ (z) =
ζi
ζi+1

Qi
−(q

−1/2z)Qi
+(q

1/2z)−
ζi+1

ζi
Qi

−(q
1/2z)Qi

+(q
−1/2z).

If we set Λi(z) = 1, the latter is equivalent to the system from [MRV1,FH2] corresponding
to Uq′ ŝln with q′ = q−2.

Now, suppose that g is non-simply laced. In this case, the system (6.2) is different from
the QQ̃-system of [MRV2] and [FH2] corresponding to Uqĝ. Instead, it can be obtained by

“folding” the QQ̃-system corresponding to Uqĝ′, where g′ is the simply laced Lie algebra
with an automorphism σ such that (g′)σ = g. This will be discussed in [FHR].

6.3. QQ-system and Bethe Ansatz equations. As we will see, the QQ-system (6.2)
gives rise to a system of equations only involving the Qi

+(z)’s. Let {w
k
i }k=1,...,mi

be the set
of roots of the polynomial Qi

+(w). We call the system of equations

(6.16)
Qi

+(qw
k
i )

Qi
+(q

−1wk
i )

∏

j

ζ
aji
j = −

Λi(wi
k)
∏

j>i

[
Qj

+(qw
i
k)
]−aji∏

j<i

[
Qj

+(w
i
k)
]−aji

Λi(q−1wi
k)
∏

j>i

[
Qj

+(w
i
k)
]−aji∏

j<i

[
Qj

+(q
−1wi

k)
]−aji

for i = 1, . . . , r, k = 1, . . . ,mi the Bethe Ansatz equations for the group G and the set
{Λi(z)}i=1,...,r.

For simply laced G, this system is equivalent to the system of Bethe Ansatz equations
that appears in the Uqĝ XXZ-type model [OW,RW,R]. However, for non-simply laced G,
we obtain a different system of Bethe Ansatz equations, which, as far as we know, has
not yet been studied in the literature on quantum integrable systems. (As we mentioned
in the Introduction, an additive version of this system appeared earlier in [MV2].) As
will be explained in [FHR], these Bethe Ansatz equations correspond to a novel quantum
integrable model in which the spaces of states are representations of the twisted quantum
affine Kac-Moody algebra Uq

Lĝ, where Lĝ is the Langlands dual Lie algebra of ĝ.
Recall the nondegeneracy condition for the solutions of the QQ-system. We apply the

same notion to the solutions of (6.16).

Theorem 6.4. There is a bijection between the sets of nondegenerate polynomial solutions
of the QQ-system (6.2) and the Bethe Ansatz equations (6.16).

Proof. Let {Qi
+(z), Q

i
−(z)}i=1,...,r be a nondegenerate solution of the QQ-system (6.2). Set

(6.17) φi(z) =
Qi

−(z)

Qi
+(z)

and

(6.18) fi(z) = Λi(z)
∏

j>i

[
Qj

+(qz)
]−aji∏

j<i

[
Qj

+(z)
]−aji

.

Then, the ith equation of the QQ-system may be rewritten as

(6.19) ξ̃iφi(z)− ξiφi(qz) =
fi(z)

Qi
+(z)Q

i
+(qz)

.

Space of nondegenerate solutions of 

QQ-system for G 

Nondegenerate Z-twisted Miura (G,q)-opers 

with regular singularities 

roots of Q+

Space of nondegenerate solutions of 

XXZ for G

Nondegenerate Z-twisted Miura-Plucker (G,q)-opers 

with regular singularities 

?

?
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4.6. Dependence on the Coxeter element. We end this section with a preliminary re-
sult on the dependence of our results on the specific Coxeter element fixed in the definition
of q-opers. We will see later in Section 7.4 that the QQ-systems obtained from different
choices of Coxeter element are equivalent. Here, we show that if two Coxeter elements c
and c′ are related by a cyclic permutation of their simple reflection factors, then the corre-
sponding spaces of (G, q)-opers with regular singularities are isomorphic via a map defined
in terms of B+(z)-gauge transformations. Moreover, this map preserves nondegeneracy.

Proposition 4.10. Let c and c′ be two Coxeter elements that differ by a cyclic permutation
of their simple reflection factors. Then, there is an isomorphism between the spaces of Z-
twisted Miura (G, q)-opers with regular singularities defined in terms of c and c′ of the form
A(z) !→ fA(qz)A(z)fA(z)−1, where fA ∈ B+(z). This isomorphism takes nondegenerate
opers to nondegenerate opers.

Proof. Without loss of generality, we may assume that c = wi1 . . . wir and c′ = wi2 . . . wirwi1 .
Given

A(z) =
r∏

j=1

gij (z)
α̌ij e

Λij
(z)

gij
(z) eij

,

set

fA(qz) =

(

gi1(z)
α̌i1 e

Λi1
(z)

gi1
(z) ei1

)−1

.

The effect of gauge transformation by fA(z) is to move the q−1-shift of the i1 component
of A to the end of the product, thereby giving the order corresponding to c′. The new yi’s
and Λi’s are the same except for the q−1-shift of yi1 and Λi1 , so it is obvious that the new
q-oper also has regular singularities and is nondegenerate if the original q-oper was. It is
also clear that this map is an isomorphism. !

5. (SL(2), q)-opers and the Bethe Ansatz equations

Our goal is to establish a bijection between the set of nondegenerate Z-twisted Miura-
Plücker (G, q)-opers and the set of nondegenerate solutions of a system of Bethe Ansatz
equations. In this section, we show this for G = SL(2), which corresponds to the XXZ model.
This was already shown in [KSZ], in which a slightly different definition of (SL(2), q)-opers
was used. Below, we explain the connection to the formalism used in [KSZ].

5.1. From non-degenerate (SL(2), q)-opers to the QQ-system. Suppose we have a Z-
twisted nondegenerate Miura (equivalently, a Miura-Plücker) (SL(2), q)-oper. As explained
in Section 4.4, the underlying q-connection may be written in the form

A(z) =

(
g(z) Λ(z)
0 g(z)−1

)
,

and furthermore, there exists v(z) ∈ B+(z) such that

(5.1) A(z) = v(zq)Zv(z)−1, Z =

(
ζ 0
0 ζ−1

)
.

Write

(5.2) v(z) =

(
y(z) 0
0 y(z)−1

)(
1 −Q−(z)

Q+(z)

0 1

)
=

(
y(z) −y(z)Q−(z)

Q+(z)

0 y(z)−1

)
,
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Z-twisted q-oper condition

Gauge transformation reads
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where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
nomial. Formula (5.1) then yields

g(z) = ζiy(zq)y(z)
−1

and

(5.3) Λ(z) = y(z)y(zq)

(
ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.

Nondegeneracy (see Definition 4.6) means that Λ(z) and y(z) are polynomials whose roots
are q-distinct from each other. This can only be satisfied if y(z) equals a scalar multiple
of Q+(z). Since we have the freedom to rescale y(z), without loss of generality we can and
will assume that y(z) = Q+(z). Equation (5.3) then becomes

(5.4) ζQ−(z)Q+(zq)− ζ−1Q−(zq)Q+(z) = Λ(z).

We call equation (5.4) the QQ-system associated to SL(2). (See the last paragraph of
Section 5.2 and Section 6.2 for a discussion of the origins of this system in the XXZ model.)
Here, Λ(z) is fixed: it is the polynomial used in the definition of a Miura (SL(2), q)-opers
which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),
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Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
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p=1

rp−1∏

jp=0

(z − q−jpzp),
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where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
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ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.
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which contains the information about their regular singularities. Thus, the QQ-system is
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Evaluating (5.4) at q−1z, we get
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−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)
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we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as
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rp−1∏

jp=0

(z − q−jpzp),Singularities
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As in the classical setting, we need to relax these conditions to allow for regular singular-
ities. Fix a collection of L points z1, . . . , zL 6= 0, 1 such that the q

Z-lattices they generate
are pairwise disjoint. We associate a dominant integral weight �m =

P
l
i
m!i to each zm.

Set `
i
m =

Pi
j=1

l
j
m.

Definition 4.2. An (SL(N), q)-oper with regular singularities at the points z1, . . . , zL 6=
0, 1 with weights �1, . . . �L is a meromorphic (SL(N), q)-oper such that each Āi is an

isomorphism except at the points q
�`i�1

m zm, q
�`i�1

m +1
zm, . . . , q

�`im+1
zm for each m, where it

has simple zeros.

znq
�1

znq
�2

zn

q

q
�lkn+1

zn
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Figure 1. Weight of the singularity zn as q-monodromy around the cylinder
(P1 with 0 and 1 removed).

In order to express the locations of the roots of the Wi(s)’s, it is convenient to introduce
the polynomials

(4.3) ⇤i =
LY

m=1

`im�1Y

j=`i�1
m

(z � q
�j

zm)

with zeros precisely where Āi is not an isomorphism. We also set

(4.4) Pi = ⇤1⇤2 · · · ⇤i =
LY

m=1

`im�1Y

j=0

(z � q
�j

zm).

We introduce the notation f
(j)(z) = D

j
q(f)(z) = f(qjz). The zeros of Wk(s) coincide with

those of the polynomial

(4.5)
Wk(s) = ⇤1

⇣
⇤(1)

1
⇤(1)

2

⌘
· · ·

⇣
⇤(k�2)

1
· · · ⇤(k�2)

k�1

⌘

= P1 · P
(1)

2
· P

(2)

3
· · · P (k�2)

k�1
.

We now define twisted q-opers. Let Z = diag(⇣1, . . . , ⇣N ) 2 SL(N, C) be a diagonal matrix
with distinct eigenvalues.

Definition 4.3. An (SL(N), q)-oper (E, A,L•) with regular singularities is called a Z-
twisted q-oper if A is gauge-equivalent to Z

�1.

As in the SL(2) case, this is a deformed version of opers with irregular singularities that
arise in the inhomogeneous version of the Gaudin model introduced in [FFTL,FFR2].
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where the zp’s are mutually q-distinct and non-zero. Setting r =
∑L

p=1 tp, the equations
(5.5) become

(5.7) qr
L∏

p=1

wk − q1−rpzp
wk − qzp

= −ζ2qm
m∏

j=1

qwk − wj

wk − qwj
, k = 1, . . . ,m.

This is a more familiar form of the Bethe Ansatz equations in the XXZ model (see e.g.
[FH1], Section 5.6).

Let us call a solution Q+(z) of the system of Bethe Ansatz equations (5.5) nondegenerate
if Q+(z) is a monic polynomial whose roots are q-distinct from the roots of Λ(z). It is clear
that if {Q+(z), Q−(z)} is a nondegenerate solution of (5.4), then Q+(z) is a nondegenerate
solution of (5.5), and vice versa. The above calculation, combined with Theorem 5.1, proves
the following result.

Theorem 5.2. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the Bethe Ansatz equations (5.5).

It is known that the Bethe Ansatz equations (5.5) parametrize the spectra of the quantum
transfer-matrices in the XXZ model corresponding to Uq′ ŝl2, where q′ = q−2, with the

space of states being the tensor product of finite-dimensional representations of Uq′ ŝl2 (see
e.g. [FH1]). The polynomial Λ(z) is the product of the Drinfeld polynomials of these
representations, up to multiplicative shifts by powers of q. Furthermore, we expect that
the QQ-system (5.4) can be derived from the QQ̃-relation in the Grothendieck ring of the

category O of Uq′ ŝl2 proved in [FH2].

5.3. An approach using the q-Wronskian. In [KSZ], the equations (5.4) and (5.5)
were derived in a slightly different way, and analogous results were also obtained for G =
SL(n). We now make an explicit connection between this approach and the approach of the
preceding section.

Recall Definition 4.2 of (GL(2), q)-opers. Adding the condition that the underlying rank
two vector bundle W can be identified with the trivial line bundle so that det(A) = 1, we
obtain the definition of Miura (SL(2), q)-opers. The oper condition is now expressed as the

existence of a line subbundle L̃ ⊂ W for which Ā : L̃ −→ W/L̃ is an isomorphism on a open
dense subset of P1. Choose any trivialization of W on an open dense subset U , and let s(z)

be a section of W on this subset that generates the line subbundle L̃. The q-connection
A(z) then satisfies the condition

s(qz) ∧A(z)s(z) %= 0

on a Zariski open dense subset V of U . This is the definition of a general meromorphic
(SL(2), q)-oper.

From this perspective, (SL(2), q)-opers with regular singularities are defined in [KSZ] as
follows.

Definition 5.3. An (SL(2), q)-oper with regular singularities determined by Λ(z) is a mero-

morphic (SL(2), q)-oper (E, A, L̃) such that s(qz) ∧A(z)s(z) = Λ(z).

This definition is equivalent to Definition 2.8.
Consider a diagonal matrix Z = diag(ζ, ζ−1) with ζ %= ±1. Recall that an (SL(2), q)-oper

(E, A, L̃) is a Z-twisted q-oper if A is gauge equivalent to Z. (We remark that in [KSZ], a

XXZ Bethe equations
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This follows from our assumption on Z in (6.1) because ξ̃i/ξi =
∏r

j=1 ζ
aji
j . Therefore, each

of the equations (6.24) has a unique solution.
It then follows that there exist unique polynomials {Qi

−(z)}i=1,...,r that together with
{Qi

+(z)}i=1,...,r satisfy the QQ-system (6.2). Furthermore, by construction, it follows that
this solution of the QQ-system is nondegenerate. !

7. Bäcklund-type transformations

Theorems 6.1 and 6.4 establish a bijection between the set of nondegenerate Z-twisted
Miura-Plücker (G, q)-opers and the sets of polynomial nondegenerate solutions of the QQ-
system and the Bethe Ansatz equations (6.16).

Now, the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers includes as a sub-
set those Z-twisted Miura-Plücker (G, q)-opers which are actually Z-twisted Miura (G, q)-
opers. Recall the difference between the two: a Z-twisted Miura (G, q)-oper is one whose
q-connection can be represented in the form (4.8):

(7.1) A(z) = v(qz)Zv(z)−1, v(z) ∈ B+(z),

whereas a Z-twisted Miura-Plücker (G, q)-oper is one for which only the associated (GL(2), q)-
opers Ai(z) have this property (compare with (6.5)). When we constructed the inverse map
in the proof of Theorem 6.1, we defined an element v(z) of B+(z) by formula (6.14). This
v(z) satisfies the equations (6.5), so we do get a Z-twisted Miura-Plücker (G, q)-oper, but
it is not clear whether this v(z) can be extended to an element of B+(z) satisfying formula
(7.1). More precisely, equations (6.5) uniquely fix the image v(z) of v(z) in the quotient
B+/[N+, N+], and the question is whether we can lift this v(z) to an element v(z) ∈ B+(z)
such that equation (7.1) is satisfied.

In this section, we will give a sufficient condition for this to hold (see Theorem 7.10 and
Remark 7.11). It is based on transformations described in the next subsection for generating
new solutions of the QQ-system from an existing one. (There is one such transformation
for each simple root of G.). We call them Bäcklund-type transformations.

Here, we follow an idea of Mukhin and Varchenko [MV1,MV2], who introduced similar
procedures for the solutions of the Bethe Ansatz equations arising from the XXX-type
models associated to Yangians. However, in contrast to their setting, we have a non-trivial
twist represented by a regular semisimple element Z of the Cartan subalgebra. As a result,
our transformations generically give rise to solutions labeled by elements of the Weyl group
of G, rather than by points of the flag manifold of G as in [MV1,MV2].

7.1. Definition of Bäcklund-type transformations. Consider a Z-twisted Miura-Plücker
(G, q)-oper given by formula (6.12). We now define a transformation associated to the ith
simple reflection from the Weyl group WG on the set of such Miura q-opers.

Proposition 7.1. Consider the q-gauge transformation of the q-connection A given by
formula (6.12):

A "→ A(i) = eµi(qz)fiA(z)e−µi(z)fi , where µi(z) =

∏
j "=i

[
Qj

+(z)
]−aji

Qi
+(z)Q

i
−(z)

.(7.2) q-OPERS, QQ-SYSTEMS, AND BETHE ANSATZ 33

Then A(i)(z) can be obtained from A(z) by substituting in formula (6.12) (or (6.13))

Qj
+(z) !→ Qj

+(z), j #= i,(7.3)

Qi
+(z) !→ Qi

−(z), Z !→ si(Z) .(7.4)

In the proof of Theorem 7.1, we will use the following lemma, which is proved by a direct
computation. (The results of the lemma have appeared previously in [MV2]).

Lemma 7.2. The following relations hold for any u, v ∈ C:

uα̌ievej = exp (uajiv ei)u
α̌i

uα̌ievfj = exp
(
u−ajiv fi

)
uα̌i

euei evfi = exp

(
v

1 + uv
fi

)
(1 + uv)α̌i exp

(
u

1 + uv
ei

)
.

Proof of Proposition 7.1. Using the first identity from Lemma 7.2, we can move all factors
Qj

+(qz) in formula (6.12) to the left and all factors Qj
+(z) to the right. The resulting

expression is

A(z) =
∏

k

[
Qk

+(qz)
]α̌k

[
∏

i

ζ α̌i
i eΛ̃i(z)ei

]
∏

l

[
Ql

+(z)
]−α̌l

,(7.5)

where

(7.6) Λ̃i(z) =

∏
j<i

[
Qj

+(z)
]−aji ∏

j>i

[
Qj

+(qz)
]−aji

Λi(z)

ζiQi
+(qz)Q

i
+(z)

.

Let

(7.7) µ̃i(z) = µi(z)
∏

j

[
Qj

+(z)
]aji

.

Then, applying the second identity from Lemma 7.2 to (7.5), we obtain

(7.8) Ã(i) = eµi(qz)fiA(z)e−µi(z)fi = . . . ζ α̌i
i ew fi · eu ei · ev fi . . .

where

(7.9) w = ζ2i
∏

j<i

ζ
aji
j µ̃i(qz) , u = Λ̃i(z) , v = −

∏

j>i

ζ
aji
j µ̃i(z) ,

and the ellipses stand for all other terms including the elements of the maximal torus and
the exponentials of ej with j #= i. We now use the third identity from Lemma 7.2 to reshuffle
the middle and the last exponent in (7.8):

(7.10) Ã(i) = . . . ζ α̌i
i exp

((
w +

v

1 + uv

)
fi

)
(1 + uv)α̌i exp

(
u

1 + uv
ei

)
. . . .

In order to prove the proposition, we first need to show that

(7.11) w +
v

1 + uv
= 0,

changes the set of Q-functions
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Suppose that the polynomial Q i

�(u) constructed as the solution of
QQ-system is such that its roots are ~-distinct from the roots of
Q j

+(u), j 6= i , and ⇤k(u) such that aik 6= 0 and ajk 6= 0. Then the data

{ eQ j

+}j=1,...,r = {Q1
+, . . . ,Q

i�1
+ ,Q i

�,Q
i+1
+ . . . ,Q r

+}; (1)

{ezj}j=1,...,r = {z1, . . . , zi�1, z
�1
i

Y

j 6=i

z
�aji

j
, . . . , zr}

give rise to a nondegenerate solution of the Bethe Ansatz equations,
corresponding to si (Z) 2 H.

Furthermore, there exist polynomials { eQ j

�}j=1,...,r that together with

{ eQ j

+}j=1,...,r give rise to a nondegenerate solution of the QQ-system
corresponding to si (Z).

Now the strategy is to successively apply Backlund transformations according to the reduced decomposition of the element of the Weyl group 

Consider longest element
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7.3. From Miura-Plücker to Miura q-opers. We shall now describe a sufficient condi-
tion for a Z-twisted Miura-Plücker (G, q)-opers to be a Miura (G, q)-oper.

Let w0 = si1 . . . si! be a reduced decomposition of the longest element of the Weyl group.
In what follows, we refer to an (i1, . . . , i!)-generic object as w0-generic.

Theorem 7.10. Every w0-generic Z-twisted Miura-Plücker (G, q)-oper is a nondegenerate
Z-twisted Miura (G, q)-oper.

Proof. Let

A(z) =
∏

j

[

ζj
Qj

+(qz)

Qj
+(z)

]α̌j

e
Λj (z)ej
gj (z)

be the w0-generic Z-twisted Miura-Plücker (G, q)-oper coming from a w0-generic solution
{Qj

+} of the QQ-system. By Proposition 7.6, there exists an element b−(z) ∈ B−(z) such
that

b−(qz)w0(Z)v = A(z)b−(z)v,

where v is any highest weight vector in a finite-dimensional irreducible representation of G;
moreover,

b−(z) = eci1fi1eci2fi2 . . . ecikfi!h(z)

with cij (z) ∈ C(z)× and h(z) ∈ H(z).
By Proposition 7.8,

b−(z) = b+(z)w0n+(z),

where b+(z) ∈ B+(z) and n+(z) ∈ N+(z). Therefore, we have

b+(qz)Zw0v = A(z)b+(z)w0v,

so if we set

(7.30) U(z) = Z−1b−1
+ (qz)A(z)b+(z) ∈ B+(z),

then

w0v = U(z)w0v

for any irreducible finite-dimensional representation ofGwith highest weight vector v. Thus,
U(z) is an element of B+(z) which fixes the lowest weight vector w0v of any irreducible finite-
dimensional representation of G. This means that U(z) = 1. Equation (7.30) then implies
that A(z) satisfies

(7.31) A(z) = b+(qz)Zb+(z)
−1

for some b+(z) ∈ B+(z). Thus, we have proved that every w0-generic Z-twisted Miura-
Plücker (G, q)-oper is a nondegenerate Z-twisted Miura (G, q)-oper. Equivalently, every
w0-generic solution of the QQ-system corresponds to a nondegenerate Z-twisted Miura
(G, q)-oper. !

Remark 7.11. Given a regular semisimple element Z ∈ H and a collection of polynomials
{Λi(z)}i=1,...,r as above, consider the following three sets of objects on P1:

• q -MPOpZG, the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers;

• q -MPOpZ,w0
G , the set of w0-generic Z-twisted Miura-Plücker (G, q)-opers;

• q -MOpZG, the set of nondegenerate Z-twisted Miura (G, q)-opers.

Theorem: Every Z-twisted Miura-Plucker (G,q)-oper is Z-twisted Miura (G,q)-oper

The proof based on properties of double Bruhat cells addresses existence of the diagonalizing element v(z) (to be constructed later)
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For the convenience we will rewrite (5.3) as follows:

(5.4) ξiφi(z)− ξi+1φi(qz) = ρi(z) ,

where

(5.5) φi(z) =
Q−

i (z)

Q+
i (z)

, ρi(z) = Λi(z)
Q+

i−1(qz)Q
+
i+1(z)

Q+
i (z)Q

+
i (qz)

.

5.3. Extended QQ-system and Z-twisted (SL(r+1), q)-opers. As it was demonstrated
in [FKSZ] for a simply-connected simple Lie group G the set of nondegenerate Z-twisted
Miura-Plücker q-opers includes as a subset the set of Z-twisted Miura (G, q)-opers. The
opposite inclusion was possible provided that Z-twisted Miura-Plücker q-opers are in addi-
tion w0-generic (see Theorem 7.10). We will discuss this notion in detail later, in subsection
5.6.

In this section we shall demonstrate that when G is a special linear group then we do not
need this extra condition and that the corresponding Z-twisted Miura-Plücker (SL(r+1), q)-
oper will be Z-twisted Miura q-oper, namely there exists v(z) ∈ B+(z), such that the
q-connection A(z) reduces to an element of the form (3.1), or, equivalently

(5.6) v(qz)−1A(z) = Zv(z)−1 .

Moreover, we will construct explicit expression for v(z).
The following statement is a generalization of the result of [MV] to Z-twisted q-opers.

Theorem 5.2. Let A(z) be as in (5.1) and Z as in (3.1). Suppose Q−
i,i+1,...,j(z) ( i, j ∈ Z,

i < j) are polynomials, satisfying equations:

ξi φi(z) − ξi+1 φi(qz) = ρi(z) , i = 1, . . . , r

ξi φi,i+1(z)− ξi+2 φi,i+1(qz) = ρi+1(z)φi(qz) , i = 1, . . . , r − 1

. . . . . .(5.7)

ξi φi,...,r−2+i(z)− ξr+i−1 φi,...,r−2+i(qz) = ρr−1(z)φi,...,r−3+i(qz) , i = 1, 2

ξ1φ1,...,r(z)− ξr+1φ1,...,r(qz) = ρr(z)φ1,...,r−1(qz) ,

where for all j > i

(5.8) φi,...,j(z) =
Q−

i,...,j(z)

Q+
j (z)

.

Then there exist v(z) ∈ B+(z) such that (5.6) holds and is given by

(5.9) v(z) =
r∏

i=1

Q+
i (z)

α̌i ·
r∏

i=1

Vi(z) ,

where

(5.10) Vi(z) =
r∏

j=i

exp (−φi,...,j(z) ei,...,j) , ei,...,j = [. . . [[ei, ei+1], ei+2] . . . ej ] .

We shall prove a more general statement in Section 9 about (GL(∞), q) opers which will
contain Theorem 5.2 as a corollary. Here, to illustrate how the theorem works, we will
regard some low rank examples.
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We shall prove a more general statement in Section 9 about (GL(∞), q) opers which will
contain Theorem 5.2 as a corollary. Here, to illustrate how the theorem works, we will
regard some low rank examples.
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We shall prove a more general statement in Section 9 about (GL(∞), q) opers which will
contain Theorem 5.2 as a corollary. Here, to illustrate how the theorem works, we will
regard some low rank examples.

Diagonalizing element
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Notice that although the expression for v(z) in (5.9) is rather complicated, the inverse
v(z)−1 can be succinctly presented as

(5.11) v(z)−1 =





1
Q+

1 (z)

Q−
1 (z)

Q+
2 (z)

Q−
12(z)

Q+
3 (z)

. . .
Q−

1,...,r−1(z)

Q+
r (z)

Q−
1,...,r(z)

0
Q+

1 (z)

Q+
2 (z)

Q−
2 (z)

Q+
3 (z)

. . .
Q−

2,...,r−1(z)

Q+
r (z)

Q−
2,...,r(z)

0 0
Q+

2 (z)

Q+
3 (z)

. . .
Q−

3,...,r−1(z)

Q+
r (z)

Q−
3,...,r(z)

...
...

...
. . .

...
...

0 . . . . . . . . .
Q+

r−1(z)

Q+
r (z)

Q−
r (z)

0 . . . . . . . . . 0 Q+
r (z)





.

Before we continue the following statement will be needed.

Lemma 5.3. The following relations hold for any u, v ∈ C and i, j = 1, . . . , r

uα̌ievej = exp (uajiv ei)u
α̌i .(5.12)

In general, if [X,Y ] = sY we have

(5.13) uXevY = exp(usvY )uX .

Using this Lemma we can rewrite the q-connection (5.1) such that the roots of SL(r+1)
are placed in the decreasing order.

Lemma 5.4. Let

(5.14) ρi(z) = Λi(z)
Qi−1(qz)Qi+1(z)

Qi(qz)Qi(z)
.

Then the (SL(r + 1), q)-oper reads

(5.15) A(z) =
1∏

i=r

Q+
i (qz)

α̌i ·
1∏

i=r

e
ζi

ζi+1
ρi(z)ei

·
1∏

i=r

ζ α̌i Q
+
i (z)

−α̌i ,

or as a matrix

(5.16) A(z) =





g1(z) Λ1(z) 0 0 . . . 0 0

0 g2(z)
g1(z)

Λ2(z) 0 . . . 0 0

0 0 g3(z)
g2(z)

Λ3(z) . . . 0 0
...

... · · ·
. . .

. . .
...

...
...

... · · · . . .
. . . Λr−1(z) 0

0 0 0 . . . . . . gr(z)
gr−1(z)

Λr(z)

0 0 0 . . . . . . 0 1
gr(z)





At this point the above choice of the order of simple roots may seem unsubstantiated,
however, it will be justified in later sections, where we will consider (GL(∞), q)-opers.

5.4. Examples.

Polynomials 
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Miura-Plücker q-opers includes as a subset the set of Z-twisted Miura (G, q)-opers. The
opposite inclusion was possible provided that Z-twisted Miura-Plücker q-opers are in addi-
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oper will be Z-twisted Miura q-oper, namely there exists v(z) ∈ B+(z), such that the
q-connection A(z) reduces to an element of the form (3.1), or, equivalently

(5.6) v(qz)−1A(z) = Zv(z)−1 .

Moreover, we will construct explicit expression for v(z).
The following statement is a generalization of the result of [MV] to Z-twisted q-opers.

Theorem 5.2. Let A(z) be as in (5.1) and Z as in (3.1). Suppose Q−
i,i+1,...,j(z) ( i, j ∈ Z,
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(5.8) φi,...,j(z) =
Q−

i,...,j(z)

Q+
j (z)

.

Then there exist v(z) ∈ B+(z) such that (5.6) holds and is given by

(5.9) v(z) =
r∏

i=1

Q+
i (z)

α̌i ·
r∏
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Vi(z) ,

where

(5.10) Vi(z) =
r∏

j=i

exp (−φi,...,j(z) ei,...,j) , ei,...,j = [. . . [[ei, ei+1], ei+2] . . . ej ] .

We shall prove a more general statement in Section 9 about (GL(∞), q) opers which will
contain Theorem 5.2 as a corollary. Here, to illustrate how the theorem works, we will
regard some low rank examples.

form extended QQ-system 
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3.4. Embedding of the tRS model into q-opers. We now explain a connection between
nondegenerate twisted (SL(2), q)-opers and the two particle trigonometric Ruijsenaars-
Schneider model. More precisely, we show that the integrals of motion in the tRS model
arise from nondegenerate twisted opers with two regular singularities of weight one and
with Q� linear.

Consider Z-twisted opers with two regular singularities z±, both of weight one, so ⇢ =
(z � z+)(z � z�). For generic q, the degree of the quantum Wronskian equals deg(Q+) +
deg(Q�). Here, we will only look at q-opers for which deg(Q±) = 1, say Q� = z � p� and
Q+ = c(z � p+). Here, c is a nonzero constant for which the quantum Wronskian is monic;
an easy calculation shows that c = q

�1(⇣�1 � ⇣)�1.
Setting the quantum Wronskian equal to ⇢ gives us the equation

(3.12) z
2 � z

q


⇣ � q⇣

�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p�

�
+

p+p�
q

= (z � z+)(z � z�) .

Comparing powers of z on both sides, we obtain

(3.13)

⇣ � q⇣
�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p� = q(z+ + z�)

p+p�
q

= z+z� .

Upon introducing coordinates ⇣+, ⇣� such that ⇣ = ⇣+/⇣� and viewing ⇣±, p± as the
positions and momenta in the two particle tRS model, we see that (3.13) are just the
trigonometric Ruijsenaars-Schneider equations [KPSZ]. In fact, the set of Z-twisted opers
with weight one singularities at z± is just the intersection of two Lagrangian subspaces of
the two particle tRS phase space: the subspace determined by (3.13) and the subspace with
the ⇣± fixed constants satisfying ⇣ = ⇣+/⇣�. As we will see in Section 7, this construction
can be generalized to higher rank.

4. (SL(N), q)-opers

4.1. Definitions. We now discuss the generalization of (SL(2), q)-opers to SL(N).

Definition 4.1. A (GL(N), q)-oper on P1 is a triple (E, A,L•), where (E, A) is a (GL(N), q)-
connection and L• is a complete flag of subbundles such that A maps Li into Lq

i+1
and the

induced maps Āi : Li/Li�1 �! Lq
i+1

/Lq
i are isomorphisms for i = 1, . . . , N � 1. The triple

is called an SL(N)-oper if (E, A) is an (SL(N), q)-connection.

To make this definition more explicit, consider the determinants

(4.1)
⇣
s(qi�1

z) ^ A(qi�2
z)s(qi�2

z) ^ · · · ^
⇣ i�2Y

j=0

(A(qi�2�j
z)
⌘
s(z)

⌘����
⇤iLqi�1

i

for i = 1, . . . , N , where s is a local section of L1. Then (E, A,L•) is a q-oper if and only
if at every point, there exists local sections for which each Wi(s)(z) is nonzero. It will be
more convenient to consider determinants with the same zeros as those in (4.1), but with
no q-shifts:

(4.2) Wi(s)(z) =
⇣
s(z) ^ A(z)�1

s(qz) ^ · · · ^
⇣ i�2Y

j=0

(A(qjz)�1

⌘
s(qi�1

z)
⌘����

⇤iLi

.

such that the induced maps 
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3.4. Embedding of the tRS model into q-opers. We now explain a connection between
nondegenerate twisted (SL(2), q)-opers and the two particle trigonometric Ruijsenaars-
Schneider model. More precisely, we show that the integrals of motion in the tRS model
arise from nondegenerate twisted opers with two regular singularities of weight one and
with Q� linear.

Consider Z-twisted opers with two regular singularities z±, both of weight one, so ⇢ =
(z � z+)(z � z�). For generic q, the degree of the quantum Wronskian equals deg(Q+) +
deg(Q�). Here, we will only look at q-opers for which deg(Q±) = 1, say Q� = z � p� and
Q+ = c(z � p+). Here, c is a nonzero constant for which the quantum Wronskian is monic;
an easy calculation shows that c = q

�1(⇣�1 � ⇣)�1.
Setting the quantum Wronskian equal to ⇢ gives us the equation

(3.12) z
2 � z

q


⇣ � q⇣

�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p�

�
+

p+p�
q

= (z � z+)(z � z�) .

Comparing powers of z on both sides, we obtain

(3.13)

⇣ � q⇣
�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p� = q(z+ + z�)

p+p�
q

= z+z� .

Upon introducing coordinates ⇣+, ⇣� such that ⇣ = ⇣+/⇣� and viewing ⇣±, p± as the
positions and momenta in the two particle tRS model, we see that (3.13) are just the
trigonometric Ruijsenaars-Schneider equations [KPSZ]. In fact, the set of Z-twisted opers
with weight one singularities at z± is just the intersection of two Lagrangian subspaces of
the two particle tRS phase space: the subspace determined by (3.13) and the subspace with
the ⇣± fixed constants satisfying ⇣ = ⇣+/⇣�. As we will see in Section 7, this construction
can be generalized to higher rank.

4. (SL(N), q)-opers

4.1. Definitions. We now discuss the generalization of (SL(2), q)-opers to SL(N).

Definition 4.1. A (GL(N), q)-oper on P1 is a triple (E, A,L•), where (E, A) is a (GL(N), q)-
connection and L• is a complete flag of subbundles such that A maps Li into Lq

i+1
and the

induced maps Āi : Li/Li�1 �! Lq
i+1

/Lq
i are isomorphisms for i = 1, . . . , N � 1. The triple

is called an SL(N)-oper if (E, A) is an (SL(N), q)-connection.

To make this definition more explicit, consider the determinants

(4.1)
⇣
s(qi�1

z) ^ A(qi�2
z)s(qi�2

z) ^ · · · ^
⇣ i�2Y

j=0

(A(qi�2�j
z)
⌘
s(z)

⌘����
⇤iLqi�1

i

for i = 1, . . . , N , where s is a local section of L1. Then (E, A,L•) is a q-oper if and only
if at every point, there exists local sections for which each Wi(s)(z) is nonzero. It will be
more convenient to consider determinants with the same zeros as those in (4.1), but with
no q-shifts:

(4.2) Wi(s)(z) =
⇣
s(z) ^ A(z)�1

s(qz) ^ · · · ^
⇣ i�2Y

j=0

(A(qjz)�1

⌘
s(qi�1

z)
⌘����

⇤iLi

.

are isomorphisms

The quantum determinants 
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for i = 1, . . . , r + 1, where s is a local section of Lr+1, we claim that (E,A,L•) is an
(SL(r+1), q)-oper if and only if at every point of U ∩M−1

q (U), there exists local section for
which each such determinant is nonzero (see [KSZ]). When we encounter the case of regular
singularities (see Section 3.2), each Āi is an isomorphism except at zeroes of Λi and thus
we require the determinants to vanish at zeroes of the following polynomial Wk(s):

Wk(s) = P1(z) · P2(q
2z) · · ·Pk(q

k−1z), Pi(z) = ΛrΛr−1 · · ·Λr−i+1(z) .(6.2)

Now we discuss the Z-twisted Miura condition. Recall from Section 2.3 that Miura
condition implies that there exist a flag L̂• which is preserved by the q-connection A. The
Z-twisted condition implies that in the gauge when A is given by fixed semisimple diagonal
element Z ∈ H such flag is formed by the standard basis e1, . . . , er+1.

The relative position between two flags is generic on U∩M−1
q (U). The regular singularity

condition implies that quantum Wronskians, namely determinants

(6.3) Dk(s) = e1 ∧ · · · ∧ er+1−k ∧ Zk−1s(z) ∧ Zk−2s(qz) ∧ · · · ∧ Zs(qk−2) ∧ s(qk−1z)

have a subset of zeroes, which coincide with those of Wk(s). To be more explicit, for
k = 1, . . . , r + 1, we have nonzero constants αk and polynomials

(6.4) Vk(z) =
rk∏

a=1

(z − vk,a) ,

for which
(6.5)

det





1 . . . 0 ξk−1
1 s1(z) · · · ξ1s1(qk−2z) s1(qk−1z)

...
. . .

...
...

...
. . .

...
0 . . . 1 ξk−1

k sr+1−k(z) . . . ξksr+1−k(qk−2z) sk(qk−1z)
0 . . . 0 ξk−1

k+1sr+1−k+1(z) . . . ξr+1−k+1sk+1(qk−2z) sk+1(qk−1z)
...

. . .
...

...
...

. . .
...

0 . . . 0 ξk−1
r+1sr+1(z) . . . ξr+1sr+1(qk−2z) sr+1(qk−1z)





= αkWkVk ;

Since Dr+1(s) = Wr+1(s), we have Vr+1 = 1. We also set V0 = 1; this is consistent with
the fact that (6.3) also makes sense for k = 0, giving D0 = e1 ∧ · · · ∧ er+1.

We can also rewrite (6.5) as

(6.6) det
i,j

[
ξk−j
r+1−k+isr+1−k+i(q

j−1z)
]
= αkWkVk ,

where i, j = 1, . . . , k.
Note that the above determinants have slightly different form those of [KSZ] – twist

parameters ξi entered in different powers. This is due to a different order of the simple
roots in the definition of the q-oper.

Theorem 6.1 ([KSZ]). Polynomials {Vk(z)}k=1,...,r give the solution to the QQ-system 5.3
so that Q+

j (z) = Vj(z) under the nondegeneracy condition that for all i, j, k with i %= j and
aik %= 0, ajk %= 0, the zeros of Vi(z) and Vj(z) are q-distinct from each other and from the
zeros of Λk(z).

Remark 6.2. Technically, we used stronger conditions in [KSZ], namely that zeroes of
{Λi}i=1...r and {Vj(z)}j=1...r have to be q-disjoint to satisfy QQ-system equations, but
one can relax it easily and even more than it is done in the statement above.

vanish at q-oper singularities
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for i = 1, . . . , r + 1, where s is a local section of Lr+1, we claim that (E,A,L•) is an
(SL(r+1), q)-oper if and only if at every point of U ∩M−1

q (U), there exists local section for
which each such determinant is nonzero (see [KSZ]). When we encounter the case of regular
singularities (see Section 3.2), each Āi is an isomorphism except at zeroes of Λi and thus
we require the determinants to vanish at zeroes of the following polynomial Wk(s):

Wk(s) = P1(z) · P2(q
2z) · · ·Pk(q

k−1z), Pi(z) = ΛrΛr−1 · · ·Λr−i+1(z) .(6.2)

Now we discuss the Z-twisted Miura condition. Recall from Section 2.3 that Miura
condition implies that there exist a flag L̂• which is preserved by the q-connection A. The
Z-twisted condition implies that in the gauge when A is given by fixed semisimple diagonal
element Z ∈ H such flag is formed by the standard basis e1, . . . , er+1.

The relative position between two flags is generic on U∩M−1
q (U). The regular singularity

condition implies that quantum Wronskians, namely determinants

(6.3) Dk(s) = e1 ∧ · · · ∧ er+1−k ∧ Zk−1s(z) ∧ Zk−2s(qz) ∧ · · · ∧ Zs(qk−2) ∧ s(qk−1z)

have a subset of zeroes, which coincide with those of Wk(s). To be more explicit, for
k = 1, . . . , r + 1, we have nonzero constants αk and polynomials

(6.4) Vk(z) =
rk∏

a=1

(z − vk,a) ,

for which
(6.5)

det





1 . . . 0 ξk−1
1 s1(z) · · · ξ1s1(qk−2z) s1(qk−1z)

...
. . .

...
...

...
. . .

...
0 . . . 1 ξk−1

k sr+1−k(z) . . . ξksr+1−k(qk−2z) sk(qk−1z)
0 . . . 0 ξk−1

k+1sr+1−k+1(z) . . . ξr+1−k+1sk+1(qk−2z) sk+1(qk−1z)
...

. . .
...

...
...

. . .
...

0 . . . 0 ξk−1
r+1sr+1(z) . . . ξr+1sr+1(qk−2z) sr+1(qk−1z)





= αkWkVk ;

Since Dr+1(s) = Wr+1(s), we have Vr+1 = 1. We also set V0 = 1; this is consistent with
the fact that (6.3) also makes sense for k = 0, giving D0 = e1 ∧ · · · ∧ er+1.

We can also rewrite (6.5) as

(6.6) det
i,j

[
ξk−j
r+1−k+isr+1−k+i(q

j−1z)
]
= αkWkVk ,

where i, j = 1, . . . , k.
Note that the above determinants have slightly different form those of [KSZ] – twist

parameters ξi entered in different powers. This is due to a different order of the simple
roots in the definition of the q-oper.

Theorem 6.1 ([KSZ]). Polynomials {Vk(z)}k=1,...,r give the solution to the QQ-system 5.3
so that Q+

j (z) = Vj(z) under the nondegeneracy condition that for all i, j, k with i %= j and
aik %= 0, ajk %= 0, the zeros of Vi(z) and Vj(z) are q-distinct from each other and from the
zeros of Λk(z).

Remark 6.2. Technically, we used stronger conditions in [KSZ], namely that zeroes of
{Λi}i=1...r and {Vj(z)}j=1...r have to be q-disjoint to satisfy QQ-system equations, but
one can relax it easily and even more than it is done in the statement above.

Diagonalizing condition
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for i = 1, . . . , r + 1, where s is a local section of Lr+1, we claim that (E,A,L•) is an
(SL(r+1), q)-oper if and only if at every point of U ∩M−1

q (U), there exists local section for
which each such determinant is nonzero (see [KSZ]). When we encounter the case of regular
singularities (see Section 3.2), each Āi is an isomorphism except at zeroes of Λi and thus
we require the determinants to vanish at zeroes of the following polynomial Wk(s):

Wk(s) = P1(z) · P2(q
2z) · · ·Pk(q

k−1z), Pi(z) = ΛrΛr−1 · · ·Λr−i+1(z) .(6.2)

Now we discuss the Z-twisted Miura condition. Recall from Section 2.3 that Miura
condition implies that there exist a flag L̂• which is preserved by the q-connection A. The
Z-twisted condition implies that in the gauge when A is given by fixed semisimple diagonal
element Z ∈ H such flag is formed by the standard basis e1, . . . , er+1.

The relative position between two flags is generic on U∩M−1
q (U). The regular singularity

condition implies that quantum Wronskians, namely determinants

(6.3) Dk(s) = e1 ∧ · · · ∧ er+1−k ∧ Zk−1s(z) ∧ Zk−2s(qz) ∧ · · · ∧ Zs(qk−2) ∧ s(qk−1z)

have a subset of zeroes, which coincide with those of Wk(s). To be more explicit, for
k = 1, . . . , r + 1, we have nonzero constants αk and polynomials

(6.4) Vk(z) =
rk∏

a=1

(z − vk,a) ,

for which
(6.5)

det





1 . . . 0 ξk−1
1 s1(z) · · · ξ1s1(qk−2z) s1(qk−1z)

...
. . .

...
...

...
. . .

...
0 . . . 1 ξk−1

k sr+1−k(z) . . . ξksr+1−k(qk−2z) sk(qk−1z)
0 . . . 0 ξk−1

k+1sr+1−k+1(z) . . . ξr+1−k+1sk+1(qk−2z) sk+1(qk−1z)
...

. . .
...

...
...

. . .
...

0 . . . 0 ξk−1
r+1sr+1(z) . . . ξr+1sr+1(qk−2z) sr+1(qk−1z)





= αkWkVk ;

Since Dr+1(s) = Wr+1(s), we have Vr+1 = 1. We also set V0 = 1; this is consistent with
the fact that (6.3) also makes sense for k = 0, giving D0 = e1 ∧ · · · ∧ er+1.

We can also rewrite (6.5) as

(6.6) det
i,j

[
ξk−j
r+1−k+isr+1−k+i(q

j−1z)
]
= αkWkVk ,

where i, j = 1, . . . , k.
Note that the above determinants have slightly different form those of [KSZ] – twist

parameters ξi entered in different powers. This is due to a different order of the simple
roots in the definition of the q-oper.

Theorem 6.1 ([KSZ]). Polynomials {Vk(z)}k=1,...,r give the solution to the QQ-system 5.3
so that Q+

j (z) = Vj(z) under the nondegeneracy condition that for all i, j, k with i %= j and
aik %= 0, ajk %= 0, the zeros of Vi(z) and Vj(z) are q-distinct from each other and from the
zeros of Λk(z).

Remark 6.2. Technically, we used stronger conditions in [KSZ], namely that zeroes of
{Λi}i=1...r and {Vj(z)}j=1...r have to be q-disjoint to satisfy QQ-system equations, but
one can relax it easily and even more than it is done in the statement above.

Components of the section of the 
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In the next subsection we will show that the extended QQ-system can be obtained from
various minors in q-Wronskian matrices. This theorem allows to relate the section s(z),
generating the line bundle Lr+1 with the elements of the extended QQ-system using the
transformation (5.6).

Proposition 6.3. Let v(z) be the gauge transformation from (5.6) and s(z) be the section
generating Lr+1 in the definition of the (SL(r + 1), q)-oper. Then the components of s(z)
in the gauge when q-oper connection is equal to Z is given by:

(6.7) sr+1(z) = Q+
r (z) , sr(z) = Q−

r (z) , sk(z) = Q−
k,...,r(z) ,

for k = 1, . . . , r − 1.

Proof. The Proposition follows from the direct application of (5.11) Starting from (5.11) the
Proposition follows after acting with v(z)−1 on the basis vector er+1 = (0, 0, . . . , 0, 1). !

In the next subsection we will show that the extended QQ-system can be obtained from
various minors in q-Wronskian matrices.

6.2. Wronskians and extended QQ-systems. First, we will rewrite the extended QQ-
system in a more convenient way to relate it to the minors in the q-Wronskian matrix.
Namely, we multiply Q-terms by certain polynomials to get rid of the Λ-polynomials in the
right hand side. This is done in the following Lemma.

Lemma 6.4. The system of equations (5.7) is equivalent to the following set of equations

ξi D
+
i (qz)D−

i (z)− ξi+1 D
+
i (z)D−

i (qz) = (ξi − ξi+1)D
+
i−1(qz)D

+
i+1(z) ,

ξi D
+
i+1(qz)D

−
i,i+1(z)− ξi+2 D

+
i+1(z)D

−
i,i+1(qz) = (ξi − ξi+2)D

−
i (qz)D+

i+2(z) ,

. . . . . .(6.8)

ξi D
+
r+i−2(qz)D

−
i,...,r−1+i(z)− ξr+i−1,D

+
r+i−2(z)D

−
i,...,r−1+i(qz) = (ξi − ξr+i−1)D

−
i,...,r−2+i(qz)D

+
r+i−1(z) ,

ξ1D
+
r (qz)D−

1,...,r(z) − ξr+1D
+
r (z)D−

1,...,r(qz) = (ξ1 − ξr+1)D
−
1,...,r−1(qz) .

where index i ranges between the same values as in the corresponding equations in (5.7),
for the polynomials

(6.9) D
+
k = Q+

k Fk , D
−
k = Q−

k Fkηk, D
−
l,...,k = Q−

l,...,kFkηl,...,k .

where

Fi(z) = Wr−i(q
r−iz) , ηl,...,i =

i−l∏

a=0

(ξl − ξl+a+1) .

For the future we shall refer to (6.8) as the extended DD-system for SL(r+1) and to its
first line specifically as merely the DD-system.

Proof. The proof is the direct extension of the proof of Lemma 4.2 in [KSZ] to other equa-
tions in (5.31). Since all equations are treated analogously, let us consider the second set of
(6.8) which we can write as

(6.10) ξi−1 D
+
i (qz)D−

i−1,i(z)− ξi+1 D
+
i (z)D−

i−1,i(qz) = (ξi−1 − ξi+1)D
−
i−1(qz)D

+
i+1(z) .

After replacing

D
+
i = Q+

i Fi , D
−
i = Q−

i Fi ηi, D
−
i−1,i = Q−

i−1,iFi ηi−1,i
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Lemma 2.21. Suppose that �1, . . . , �k�1 are nonzero complex numbers such that �j /2 q
N0�k

for j < k. Let f1, . . . , fk�1 be polynomials that do not vanish at 0, and let g be an arbitrary
polynomial. Then there exist unique polynomials f1, . . . , fk satisfying

(2.46) g = det

0

B@
f1 �1f

(1)

1
· · · �

k�1

1
f

(k�1)

1

...
...

. . .
...

fk �kf
(1)

k
· · · �

k�1

k
f

(k�1)

k

1

CA .

3. Ar-quivers, QQ-systems and magnetic frame

3.1. Quiver data and Miura ~-opers. For us the framed Ar quiver means the graph
of Ar type with vertices labeled by natural numbers To each vertex we may attach a box
labeled by a natural number as well. We will refer to the boxes as framing of An graph.

v

w

v v v1 2

w w w

n-1

n-121 n

n

⇠1
<latexit sha1_base64="Zi6mG5uph2HVa18lb6/jG6OX3fg=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Ckksbb0VvXisYNpCG8pmu2mXbjZhdyOW0t/gxYMiXv1B3vw3btsIKvpg4PHeDDPzwpQzpR3nw1pZXVvf2CxsFbd3dvf2SweHLZVkklCfJDyRnRArypmgvmaa004qKY5DTtvh+Grut++oVCwRt3qS0iDGQ8EiRrA2kt+7Z323Xyo7tufVLio15NjOAobUq5Wq5yA3V8qQo9kvvfcGCcliKjThWKmu66Q6mGKpGeF0VuxliqaYjPGQdg0VOKYqmC6OnaFTowxQlEhTQqOF+n1iimOlJnFoOmOsR+q3Nxf/8rqZjurBlIk001SQ5aIo40gnaP45GjBJieYTQzCRzNyKyAhLTLTJp2hC+PoU/U9anu2e295Npdy4zOMowDGcwBm4UIMGXEMTfCDA4AGe4NkS1qP1Yr0uW1esfOYIfsB6+wTW4Y62</latexit>

⇠2
<latexit sha1_base64="Sxp4aAQ5v/sJnUOn6vPVoRbFScQ=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Ckksbb0VvXisYNpCG8pmu2mXbjZhdyOW0t/gxYMiXv1B3vw3btsIKvpg4PHeDDPzwpQzpR3nw1pZXVvf2CxsFbd3dvf2SweHLZVkklCfJDyRnRArypmgvmaa004qKY5DTtvh+Grut++oVCwRt3qS0iDGQ8EiRrA2kt+7Z32vXyo7tufVLio15NjOAobUq5Wq5yA3V8qQo9kvvfcGCcliKjThWKmu66Q6mGKpGeF0VuxliqaYjPGQdg0VOKYqmC6OnaFTowxQlEhTQqOF+n1iimOlJnFoOmOsR+q3Nxf/8rqZjurBlIk001SQ5aIo40gnaP45GjBJieYTQzCRzNyKyAhLTLTJp2hC+PoU/U9anu2e295Npdy4zOMowDGcwBm4UIMGXEMTfCDA4AGe4NkS1qP1Yr0uW1esfOYIfsB6+wTYZY63</latexit>

ar,1, . . . , ar,wra1,1, . . . , a1,w1

⇠r�1 ⇠r ⇠r+1

Figure 4. Generic Ar quiver variety

Thus we see that such quiver is entirely defined by two vectors with the components
v = (v1, . . . ,vr) and w = (w1, . . . ,wr), so that {vi}, {wi} 2 N, i = 1, . . . , r. In the
following we will refer to quiver with this data as Yv,w and to wi as the rank of a framing
of the i-th vertex. We associate a QQ-system to such quiver in the following way. We
assign to each vertex i with the label vi (we count vertices from left to right) the Q

+

i
(z)

-polynomial of degree vi. At the same time, we associate the polynomial ⇤i(z) of degree
wi to each vertex with the framing of rank wi.

We will refer to the resulting space of Z-twisted nondegenerate Miura (SL(r+1), ~)-opers,
associated with such QQ-systems and thus entirely defined by quiver as ~Op(Yv,w). Such op-
ers are defined by the position of regular singularities, i.e. roots {ak,j}j=1,...,r, k=1,...,deg(⇤j)

of

⇤j(z)
j=1,...,r

, monic polynomials {Q
+

j
(z)}j=1,...,r defined by their Bethe roots {sk,j}

k=1,...,deg(Q
+
j )

j=1,...,r
,

and {⇠k}k=1,...,r+1 parametrizing the Z-twist.
We will refer to the following algebra as the algebra of functions on the space ~Op(Yv,w):

(3.1) Fun(~Op)(Yv,w) :=
S({ai}, {⇠k}, ~)({si,k})

(Bethe equations)
,

i.e. rational functions (with coe�cients being rational functions of {ai}, {⇠k}, ~) of the
elementary symmetric functions of Bethe root variables (with symmetrization is over index
k for all i) with the relations on variables are given by Bethe equations from (2.26).
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1 2 n-1

n

n-2

In [KPSZ] (see also [KSZ]) we proved that in this case the polynomials si(z) are of degree
1.

Below we will give a more involved family of Ar � quivers, which we refer to as Xk,l, so
that r = l + k � 1 with the same property.

k

1

1 k-1 k

  k+1

k   1 k-1k

  1  k+1

k

1

k

1

k

1

k

1

⇠1
<latexit sha1_base64="Zi6mG5uph2HVa18lb6/jG6OX3fg=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Ckksbb0VvXisYNpCG8pmu2mXbjZhdyOW0t/gxYMiXv1B3vw3btsIKvpg4PHeDDPzwpQzpR3nw1pZXVvf2CxsFbd3dvf2SweHLZVkklCfJDyRnRArypmgvmaa004qKY5DTtvh+Grut++oVCwRt3qS0iDGQ8EiRrA2kt+7Z323Xyo7tufVLio15NjOAobUq5Wq5yA3V8qQo9kvvfcGCcliKjThWKmu66Q6mGKpGeF0VuxliqaYjPGQdg0VOKYqmC6OnaFTowxQlEhTQqOF+n1iimOlJnFoOmOsR+q3Nxf/8rqZjurBlIk001SQ5aIo40gnaP45GjBJieYTQzCRzNyKyAhLTLTJp2hC+PoU/U9anu2e295Npdy4zOMowDGcwBm4UIMGXEMTfCDA4AGe4NkS1qP1Yr0uW1esfOYIfsB6+wTW4Y62</latexit>

⇠2
<latexit sha1_base64="Sxp4aAQ5v/sJnUOn6vPVoRbFScQ=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Ckksbb0VvXisYNpCG8pmu2mXbjZhdyOW0t/gxYMiXv1B3vw3btsIKvpg4PHeDDPzwpQzpR3nw1pZXVvf2CxsFbd3dvf2SweHLZVkklCfJDyRnRArypmgvmaa004qKY5DTtvh+Grut++oVCwRt3qS0iDGQ8EiRrA2kt+7Z32vXyo7tufVLio15NjOAobUq5Wq5yA3V8qQo9kvvfcGCcliKjThWKmu66Q6mGKpGeF0VuxliqaYjPGQdg0VOKYqmC6OnaFTowxQlEhTQqOF+n1iimOlJnFoOmOsR+q3Nxf/8rqZjurBlIk001SQ5aIo40gnaP45GjBJieYTQzCRzNyKyAhLTLTJp2hC+PoU/U9anu2e295Npdy4zOMowDGcwBm4UIMGXEMTfCDA4AGe4NkS1qP1Yr0uW1esfOYIfsB6+wTYZY63</latexit>

⇠k�1
<latexit sha1_base64="Re4thf8xvpYzRTrHwjdjSil4KMs=">AAAB8HicdVDLSgNBEOyNrxhfUY9eBoPgxWU3Jq65Bb14jGAekixhdjJJhszsLjOzYljyFV48KOLVz/Hm3zh5CCpa0FBUddPdFcScKe04H1ZmaXlldS27ntvY3Nreye/uNVSUSELrJOKRbAVYUc5CWtdMc9qKJcUi4LQZjC6nfvOOSsWi8EaPY+oLPAhZnxGsjXTbuWfddHTiTrr5gmO7ZadScpAhZ55b9gzxKmWvWEKu7cxQgAVq3fx7pxeRRNBQE46VartOrP0US80Ip5NcJ1E0xmSEB7RtaIgFVX46O3iCjozSQ/1Imgo1mqnfJ1IslBqLwHQKrIfqtzcV//Laie6f+ykL40TTkMwX9ROOdISm36Mek5RoPjYEE8nMrYgMscREm4xyJoSvT9H/pFG03VO7eF0qVC8WcWThAA7hGFzwoApXUIM6EBDwAE/wbEnr0XqxXuetGWsxsw8/YL19AvPFkIU=</latexit>

⇠k
<latexit sha1_base64="iMlTRcAfNydOOQviRc/idN5Dges=">AAAB7nicdVDLSsNAFL2pr1pfVZduBovgKiS1NXZXdOOygn1AG8pkOmmHTiZhZiKW0I9w40IRt36PO//G6UNQ0QMXDufcy733BAlnSjvOh5VbWV1b38hvFra2d3b3ivsHLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0H46uZ376jUrFY3OpJQv0IDwULGcHaSO3ePetn42m/WHJst+rUKg4y5Nxzq54hXq3qlSvItZ05SrBEo1987w1ikkZUaMKxUl3XSbSfYakZ4XRa6KWKJpiM8ZB2DRU4osrP5udO0YlRBiiMpSmh0Vz9PpHhSKlJFJjOCOuR+u3NxL+8bqrDCz9jIkk1FWSxKEw50jGa/Y4GTFKi+cQQTCQztyIywhITbRIqmBC+PkX/k1bZds/s8k2lVL9cxpGHIziGU3DBgzpcQwOaQGAMD/AEz1ZiPVov1uuiNWctZw7hB6y3TxXckBM=</latexit>

⇠k+1
<latexit sha1_base64="xJqHbpg1IbjKQP0Felk8RafUL/o=">AAAB8HicdVDLSgNBEOyNrxhfUY9eBoMgCMtuTFxzC3rxGME8JFnC7GSSDJnZXWZmxbDkK7x4UMSrn+PNv3HyEFS0oKGo6qa7K4g5U9pxPqzM0vLK6lp2PbexubW9k9/da6gokYTWScQj2QqwopyFtK6Z5rQVS4pFwGkzGF1O/eYdlYpF4Y0ex9QXeBCyPiNYG+m2c8+66ejEnXTzBcd2y06l5CBDzjy37BniVcpesYRc25mhAAvUuvn3Ti8iiaChJhwr1XadWPsplpoRTie5TqJojMkID2jb0BALqvx0dvAEHRmlh/qRNBVqNFO/T6RYKDUWgekUWA/Vb28q/uW1E90/91MWxommIZkv6icc6QhNv0c9JinRfGwIJpKZWxEZYomJNhnlTAhfn6L/SaNou6d28bpUqF4s4sjCARzCMbjgQRWuoAZ1ICDgAZ7g2ZLWo/Vivc5bM9ZiZh9+wHr7BPC5kIM=</latexit>

⇠k+2
<latexit sha1_base64="Ar+ggoOEGQPh4cUNU1g707xq4sY=">AAAB8HicdVDLSgMxFM3UV62vqks3wSIIwjAzto7dFd24rGAf0g4lk2ba0CQzJBmxDP0KNy4UcevnuPNvTB+Cih64cDjnXu69J0wYVdpxPqzc0vLK6lp+vbCxubW9U9zda6o4lZg0cMxi2Q6RIowK0tBUM9JOJEE8ZKQVji6nfuuOSEVjcaPHCQk4GggaUYy0kW6797SXjU68Sa9Ycmy34lTLDjTkzHcrviF+teJ7ZejazgwlsEC9V3zv9mOcciI0ZkipjuskOsiQ1BQzMil0U0UShEdoQDqGCsSJCrLZwRN4ZJQ+jGJpSmg4U79PZIgrNeah6eRID9Vvbyr+5XVSHZ0HGRVJqonA80VRyqCO4fR72KeSYM3GhiAsqbkV4iGSCGuTUcGE8PUp/J80Pds9tb3rcql2sYgjDw7AITgGLvBBDVyBOmgADDh4AE/g2ZLWo/Vivc5bc9ZiZh/8gPX2CfI+kIQ=</latexit>

a1,1, . . . , a1,k+1
<latexit sha1_base64="Jrm8vP3gos+5g6WKq6b0fQViz2U=">AAACFnicdVDLSgMxFM34rPVVdekmWATBWiZ92LorunFZwT6gHUomzbRhMg+SjFCG+Qo3/oobF4q4FXf+jWk7ghY9EDicc+/NvccOOZPKND+NpeWV1bX1zEZ2c2t7Zze3t9+WQSQIbZGAB6JrY0k582lLMcVpNxQUezanHdu9mvqdOyokC/xbNQmp5eGRzxxGsNLSIHfW97AaOwK7MU4GMSqgpNAfBkoWFg33FCWDXN4s1i4qqFqHZtGcQZOaWS2fI4hSJQ9SNAe5Dz2MRB71FeFYyh4yQ2XFWChGOE2y/UjSEBMXj2hPUx97VFrx7KwEHmtlCJ1A6OcrOFN/dsTYk3Li2bpyuqtc9KbiX14vUk7dipkfRor6ZP6RE3GoAjjNCA6ZoETxiSaYCKZ3hWSMBSZKJ5nVIXxfCv8n7VIRlYulm0q+cZnGkQGH4AicAARqoAGuQRO0AAH34BE8gxfjwXgyXo23eemSkfYcgF8w3r8AXBeffQ==</latexit>

a2
<latexit sha1_base64="/EVdUyavH7128aXIDpShzkbAqY0=">AAAB+XicdVDLSsNAFJ34rPUVdelmsAiuQtKHrbuiG5cV7APaECbTSTt0Mgkzk0IJ+RM3LhRx65+482+ctBFU9MDA4Zx7uWeOHzMqlW1/GGvrG5tb26Wd8u7e/sGheXTck1EiMOniiEVi4CNJGOWkq6hiZBALgkKfkb4/u8n9/pwISSN+rxYxcUM04TSgGCkteaY5CpGaBgLNUpR5aTXzzIptNa/qTqMFbcteQpOm3ahdOtAplAoo0PHM99E4wklIuMIMSTl07Fi5KRKKYkay8iiRJEZ4hiZkqClHIZFuukyewXOtjGEQCf24gkv1+0aKQikXoa8n85zyt5eLf3nDRAUtN6U8ThTheHUoSBhUEcxrgGMqCFZsoQnCguqsEE+RQFjpssq6hK+fwv9Jr2o5Nat6V6+0r4s6SuAUnIEL4IAmaINb0AFdgMEcPIAn8GykxqPxYryuRteMYucE/IDx9glDQpQT</latexit>

z2
<latexit sha1_base64="ndNIGXGiVv5Wdg5+kq9XHs1uBQA=">AAAB+XicdVDLSsNAFJ3UV62vqEs3g0VwFZL0FXdFNy4rWFtoQ5hMJ+3QyYOZSaGG/IkbF4q49U/c+TdO2goqemDgcM693DPHTxgV0jQ/tNLa+sbmVnm7srO7t3+gHx7diTjlmHRxzGLe95EgjEakK6lkpJ9wgkKfkZ4/vSr83oxwQePoVs4T4oZoHNGAYiSV5On6MERyEnA0ze5zL7NzT6+ahnnh1FoNqEizXms1FXHMuu00oGWYC1TBCh1Pfx+OYpyGJJKYISEGlplIN0NcUsxIXhmmgiQIT9GYDBSNUEiEmy2S5/BMKSMYxFy9SMKF+n0jQ6EQ89BXk0VO8dsrxL+8QSoDx81olKSSRHh5KEgZlDEsaoAjygmWbK4IwpyqrBBPEEdYqrIqqoSvn8L/yZ1tWDXDvqlX25erOsrgBJyCc2CBFmiDa9ABXYDBDDyAJ/CsZdqj9qK9LkdL2mrnGPyA9vYJkzaUSQ==</latexit>

z1
<latexit sha1_base64="+TDvd3ehI1iJrgZa3BWe0xRymDA=">AAAB+XicdVDLSsNAFJ3UV62vqEs3g0VwFZI+467oxmUFawttCJPppB06mYSZSaGG/okbF4q49U/c+TdO2goqemDgcM693DMnSBiVyrY/jMLa+sbmVnG7tLO7t39gHh7dyTgVmHRwzGLRC5AkjHLSUVQx0ksEQVHASDeYXOV+d0qEpDG/VbOEeBEacRpSjJSWfNMcREiNQ4Em2f3cz5y5b5Zty75wq8061KRRqzYbmrh2reLWoWPZC5TBCm3ffB8MY5xGhCvMkJR9x06UlyGhKGZkXhqkkiQIT9CI9DXlKCLSyxbJ5/BMK0MYxkI/ruBC/b6RoUjKWRToyTyn/O3l4l9eP1Wh62WUJ6kiHC8PhSmDKoZ5DXBIBcGKzTRBWFCdFeIxEggrXVZJl/D1U/g/uatYTtWq3NTKrctVHUVwAk7BOXBAE7TANWiDDsBgCh7AE3g2MuPReDFel6MFY7VzDH7AePsEkbGUSA==</latexit>
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Figure 6. Self-mirror X1,2 quiver variety.

3.4. Low Rank Example. Consider self-mirror quiver X1,2 The QQ-system reads

⇠1Q
+

1
(qz)Q�

1
(z) � ⇠2Q

+

1
(z)Q�

1
(qz) = (z � a3)Q

+

2
(z) ,

⇠2Q
+

2
(qz)Q�

2
(z) � ⇠3Q

+

2
(z)Q�

2
(qz) = (z � a1)(z � a2)Q

+

1
(qz) ,(3.23)

where Q
+
a (z) = z � sa, a = 1, 2.

The QQ-system of the dual variety X
!
1,2

reads

⇠1Q
+

1
(~�1

z)Q�
1
(z) � ⇠2Q

+

1
(z)Q�

1
(~�1

z) = (z � a3)Q
+

2
(z) ,

⇠2Q
+

2
(~�1

z)Q�
2
(z) � ⇠3Q

+

2
(z)Q�

2
(~�1

z) = (z � a1)(z � a2)Q
+

1
(~�1

z) ,(3.24)

Consider the following K-theory classes for X1,2

(3.25) p1 = � ⇤1(0)

Q
+

1
(0)

, p2 = �Q
+

1
(0)

Q
+

2
(0)

, p3 = �Q
+

2
(0)

⇤2(0)
,

and its mirror X
!
1,2

(3.26) p1 = �⇠3

Q+

2
(~�1/2a1)

Q+

2
(~1/2a1)

, p2 = �⇠3

Q+

2
(~�1/2a2)

Q+

2
(~1/2a2)

, p3 = ⇠2⇠3

Q+

1
(~�1/2a3)

Q+

1
(~1/2a3)

,

Using the above theorems we can rewrite these equations in terms of first tRS integral
of motion. The tRS equations in the electric frame

� (a1~ � a2) (a1~ � a3)

(a1 � a2)
�

~ (a3~ � a1)
p1 +

(a2~ � a1) (a2~ � a3)

(a1 � a2)
�

~ (a3~ � a2)
p2 +

(~ + 1)
�
a3~2 � a1

� �
a3~2 � a2

�

~3/2 (a3~ � a1) (a3~ � a2)
p3

=⇠1 + ⇠2 + ⇠3 ,(3.27)

and in the magnetic frame
(3.28)
(⇠1q � ⇠2) (⇠1q � ⇠3)

(⇠1 � ⇠2) (⇠1 � ⇠3) q
p1 � (⇠2q � ⇠1) (⇠2q � ⇠3)

(⇠1 � ⇠2) (⇠2 � ⇠3) q
p2 � (⇠3q � ⇠1) (⇠3q � ⇠2)

(⇠1 � ⇠3) (⇠3 � ⇠2) q
p3 = a1q + a2q + a3

The mirror map works as follows

⇠1 = a1q, ⇠2 = a2q, ⇠3 = a3

p1 = p1

�
q (⇠1q � ⇠3)

⇠1q
2 � ⇠3

, p2 = p2

�
q (⇠2q � ⇠3)

⇠2q
2 � ⇠3

, p3 = p3

�
q

q + 1
,

a1 = ⇠1q, a2 = ⇠2q, a3 = ⇠3 .(3.29)

as well as ~ = q.

⇠1 ⇠2 ⇠3 ⇠r�1 ⇠r ⇠r+1 ⇠r+k�1 ⇠r+k

⇤
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3.4. Low Rank Example. Consider self-mirror quiver X1,2 The QQ-system reads
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+
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(z)Q�
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(qz) ,(3.23)

where Q
+
a (z) = z � sa, a = 1, 2.

The QQ-system of the dual variety X
!
1,2

reads
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(z)Q�
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+
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+
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+
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(z)Q�
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(~�1
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+
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(~�1
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Consider the following K-theory classes for X1,2

(3.25) p1 = � ⇤1(0)

Q
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1
(0)

, p2 = �Q
+
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(0)
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, p3 = �Q
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(~1/2a2)
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,

Using the above theorems we can rewrite these equations in terms of first tRS integral
of motion. The tRS equations in the electric frame
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3.4. Low Rank Example. Consider self-mirror quiver X1,2 The QQ-system reads
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+
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+
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+
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where Q
+
a (z) = z � sa, a = 1, 2.

The QQ-system of the dual variety X
!
1,2
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⇠1Q
+

1
(~�1

z)Q�
1
(z) � ⇠2Q

+

1
(z)Q�

1
(~�1

z) = (z � a3)Q
+

2
(z) ,

⇠2Q
+

2
(~�1

z)Q�
2
(z) � ⇠3Q

+

2
(z)Q�

2
(~�1

z) = (z � a1)(z � a2)Q
+

1
(~�1

z) ,(3.24)
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~3/2 (a3~ � a1) (a3~ � a2)
p3
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(⇠1 � ⇠2) (⇠2 � ⇠3) q
p2 � (⇠3q � ⇠1) (⇠3q � ⇠2)

(⇠1 � ⇠3) (⇠3 � ⇠2) q
p3 = a1q + a2q + a3

The mirror map works as follows

⇠1 = a1q, ⇠2 = a2q, ⇠3 = a3

p1 = p1

�
q (⇠1q � ⇠3)

⇠1q
2 � ⇠3

, p2 = p2

�
q (⇠2q � ⇠3)

⇠2q
2 � ⇠3

, p3 = p3

�
q

q + 1
,

a1 = ⇠1q, a2 = ⇠2q, a3 = ⇠3 .(3.29)

as well as ~ = q.

⇠1 ⇠2 ⇠3 ⇠r�1 ⇠r ⇠r+1 ⇠r+k�1 ⇠r+k

⇤

⇠k+l

zk+l�1

alal�1

zl�1 zl zl+1
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On the magnetic side we get from (3.8)

p1 (⇠1 � ⇠2~) (⇠1 � ⇠3~) (⇠1 � ⇠4~) (⇠1 � ⇠5~) (⇠1 � ⇠6~)

(⇠1 � ⇠2) (⇠1 � ⇠3) (⇠1 � ⇠4) (⇠1 � ⇠5) (⇠1 � ⇠6)

+
p2 (⇠1~ � ⇠2) (⇠2 � ⇠3~) (⇠2 � ⇠4~) (⇠2 � ⇠5~) (⇠2 � ⇠6~)

(⇠1 � ⇠2) (⇠2 � ⇠3) (⇠2 � ⇠4) (⇠2 � ⇠5) (⇠2 � ⇠6)

+
p3 (⇠1~ � ⇠3) (⇠3 � ⇠2~) (⇠3 � ⇠4~) (⇠3 � ⇠5~) (⇠3 � ⇠6~)

(⇠1 � ⇠3) (⇠3 � ⇠2) (⇠3 � ⇠4) (⇠3 � ⇠5) (⇠3 � ⇠6)

+
p4 (⇠1~ � ⇠4) (⇠4 � ⇠2~) (⇠4 � ⇠3~) (⇠4 � ⇠5~) (⇠4 � ⇠6~)

(⇠1 � ⇠4) (⇠4 � ⇠2) (⇠4 � ⇠3) (⇠4 � ⇠5) (⇠4 � ⇠6)

+
p5 (⇠1~ � ⇠5) (⇠5 � ⇠2~) (⇠5 � ⇠3~) (⇠5 � ⇠4~) (⇠5 � ⇠6~)

(⇠1 � ⇠5) (⇠5 � ⇠2) (⇠5 � ⇠3) (⇠5 � ⇠4) (⇠5 � ⇠6)

+
p6 (⇠1~ � ⇠6) (⇠6 � ⇠2~) (⇠6 � ⇠3~) (⇠6 � ⇠4~) (⇠6 � ⇠5~)

(⇠1 � ⇠6) (⇠6 � ⇠2) (⇠6 � ⇠3) (⇠6 � ⇠4) (⇠6 � ⇠5)

= a1,1 + a1,2 + a1,3 + qa2 + (q + q
2)a3 + (q + q

2 + q
3)a4(4.19)

The above two expressions are equivalent upon q = ~ and the following mirror map for
the torus coordinates

⇠1 = a1,1, ⇠2 = a1,2, ⇠3 = a1,3, ⇠4 = qa2, ⇠5 = (q + q
2)a3, ⇠6 = (q + q

2 + q
3)a4,

a5,1 = ⇠1, a5,2 = ⇠2, a5,3 = ⇠3, a4 = ⇠4, a7 = ⇠5, a9 = ⇠6 .(4.20)

as well as for the conjugate momenta

p5,1 = A1,1(⇠) p1, p5,2 = A2,2(⇠) p2, p5,3 = A3,3(⇠) p3,

p4 = A4,4(⇠) p4, p7 = A7,5(⇠) p5, p9 = A9,6(⇠) p6 ,(4.21)

where

A1,1(⇠) =
(⇠1 � ⇠4~) (⇠1 � ⇠5~) (⇠1 � ⇠6~)

(⇠1 � ⇠4~4) (⇠1 � ⇠5~3) (⇠1 � ⇠6~2)
, A2,2(⇠) =

(⇠2 � ⇠4~) (⇠2 � ⇠5~) (⇠2 � ⇠6~)

(⇠2 � ⇠4~4) (⇠2 � ⇠5~3) (⇠2 � ⇠6~2)
,

A3,3(⇠) =
(⇠3 � ⇠4~) (⇠3 � ⇠5~) (⇠3 � ⇠6~)

(⇠3 � ⇠4~4) (⇠3 � ⇠5~3) (⇠3 � ⇠6~2)
, A4,4(⇠) =

1

1 + ~ + ~2 + ~3

(⇠4 � ⇠5~) (⇠4 � ⇠6~)

(⇠5~3 � ⇠4) (⇠6~2 � ⇠4)
,

A7,5(⇠) =
1

1 + ~ + ~2

(⇠4~ � ⇠5) (⇠6~ � ⇠5)

(⇠4~4 � ⇠5) (⇠6~2 � ⇠5)
, A9,6(⇠) =

1

1 + ~
(⇠4~ � ⇠6) (⇠5~ � ⇠6)

(⇠4~4 � ⇠6) (⇠5~3 � ⇠6)
.

(4.22)

⇠l�1 ⇠l ⇠l+1 ⇠k+l�1 ⇠k+l

4.5. Mirror Map for Generic Xk,r. Consider quiver variety Xk,r with Kähler parameters

zi = ⇠i
⇠i+1

and equivariant parameters ak, . . . , ak+r�1 and ak+r,1, . . . ak+r,k+1 (see top of

Fig. 4). On the bottom of Fig. 4 we see quiver variety X
!

k,r
has equivariant parameters

a1,1,, . . . , a1,k+1 and a2 . . . ar as well as Kähler parameters zi = ⇠i
⇠i+1

. The goal of this section

is to prove that Xk,r and X
!

k,r
are symplectic dual to each other.

We shall compare the magnetic frame of Xk,r against the electric frame of X
!

k,r
.

22 P. KOROTEEV, A. SMIRNOV, AND A.M. ZEITLIN

On the magnetic side we get from (3.8)

p1 (⇠1 � ⇠2~) (⇠1 � ⇠3~) (⇠1 � ⇠4~) (⇠1 � ⇠5~) (⇠1 � ⇠6~)

(⇠1 � ⇠2) (⇠1 � ⇠3) (⇠1 � ⇠4) (⇠1 � ⇠5) (⇠1 � ⇠6)

+
p2 (⇠1~ � ⇠2) (⇠2 � ⇠3~) (⇠2 � ⇠4~) (⇠2 � ⇠5~) (⇠2 � ⇠6~)

(⇠1 � ⇠2) (⇠2 � ⇠3) (⇠2 � ⇠4) (⇠2 � ⇠5) (⇠2 � ⇠6)

+
p3 (⇠1~ � ⇠3) (⇠3 � ⇠2~) (⇠3 � ⇠4~) (⇠3 � ⇠5~) (⇠3 � ⇠6~)

(⇠1 � ⇠3) (⇠3 � ⇠2) (⇠3 � ⇠4) (⇠3 � ⇠5) (⇠3 � ⇠6)

+
p4 (⇠1~ � ⇠4) (⇠4 � ⇠2~) (⇠4 � ⇠3~) (⇠4 � ⇠5~) (⇠4 � ⇠6~)

(⇠1 � ⇠4) (⇠4 � ⇠2) (⇠4 � ⇠3) (⇠4 � ⇠5) (⇠4 � ⇠6)

+
p5 (⇠1~ � ⇠5) (⇠5 � ⇠2~) (⇠5 � ⇠3~) (⇠5 � ⇠4~) (⇠5 � ⇠6~)

(⇠1 � ⇠5) (⇠5 � ⇠2) (⇠5 � ⇠3) (⇠5 � ⇠4) (⇠5 � ⇠6)

+
p6 (⇠1~ � ⇠6) (⇠6 � ⇠2~) (⇠6 � ⇠3~) (⇠6 � ⇠4~) (⇠6 � ⇠5~)

(⇠1 � ⇠6) (⇠6 � ⇠2) (⇠6 � ⇠3) (⇠6 � ⇠4) (⇠6 � ⇠5)

= a1,1 + a1,2 + a1,3 + qa2 + (q + q
2)a3 + (q + q

2 + q
3)a4(4.19)

The above two expressions are equivalent upon q = ~ and the following mirror map for
the torus coordinates

⇠1 = a1,1, ⇠2 = a1,2, ⇠3 = a1,3, ⇠4 = qa2, ⇠5 = (q + q
2)a3, ⇠6 = (q + q

2 + q
3)a4,

a5,1 = ⇠1, a5,2 = ⇠2, a5,3 = ⇠3, a4 = ⇠4, a7 = ⇠5, a9 = ⇠6 .(4.20)

as well as for the conjugate momenta

p5,1 = A1,1(⇠) p1, p5,2 = A2,2(⇠) p2, p5,3 = A3,3(⇠) p3,

p4 = A4,4(⇠) p4, p7 = A7,5(⇠) p5, p9 = A9,6(⇠) p6 ,(4.21)

where

A1,1(⇠) =
(⇠1 � ⇠4~) (⇠1 � ⇠5~) (⇠1 � ⇠6~)

(⇠1 � ⇠4~4) (⇠1 � ⇠5~3) (⇠1 � ⇠6~2)
, A2,2(⇠) =

(⇠2 � ⇠4~) (⇠2 � ⇠5~) (⇠2 � ⇠6~)

(⇠2 � ⇠4~4) (⇠2 � ⇠5~3) (⇠2 � ⇠6~2)
,

A3,3(⇠) =
(⇠3 � ⇠4~) (⇠3 � ⇠5~) (⇠3 � ⇠6~)

(⇠3 � ⇠4~4) (⇠3 � ⇠5~3) (⇠3 � ⇠6~2)
, A4,4(⇠) =

1

1 + ~ + ~2 + ~3

(⇠4 � ⇠5~) (⇠4 � ⇠6~)

(⇠5~3 � ⇠4) (⇠6~2 � ⇠4)
,

A7,5(⇠) =
1

1 + ~ + ~2

(⇠4~ � ⇠5) (⇠6~ � ⇠5)

(⇠4~4 � ⇠5) (⇠6~2 � ⇠5)
, A9,6(⇠) =

1

1 + ~
(⇠4~ � ⇠6) (⇠5~ � ⇠6)

(⇠4~4 � ⇠6) (⇠5~3 � ⇠6)
.
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⇠l�1 ⇠l ⇠l+1 ⇠k+l�1 ⇠k+l

4.5. Mirror Map for Generic Xk,r. Consider quiver variety Xk,r with Kähler parameters

zi = ⇠i
⇠i+1

and equivariant parameters ak, . . . , ak+r�1 and ak+r,1, . . . ak+r,k+1 (see top of

Fig. 4). On the bottom of Fig. 4 we see quiver variety X
!

k,r
has equivariant parameters

a1,1,, . . . , a1,k+1 and a2 . . . ar as well as Kähler parameters zi = ⇠i
⇠i+1

. The goal of this section

is to prove that Xk,r and X
!

k,r
are symplectic dual to each other.

We shall compare the magnetic frame of Xk,r against the electric frame of X
!

k,r
.
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On the magnetic side we get from (3.8)

p1 (⇠1 � ⇠2~) (⇠1 � ⇠3~) (⇠1 � ⇠4~) (⇠1 � ⇠5~) (⇠1 � ⇠6~)

(⇠1 � ⇠2) (⇠1 � ⇠3) (⇠1 � ⇠4) (⇠1 � ⇠5) (⇠1 � ⇠6)

+
p2 (⇠1~ � ⇠2) (⇠2 � ⇠3~) (⇠2 � ⇠4~) (⇠2 � ⇠5~) (⇠2 � ⇠6~)

(⇠1 � ⇠2) (⇠2 � ⇠3) (⇠2 � ⇠4) (⇠2 � ⇠5) (⇠2 � ⇠6)

+
p3 (⇠1~ � ⇠3) (⇠3 � ⇠2~) (⇠3 � ⇠4~) (⇠3 � ⇠5~) (⇠3 � ⇠6~)

(⇠1 � ⇠3) (⇠3 � ⇠2) (⇠3 � ⇠4) (⇠3 � ⇠5) (⇠3 � ⇠6)

+
p4 (⇠1~ � ⇠4) (⇠4 � ⇠2~) (⇠4 � ⇠3~) (⇠4 � ⇠5~) (⇠4 � ⇠6~)

(⇠1 � ⇠4) (⇠4 � ⇠2) (⇠4 � ⇠3) (⇠4 � ⇠5) (⇠4 � ⇠6)

+
p5 (⇠1~ � ⇠5) (⇠5 � ⇠2~) (⇠5 � ⇠3~) (⇠5 � ⇠4~) (⇠5 � ⇠6~)

(⇠1 � ⇠5) (⇠5 � ⇠2) (⇠5 � ⇠3) (⇠5 � ⇠4) (⇠5 � ⇠6)

+
p6 (⇠1~ � ⇠6) (⇠6 � ⇠2~) (⇠6 � ⇠3~) (⇠6 � ⇠4~) (⇠6 � ⇠5~)

(⇠1 � ⇠6) (⇠6 � ⇠2) (⇠6 � ⇠3) (⇠6 � ⇠4) (⇠6 � ⇠5)

= a1,1 + a1,2 + a1,3 + qa2 + (q + q
2)a3 + (q + q

2 + q
3)a4(4.19)

The above two expressions are equivalent upon q = ~ and the following mirror map for
the torus coordinates

⇠1 = a1,1, ⇠2 = a1,2, ⇠3 = a1,3, ⇠4 = qa2, ⇠5 = (q + q
2)a3, ⇠6 = (q + q

2 + q
3)a4,

a5,1 = ⇠1, a5,2 = ⇠2, a5,3 = ⇠3, a4 = ⇠4, a7 = ⇠5, a9 = ⇠6 .(4.20)

as well as for the conjugate momenta

p5,1 = A1,1(⇠) p1, p5,2 = A2,2(⇠) p2, p5,3 = A3,3(⇠) p3,

p4 = A4,4(⇠) p4, p7 = A7,5(⇠) p5, p9 = A9,6(⇠) p6 ,(4.21)

where

A1,1(⇠) =
(⇠1 � ⇠4~) (⇠1 � ⇠5~) (⇠1 � ⇠6~)

(⇠1 � ⇠4~4) (⇠1 � ⇠5~3) (⇠1 � ⇠6~2)
, A2,2(⇠) =

(⇠2 � ⇠4~) (⇠2 � ⇠5~) (⇠2 � ⇠6~)

(⇠2 � ⇠4~4) (⇠2 � ⇠5~3) (⇠2 � ⇠6~2)
,

A3,3(⇠) =
(⇠3 � ⇠4~) (⇠3 � ⇠5~) (⇠3 � ⇠6~)

(⇠3 � ⇠4~4) (⇠3 � ⇠5~3) (⇠3 � ⇠6~2)
, A4,4(⇠) =

1

1 + ~ + ~2 + ~3

(⇠4 � ⇠5~) (⇠4 � ⇠6~)

(⇠5~3 � ⇠4) (⇠6~2 � ⇠4)
,

A7,5(⇠) =
1

1 + ~ + ~2

(⇠4~ � ⇠5) (⇠6~ � ⇠5)

(⇠4~4 � ⇠5) (⇠6~2 � ⇠5)
, A9,6(⇠) =

1

1 + ~
(⇠4~ � ⇠6) (⇠5~ � ⇠6)

(⇠4~4 � ⇠6) (⇠5~3 � ⇠6)
.
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⇠l�1 ⇠l ⇠l+1 ⇠k+l�1 ⇠k+l

4.5. Mirror Map for Generic Xk,r. Consider quiver variety Xk,r with Kähler parameters

zi = ⇠i
⇠i+1

and equivariant parameters ak, . . . , ak+r�1 and ak+r,1, . . . ak+r,k+1 (see top of

Fig. 4). On the bottom of Fig. 4 we see quiver variety X
!

k,r
has equivariant parameters

a1,1,, . . . , a1,k+1 and a2 . . . ar as well as Kähler parameters zi = ⇠i
⇠i+1

. The goal of this section

is to prove that Xk,r and X
!

k,r
are symplectic dual to each other.

We shall compare the magnetic frame of Xk,r against the electric frame of X
!

k,r
.
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On the magnetic side we get from (3.8)

p1 (⇠1 � ⇠2~) (⇠1 � ⇠3~) (⇠1 � ⇠4~) (⇠1 � ⇠5~) (⇠1 � ⇠6~)

(⇠1 � ⇠2) (⇠1 � ⇠3) (⇠1 � ⇠4) (⇠1 � ⇠5) (⇠1 � ⇠6)

+
p2 (⇠1~ � ⇠2) (⇠2 � ⇠3~) (⇠2 � ⇠4~) (⇠2 � ⇠5~) (⇠2 � ⇠6~)

(⇠1 � ⇠2) (⇠2 � ⇠3) (⇠2 � ⇠4) (⇠2 � ⇠5) (⇠2 � ⇠6)

+
p3 (⇠1~ � ⇠3) (⇠3 � ⇠2~) (⇠3 � ⇠4~) (⇠3 � ⇠5~) (⇠3 � ⇠6~)

(⇠1 � ⇠3) (⇠3 � ⇠2) (⇠3 � ⇠4) (⇠3 � ⇠5) (⇠3 � ⇠6)

+
p4 (⇠1~ � ⇠4) (⇠4 � ⇠2~) (⇠4 � ⇠3~) (⇠4 � ⇠5~) (⇠4 � ⇠6~)

(⇠1 � ⇠4) (⇠4 � ⇠2) (⇠4 � ⇠3) (⇠4 � ⇠5) (⇠4 � ⇠6)

+
p5 (⇠1~ � ⇠5) (⇠5 � ⇠2~) (⇠5 � ⇠3~) (⇠5 � ⇠4~) (⇠5 � ⇠6~)

(⇠1 � ⇠5) (⇠5 � ⇠2) (⇠5 � ⇠3) (⇠5 � ⇠4) (⇠5 � ⇠6)

+
p6 (⇠1~ � ⇠6) (⇠6 � ⇠2~) (⇠6 � ⇠3~) (⇠6 � ⇠4~) (⇠6 � ⇠5~)

(⇠1 � ⇠6) (⇠6 � ⇠2) (⇠6 � ⇠3) (⇠6 � ⇠4) (⇠6 � ⇠5)

= a1,1 + a1,2 + a1,3 + qa2 + (q + q
2)a3 + (q + q

2 + q
3)a4(4.19)

The above two expressions are equivalent upon q = ~ and the following mirror map for
the torus coordinates

⇠1 = a1,1, ⇠2 = a1,2, ⇠3 = a1,3, ⇠4 = qa2, ⇠5 = (q + q
2)a3, ⇠6 = (q + q

2 + q
3)a4,

a5,1 = ⇠1, a5,2 = ⇠2, a5,3 = ⇠3, a4 = ⇠4, a7 = ⇠5, a9 = ⇠6 .(4.20)

as well as for the conjugate momenta

p5,1 = A1,1(⇠) p1, p5,2 = A2,2(⇠) p2, p5,3 = A3,3(⇠) p3,

p4 = A4,4(⇠) p4, p7 = A7,5(⇠) p5, p9 = A9,6(⇠) p6 ,(4.21)

where

A1,1(⇠) =
(⇠1 � ⇠4~) (⇠1 � ⇠5~) (⇠1 � ⇠6~)

(⇠1 � ⇠4~4) (⇠1 � ⇠5~3) (⇠1 � ⇠6~2)
, A2,2(⇠) =

(⇠2 � ⇠4~) (⇠2 � ⇠5~) (⇠2 � ⇠6~)

(⇠2 � ⇠4~4) (⇠2 � ⇠5~3) (⇠2 � ⇠6~2)
,

A3,3(⇠) =
(⇠3 � ⇠4~) (⇠3 � ⇠5~) (⇠3 � ⇠6~)

(⇠3 � ⇠4~4) (⇠3 � ⇠5~3) (⇠3 � ⇠6~2)
, A4,4(⇠) =

1

1 + ~ + ~2 + ~3

(⇠4 � ⇠5~) (⇠4 � ⇠6~)

(⇠5~3 � ⇠4) (⇠6~2 � ⇠4)
,

A7,5(⇠) =
1

1 + ~ + ~2

(⇠4~ � ⇠5) (⇠6~ � ⇠5)

(⇠4~4 � ⇠5) (⇠6~2 � ⇠5)
, A9,6(⇠) =

1

1 + ~
(⇠4~ � ⇠6) (⇠5~ � ⇠6)

(⇠4~4 � ⇠6) (⇠5~3 � ⇠6)
.
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4.5. Mirror Map for Generic Xk,r. Consider quiver variety Xk,r with Kähler parameters

zi = ⇠i
⇠i+1

and equivariant parameters ak, . . . , ak+r�1 and ak+r,1, . . . ak+r,k+1 (see top of

Fig. 4). On the bottom of Fig. 4 we see quiver variety X
!

k,r
has equivariant parameters

a1,1,, . . . , a1,k+1 and a2 . . . ar as well as Kähler parameters zi = ⇠i
⇠i+1

. The goal of this section

is to prove that Xk,r and X
!

k,r
are symplectic dual to each other.

We shall compare the magnetic frame of Xk,r against the electric frame of X
!

k,r
.
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On the magnetic side we get from (3.8)

p1 (⇠1 � ⇠2~) (⇠1 � ⇠3~) (⇠1 � ⇠4~) (⇠1 � ⇠5~) (⇠1 � ⇠6~)

(⇠1 � ⇠2) (⇠1 � ⇠3) (⇠1 � ⇠4) (⇠1 � ⇠5) (⇠1 � ⇠6)

+
p2 (⇠1~ � ⇠2) (⇠2 � ⇠3~) (⇠2 � ⇠4~) (⇠2 � ⇠5~) (⇠2 � ⇠6~)

(⇠1 � ⇠2) (⇠2 � ⇠3) (⇠2 � ⇠4) (⇠2 � ⇠5) (⇠2 � ⇠6)

+
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(⇠1 � ⇠3) (⇠3 � ⇠2) (⇠3 � ⇠4) (⇠3 � ⇠5) (⇠3 � ⇠6)

+
p4 (⇠1~ � ⇠4) (⇠4 � ⇠2~) (⇠4 � ⇠3~) (⇠4 � ⇠5~) (⇠4 � ⇠6~)
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+
p5 (⇠1~ � ⇠5) (⇠5 � ⇠2~) (⇠5 � ⇠3~) (⇠5 � ⇠4~) (⇠5 � ⇠6~)
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= a1,1 + a1,2 + a1,3 + qa2 + (q + q
2)a3 + (q + q

2 + q
3)a4(4.19)

The above two expressions are equivalent upon q = ~ and the following mirror map for
the torus coordinates

⇠1 = a1,1, ⇠2 = a1,2, ⇠3 = a1,3, ⇠4 = qa2, ⇠5 = (q + q
2)a3, ⇠6 = (q + q

2 + q
3)a4,

a5,1 = ⇠1, a5,2 = ⇠2, a5,3 = ⇠3, a4 = ⇠4, a7 = ⇠5, a9 = ⇠6 .(4.20)

as well as for the conjugate momenta

p5,1 = A1,1(⇠) p1, p5,2 = A2,2(⇠) p2, p5,3 = A3,3(⇠) p3,

p4 = A4,4(⇠) p4, p7 = A7,5(⇠) p5, p9 = A9,6(⇠) p6 ,(4.21)

where

A1,1(⇠) =
(⇠1 � ⇠4~) (⇠1 � ⇠5~) (⇠1 � ⇠6~)

(⇠1 � ⇠4~4) (⇠1 � ⇠5~3) (⇠1 � ⇠6~2)
, A2,2(⇠) =

(⇠2 � ⇠4~) (⇠2 � ⇠5~) (⇠2 � ⇠6~)

(⇠2 � ⇠4~4) (⇠2 � ⇠5~3) (⇠2 � ⇠6~2)
,

A3,3(⇠) =
(⇠3 � ⇠4~) (⇠3 � ⇠5~) (⇠3 � ⇠6~)

(⇠3 � ⇠4~4) (⇠3 � ⇠5~3) (⇠3 � ⇠6~2)
, A4,4(⇠) =

1

1 + ~ + ~2 + ~3

(⇠4 � ⇠5~) (⇠4 � ⇠6~)

(⇠5~3 � ⇠4) (⇠6~2 � ⇠4)
,

A7,5(⇠) =
1

1 + ~ + ~2

(⇠4~ � ⇠5) (⇠6~ � ⇠5)

(⇠4~4 � ⇠5) (⇠6~2 � ⇠5)
, A9,6(⇠) =

1

1 + ~
(⇠4~ � ⇠6) (⇠5~ � ⇠6)

(⇠4~4 � ⇠6) (⇠5~3 � ⇠6)
.
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ak+l�2 ak+l�1,1, . . . , ak+l�1,k+1ak+1ak

Figure 6. Self-mirror Ak+l�1 quiver variety.

The regular singularity parameters a1, . . . , ak+l are labeled as it is shown in the picture.
Notice, that in the l ! 1 limit, we obtain the A1 quiver (see Fig. 3.2). From this

standpoint, one can treat the quiver Xk,l as the ”regularized” version of it.

k

1

k

1

k

1

k

1

3.3. Xk,l, FFlL and the Ruijsennars-Schneider Hamiltonians. Let us consider quiver
Xk,l (see bottom of Fig. 18) of rank and study the corresponding extended QQ-system in
detail. It is described by the following polynomials

Q
+

1
(z) =

kY

a=1

(z � s1,a), . . . , Q
+

r (z) =
kY

a=1

(z � sl,a),

Q
+

l+1
(z) =

k�1Y

a=1

(z � sl+1,a), . . . , Q
+

l+k�1
(z) = z � sl+k�1 ,(3.4)

and framing polynomials

(3.5) ⇤1(z) =
k+1Y

b=1

(z � a1,b), ⇤c(z) = z � ac, c = 1, . . . , l ,

All other polynomials are trivial.

Construct the corresponding space of (SL(N),h)-opers

Specify components of the section of L1
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The corresponding extended QQ-system reads:

⇠iQ
+

i
(~z)Q�

i
(z) � ⇠i+1Q

+

i
(z)Q�

i
(~z) = ⇤i(z)Q+

i�1
(~z)Q+

i+1
(z) ,

⇠iQ
+

i+1
(~z)Q�

i,i+1
(z) � ⇠i+2Q

+

i+1
(z)Q�

i,i+1
(~z) = ⇤i+1(z)Q�

i
(~z)Q+

i+2
(z) ,

. . . . . .(3.6)

⇠i Q
+

k+l�3+i
(~z)Q�

i,...,k+l�3+i
(z)�⇠k+l�2+i Q

+

k+l�3+i
(z)Q�

i,...,k+r�3+i
(~z) ,

= ⇤k+l�3+i(z)Q�
i,...,k+l�2+i

(~z)Q+

k+l�1+i
(z) ,

⇠1Q
+

k+l�1
(~z)Q�

1,...,k+l�1
(z) � ⇠k+lQ

+

k+l�1
(z)Q�

1,...,k+l�1
(~z) = Q

�
1,...,k+l�2

(~z) .

Let s(z) be a section of line bundle Lr+k which in a vector with r + k components as in
(2.38). As we have seen, the extended QQ-system contains the components of s(z):

s1(z) = Q
�
1,2,...,k+l�1

(z) , s2(z) = Q
�
2,3,...,k+l�1

, . . . ,

sk+l�1(z) = Q
�
k+l�1

(z), sk+l+1(z) = Q
+

k+l
(z).(3.7)

The following Lemma characterizes the structure of the components si(z) and their roots
for FFlL.

Lemma 3.5. Given (3.7) we have

(3.8) s1(z) = z � p1, , . . . , sk+r(z) = z � pk+l ,

where

(3.9) pk+l+1�p = �
Q

+
p (0)

Q
+

p�1
(0)

.

Proof. From Lemma 3.4 we conclude that all components of sp(z) are of the first order.
Now we need to prove (3.9). Let us denote the matrix inside the brackets on the left hand
side of the expression (2.38) by Mp(z) and substitute z = 0. The following immediately
follows

(3.10) Mp(0) = �diag(pk+l+1�p, . . . , pk+l+1) · Vp ,

since Mp(0)i,j = �⇠
p�j

k+l+1�p+i
pk+l+1�p+i and (Vp)i,j = ⇠

p�j

k+l+1�p+i
. Therefore

(3.11) � det
⇥
Mp(0) · V

�1

p

⇤
= (�1)p

pk+l+1�p · · · pk+l+1 .

Thus (3.9) follows if we define ↵p = detVp

Wp(0)
. ⇤

For the Xk,l the components of the section have the following degrees. This Lemma will
be used in later sections in proving 3d mirror symmetry for Xk,l.

Corollary 3.6. Given (3.7) quiver Xk,l has the following degrees

(3.12) deg sl+1 = · · · = deg sl+k = 1, deg sl�i+1(z) = i, i = 1, . . . , l .

Proof. The statement direclty follows from Lemma 3.4.
One can see from Fig. 6 that quiver Xk,l contains a ‘tail’ of FFlk. Using the previous

Lemma one can verify that the last k components of the section s(z) of the oper bundle
(3.12) are degree one polynomials. However, since the the rest of the quiver has di↵erent
data the similarity with the complete flag ends and degrees of other components of the
section grow linearly according to (3.6). ⇤

24 P. KOROTEEV AND A.M. ZEITLIN

The corresponding extended QQ-system reads:

⇠iQ
+

i
(~z)Q�

i
(z) � ⇠i+1Q

+

i
(z)Q�

i
(~z) = ⇤i(z)Q+

i�1
(~z)Q+

i+1
(z) ,

⇠iQ
+

i+1
(~z)Q�

i,i+1
(z) � ⇠i+2Q

+

i+1
(z)Q�

i,i+1
(~z) = ⇤i+1(z)Q�

i
(~z)Q+

i+2
(z) ,

. . . . . .(3.6)

⇠i Q
+

k+l�3+i
(~z)Q�

i,...,k+l�3+i
(z)�⇠k+l�2+i Q

+

k+l�3+i
(z)Q�

i,...,k+r�3+i
(~z) ,

= ⇤k+l�3+i(z)Q�
i,...,k+l�2+i

(~z)Q+

k+l�1+i
(z) ,

⇠1Q
+

k+l�1
(~z)Q�

1,...,k+l�1
(z) � ⇠k+lQ

+

k+l�1
(z)Q�

1,...,k+l�1
(~z) = Q

�
1,...,k+l�2

(~z) .

Let s(z) be a section of line bundle Lr+k which in a vector with r + k components as in
(2.38). As we have seen, the extended QQ-system contains the components of s(z):

s1(z) = Q
�
1,2,...,k+l�1

(z) , s2(z) = Q
�
2,3,...,k+l�1

, . . . ,

sk+l�1(z) = Q
�
k+l�1

(z), sk+l+1(z) = Q
+

k+l
(z).(3.7)

The following Lemma characterizes the structure of the components si(z) and their roots
for FFlL.

Lemma 3.5. Given (3.7) we have

(3.8) s1(z) = z � p1, , . . . , sk+r(z) = z � pk+l ,

where

(3.9) pk+l+1�p = �
Q

+
p (0)

Q
+

p�1
(0)

.

Proof. From Lemma 3.4 we conclude that all components of sp(z) are of the first order.
Now we need to prove (3.9). Let us denote the matrix inside the brackets on the left hand
side of the expression (2.38) by Mp(z) and substitute z = 0. The following immediately
follows

(3.10) Mp(0) = �diag(pk+l+1�p, . . . , pk+l+1) · Vp ,

since Mp(0)i,j = �⇠
p�j

k+l+1�p+i
pk+l+1�p+i and (Vp)i,j = ⇠

p�j

k+l+1�p+i
. Therefore

(3.11) � det
⇥
Mp(0) · V

�1

p

⇤
= (�1)p

pk+l+1�p · · · pk+l+1 .

Thus (3.9) follows if we define ↵p = detVp

Wp(0)
. ⇤

For the Xk,l the components of the section have the following degrees. This Lemma will
be used in later sections in proving 3d mirror symmetry for Xk,l.

Corollary 3.6. Given (3.7) quiver Xk,l has the following degrees

(3.12) deg sl+1 = · · · = deg sl+k = 1, deg sl�i+1(z) = i, i = 1, . . . , l .

Proof. The statement direclty follows from Lemma 3.4.
One can see from Fig. 6 that quiver Xk,l contains a ‘tail’ of FFlk. Using the previous

Lemma one can verify that the last k components of the section s(z) of the oper bundle
(3.12) are degree one polynomials. However, since the the rest of the quiver has di↵erent
data the similarity with the complete flag ends and degrees of other components of the
section grow linearly according to (3.6). ⇤

Then the space of functions on the space of such h-opers 
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Let us remind that we gave a realization of the algebra Fun(~Op(Yv,w) as Wr(Yv, w).
It turns out that in the case of Yv,w = FFlL, Xk,l there is a more explicit version of that
algebra in terms of the variables {p

k

i
}.

Theorem 3.7. i) There is an isomorphism of algebras:

Fun(~Op)(FFlL)) ⇠=
C({⇠i}, {ai}, {pi}, ~)

{Hi({pj}, {⇠j}, ~) = ei(a1, . . . , aL})i=1,...,L

,(3.13)

where

(3.14) Hk =
X

I⇢{1,...,L}
|I|=k

Y

i2I

j /2I

⇠i � ~ ⇠j

⇠i � ⇠j

Y

m2I

pm ,

and ei are elementary symmetric functions of variables {ai}i=1,...,L.

ii) There is an isomorphism of algebras:

Fun(~Op)(Xk,l) ⇠=(3.15)

S({⇠i}, {ai}, ~)({pi})

((Bi({pj}, {⇠j}, ~) = `i(a1, . . . , ak+l))i=1,...,k+l, low. order Wronsk. relations)
,

where Bi are coe�cients of the characteristic polynomial of the left hand side of (2.38) and
`i are elementary symmetric polynomials of the following k + l(l � 1)/2 variables:

a1,1, . . . , a1,k

a2,

a3, ~a3,

a4, ~a4, ~2
a4

. . . . . .(3.16)

al�1, ~al�1, ~2
al�1, . . . , ~l�2

al�1 .

For insatnce

`k+l(a1, . . . , ak+l) =(3.17)
k+1X

a=1

a1,a + a2 + (1 + ~)a3 + (1 + ~ + ~2)a4 + · · · +
l�1X

l=0

~l�1
al .

Proof. Relations in i) are the standard tRS equations which follow from the oper condition
(2.38).

The proof of ii) follows from calculating the coe�cients in front of powers of z in the right
hand side of (2.38) applied to Fun(~Op)(Xk,l). The polynomial Wk+l has the following form
(3.18)

Wk+l =
kY

i=1

(z � a1,i) · (z � a2) · (z � a3)(z � ~a3) · (z � a4)(z � ~a4)(z � ~2
a4) · · ·

l�1Y

j=0

(z � ~j
al)

⇤

3D MIRROR SYMMETRY FOR INSTANTON MODULI SPACES 25

Let us remind that we gave a realization of the algebra Fun(~Op(Yv,w) as Wr(Yv, w).
It turns out that in the case of Yv,w = FFlL, Xk,l there is a more explicit version of that
algebra in terms of the variables {p

k

i
}.

Theorem 3.7. i) There is an isomorphism of algebras:

Fun(~Op)(FFlL)) ⇠=
C({⇠i}, {ai}, {pi}, ~)

{Hi({pj}, {⇠j}, ~) = ei(a1, . . . , aL})i=1,...,L

,(3.13)

where

(3.14) Hk =
X

I⇢{1,...,L}
|I|=k

Y

i2I

j /2I

⇠i � ~ ⇠j

⇠i � ⇠j

Y

m2I

pm ,

and ei are elementary symmetric functions of variables {ai}i=1,...,L.

ii) There is an isomorphism of algebras:

Fun(~Op)(Xk,l) ⇠=(3.15)

S({⇠i}, {ai}, ~)({pi})

((Bi({pj}, {⇠j}, ~) = `i(a1, . . . , ak+l))i=1,...,k+l, low. order Wronsk. relations)
,

where Bi are coe�cients of the characteristic polynomial of the left hand side of (2.38) and
`i are elementary symmetric polynomials of the following k + l(l � 1)/2 variables:

a1,1, . . . , a1,k

a2,

a3, ~a3,

a4, ~a4, ~2
a4

. . . . . .(3.16)

al�1, ~al�1, ~2
al�1, . . . , ~l�2

al�1 .

For insatnce

`k+l(a1, . . . , ak+l) =(3.17)
k+1X

a=1

a1,a + a2 + (1 + ~)a3 + (1 + ~ + ~2)a4 + · · · +
l�1X

l=0

~l�1
al .

Proof. Relations in i) are the standard tRS equations which follow from the oper condition
(2.38).

The proof of ii) follows from calculating the coe�cients in front of powers of z in the right
hand side of (2.38) applied to Fun(~Op)(Xk,l). The polynomial Wk+l has the following form
(3.18)

Wk+l =
kY

i=1

(z � a1,i) · (z � a2) · (z � a3)(z � ~a3) · (z � a4)(z � ~a4)(z � ~2
a4) · · ·

l�1Y

j=0

(z � ~j
al)

⇤

is described by trigonometric Ruijsenaars-Schneider 

model with n particles



 Quantum Wronskians
(SL(N),q)-oper can also be constructed from flag of subbundles
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3.4. Embedding of the tRS model into q-opers. We now explain a connection between
nondegenerate twisted (SL(2), q)-opers and the two particle trigonometric Ruijsenaars-
Schneider model. More precisely, we show that the integrals of motion in the tRS model
arise from nondegenerate twisted opers with two regular singularities of weight one and
with Q� linear.

Consider Z-twisted opers with two regular singularities z±, both of weight one, so ⇢ =
(z � z+)(z � z�). For generic q, the degree of the quantum Wronskian equals deg(Q+) +
deg(Q�). Here, we will only look at q-opers for which deg(Q±) = 1, say Q� = z � p� and
Q+ = c(z � p+). Here, c is a nonzero constant for which the quantum Wronskian is monic;
an easy calculation shows that c = q

�1(⇣�1 � ⇣)�1.
Setting the quantum Wronskian equal to ⇢ gives us the equation

(3.12) z
2 � z

q


⇣ � q⇣

�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p�

�
+

p+p�
q

= (z � z+)(z � z�) .

Comparing powers of z on both sides, we obtain

(3.13)

⇣ � q⇣
�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p� = q(z+ + z�)

p+p�
q

= z+z� .

Upon introducing coordinates ⇣+, ⇣� such that ⇣ = ⇣+/⇣� and viewing ⇣±, p± as the
positions and momenta in the two particle tRS model, we see that (3.13) are just the
trigonometric Ruijsenaars-Schneider equations [KPSZ]. In fact, the set of Z-twisted opers
with weight one singularities at z± is just the intersection of two Lagrangian subspaces of
the two particle tRS phase space: the subspace determined by (3.13) and the subspace with
the ⇣± fixed constants satisfying ⇣ = ⇣+/⇣�. As we will see in Section 7, this construction
can be generalized to higher rank.

4. (SL(N), q)-opers

4.1. Definitions. We now discuss the generalization of (SL(2), q)-opers to SL(N).

Definition 4.1. A (GL(N), q)-oper on P1 is a triple (E, A,L•), where (E, A) is a (GL(N), q)-
connection and L• is a complete flag of subbundles such that A maps Li into Lq

i+1
and the

induced maps Āi : Li/Li�1 �! Lq
i+1

/Lq
i are isomorphisms for i = 1, . . . , N � 1. The triple

is called an SL(N)-oper if (E, A) is an (SL(N), q)-connection.

To make this definition more explicit, consider the determinants

(4.1)
⇣
s(qi�1

z) ^ A(qi�2
z)s(qi�2

z) ^ · · · ^
⇣ i�2Y

j=0

(A(qi�2�j
z)
⌘
s(z)

⌘����
⇤iLqi�1

i

for i = 1, . . . , N , where s is a local section of L1. Then (E, A,L•) is a q-oper if and only
if at every point, there exists local sections for which each Wi(s)(z) is nonzero. It will be
more convenient to consider determinants with the same zeros as those in (4.1), but with
no q-shifts:

(4.2) Wi(s)(z) =
⇣
s(z) ^ A(z)�1

s(qz) ^ · · · ^
⇣ i�2Y

j=0

(A(qjz)�1

⌘
s(qi�1

z)
⌘����

⇤iLi

.

such that the induced maps 
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Schneider model. More precisely, we show that the integrals of motion in the tRS model
arise from nondegenerate twisted opers with two regular singularities of weight one and
with Q� linear.

Consider Z-twisted opers with two regular singularities z±, both of weight one, so ⇢ =
(z � z+)(z � z�). For generic q, the degree of the quantum Wronskian equals deg(Q+) +
deg(Q�). Here, we will only look at q-opers for which deg(Q±) = 1, say Q� = z � p� and
Q+ = c(z � p+). Here, c is a nonzero constant for which the quantum Wronskian is monic;
an easy calculation shows that c = q

�1(⇣�1 � ⇣)�1.
Setting the quantum Wronskian equal to ⇢ gives us the equation

(3.12) z
2 � z

q


⇣ � q⇣

�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p�

�
+

p+p�
q

= (z � z+)(z � z�) .

Comparing powers of z on both sides, we obtain

(3.13)

⇣ � q⇣
�1

⇣ � ⇣�1
p+ +

q⇣ � ⇣
�1

⇣ � ⇣�1
p� = q(z+ + z�)

p+p�
q

= z+z� .

Upon introducing coordinates ⇣+, ⇣� such that ⇣ = ⇣+/⇣� and viewing ⇣±, p± as the
positions and momenta in the two particle tRS model, we see that (3.13) are just the
trigonometric Ruijsenaars-Schneider equations [KPSZ]. In fact, the set of Z-twisted opers
with weight one singularities at z± is just the intersection of two Lagrangian subspaces of
the two particle tRS phase space: the subspace determined by (3.13) and the subspace with
the ⇣± fixed constants satisfying ⇣ = ⇣+/⇣�. As we will see in Section 7, this construction
can be generalized to higher rank.

4. (SL(N), q)-opers

4.1. Definitions. We now discuss the generalization of (SL(2), q)-opers to SL(N).

Definition 4.1. A (GL(N), q)-oper on P1 is a triple (E, A,L•), where (E, A) is a (GL(N), q)-
connection and L• is a complete flag of subbundles such that A maps Li into Lq

i+1
and the

induced maps Āi : Li/Li�1 �! Lq
i+1

/Lq
i are isomorphisms for i = 1, . . . , N � 1. The triple

is called an SL(N)-oper if (E, A) is an (SL(N), q)-connection.

To make this definition more explicit, consider the determinants

(4.1)
⇣
s(qi�1

z) ^ A(qi�2
z)s(qi�2

z) ^ · · · ^
⇣ i�2Y

j=0

(A(qi�2�j
z)
⌘
s(z)

⌘����
⇤iLqi�1

i

for i = 1, . . . , N , where s is a local section of L1. Then (E, A,L•) is a q-oper if and only
if at every point, there exists local sections for which each Wi(s)(z) is nonzero. It will be
more convenient to consider determinants with the same zeros as those in (4.1), but with
no q-shifts:

(4.2) Wi(s)(z) =
⇣
s(z) ^ A(z)�1

s(qz) ^ · · · ^
⇣ i�2Y

j=0

(A(qjz)�1

⌘
s(qi�1

z)
⌘����

⇤iLi

.

are isomorphisms

The quantum determinants 
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for i = 1, . . . , r + 1, where s is a local section of Lr+1, we claim that (E,A,L•) is an
(SL(r+1), q)-oper if and only if at every point of U ∩M−1

q (U), there exists local section for
which each such determinant is nonzero (see [KSZ]). When we encounter the case of regular
singularities (see Section 3.2), each Āi is an isomorphism except at zeroes of Λi and thus
we require the determinants to vanish at zeroes of the following polynomial Wk(s):

Wk(s) = P1(z) · P2(q
2z) · · ·Pk(q

k−1z), Pi(z) = ΛrΛr−1 · · ·Λr−i+1(z) .(6.2)

Now we discuss the Z-twisted Miura condition. Recall from Section 2.3 that Miura
condition implies that there exist a flag L̂• which is preserved by the q-connection A. The
Z-twisted condition implies that in the gauge when A is given by fixed semisimple diagonal
element Z ∈ H such flag is formed by the standard basis e1, . . . , er+1.

The relative position between two flags is generic on U∩M−1
q (U). The regular singularity

condition implies that quantum Wronskians, namely determinants

(6.3) Dk(s) = e1 ∧ · · · ∧ er+1−k ∧ Zk−1s(z) ∧ Zk−2s(qz) ∧ · · · ∧ Zs(qk−2) ∧ s(qk−1z)

have a subset of zeroes, which coincide with those of Wk(s). To be more explicit, for
k = 1, . . . , r + 1, we have nonzero constants αk and polynomials

(6.4) Vk(z) =
rk∏

a=1

(z − vk,a) ,

for which
(6.5)

det





1 . . . 0 ξk−1
1 s1(z) · · · ξ1s1(qk−2z) s1(qk−1z)

...
. . .

...
...

...
. . .

...
0 . . . 1 ξk−1

k sr+1−k(z) . . . ξksr+1−k(qk−2z) sk(qk−1z)
0 . . . 0 ξk−1

k+1sr+1−k+1(z) . . . ξr+1−k+1sk+1(qk−2z) sk+1(qk−1z)
...

. . .
...

...
...

. . .
...

0 . . . 0 ξk−1
r+1sr+1(z) . . . ξr+1sr+1(qk−2z) sr+1(qk−1z)





= αkWkVk ;

Since Dr+1(s) = Wr+1(s), we have Vr+1 = 1. We also set V0 = 1; this is consistent with
the fact that (6.3) also makes sense for k = 0, giving D0 = e1 ∧ · · · ∧ er+1.

We can also rewrite (6.5) as

(6.6) det
i,j

[
ξk−j
r+1−k+isr+1−k+i(q

j−1z)
]
= αkWkVk ,

where i, j = 1, . . . , k.
Note that the above determinants have slightly different form those of [KSZ] – twist

parameters ξi entered in different powers. This is due to a different order of the simple
roots in the definition of the q-oper.

Theorem 6.1 ([KSZ]). Polynomials {Vk(z)}k=1,...,r give the solution to the QQ-system 5.3
so that Q+

j (z) = Vj(z) under the nondegeneracy condition that for all i, j, k with i %= j and
aik %= 0, ajk %= 0, the zeros of Vi(z) and Vj(z) are q-distinct from each other and from the
zeros of Λk(z).

Remark 6.2. Technically, we used stronger conditions in [KSZ], namely that zeroes of
{Λi}i=1...r and {Vj(z)}j=1...r have to be q-disjoint to satisfy QQ-system equations, but
one can relax it easily and even more than it is done in the statement above.

vanish at q-oper singularities
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for i = 1, . . . , r + 1, where s is a local section of Lr+1, we claim that (E,A,L•) is an
(SL(r+1), q)-oper if and only if at every point of U ∩M−1

q (U), there exists local section for
which each such determinant is nonzero (see [KSZ]). When we encounter the case of regular
singularities (see Section 3.2), each Āi is an isomorphism except at zeroes of Λi and thus
we require the determinants to vanish at zeroes of the following polynomial Wk(s):

Wk(s) = P1(z) · P2(q
2z) · · ·Pk(q

k−1z), Pi(z) = ΛrΛr−1 · · ·Λr−i+1(z) .(6.2)

Now we discuss the Z-twisted Miura condition. Recall from Section 2.3 that Miura
condition implies that there exist a flag L̂• which is preserved by the q-connection A. The
Z-twisted condition implies that in the gauge when A is given by fixed semisimple diagonal
element Z ∈ H such flag is formed by the standard basis e1, . . . , er+1.

The relative position between two flags is generic on U∩M−1
q (U). The regular singularity

condition implies that quantum Wronskians, namely determinants

(6.3) Dk(s) = e1 ∧ · · · ∧ er+1−k ∧ Zk−1s(z) ∧ Zk−2s(qz) ∧ · · · ∧ Zs(qk−2) ∧ s(qk−1z)

have a subset of zeroes, which coincide with those of Wk(s). To be more explicit, for
k = 1, . . . , r + 1, we have nonzero constants αk and polynomials

(6.4) Vk(z) =
rk∏

a=1

(z − vk,a) ,

for which
(6.5)

det





1 . . . 0 ξk−1
1 s1(z) · · · ξ1s1(qk−2z) s1(qk−1z)

...
. . .

...
...

...
. . .

...
0 . . . 1 ξk−1

k sr+1−k(z) . . . ξksr+1−k(qk−2z) sk(qk−1z)
0 . . . 0 ξk−1

k+1sr+1−k+1(z) . . . ξr+1−k+1sk+1(qk−2z) sk+1(qk−1z)
...

. . .
...

...
...

. . .
...

0 . . . 0 ξk−1
r+1sr+1(z) . . . ξr+1sr+1(qk−2z) sr+1(qk−1z)





= αkWkVk ;

Since Dr+1(s) = Wr+1(s), we have Vr+1 = 1. We also set V0 = 1; this is consistent with
the fact that (6.3) also makes sense for k = 0, giving D0 = e1 ∧ · · · ∧ er+1.

We can also rewrite (6.5) as

(6.6) det
i,j

[
ξk−j
r+1−k+isr+1−k+i(q

j−1z)
]
= αkWkVk ,

where i, j = 1, . . . , k.
Note that the above determinants have slightly different form those of [KSZ] – twist

parameters ξi entered in different powers. This is due to a different order of the simple
roots in the definition of the q-oper.

Theorem 6.1 ([KSZ]). Polynomials {Vk(z)}k=1,...,r give the solution to the QQ-system 5.3
so that Q+

j (z) = Vj(z) under the nondegeneracy condition that for all i, j, k with i %= j and
aik %= 0, ajk %= 0, the zeros of Vi(z) and Vj(z) are q-distinct from each other and from the
zeros of Λk(z).

Remark 6.2. Technically, we used stronger conditions in [KSZ], namely that zeroes of
{Λi}i=1...r and {Vj(z)}j=1...r have to be q-disjoint to satisfy QQ-system equations, but
one can relax it easily and even more than it is done in the statement above.

Diagonalizing condition

28 P. KOROTEEV AND A.M. ZEITLIN

for i = 1, . . . , r + 1, where s is a local section of Lr+1, we claim that (E,A,L•) is an
(SL(r+1), q)-oper if and only if at every point of U ∩M−1

q (U), there exists local section for
which each such determinant is nonzero (see [KSZ]). When we encounter the case of regular
singularities (see Section 3.2), each Āi is an isomorphism except at zeroes of Λi and thus
we require the determinants to vanish at zeroes of the following polynomial Wk(s):

Wk(s) = P1(z) · P2(q
2z) · · ·Pk(q

k−1z), Pi(z) = ΛrΛr−1 · · ·Λr−i+1(z) .(6.2)

Now we discuss the Z-twisted Miura condition. Recall from Section 2.3 that Miura
condition implies that there exist a flag L̂• which is preserved by the q-connection A. The
Z-twisted condition implies that in the gauge when A is given by fixed semisimple diagonal
element Z ∈ H such flag is formed by the standard basis e1, . . . , er+1.

The relative position between two flags is generic on U∩M−1
q (U). The regular singularity

condition implies that quantum Wronskians, namely determinants

(6.3) Dk(s) = e1 ∧ · · · ∧ er+1−k ∧ Zk−1s(z) ∧ Zk−2s(qz) ∧ · · · ∧ Zs(qk−2) ∧ s(qk−1z)

have a subset of zeroes, which coincide with those of Wk(s). To be more explicit, for
k = 1, . . . , r + 1, we have nonzero constants αk and polynomials

(6.4) Vk(z) =
rk∏

a=1

(z − vk,a) ,

for which
(6.5)

det





1 . . . 0 ξk−1
1 s1(z) · · · ξ1s1(qk−2z) s1(qk−1z)

...
. . .

...
...

...
. . .

...
0 . . . 1 ξk−1

k sr+1−k(z) . . . ξksr+1−k(qk−2z) sk(qk−1z)
0 . . . 0 ξk−1

k+1sr+1−k+1(z) . . . ξr+1−k+1sk+1(qk−2z) sk+1(qk−1z)
...

. . .
...

...
...

. . .
...

0 . . . 0 ξk−1
r+1sr+1(z) . . . ξr+1sr+1(qk−2z) sr+1(qk−1z)





= αkWkVk ;

Since Dr+1(s) = Wr+1(s), we have Vr+1 = 1. We also set V0 = 1; this is consistent with
the fact that (6.3) also makes sense for k = 0, giving D0 = e1 ∧ · · · ∧ er+1.

We can also rewrite (6.5) as

(6.6) det
i,j

[
ξk−j
r+1−k+isr+1−k+i(q

j−1z)
]
= αkWkVk ,

where i, j = 1, . . . , k.
Note that the above determinants have slightly different form those of [KSZ] – twist

parameters ξi entered in different powers. This is due to a different order of the simple
roots in the definition of the q-oper.

Theorem 6.1 ([KSZ]). Polynomials {Vk(z)}k=1,...,r give the solution to the QQ-system 5.3
so that Q+

j (z) = Vj(z) under the nondegeneracy condition that for all i, j, k with i %= j and
aik %= 0, ajk %= 0, the zeros of Vi(z) and Vj(z) are q-distinct from each other and from the
zeros of Λk(z).

Remark 6.2. Technically, we used stronger conditions in [KSZ], namely that zeroes of
{Λi}i=1...r and {Vj(z)}j=1...r have to be q-disjoint to satisfy QQ-system equations, but
one can relax it easily and even more than it is done in the statement above.

Components of the section of the 
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In the next subsection we will show that the extended QQ-system can be obtained from
various minors in q-Wronskian matrices. This theorem allows to relate the section s(z),
generating the line bundle Lr+1 with the elements of the extended QQ-system using the
transformation (5.6).

Proposition 6.3. Let v(z) be the gauge transformation from (5.6) and s(z) be the section
generating Lr+1 in the definition of the (SL(r + 1), q)-oper. Then the components of s(z)
in the gauge when q-oper connection is equal to Z is given by:

(6.7) sr+1(z) = Q+
r (z) , sr(z) = Q−

r (z) , sk(z) = Q−
k,...,r(z) ,

for k = 1, . . . , r − 1.

Proof. The Proposition follows from the direct application of (5.11) Starting from (5.11) the
Proposition follows after acting with v(z)−1 on the basis vector er+1 = (0, 0, . . . , 0, 1). !

In the next subsection we will show that the extended QQ-system can be obtained from
various minors in q-Wronskian matrices.

6.2. Wronskians and extended QQ-systems. First, we will rewrite the extended QQ-
system in a more convenient way to relate it to the minors in the q-Wronskian matrix.
Namely, we multiply Q-terms by certain polynomials to get rid of the Λ-polynomials in the
right hand side. This is done in the following Lemma.

Lemma 6.4. The system of equations (5.7) is equivalent to the following set of equations

ξi D
+
i (qz)D−

i (z)− ξi+1 D
+
i (z)D−

i (qz) = (ξi − ξi+1)D
+
i−1(qz)D

+
i+1(z) ,

ξi D
+
i+1(qz)D

−
i,i+1(z)− ξi+2 D

+
i+1(z)D

−
i,i+1(qz) = (ξi − ξi+2)D

−
i (qz)D+

i+2(z) ,

. . . . . .(6.8)

ξi D
+
r+i−2(qz)D

−
i,...,r−1+i(z)− ξr+i−1,D

+
r+i−2(z)D

−
i,...,r−1+i(qz) = (ξi − ξr+i−1)D

−
i,...,r−2+i(qz)D

+
r+i−1(z) ,

ξ1D
+
r (qz)D−

1,...,r(z) − ξr+1D
+
r (z)D−

1,...,r(qz) = (ξ1 − ξr+1)D
−
1,...,r−1(qz) .

where index i ranges between the same values as in the corresponding equations in (5.7),
for the polynomials

(6.9) D
+
k = Q+

k Fk , D
−
k = Q−

k Fkηk, D
−
l,...,k = Q−

l,...,kFkηl,...,k .

where

Fi(z) = Wr−i(q
r−iz) , ηl,...,i =

i−l∏

a=0

(ξl − ξl+a+1) .

For the future we shall refer to (6.8) as the extended DD-system for SL(r+1) and to its
first line specifically as merely the DD-system.

Proof. The proof is the direct extension of the proof of Lemma 4.2 in [KSZ] to other equa-
tions in (5.31). Since all equations are treated analogously, let us consider the second set of
(6.8) which we can write as

(6.10) ξi−1 D
+
i (qz)D−

i−1,i(z)− ξi+1 D
+
i (z)D−

i−1,i(qz) = (ξi−1 − ξi+1)D
−
i−1(qz)D

+
i+1(z) .

After replacing

D
+
i = Q+

i Fi , D
−
i = Q−

i Fi ηi, D
−
i−1,i = Q−

i−1,iFi ηi−1,i
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Lemma 2.21. Suppose that �1, . . . , �k�1 are nonzero complex numbers such that �j /2 q
N0�k

for j < k. Let f1, . . . , fk�1 be polynomials that do not vanish at 0, and let g be an arbitrary
polynomial. Then there exist unique polynomials f1, . . . , fk satisfying

(2.46) g = det

0

B@
f1 �1f

(1)

1
· · · �

k�1

1
f

(k�1)

1

...
...

. . .
...

fk �kf
(1)

k
· · · �

k�1

k
f

(k�1)

k

1

CA .

3. Ar-quivers, QQ-systems and magnetic frame

3.1. Quiver data and Miura ~-opers. For us the framed Ar quiver means the graph
of Ar type with vertices labeled by natural numbers To each vertex we may attach a box
labeled by a natural number as well. We will refer to the boxes as framing of An graph.

v

w

v v v1 2

w w w

n-1

n-121 n

n

⇠1
<latexit sha1_base64="Zi6mG5uph2HVa18lb6/jG6OX3fg=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Ckksbb0VvXisYNpCG8pmu2mXbjZhdyOW0t/gxYMiXv1B3vw3btsIKvpg4PHeDDPzwpQzpR3nw1pZXVvf2CxsFbd3dvf2SweHLZVkklCfJDyRnRArypmgvmaa004qKY5DTtvh+Grut++oVCwRt3qS0iDGQ8EiRrA2kt+7Z323Xyo7tufVLio15NjOAobUq5Wq5yA3V8qQo9kvvfcGCcliKjThWKmu66Q6mGKpGeF0VuxliqaYjPGQdg0VOKYqmC6OnaFTowxQlEhTQqOF+n1iimOlJnFoOmOsR+q3Nxf/8rqZjurBlIk001SQ5aIo40gnaP45GjBJieYTQzCRzNyKyAhLTLTJp2hC+PoU/U9anu2e295Npdy4zOMowDGcwBm4UIMGXEMTfCDA4AGe4NkS1qP1Yr0uW1esfOYIfsB6+wTW4Y62</latexit>

⇠2
<latexit sha1_base64="Sxp4aAQ5v/sJnUOn6vPVoRbFScQ=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Ckksbb0VvXisYNpCG8pmu2mXbjZhdyOW0t/gxYMiXv1B3vw3btsIKvpg4PHeDDPzwpQzpR3nw1pZXVvf2CxsFbd3dvf2SweHLZVkklCfJDyRnRArypmgvmaa004qKY5DTtvh+Grut++oVCwRt3qS0iDGQ8EiRrA2kt+7Z32vXyo7tufVLio15NjOAobUq5Wq5yA3V8qQo9kvvfcGCcliKjThWKmu66Q6mGKpGeF0VuxliqaYjPGQdg0VOKYqmC6OnaFTowxQlEhTQqOF+n1iimOlJnFoOmOsR+q3Nxf/8rqZjurBlIk001SQ5aIo40gnaP45GjBJieYTQzCRzNyKyAhLTLTJp2hC+PoU/U9anu2e295Npdy4zOMowDGcwBm4UIMGXEMTfCDA4AGe4NkS1qP1Yr0uW1esfOYIfsB6+wTYZY63</latexit>

ar,1, . . . , ar,wra1,1, . . . , a1,w1

⇠r�1 ⇠r ⇠r+1

Figure 4. Generic Ar quiver variety

Thus we see that such quiver is entirely defined by two vectors with the components
v = (v1, . . . ,vr) and w = (w1, . . . ,wr), so that {vi}, {wi} 2 N, i = 1, . . . , r. In the
following we will refer to quiver with this data as Yv,w and to wi as the rank of a framing
of the i-th vertex. We associate a QQ-system to such quiver in the following way. We
assign to each vertex i with the label vi (we count vertices from left to right) the Q

+

i
(z)

-polynomial of degree vi. At the same time, we associate the polynomial ⇤i(z) of degree
wi to each vertex with the framing of rank wi.

We will refer to the resulting space of Z-twisted nondegenerate Miura (SL(r+1), ~)-opers,
associated with such QQ-systems and thus entirely defined by quiver as ~Op(Yv,w). Such op-
ers are defined by the position of regular singularities, i.e. roots {ak,j}j=1,...,r, k=1,...,deg(⇤j)

of

⇤j(z)
j=1,...,r

, monic polynomials {Q
+

j
(z)}j=1,...,r defined by their Bethe roots {sk,j}

k=1,...,deg(Q
+
j )

j=1,...,r
,

and {⇠k}k=1,...,r+1 parametrizing the Z-twist.
We will refer to the following algebra as the algebra of functions on the space ~Op(Yv,w):

(3.1) Fun(~Op)(Yv,w) :=
S({ai}, {⇠k}, ~)({si,k})

(Bethe equations)
,

i.e. rational functions (with coe�cients being rational functions of {ai}, {⇠k}, ~) of the
elementary symmetric functions of Bethe root variables (with symmetrization is over index
k for all i) with the relations on variables are given by Bethe equations from (2.26).
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One can show that for WG-generic Miura-Plücker (G, q)-oper there exists b−(z) ∈ B−(z)
such that2:

(3.28) A(z) = b−(qz)Zb−(z)
−1.

Then the following Theorem holds (see [FKSZ]).

Theorem 3.20. Every WG-generic Z-twisted Miura-Plücker (G, q)-oper is a nondegenerate
Z-twisted Miura (G, q)-oper.

4. Z-twisted q-opers and generalized Wronskians

4.1. Generalized Minors and Plücker coordinates. In the next section we will discuss
another approach to Miura (G, q)-opers. This approach is based on the datum of the
corresponding connection in the set of fundamental representations. There is a way to
encode this datum in terms of certain explicit “coordinates” one can associate to a group
element. These coordinates are the generalizations of minors for SL(N). They were used
by Berenstein, Fomin and Zelevinsky in the study of Schubert cells and double Bruhat cells
in the combinatorial context of cluster algebras.

Let us define what generalized minors are. Consider the big cell in Bruhat decomposition:
G0 = N−HN+. For a given element g ∈ G0 we can write it as

g = n− h n+.(4.1)

Let V +
i be the irreducible representation of G with highest weight ωi and highest weight

vector ν+ωi
which isthe eigenvector for any h ∈ H, i.e. hν+ωi

= [h]ωiν+ωi
, [h]ωi ∈ C×. That

allows us to introduce the following definition (see [FZ1]).

Definition 4.1. The following regular functions {∆ωi}i=1,...,r on G, whose values on a dense
set G0 are given

∆ωi(g) = [h]ωi , i = 1, . . . , r(4.2)

will be referred to as principal minors of a group element g.

In case of G = SL(N) these functions stand for principal minors of the standard matrix
realization of SL(N).

Other generalized minors are obtained by the action of the Weyl group elements on the
left and the right of g and then applying the appropriate lifts of Weyl group elements u, v
on the right and the left and then applying principal minors to the result.

Namely, we have the following

Definition 4.2. For u, v ∈ WG, we define a regular function ∆uωi,vωi on G by setting

(4.3) ∆uωi,vωi(g) = ∆ωi(ũ−1gṽ).

Notice that in this notation ∆ωi,ωi(g) = ∆ωi(g). Consider the orbit OWG
= WG · Cν+ωi

,
This way we have the following Proposition.

2The conditions of WG-genericity can be relaxed, by allowing nondegenerate solutions of the QQ-system
to propagate along the decomposition of w0 the longest root. However, we use this, more restrictive condition
here for the reasons explained in the next section
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One can show that for WG-generic Miura-Plücker (G, q)-oper there exists b−(z) ∈ B−(z)
such that2:

(3.28) A(z) = b−(qz)Zb−(z)
−1.

Then the following Theorem holds (see [FKSZ]).

Theorem 3.20. Every WG-generic Z-twisted Miura-Plücker (G, q)-oper is a nondegenerate
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Z-twisted Miura (G, q)-oper.

4. Z-twisted q-opers and generalized Wronskians
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Proposition 4.3. Action of the group element on the highest weight vector in

g · ν+ωi
=
∑

w∈W

∆w·ωi,ωi(g)w̃ · ν+ωi
+ . . . ,(4.4)

where dots stand for the vectors, which do not belong to the orbit OW .

The set of generalized minors {∆w·ωi,ωi}w∈W ;i=1,...,r creates a set of coordinates on G/B+,
known as generalized Plücker coordinates. In particular, the set of zeroes of each of ∆w·ωi,ωi

is a uniquely and unambiguously defined hypersurface in G/B. This feature is important
for characterizing Schubert cells as quasi-projective subvarieties of a generalized flag variety,
see [FZ2] for details. We will need the following Corollary.

Corollary 4.4. If the collection {∆w·ωi,ωi(g)}w∈W ;i=1,...,r does not have vanishing elements,
then g ∈ B+w0B+.

One of the first consequences of the formalism of generalized minors is the following
Proposition.

Proposition 4.5. For a W -generic Z-twisted Miura-Plücker (G, q)-oper with q-connection
A(z) = v(qz)Zv(z)−1, where v(z) ∈ B−(z) we have the following relation:

(4.5) ∆w·ωi,ωi(v
−1(z)) = Qw,i

+ (z)

for any w ∈ W .

Proof. Notice that ∆ωi(v−1(z)) = Qi
+(z). Indeed, following (3.19), we have:

v−1(z) =
r∏

i=1

e

Qi
−

(z)

Qi
+(z)

fi
r∏

i=1

[
Qi

+(z)
]α̌i

. . . ,

where dots stand for exponentials of higher commutators of {fi}, we obtain that

v−1(z)ν+ωi
= Qi

+(z)ν
+
ωi

+Qi
−(z)fiν

+
ωi

+ . . . ,(4.6)

where dots stand for the vectors of lower weights.
Now take into account that v(z)w̃−1 = u+(z)vw(z), where u+(z) ∈ N+(z), vw(z) ∈

B−(z). Here vw(z) is the trivializing element for Aw(z) = vw(z)w(Z)v−1
w (z). This means

that ∆ωi(v−1
w (z)) = Qw,i

+ (z), which is obtained by Bäcklund transformations. Therefore,

generalized minors satisfy the relation ∆w·ωi,ωi(v
−1(z)) = Qw,i

+ (z). !

As a corollary we have the following important theorem.

Theorem 4.6. The nondegenerate Z-twisted Miura-Plücker (G, q)-oper is Z-twisted Miura
(G, q)-oper.

Proof. Let us first assume that Z-twisted Miura-Plücker (G, q)-oper is W -generic. Then
it is a Z-twisted Miura (G, q)-oper, namely for its q-connection A(z) we have A(z) =
v(qz)Zv(z)−1, v(z) ∈ B−(z) and∆w·ωi,ωi(v

−1(z)) = Qw,i
+ (z). The minors∆w·ωi,ωi determine

the element v−1(z) entirely following, e.g., Theorem 1.12 of [FZ1]. The corresponding group
element will be still defined if the full QQ-system is non-WG generic. Thus the relation
A(z) = v(qz)Zv(z)−1 is still satisfied since it is defined on the dense subset of W -generic
q-opers. !



  Generalized Minors and QQ-system
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known as generalized Plücker coordinates. In particular, the set of zeroes of each of ∆w·ωi,ωi
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+ (z)
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r∏

i=1

e

Qi
−

(z)

Qi
+(z)
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r∏

i=1

[
Qi

+(z)
]α̌i

. . . ,

where dots stand for exponentials of higher commutators of {fi}, we obtain that
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+(z)ν
+
ωi
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−(z)fiν

+
ωi

+ . . . ,(4.6)
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As a corollary we have the following important theorem.
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We started this section from the explicit definition of the principal minors by means of
Gaussian decomposition. The following proposition (see Corollary 2.5 in [FZ1]) provides a
necessary and sufficient condition of its existence for a given group element.

Proposition 4.7. An element g ∈ G admits the Gaussian decomposition if and only if
∆ωi(g) "= 0 for any i = 1, . . . , r.

Finally, we end this section with the fundamental relation ([FZ1], Theorem 1.17) between
generalized minors, which we will relate to the QQ-systems.

Proposition 4.8. Let, u, v ∈ W , such that for i ∈ {1, . . . , r}, !(uwi) = !(u) + 1, !(vwi) =
!(v) + 1. Then

(4.7) ∆u·ωi,v·ωi∆uwi·ωi,vwi·ωi −∆uwi·ωi,v·ωi∆u·ωi,vwi·ωi =
∏

j !=i

∆
−aji
u·ωj ,v·ωj ,

4.2. Generalized Wronskians and generalized minors. First, we introduce a notion
of generalized q-Wronskian which, as we will see later is, under certain nondegenracy con-
ditions, is equivalent to the definition of Z-twisted Miura (G, q)-oper.

Let V +
i be the irreducible representation of G with highest weight ωi with respect to B+.

It comes equipped with a line L+
i ⊂ V +

i of highest weight vectors stable under the action of
B+. Let ν+ωi

be a generator of the line L+
i ⊂ V +

i . It is a vector of weight ωi with respect to
our maximal torus H ⊂ B−. The subspace L+

c,i of Vi of weight c−1 · ωi is one-dimensional

and is spanned by s−1ν+ωi
.

Suppose we have a principal G-bundle FG and its B+-reduction FB+ and thus an H-
reduction FH as well. Therefore for each i = 1, . . . , r, the vector bundle

V
+
i = FB+ ×

B+

V +
i = FG ×

G
V +
i

associated to V +
i contains an H-line subbundles

L
+
i = FH ×

H
L+
i , L

+
c,i = FH ×

H
L+
c,i

associated to L+
i , L

+
c,i ⊂ V +

i .
Consider a meromorphic section G of FG. It is a section of FG on U , a Zariski dense set

of P1. Given the fact that can always choose U , so that restriction of FG to U is a trivial
G-bundle, one can express this section as an element G (z) ∈ G(z).

Definition 4.9. The generalized q-Wronskian on P1 is the quadruple (FG,FB+ ,G , Z), where
G is a meromorphic section of a principle bundle FG, FB+ is a reduction of FG to B+,
Z ∈ H = B+/[B+, B+], satisfying the following condition. There exist a Zariski open dense
subset U ⊂ P1 together with the trivialization ıB+ of FB+ , so that for certain {v+i , v

+
c,i}i=1,...,r

which are the sections of line bundles {L+
i ,L

+
c,i}i=1,...,r on U ∩ M−1

q (U) we have G as an
element of G(z) satisfy the following condition:

G
q · v+i = Z · G · v+c,i,(4.8)

where the superscript q stands for the pull-back of the corresponding section with respect
to the map Mq.

Effectively, the definition implies that there exists a Zariski open dense subset U ⊂ P1

together with a trivialization ıB+ of FB+ such that the restriction of G to U ∩ M−1
q (U)

[Fomin Zelevinsky]

Can we make sense of this relation using our approach of q-Opers?
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Adding Singularities
Effectively the above definition means that the Wronskian, written as an element of G(z), satisfies

q-OPERS, QQ-SYSTEMS, AND BETHE ANSATZ II: GENERALIZED MINORS 15

written as an element of G(z) satisfies the following conditions

Z−1
G (qz) ν+ωi

= G (z) · sφ(z)
−1 · ν+ωi

,(4.9)

where sφ(z) =
∏

i φ
−α̌i
i si is a lift of the Coxeter element c ∈ W to G(z), which is fixed for

all i ∈ {1, . . . , r}.
It is clear that the structure of the generalized Wronskian depends on the generalized

minors of G (z) through the action of G (z) on ν+i and the choice of the lift sφ(z), which
through the coefficients {φi(z)}i=1,...,r depends on the choice of the sections {v+i , v

+
c,i}i=1,...,r.

The following two definitions clarify the type of objects will restrict the type of generalized
Wronskians we will study in this paper.

Definition 4.10. Generalized Wronskian has regular singularities if

sΛ(z)
−1 =

inv∏

i

siΛ
α̌i
i ,(4.10)

where {Λi}i=1,...,r are polynomials and the superscript “inv” stands for the inverse order to
the ordering in the Coxeter element c.

Definition 4.11. We say that generalized q-Wronskian with regular singularities is nonde-
generate if ∆w·ωi,ωi(G (z)) are nonzero polynomials for all w ∈ W and i = 1, . . . , r. For all
i, j, k with i "= j and aik, ajk "= 0, the zeros of ∆ωi,ωi and ∆siωi,ωi are q-distinct from each
other, and also zeroes of ∆w·ωi,ωi are q-distinct from the zeros of {Λk(z)}k=1,...,r for all i.

These definitions leads to the following Corollary.

Corollary 4.12. The nondegeneracy condition of generalized q-Wronskian with regular
singularities implies:

(1) G (z) admits Gaussian decomposition: G (z) ∈ N−(z)H(z)N+(z),
(2) G (z) belongs to the largest Bruhat cell: G (z) ∈ B+(z)w0B+(z).

Proof. Condition (2) implies first of all that ∆ωi,ωi(G (z)) "= 0. That implies Gaussian de-
composition according to Corollary 2.5 of [FZ1]. The second property follows from Propo-
sition 3.3 of [FZ2]. !

An important property is a non-uniqueness of the generalized q-Wronskian as defined by
the generalized minors.

Proposition 4.13. Given a solution G (z) of the equation (4.9), G (z)n+(z) is a solution
of (4.9) if and only if

(4.11) s n+(z) s−1 ∈ N+(z).

Later we will eliminate this ambiguity and add more constraints than (4.9), but first we
investigate its lower triangular part and relate it to QQ-system and q-opers.

Let us list another important property of generalized quantum Wronskian:

Proposition 4.14. For any w ∈ W and the q-Wronskian (FG,FB+ ,G , Z) with regular
singularities, the element w̃ ·G (z) stands for a generalized q-Wronskian (FG,FB+ ,G , w(Z))
with the same regular singularities.

Proof. The proof is obtained by the direct application of w̃ to G (z) in (4.9). !
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through the coefficients {φi(z)}i=1,...,r depends on the choice of the sections {v+i , v

+
c,i}i=1,...,r.

The following two definitions clarify the type of objects will restrict the type of generalized
Wronskians we will study in this paper.

Definition 4.10. Generalized Wronskian has regular singularities if

sΛ(z)
−1 =

inv∏

i

siΛ
α̌i
i ,(4.10)

where {Λi}i=1,...,r are polynomials and the superscript “inv” stands for the inverse order to
the ordering in the Coxeter element c.

Definition 4.11. We say that generalized q-Wronskian with regular singularities is nonde-
generate if ∆w·ωi,ωi(G (z)) are nonzero polynomials for all w ∈ W and i = 1, . . . , r. For all
i, j, k with i "= j and aik, ajk "= 0, the zeros of ∆ωi,ωi and ∆siωi,ωi are q-distinct from each
other, and also zeroes of ∆w·ωi,ωi are q-distinct from the zeros of {Λk(z)}k=1,...,r for all i.

These definitions leads to the following Corollary.

Corollary 4.12. The nondegeneracy condition of generalized q-Wronskian with regular
singularities implies:

(1) G (z) admits Gaussian decomposition: G (z) ∈ N−(z)H(z)N+(z),
(2) G (z) belongs to the largest Bruhat cell: G (z) ∈ B+(z)w0B+(z).

Proof. Condition (2) implies first of all that ∆ωi,ωi(G (z)) "= 0. That implies Gaussian de-
composition according to Corollary 2.5 of [FZ1]. The second property follows from Propo-
sition 3.3 of [FZ2]. !

An important property is a non-uniqueness of the generalized q-Wronskian as defined by
the generalized minors.

Proposition 4.13. Given a solution G (z) of the equation (4.9), G (z)n+(z) is a solution
of (4.9) if and only if

(4.11) s n+(z) s−1 ∈ N+(z).

Later we will eliminate this ambiguity and add more constraints than (4.9), but first we
investigate its lower triangular part and relate it to QQ-system and q-opers.

Let us list another important property of generalized quantum Wronskian:

Proposition 4.14. For any w ∈ W and the q-Wronskian (FG,FB+ ,G , Z) with regular
singularities, the element w̃ ·G (z) stands for a generalized q-Wronskian (FG,FB+ ,G , w(Z))
with the same regular singularities.

Proof. The proof is obtained by the direct application of w̃ to G (z) in (4.9). !
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4.3. Extended QQ-system for generalized quantum Wronskian. In this subsection
we find the relation between generalized q-Wronskians and the QQ-systems via the funda-
mental relation (4.7) applied to G (z).

First we formulate a Proposition, which allows to reformulate a specific subset in the
family of relations (4.7).

Proposition 4.15. Minors ∆ωi,ωi, ∆wiωi,c−1·ωi
, ∆wi·ωi,ωi, ∆ωi,c−1·ωi

satisfy the following
relation:

∆ωi,ωi∆wi·ωi,c−1·ωi
−∆wi·ωi,ωi∆ωi,c−1·ωi

=
∏

j<i=il

∆
−aji
ωj ,c−1·ωj

∏

j>i=il

∆
−aji
ωj ,ωj , i = 1, . . . , r,(4.12)

where the ordering is taken with respect to decomposition of c−1 = wi1 . . . , wil , . . . , wir .

Proof. To prove that let us apply the relation (4.7) to the case when u = 1, v = wi1wi2 . . . wil−1 ,
so that wil = wi. Then v · ωj = c−1 · ωj if j ≤ il = i and v · ωj = ωj if j > il = i and the
statement of the Proposition follows immediately. !

To apply this set of relations to G (z) and making full use of the difference equation it
satisfies, we will need the following technical Lemma.

Lemma 4.16. Let c−1 =
∏inv

i wi = wi1wi2 . . . wir corresponds to the lift of the inverse

Coxeter element to G. Then s−1
Λ (z) =

∏inv
i

(
si Λ

α̌i
i

)
can be expressed as follows:

(4.13) s−1
Λ (z) = s−1

∏

i

Λdi
i ,

where di =
∑i

j=1 dijα̌j and

dij = ai,i−j −
i−j−1∑

l=1

ai,i−l · ai−l,i−j +
∑

l>m

ai,i−l · ai−l,i−l−m · ai−l−m,i−j − . . .

+ (−1)rai,i−1 · ai−1,i−2 · · · ai−j−1,i−j ,(4.14)

for j < i and dii = 1.

For instance, for SL(r+ 1) with a standard ordering along the Dynkin diagram we have
di =

∑i
j=1 α̌j.

Now let us apply that to the group element G (z) and obtain the following Proposition.

Proposition 4.17. Let G (z) be a non-degenerate generalized q-Wronskian with regular
singularities parametrized by the polynomials {Λi(z)}i=1,...,r. Then we have:

1) The fundamental relation for G (z) is equivalent to the relation

(4.15) ∆w·ωi,c−1·ωi
(G (z)) =

[
∏

j

ζ
〈α̌j ,w·ωi〉
j

]

Fi(z)∆w·ωi,ωi(G (qz))

for any w ∈ W , where the proportionality coefficients Fi(z) depend on Z and the lift of the
Coxeter element to G(z) only:

(4.16) Fi(z) = Li(z)
−1 , Li(z) = Λi(z)

di,i · Λi−1(z)
di−1,i · · ·Λ1(z)

d1,i ,

Fomin-Zelevinsky relations then read
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Thus, identifying

∆ωi,ωi(G (z)) −→ Qi
+(z), ∆wiωi,ωi(G (z)) −→ Qi

−(z),(4.24)

we obtain that the familiar nondegenerate QQ system (3.17) is equivalent to (4.17).
Moreover, the following Theorem holds.

Theorem 4.18. 1) Let (FG,FB+,G , Z) be a non-degenerate generalized q-Wronskian with
regular singularities parametrized by the polynomials {Λi(z)}i=1,...,r. The lower-triangular
part v(z) ∈ B−(z) of the Gaussian decomposition G = v(z)u(z), u(z) ∈ N+(z) defines
a nondegenerate Z-twisted Miura (G, q)-oper connection with regular singularities by the
formula A(z) = v−1(qz)Zv(z).

2) There is a one-to-one correspondence between classes of nondegenerate generalized
q-Wronskians with regular singularities as stated in the Proposition 4.13 and nondegen-
erate Z-twisted Miura (G, q) opers with regular singularities parametrized by the same
{Λi}i=1,...,r, such that zeroes of the polynomials in the extended QQ-system are q-distinct
from {Λi}i=1,...,r.

Proof. (FG,FB+,G , Z) be a non-degenerate generalized q-Wronskian with regular singular-
ities parametrized by the polynomials {Λi(z)}i=1,...,r. Let us apply the relation (4.17) from
the Proposition 4.17 to w̃ · G (z) for all w ∈ W . By Proposition 4.14 we know that w̃ · G (z)
is a generalized q-Wronskian (FG,FB+,G , w(Z)). Thus Proposition 4.17 implies that gen-
eralized minors ∆w·ωi,ωi generate the extended QQ-system through the generalization of
identification (4.24):

∆w·ωi,ωi(G (z)) = ∆ωi,ωi(w̃
−1

G (z)) −→ Qw,i
+ (z).(4.25)

The resulting minors ∆w·ωi,ωi(G (z)) determine v(z) entirely and thus produce an element
which defines Z-twisted Miura (G, q)-oper as stated in the theorem. That proves part 1).
To prove part 2) let us construct G (z) explicitly given Z-twisted Miura (G, q)-oper, so that
its q -connection is given by the formula

(4.26) A(z) = v−1(qz)Zv(z),

where v(z) ∈ B−(z). Note, that

A−1(z) = n+(z)s
−1
Λ (z)ñ+(z), n+(z), ñ+(z) ∈ N+(z).(4.27)

Thus, combining (4.26), (4.27) we obtain

Z−1v(qz) = v(z)n+(z)s
−1
Λ (z)ñ+(z)(4.28)

and

(4.29) G (z) = v(z)n+(z)

satisfies the familiar equation

Z−1
G (qz)ν+ωi

= G (z)s−1
Λ (z)ν+ωi

.(4.30)

Notice, that the constructed G (z) is defined modulo the transformations from the Propo-
sition 4.13. This is related to the fact that choice of n+(z) in the gauge class of A−1(z) =
n+(z)s

−1
Λ (z)ñ+(z) is non-unique, but again is up to the multiplication on the elements from

Proposition 4.13. This proves the second part of the Theorem. !

In the next section we will introduce the unique element in the family of generalized
q-Wronskians corresponding to a given Miura (G, q)-oper, which is a generalization of a
standard q-Wronskian considered in [KSZ] for any simply-connected simple group G.
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4.4. Universal quantum Wronskian for Miura (G, q)-oper. In this section we assume
that the Lie group G has an even Coxeter number h and a choice of a Coxeter element is
such that ch/2 = w0. That only excludes SL(N) case for N odd, which was studied in detail
in [KSZ,KZ1].

The Z-twisted condition for (G, q)-oper, which was instrumental in our considerations
can be restated in the following way:

Z−1g(qz) = g(z)A−1(z).

One could iterate this relation to introduce a collection of relations of the following form:

Z−kg(qk+1z) = g(z)A−1(z)A−1(qz) . . . A−1(qkz)(4.31)

The following Lemma is true and a direct consequence of the property of the multiplica-
tion of Bruhat cells.

Lemma 4.19. The product

A−1(z)A−1(qz) . . . A−1(qkz)

belongs to the Bruhat cell B+(z)s−kB+(z) as long as 0 ≤ k < h, where h is the Coxeter
number of G.

Let us use now the system of equations (4.31) to construct a universal q-Wronskian
element associated to a given Z-twisted Miura (G, q)-oper in a similar way we did with the
first of them in the proof of Theorem 4.18. Namely, the following Theorem is true.

Proposition 4.20. For a given Z-twisted (G, q)-Miura oper, there exists a unique gener-
alized q-Wronskian

W (z) ∈ B−(z)w0B−(z) ∩B+(z)w0B+(z) ⊂ G(z),

satisfying the system of equations

W (qk+1z)ν+ωi
= Zk

W (z)s−1(z)s−1(qz) . . . s−1(qkz)ν+ωi
,

i = 1, . . . , r, k = 0, 1, . . . , h− 1,(4.32)

where h is the Coxeter number of G.

Proof. Let us use gauge transformations to reduce A−1(z) to the following form:

A−1(z) = n1
+(z)s

−1(z),

where s(z)n1
+(z)s

−1(z) ∈ N−(z) by applying the version of Theorem 3.2 to A−1(z). We
remind, that it is a unique element in the N+(z)-gauge class of (G, q)-opers. Therefore, the
element W 1(z) = g(z)n1

+(z) satisfies (4.32).
Now let us have a look at the product A−1(z)A−1(qz) = n1

+(z)s
−1(z)n1

+(qz)s
−1(qz). This

is an element from N+(z)s−1(z)s−1(qz)N+(z) and thus can be written as A−1(z)A−1(qz) =
n1
+(z)n

2
+(z)s

−1(z)s−1(qz)ñ2
+(z), so that

s(qz)s(z)n2
+(z)s

−1(z)s−1(qz) ∈ N−(z) ,

for some n2
+(z), ñ

2
+(z) ∈ N+(z), and

s−1(z)n1
+(qz)s

−1(qz) = n2
+(z)s

−1(z)s−1(qz)ñ2
+(z).(4.33)

Multiplying by s(qz)s(z) on both sides, we obtain:

s(qz)n1
+(qz)s

−1(qz) = s(qz)s(z)n2
+(z)s

−1(z)s−1(qz)ñ2
+(z),(4.34)

Theorem 2:
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5.1. Let G = SL(2) then (4.32) reads

(5.1) W (qz)ν+ω = ZW (z)s−1(z)ν+ω

In this case

(5.2) s−1(z) = s̃−1Λ(z)α̌ =

(
0 Λ(z)−1

Λ(z) 0

)
, ν+ω =

(
1
0

)
, Z =

(
ζ 0
0 ζ−1

)
.

One can immediately see that

(5.3) W (z) =

(
∆ωi,ωi(G (z)) ∆ωi,s−1ωi

(G (z))
∆sωi,ωi(G (z)) ∆sωi,s−1ωi

(G (z))

)

satisfies (5.1) provided that (4.15) takes place. Indeed, it follows from (5.1) that
(5.4)
∆ωi,ωi(G (qz)) = ζΛ(z)∆sωi,ωi(G (z)) , ∆ωi,s−1ωi

(G (qz)) = ζ−1Λ(z)∆sωi,s−1ωi
(G (z)) .

Using the identification rule (4.24) we obtain

(5.5) W (z) =

(
Q+(z) ζ−1Λ(z)−1Q+(qz)
Q−(z) ζΛ(z)−1Q−(qz)

)
,

where we put Q+(z) = Qω(z) and Q−(z) = Qsω(z) according to the notations from our
previous papers. Notice that the QQ-equation in this case

ζQ+(z)Q−(qz)− ζ−1Q+(qz)Q−(z) = Λ(z)

is equivalent to detW (z) = 1.

5.2. Now let G = SL(r + 1). The quantum Wronskian consists of h columns

(5.6) W (z) =
(
∆wω,ω

∣∣∣∆wω,s−1ω

∣∣∣ . . .
∣∣∣∆wω,sr+1ω

)
(G (z)) ,

where We have ν+ω = (1 0 . . . 0), Z = diag(ξ1, . . . , ξn), where ξ1 = ζ1, ξi = ζi/ζi−1 for
i = 2, . . . , r and ξr+1 = 1/ζr. According to (4.13) if we pick standard ordering along the
Dynkin diagram we have

s−1
Λ (z) = s̃−1

∏

i

Λdi
i ,

where di =
∑i

j=1 α̌j and

s̃−1 =





0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . · · ·

...
0 0 . . . 1 0




,

so that s̃−lν+ω = (0, . . . , 0, 1 0 . . . 0), where 1 is on the lth place. Thus, according to Propo-
sition 4.17 the q-Wronskian reads

(5.7) W (z) =
(
Qw·ω(z)

∣∣∣ZF1(z)Q
w·ω(qz)

∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)
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...

...
. . . · · ·

...
0 0 . . . 1 0




,

so that s̃−lν+ω = (0, . . . , 0, 1 0 . . . 0), where 1 is on the lth place. Thus, according to Propo-
sition 4.17 the q-Wronskian reads

(5.7) W (z) =
(
Qw·ω(z)

∣∣∣ZF1(z)Q
w·ω(qz)

∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)
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5.1. Let G = SL(2) then (4.32) reads

(5.1) W (qz)ν+ω = ZW (z)s−1(z)ν+ω

In this case

(5.2) s−1(z) = s̃−1Λ(z)α̌ =

(
0 Λ(z)−1

Λ(z) 0

)
, ν+ω =

(
1
0

)
, Z =

(
ζ 0
0 ζ−1

)
.

One can immediately see that

(5.3) W (z) =

(
∆ωi,ωi(G (z)) ∆ωi,s−1ωi

(G (z))
∆sωi,ωi(G (z)) ∆sωi,s−1ωi

(G (z))

)

satisfies (5.1) provided that (4.15) takes place. Indeed, it follows from (5.1) that
(5.4)
∆ωi,ωi(G (qz)) = ζΛ(z)∆sωi,ωi(G (z)) , ∆ωi,s−1ωi

(G (qz)) = ζ−1Λ(z)∆sωi,s−1ωi
(G (z)) .

Using the identification rule (4.24) we obtain

(5.5) W (z) =

(
Q+(z) ζ−1Λ(z)−1Q+(qz)
Q−(z) ζΛ(z)−1Q−(qz)

)
,

where we put Q+(z) = Qω(z) and Q−(z) = Qsω(z) according to the notations from our
previous papers. Notice that the QQ-equation in this case

ζQ+(z)Q−(qz)− ζ−1Q+(qz)Q−(z) = Λ(z)

is equivalent to detW (z) = 1.

5.2. Now let G = SL(r + 1). The quantum Wronskian consists of h columns

(5.6) W (z) =
(
∆wω,ω

∣∣∣∆wω,s−1ω

∣∣∣ . . .
∣∣∣∆wω,sr+1ω

)
(G (z)) ,

where We have ν+ω = (1 0 . . . 0), Z = diag(ξ1, . . . , ξn), where ξ1 = ζ1, ξi = ζi/ζi−1 for
i = 2, . . . , r and ξr+1 = 1/ζr. According to (4.13) if we pick standard ordering along the
Dynkin diagram we have

s−1
Λ (z) = s̃−1

∏

i

Λdi
i ,

where di =
∑i

j=1 α̌j and

s̃−1 =





0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . · · ·

...
0 0 . . . 1 0




,

so that s̃−lν+ω = (0, . . . , 0, 1 0 . . . 0), where 1 is on the lth place. Thus, according to Propo-
sition 4.17 the q-Wronskian reads

(5.7) W (z) =
(
Qw·ω(z)

∣∣∣ZF1(z)Q
w·ω(qz)

∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)

In terms of Q-polynomials
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5.1. Let G = SL(2) then (4.32) reads

(5.1) W (qz)ν+ω = ZW (z)s−1(z)ν+ω

In this case

(5.2) s−1(z) = s̃−1Λ(z)α̌ =

(
0 Λ(z)−1

Λ(z) 0

)
, ν+ω =

(
1
0

)
, Z =

(
ζ 0
0 ζ−1

)
.

One can immediately see that

(5.3) W (z) =

(
∆ωi,ωi(G (z)) ∆ωi,s−1ωi

(G (z))
∆sωi,ωi(G (z)) ∆sωi,s−1ωi

(G (z))

)

satisfies (5.1) provided that (4.15) takes place. Indeed, it follows from (5.1) that
(5.4)
∆ωi,ωi(G (qz)) = ζΛ(z)∆sωi,ωi(G (z)) , ∆ωi,s−1ωi

(G (qz)) = ζ−1Λ(z)∆sωi,s−1ωi
(G (z)) .

Using the identification rule (4.24) we obtain

(5.5) W (z) =

(
Q+(z) ζ−1Λ(z)−1Q+(qz)
Q−(z) ζΛ(z)−1Q−(qz)

)
,

where we put Q+(z) = Qω(z) and Q−(z) = Qsω(z) according to the notations from our
previous papers. Notice that the QQ-equation in this case

ζQ+(z)Q−(qz)− ζ−1Q+(qz)Q−(z) = Λ(z)

is equivalent to detW (z) = 1.

5.2. Now let G = SL(r + 1). The quantum Wronskian consists of h columns

(5.6) W (z) =
(
∆wω,ω

∣∣∣∆wω,s−1ω

∣∣∣ . . .
∣∣∣∆wω,sr+1ω

)
(G (z)) ,

where We have ν+ω = (1 0 . . . 0), Z = diag(ξ1, . . . , ξn), where ξ1 = ζ1, ξi = ζi/ζi−1 for
i = 2, . . . , r and ξr+1 = 1/ζr. According to (4.13) if we pick standard ordering along the
Dynkin diagram we have

s−1
Λ (z) = s̃−1

∏

i

Λdi
i ,

where di =
∑i

j=1 α̌j and

s̃−1 =





0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . · · ·

...
0 0 . . . 1 0




,

so that s̃−lν+ω = (0, . . . , 0, 1 0 . . . 0), where 1 is on the lth place. Thus, according to Propo-
sition 4.17 the q-Wronskian reads

(5.7) W (z) =
(
Qw·ω(z)

∣∣∣ZF1(z)Q
w·ω(qz)

∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)
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5.1. Let G = SL(2) then (4.32) reads

(5.1) W (qz)ν+ω = ZW (z)s−1(z)ν+ω

In this case

(5.2) s−1(z) = s̃−1Λ(z)α̌ =

(
0 Λ(z)−1

Λ(z) 0

)
, ν+ω =

(
1
0

)
, Z =

(
ζ 0
0 ζ−1

)
.

One can immediately see that

(5.3) W (z) =

(
∆ωi,ωi(G (z)) ∆ωi,s−1ωi

(G (z))
∆sωi,ωi(G (z)) ∆sωi,s−1ωi

(G (z))

)

satisfies (5.1) provided that (4.15) takes place. Indeed, it follows from (5.1) that
(5.4)
∆ωi,ωi(G (qz)) = ζΛ(z)∆sωi,ωi(G (z)) , ∆ωi,s−1ωi

(G (qz)) = ζ−1Λ(z)∆sωi,s−1ωi
(G (z)) .

Using the identification rule (4.24) we obtain

(5.5) W (z) =

(
Q+(z) ζ−1Λ(z)−1Q+(qz)
Q−(z) ζΛ(z)−1Q−(qz)

)
,

where we put Q+(z) = Qω(z) and Q−(z) = Qsω(z) according to the notations from our
previous papers. Notice that the QQ-equation in this case

ζQ+(z)Q−(qz)− ζ−1Q+(qz)Q−(z) = Λ(z)

is equivalent to detW (z) = 1.

5.2. Now let G = SL(r + 1). The quantum Wronskian consists of h columns

(5.6) W (z) =
(
∆wω,ω

∣∣∣∆wω,s−1ω

∣∣∣ . . .
∣∣∣∆wω,sr+1ω

)
(G (z)) ,

where We have ν+ω = (1 0 . . . 0), Z = diag(ξ1, . . . , ξn), where ξ1 = ζ1, ξi = ζi/ζi−1 for
i = 2, . . . , r and ξr+1 = 1/ζr. According to (4.13) if we pick standard ordering along the
Dynkin diagram we have

s−1
Λ (z) = s̃−1

∏

i

Λdi
i ,

where di =
∑i

j=1 α̌j and

s̃−1 =





0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . · · ·

...
0 0 . . . 1 0




,

so that s̃−lν+ω = (0, . . . , 0, 1 0 . . . 0), where 1 is on the lth place. Thus, according to Propo-
sition 4.17 the q-Wronskian reads

(5.7) W (z) =
(
Qw·ω(z)

∣∣∣ZF1(z)Q
w·ω(qz)

∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)
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5.1. Let G = SL(2) then (4.32) reads

(5.1) W (qz)ν+ω = ZW (z)s−1(z)ν+ω

In this case

(5.2) s−1(z) = s̃−1Λ(z)α̌ =

(
0 Λ(z)−1

Λ(z) 0

)
, ν+ω =

(
1
0

)
, Z =

(
ζ 0
0 ζ−1

)
.

One can immediately see that

(5.3) W (z) =

(
∆ωi,ωi(G (z)) ∆ωi,s−1ωi

(G (z))
∆sωi,ωi(G (z)) ∆sωi,s−1ωi

(G (z))

)

satisfies (5.1) provided that (4.15) takes place. Indeed, it follows from (5.1) that
(5.4)
∆ωi,ωi(G (qz)) = ζΛ(z)∆sωi,ωi(G (z)) , ∆ωi,s−1ωi

(G (qz)) = ζ−1Λ(z)∆sωi,s−1ωi
(G (z)) .

Using the identification rule (4.24) we obtain

(5.5) W (z) =

(
Q+(z) ζ−1Λ(z)−1Q+(qz)
Q−(z) ζΛ(z)−1Q−(qz)

)
,

where we put Q+(z) = Qω(z) and Q−(z) = Qsω(z) according to the notations from our
previous papers. Notice that the QQ-equation in this case

ζQ+(z)Q−(qz)− ζ−1Q+(qz)Q−(z) = Λ(z)

is equivalent to detW (z) = 1.

5.2. Now let G = SL(r + 1). The quantum Wronskian consists of h columns

(5.6) W (z) =
(
∆wω,ω

∣∣∣∆wω,s−1ω

∣∣∣ . . .
∣∣∣∆wω,sr+1ω

)
(G (z)) ,

where We have ν+ω = (1 0 . . . 0), Z = diag(ξ1, . . . , ξn), where ξ1 = ζ1, ξi = ζi/ζi−1 for
i = 2, . . . , r and ξr+1 = 1/ζr. According to (4.13) if we pick standard ordering along the
Dynkin diagram we have

s−1
Λ (z) = s̃−1

∏

i

Λdi
i ,

where di =
∑i

j=1 α̌j and

s̃−1 =





0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . · · ·

...
0 0 . . . 1 0




,

so that s̃−lν+ω = (0, . . . , 0, 1 0 . . . 0), where 1 is on the lth place. Thus, according to Propo-
sition 4.17 the q-Wronskian reads

(5.7) W (z) =
(
Qw·ω(z)

∣∣∣ZF1(z)Q
w·ω(qz)

∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)

Lift for standard ordering along the Dynkin diagram
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5.1. Let G = SL(2) then (4.32) reads

(5.1) W (qz)ν+ω = ZW (z)s−1(z)ν+ω

In this case

(5.2) s−1(z) = s̃−1Λ(z)α̌ =

(
0 Λ(z)−1

Λ(z) 0

)
, ν+ω =

(
1
0

)
, Z =

(
ζ 0
0 ζ−1

)
.

One can immediately see that

(5.3) W (z) =

(
∆ωi,ωi(G (z)) ∆ωi,s−1ωi

(G (z))
∆sωi,ωi(G (z)) ∆sωi,s−1ωi

(G (z))

)

satisfies (5.1) provided that (4.15) takes place. Indeed, it follows from (5.1) that
(5.4)
∆ωi,ωi(G (qz)) = ζΛ(z)∆sωi,ωi(G (z)) , ∆ωi,s−1ωi

(G (qz)) = ζ−1Λ(z)∆sωi,s−1ωi
(G (z)) .

Using the identification rule (4.24) we obtain

(5.5) W (z) =

(
Q+(z) ζ−1Λ(z)−1Q+(qz)
Q−(z) ζΛ(z)−1Q−(qz)

)
,

where we put Q+(z) = Qω(z) and Q−(z) = Qsω(z) according to the notations from our
previous papers. Notice that the QQ-equation in this case

ζQ+(z)Q−(qz)− ζ−1Q+(qz)Q−(z) = Λ(z)

is equivalent to detW (z) = 1.

5.2. Now let G = SL(r + 1). The quantum Wronskian consists of h columns

(5.6) W (z) =
(
∆wω,ω

∣∣∣∆wω,s−1ω

∣∣∣ . . .
∣∣∣∆wω,sr+1ω

)
(G (z)) ,

where We have ν+ω = (1 0 . . . 0), Z = diag(ξ1, . . . , ξn), where ξ1 = ζ1, ξi = ζi/ζi−1 for
i = 2, . . . , r and ξr+1 = 1/ζr. According to (4.13) if we pick standard ordering along the
Dynkin diagram we have

s−1
Λ (z) = s̃−1

∏

i

Λdi
i ,

where di =
∑i

j=1 α̌j and

s̃−1 =





0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . · · ·

...
0 0 . . . 1 0




,

so that s̃−lν+ω = (0, . . . , 0, 1 0 . . . 0), where 1 is on the lth place. Thus, according to Propo-
sition 4.17 the q-Wronskian reads

(5.7) W (z) =
(
Qw·ω(z)

∣∣∣ZF1(z)Q
w·ω(qz)

∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)
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5.1. Let G = SL(2) then (4.32) reads

(5.1) W (qz)ν+ω = ZW (z)s−1(z)ν+ω

In this case

(5.2) s−1(z) = s̃−1Λ(z)α̌ =

(
0 Λ(z)−1

Λ(z) 0

)
, ν+ω =

(
1
0

)
, Z =

(
ζ 0
0 ζ−1

)
.

One can immediately see that

(5.3) W (z) =

(
∆ωi,ωi(G (z)) ∆ωi,s−1ωi

(G (z))
∆sωi,ωi(G (z)) ∆sωi,s−1ωi

(G (z))

)

satisfies (5.1) provided that (4.15) takes place. Indeed, it follows from (5.1) that
(5.4)
∆ωi,ωi(G (qz)) = ζΛ(z)∆sωi,ωi(G (z)) , ∆ωi,s−1ωi

(G (qz)) = ζ−1Λ(z)∆sωi,s−1ωi
(G (z)) .

Using the identification rule (4.24) we obtain

(5.5) W (z) =

(
Q+(z) ζ−1Λ(z)−1Q+(qz)
Q−(z) ζΛ(z)−1Q−(qz)

)
,

where we put Q+(z) = Qω(z) and Q−(z) = Qsω(z) according to the notations from our
previous papers. Notice that the QQ-equation in this case

ζQ+(z)Q−(qz)− ζ−1Q+(qz)Q−(z) = Λ(z)

is equivalent to detW (z) = 1.

5.2. Now let G = SL(r + 1). The quantum Wronskian consists of h columns

(5.6) W (z) =
(
∆wω,ω

∣∣∣∆wω,s−1ω

∣∣∣ . . .
∣∣∣∆wω,sr+1ω

)
(G (z)) ,

where We have ν+ω = (1 0 . . . 0), Z = diag(ξ1, . . . , ξn), where ξ1 = ζ1, ξi = ζi/ζi−1 for
i = 2, . . . , r and ξr+1 = 1/ζr. According to (4.13) if we pick standard ordering along the
Dynkin diagram we have

s−1
Λ (z) = s̃−1

∏

i

Λdi
i ,

where di =
∑i

j=1 α̌j and

s̃−1 =





0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . · · ·

...
0 0 . . . 1 0




,

so that s̃−lν+ω = (0, . . . , 0, 1 0 . . . 0), where 1 is on the lth place. Thus, according to Propo-
sition 4.17 the q-Wronskian reads

(5.7) W (z) =
(
Qw·ω(z)

∣∣∣ZF1(z)Q
w·ω(qz)

∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)
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5.1. Let G = SL(2) then (4.32) reads

(5.1) W (qz)ν+ω = ZW (z)s−1(z)ν+ω

In this case

(5.2) s−1(z) = s̃−1Λ(z)α̌ =

(
0 Λ(z)−1

Λ(z) 0

)
, ν+ω =

(
1
0

)
, Z =

(
ζ 0
0 ζ−1

)
.

One can immediately see that

(5.3) W (z) =

(
∆ωi,ωi(G (z)) ∆ωi,s−1ωi

(G (z))
∆sωi,ωi(G (z)) ∆sωi,s−1ωi

(G (z))

)

satisfies (5.1) provided that (4.15) takes place. Indeed, it follows from (5.1) that
(5.4)
∆ωi,ωi(G (qz)) = ζΛ(z)∆sωi,ωi(G (z)) , ∆ωi,s−1ωi

(G (qz)) = ζ−1Λ(z)∆sωi,s−1ωi
(G (z)) .

Using the identification rule (4.24) we obtain

(5.5) W (z) =

(
Q+(z) ζ−1Λ(z)−1Q+(qz)
Q−(z) ζΛ(z)−1Q−(qz)

)
,

where we put Q+(z) = Qω(z) and Q−(z) = Qsω(z) according to the notations from our
previous papers. Notice that the QQ-equation in this case

ζQ+(z)Q−(qz)− ζ−1Q+(qz)Q−(z) = Λ(z)

is equivalent to detW (z) = 1.

5.2. Now let G = SL(r + 1). The quantum Wronskian consists of h columns

(5.6) W (z) =
(
∆wω,ω

∣∣∣∆wω,s−1ω

∣∣∣ . . .
∣∣∣∆wω,sr+1ω

)
(G (z)) ,

where We have ν+ω = (1 0 . . . 0), Z = diag(ξ1, . . . , ξn), where ξ1 = ζ1, ξi = ζi/ζi−1 for
i = 2, . . . , r and ξr+1 = 1/ζr. According to (4.13) if we pick standard ordering along the
Dynkin diagram we have

s−1
Λ (z) = s̃−1

∏

i

Λdi
i ,

where di =
∑i

j=1 α̌j and

s̃−1 =





0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . · · ·

...
0 0 . . . 1 0




,

so that s̃−lν+ω = (0, . . . , 0, 1 0 . . . 0), where 1 is on the lth place. Thus, according to Propo-
sition 4.17 the q-Wronskian reads

(5.7) W (z) =
(
Qw·ω(z)

∣∣∣ZF1(z)Q
w·ω(qz)

∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)
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albeit written in a slightly different convention and normalization). The condition corre-
sponding to the whole q-Wronskian reads detW (z) = 1, whereas the others can be readily
written using minors of matrix W (z).

5.3. Lewis Carroll Identity. For the type A root system the relation (4.7) reads

(5.8) ∆uωi,vωi∆usiωi,vsiωi −∆usiωi,vωi∆uωi,vsiωi = ∆uωi−1,vωi−1∆uωi+1,vωi+1 ,

which as we have shown previously are equivalent to the corresponding QQ-system. As
was discussed in [KPSZ,KSZ] these equations can be reduced to the following determinant
identity known from the 19th century (Desnanot-Jacobi-Lewis Carroll Identity) using matrix
of the form (5.7).

(5.9) M1
1M

2
i −M1

i M
2
1 = M12

1i M ,

where Ma
b is the determinant of the quantum Wronskian matrix W (z) with the ath row

and bth column removed and M = detW (z).
The identification between (5.8) and (5.9) works as follows. We put u = 1 and v =

s1 · s2 · · · si−1. This way vsi = s1 · · · si is the element which permutes the first the the last
column of matrix M as well as
(5.10)
M = ∆ωi+1,vωi+1 , M1

1 = ∆ωi,vωi , M2
i = ∆siωi,vsiωi , M2

1 = ∆siωi,vωi , M1
i = ∆ωi,vsiωi

In other words, after acting with element v on the columns the Lewis Carroll identity
can be presented in terms of principal minors

(5.11) M̃1
1 M̃

2
2 − M̃1

2 M̃
2
1 = M̃12

12 M̃ ,

where M̃ = M · v.
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