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. q-Opers — SL(2) Example

Consider vector bundle E over Pl Map of vector bundles A:-F — F4
Upon trivialization A(z) € gl(N,C(z2))

My : P! — P! q< o (o]
2 gz g-gauge transformation (Z)Hg(qz) (z)g (Z)

Difference equation Dq(s) = As

Definition: A meromorphic (GL(N), q)-connection over P! is a pair (E, A), where

E is a (trivializable) vector bundle of rank N over P! and A is a meromorphic section of
the sheaf Homg , (£, E7) for which A(z) is invertible, i.e. lies in GL(NNV,C(z)). The pair

(E, A) is called an (SL(N), q)-connection if there exists a trivialization for which A(z) has
determinant 1.



q-Opers

Definition: A (GL(2), q)-oper on P! is a triple (E, A, £), where (E, A) is a (GL(2), q)-
connection and £ is a line subbundle such that the induced map A : L — (F/£)? is an
isomorphism. The triple is called an (SL(2), q)-oper if (F, A) is an (SL(2), q)-connection.

in a trivialization S(QZ) /\ A(Z)S(Z) # 0

Definition: A (SL(2), q)-oper with reqular singularities at the points z1,...,zr # 0,00
with weights k1, ... k&, is a meromorphic (SL(2), ¢)-oper (E, A, £) for which A is an isomor-
phism everywhere on P!\ {0, co} except at the points zm, ¢ ' 2m, ¢ *2m, .., ¢ "1z, for
m € {1,..., L}, where it has simple zeros.
. . 0 . ® o 0 |'I
q " Zn q “zn q Zn “n \




Miura g-Opers

Miura (SL(2),q)-oper is a quadruple (E, A, L, ﬁ) where (E, A, L) is an (SL(2),q)-oper and L is preserved by the g-connection A

Chose trivialization of L
S(Z) _ <Q—I—(Z)>

Q-_(2) Twist element 7 = diag(¢, (™)

g-Oper condition — SL(2) QQ-system

—1
CQ—(Z)Q-I- (ZC]) o C Q—(ZQ)Q—|— (Z) — A(Z) singularities
L rp—1
One of the polynomials ke _ 4
can be made monic Q+(2) = H(Z — W) A(z) H H (2 =q72)
k—1 p=1 jp=0
A
From QQ-system to Bethe equations A(q(ui]:jk) = —C2 Q??;qus}l) k=1,....m
rﬁwk_ql szp CZ mﬁqwk_wj L 1
q — —C (g 9 — 1, o TTY
WE — Q%2 W — qW,;



g-Miura Transformation

A(z) = (g(oz) g/(é(z—)1> Z-twisted g-oper condition A(z) = U(ZQ)ZU(Z)_l, 7 =
auge transformation reads p— y(z) O 1 Q—T—(z) p— y(Z) _y(Z) Q—T—(z>
Gaug f d fU(z) — ( 0 y(Z>_1> (() Ql( )) — ( 0 y(Z)Q_l( )
Q_(z) . 1Q-(2q)
We find g(z) = Cq;y(ZQ)y(Z)_l Al2) = y(2)y(zq) (<Q+(z) c 1Q+(ZQ))

The g-oper condition becomes the SL(2) QQ-system (Q-(2)Q+(2q) — C_lQ— (2q)Q+(z) = A(2)

Difference Equation D,(s) = As D,(s1) = A(2)s2

A(qgz
after elimination (D2 —T(qz)D, (4 )> s1 =0



Trigonometric Ruijsenaars Hamiltonians

Recover 2-body tRS Hamiltonian from a g-Oper

Let Q-=z—p- and Qi =c(z—py)

Z—g (:—C_l -|-I C_C_l — /q :(Z—Z_|_>(Z—Z_)
qOper condition vyields T, T,

tRS Hamiltonians!



Calogero-Moser Space

Let V be an N-dimensional vector space over C. Let ' be the subset of GL(V) X GL(V) X V X V* consisting of elements
(M, T, u,v) such that

gMT —TM = u @ v’
The group GL(N; C) = GL(V) acts on /' by conjugation
(M, T, u,v) — (gMg™',gTg™", gu,vg™")
The quotient of ' by the action of GL(V) is called Calogero-Moser space .7/

M,, = {A, B,C}/GL(n;C)

Also can be understood as moduli space of flat
connections on punctured torus ABA Bl =C
< >
C =diag(q, ....q,q"™")

Integrable Hamiltonians are ~TrT*




Enumerative AG/Integrable Systems

Wn—1
Quantum equivariant K-theory of Nakajima quiver varieties q < e f ----------- N |
Vi V2 cee V1
A®B=A®B+ ) A®.B2"
= 2) d
= V(T) (Z) — Z eVpZ:*(OgiI' @ 7-|2917 QMnonsingpg)zd < KTXC; (X)ZOCHZH

d
Saddle point limit yields Bethe equations for XXZ

Quantum classes satisfy interesting difference equations in equivariant parameters and Kahler parameters qKZ, Dynamical equation [Okounkov, Smirnov]

After symmetrization they can be rewritten as eigenvalue equations for trigonometric Ruijsenaars-Schneider (tRS) system [PK, Zeitlin] [PK]

ta; — a; = = -
e J {Z }11 a; — @ qpi T’“(a’)v(aa C) — ST(C? t)V(a, C)
c{1,...n) ic =
1J|=r J¢I

In terms of string/gauge theory tRS eigenproblem is Ward identity [Gaiotto, PK] [Bullimore, Kim, PK] 0




[PK Gaiotto]

Gi

Cz—l—l

Quantum

, L 7'-,«/ St/

SU(n) XXZ spin chain on n sites w/ anisotropies
and twisted periodic boundary conditions

Planck’s constant h

twist eigenvalues Zi

equivariant parameters (anisotropies) a;

oY
Bethe Ansatz Equations: — = ()
aGi
Vi—1 1 Vz'—l—l 1
1
p=1 7i"LA 1/2"“* f#a h‘”ﬁ ~Cia ) Oit1, — /2000

QQ-Systems ¢

= (-1

Classical q-Opers
K K Dals,
f
P
'

n-particle trigonometric
Ruijsenaars-Schneider model

Coupling constant 7

coordinates =<;

energy (eigenvalues of Hamiltonians) €i(af,;)

Energy level equations

T;(z,h) = e;(a),

r=1,....n



[PK Gaiotto]

Quantum/Classical Duality

[PK Zeitlin]
dpt  d¢&  dp®  da
o1 Symplectic form () = ZZ A —f — ZZ’ -
01 —1 D &i 2 a;
0 2
_ ’ tRS momenta § oY a oY
: > = exXp —, S = exp —
:)3 pq, |9 agz P; P (90@
1 4 2 2 tRS energy relations
N N
l det(u — 1) = u— aj), det(u — M) = u— &
M x M »C,u ( ) };[1( ) ( ) Z1;[1( )

> 15— T =tie

!
/| — Y=Y Jc{1,..,.L} i€ " meJ
J)=k  JI¢I
£ 3d mirror symmetry
T ‘CM Eigenvalues of M and Slodowy formon T
,CT Eigenvalues of T and Slodowy form on IV

Solutions of Bethe equations — intersection points

[Dimofte Gaiotto van der Veen]

- -



. (G,q)-Connection

G-simple simply-connected complex Lie group

Principal G-bundle F¢ over P! M, - Pl — pl
Z gz
A meromorphic (G,q)-connection on 37(; is a section A of Hom@U (9’(;, 3’%) U-Zariski open dense set

Choose U so that the restriction Fg|y of Fg to U isisomorphic to a trivial G-bundle

A(z) € G(C(2)) on UﬂMq_l(U)

Change of trivialization ~ A(z) — Q(QZ)A(Z)Q(Z)_l



(G,q)-Opers

A meromorphic (G,g)-oper on P! is a triple (Fg, A, Fp_)
A is a meromorphic (G, ¢)-connection

F B isareduction of Fa to B_

Oper condition: Restriction of the connection on some Zariski open dense set U

A:Fg — FLto UN M Y(U)

takes values in the double Bruhat cell

B_(ClU N Mq_l(U)])CB_ (ClU N Mq_l(U)]) Coxeter element: ¢ = []; s;

Locally

) ¢i(z) € C(z) and n(z),n'(z) € N_(z)



Miura (G,q)-Opers

Definition: A Miura (G, q)-oper on P! is a quadruple (Fg, A, Fp_,Fp, ), where (Fq, A, Fp_)
is a meromorphic (G, g)-oper on P! and Fp, is a reduction of the G-bundle F¢ to B, that
is preserved by the g-connection A.

It can be shown that the two flags Fp_ and Jg, arein generic relative position for some dense set V

The fiber Fg x of g at x is a G-torsor with reductions Fg_ x and I,
to B_ and B, respectively. Choose any trivialization of J¢ «, 1.e. an
isomorphism of G-torsors Jg x >~ G. Under this isomorphism, Fp_
gets identified with aB_ C G and I, x with bB,.

Then a—'b is a well-defined element of the double quotient B_\G/B;,
which is In bijection with Wg.

We will say that Fg_ and Fp, have a generic relative position at x € X
if the element of W assigned to them at x is equal to 1 (this means
that the corresponding element a~'b belongs to the open dense Bruhat

cell 6_ - B_|_ C G)



Structure Theorems

Theorem 1: For any Miura (G, q)-oper on P!, there ewists a trivialization of the under-
lying G-bundle T on an open dense subset of P' for which the oper q-connection has the
form

A(z) € N-(2) | [ ((9i(2)¥s:)N-(2) N By(2).

1

Theorem 2: ~ Let F be any field, and fix \; € F*,i=1,...,r. Then every element of the
set N_T]. A\;"siN_ N By can be written in the form

At
172 o

[Tofes,  ger
i

where each t; € F* is determined by the lifting s;.



Adding Singularities and Twists

Consider family of polynomials {AZ’ (Z) }izlj,“,rp

(G,q)-oper with regular singularities can be written as

Using structure theorem every Miura (G,q)-oper with singularities reads

A;(2)

Az) = [[ai(2)¥ en®,  gi(z) € C(2)"

(G,q)-oper is Z-twisted if it is equivalent to a constant elementof G Z € H C H(z) Zisregularsemisimple. Thereare W¢

B Miura (G,q)-opers for each (G,q)-opers
A(z) = g(qz)Zg(2) "

Z-twisted Miura (G,q)-oper if gauge transform is from Borel

A(2) = v(q2) Zv(2) 71, v(z) € Bi(2)



Plucker Relations

V" irrep of G with highest weight w); Line L; C V; stableunder B

Plucker relations: for two integral dominant weights L4, C V)4, 1s the image of Ly ® L, C V\ ® V,,

under canonical projection V) & Vu — V)\—|—,u

Conversely, for a collection of lines Ly C V) satisfying Plucker relations 3B C (G suchthat L) is stabilized by B for all A

A choice of B is equivalent to a choice of B, -torsor in GG

. ® o
Let v, be a generator of the line L; C V;. Thisis a vector of weight w; wrt H C B.
The subspace of V; of weight w; — «; is one-dimensional and spanned f; * Vo, ' f l
‘ i Yo

Thus the 2d subspace spanned by {V,., fi - Uy, } is a B-invariant subspace of V; / \




Miura-Pucker (G,q)-Opers

let (Fq,A,Tp_,Tp,) be a Miura (G, g)-oper with regular singularities  {Ai(2)}i=1,....r

Associated vector bundle  V; =T, X V; =3Jg X V;  contains rank-two subbundle  W; =3Fp, x W;
B, G B,

associated to W; C V;, and W; in turn contains a line subbundle £; = g, X L;
5y

Using structure theorems we obtain r Miura (GL(2),g)-opers

gi(z)  Ni2) ;5 95(2)""

0 g; () [T 95 (2) "

Z-twisted Miura-Plucker (G,q)-oper is meromorphic Miura (G,q)-oper on P1 such that for each Miura (GL(2),q)-oper

Ai(z) = v(zq) Z0(2) " w, = vi(2q) Zivi(2) !

where v;(z) = v(2)|w, and Z; = Z|w,



QQ-System

Theorem: There 1s a one-to-one correspondence between the set of nondegenerate Z -
twisted Miura-Plicker (G, q)-opers and the set of nondegenerate polynomaial solutions of the

QQ-system

§Q(2)Q% (¢2) — Q" (q2)Q',(2)
LT |Rbe| TTTQLe] " i=1r

1> 1<

s=allg” a=¢'1Ig™

J>1 1<t
r r Q" (2) 0 (
< Y € —|— qZ)
Proof uses v(z) = qu;(z)o‘@ H e 9+ . : gz(z) = (; ; (Z) |
i=1 i=1 T



XXZ Bethe Ansatz Equations for G

roots of Q+
; . ; —Qjq . ; — Qg4
QLav) 17 o _ Ai(wi) T | @ (qui) | Ty | @ (w))]
i (y—1,,k 7 ; ] T ] e
g he) 5 Ailg i) TTjsy @4 (i) | Ty | @ (g wh)
Space of nondegenerate solutionsof| . . |Nondegenerate Z-twisted Miura-Plucker (G,q)-opers
QQ-system for G with regular singularities

?

Space of nondegenerate solutions of o Nondegenerate Z-twisted Miura (G,q)-opers
XXZ for G . with regular singularities



SL(2) Example

A(Z) — <g(OZ) g/(xsf—l> Z-twisted g-oper condition A(Z) (ZQ)ZU( ) 1, [ = (g <91>
auge transformation reads — y(z) 0 ! Ql(i) — y(z) _y(z) Q_(z)
Gaug f d fU(z) — ( 0 y(Z)_1> (() Ql( )) — ( 0 y(z)gl( )

We find g(z) = Cz‘y(ZCI)y(Z)_l

The g-oper condition becomes the SL(2) QQ-system

(Q-(2)Q+(29) — ¢C'Q-(2q)Q+(2) = A(2)

A(wy) __CQ Q1 (qug)

To get Bethe equations Q+(2) =] | (z —wg) evaluate at roots of Q = = — ,
k1 A(g= wi) Q+ (g 'wg)
L rp—1
Singularities A(z) = H H (2 —q77"2p) XXZ Bethe equations
p=17p,=0 I3
’ > r Wg — ql—rpzp 2 m qWg — wJ
/ qu_Zz—ch -~
0 0 o ® ® ! p=1 k— d<p W — (q ]
q —1F 4 z |
q q q n \
\




Quantum Backlund Transformation

Theorem: Consider the following g-gauge transformation | —a;;
] [@L)

A AW — eﬂi(qz)fz’A(Z)e_Nz‘(z)fi7 where  p1;(2) = J7 .
Q4 (2)QL(z)

| | ~. 1 1 . 1
changes the set of Q-functions Qi(z) — Qﬂ_(z), J # 1, {@r}jzl,---,r — {Q+a AR LL ; Ql—a QLL SR Qj-}
Q%I_(Z) I%QZ_(Z), ZHS’L(Z) {Z}le”r — {Z]_j..-,Z[—1721_1H21_8117...,Zr}

Now the strategy is to successively apply Backlund transformations according to the reduced decomposition of the element of the Weyl group

Consider longest element Wy = Siq1 - - -S4y
Theorem: Every Z-twisted Miura-Plucker (G,q)-oper is Z-twisted Miura (G,q)-oper

The proof based on properties of double Bruhat cells addresses existence of the diagonalizing element v(z) (to be constructed later)



The QQ-system

g-Oper condition

(SL(N),q)-Opers

§idi(z) — Sir10i(qz) = pi(2)

v(gz) " A(z) = Zu(z) ™

Diagonalizing element

1

Q; (2)

Q15(2)

QY (2)

Q3 (2)
Q7 (2)

Q3 (2)

Q7 (2)
Q3 (2)

Q7 (2)

> (2)

Q7 (2)

.....

.....

)

)

)

oou,

oooooo

form extended QQ-system



Quantum Wronskians

(SL(N),q)-oper can also be constructed from flag of subbundles (FE, A, L,) such that the induced maps 14_1@ : Li/Li_l — LY /[/,,C;I are isomorphisms

The quantum determinants Di(s) =eg A= Nepp1_p A Zk_ls(z) A\ Zk_QS(qz) ANRIA Zs(qk_Q) A\ S(qk_lz)

vanish at g-oper singularities Wi(s) = Pi(2) - PQ(QQZ) e Pk(qk_lz), Pi(z) =AArq-- - Arii1(2)

Diagonalizing condition

Components of the section of the
line subbundle are the Q-polynomials!

2,J
&1 &2 §r—1 &r Erp1
V1 V2 ______ Vn 1 Vn
W, W, W | W
Q11501 wy Ar, 1, s Arw.

1+1



Quantum/Classical Duality

Consider T*G/B .
______ Construct the corresponding space of (SL(N),h)-opers

n
. . _ _ Q, (0)
Specify components of the section of L1 s1(2) =2 =p1s ooy Skar(2) = 2= PRy Plrtitmp = - Qp,(0)
p—
Then the space of functions on the space of such h-opers Fun(h()p) (FIFZL)) ~ { ({ } {S(}{E%})a {CLi }(a {pi}a h) })
H;(1pjr,&if, 1) =e€ilar,...,aLy)i=1,...L
is described by trigonometric Ruijsenaars-Schneider 7, — 52 — ﬁfj
model with n particles k — Z H | H Pm
RN

Jc{1,...,L} <€J meJ

J=k J¢J



Quantum Wronskians

(SL(N),q)-oper can also be constructed from flag of subbundles (FE, A, L,) such that the induced maps 14_1@ : Li/Li_l — LY /[/,,C;I are isomorphisms

The quantum determinants Di(s) =eg A= Nepp1_p A Zk_ls(z) A\ Zk_QS(qz) ANRIA Zs(qk_Q) A\ S(qk_lz)

vanish at g-oper singularities Wi(s) = Pi(2) - PQ(QQZ) e Pk(qk_lz), Pi(z) =AArq-- - Arii1(2)

Diagonalizing condition

Components of the section of the
line subbundle are the Q-polynomials!

2,J
&1 &2 §r—1 &r Erp1
V1 V2 ______ Vn 1 Vn
W, W, W | W
Q11501 wy Ar, 1, s Arw.

1+1



Ill. Generalized Wronskians

Consider big cell in Go = IN_ HN, V; irrep of G with highest weight W;

Bruhat decomposition
— + — [h]wiyT
g — N— h TL_|_ hywz' o [h] Vc,uit

Define principal minors for group element g

For SL(N) they are standard minors of matrices

Then generalized minors are regular functions on G Auwi,vwi (g) = A*" (ﬂ_lgf}) u,v e Wg
Proposition Action of the group element on the highest weight vector in
qg - u:;; — Z Ayw; w; (g)W - V:;, + ...,
weW

where dots stand for the vectors, which do not belong to the orbit Oy .



Generalized Minors and QQ-system

The set of generalized minors {Ay., w; Jwew:i=1....r Creates a set of coordinates on G/B™,
known as generalized Plucker coordinates. In particular, the set of zeroes of each of Ay ., w,
is a uniquely and unambiguously defined hypersurface in G/B. |

Proposition For a W -generic Z-twisted Miura-Plucker (G, q)-oper with g-connection

A(2) = v(qz)Zv(z)~ L, where v(2) € B_(z) we have the following relation:

A, w; (U_l(z)) — Qrﬁuﬁz(z)
for any w € W.
r QZ:_(Z)

proof:  Since A%i(v!(2) = Q) ()  Disgonalizing sauge -1,y _ [T 0" [ |

transformation -
1=

v_l(z)y(ji = Qi(z)u(jz + Qv (2) fivg + ...

(&

i=1

1

(2)




Fundamental Relation for Generalized Minors

[Fomin Zelevinsky]

Proposition 4.8. Let, u,v € W, such that fori € {1,...,r}, L(uw;) = b(u) + 1, L(vw;) =
f(v)+ 1. Then

I I CLjZ'
(47) Au-wi,v-wi Auwi-wi,vwi-wi o Auwi-wi,v Wy u Wi , VW4 Wy Au wj,v-wja
JF1

Can we make sense of this relation using our approach of g-Opers?



Generalized Wronskians

The approach is similar to Miura-Plucker g-Opers

Let v ~ be a generator of the line [PL C V+ V.t irrep of G with highest weight W;

(

The subspace LT .. of V; of weight ¢! - w; is one-dimensional and is spanned by s~ v »

’L

Associated vector bundle Vi=Fp, x VI =Fcx V7"
By G
ins i + _ + + _ +
Contains line subbundles LT = F 1y I>j<[ L', Lc,i = T I>j<[ LC)Z.

Define generalized Wronskian on P! as quadruple (F¢, IB.,9,7)

¢ is a meromorphic section of a principle bundle F¢g

s.t. for sections 1V; , }z 1,...r oflinebundles {£., L+ iYiz1,..r on U N M-HU)

%qv Z%U



Adding Singularities

Effectively the above definition means that the Wronskian, written as an element of G(z), satisfies

79 (qz) v =9(2) - sp(2)" -1

Wi Ws

Define generalized Wronskian with regular singularities if inv

Fomin-Zelevinsky relations then read A
Ws ,Ws wi-wi,c—l-wi_ Wy Wy ,W5 wi,c_l-wi

wji,c 1w

1<1=1]

L1

1 >1=1]

Wj,Wq



q-Opers and g-Wronskians

Theorem1:

Theorem 2: For a given Z-twisted (G, q)-Miura oper, there exists a unique gener-
alized q- Wronskian

W (z) € B_(z)woB_(z) N By (2)wgB1(z) C G(2),
satisfying the system of equations

W(qkﬂz)% = 7" (2)s 1 (2)s 1 (qz). .. s_l(qkz)uji ,
(4.32) 1 =1,...,r, k=0,1,...,h — 1,

where h is the Coxeter number of G.



Examples: SL(2)

In terms of Q-polynomials W(Z) o (Q+ (Z) C_lA(Z)—lQ—F (QZ

CQT(2)Q (g2) = (' Q™ (q2)Q (2) = A(2)
is equivalent to det” (z) = 1.



Examples SL(N)

W (z) = (Aww,w|Aww781w

Lift for standard ordering along the Dynkin diagram

7(2) = (@)
where F;(z) = H§:1 Aj(z) L.

ZF(2)Q7*(qz)

Aot ) ((2)

spt(z) =5[] AT

Zr—lFr_l (qr—lz)Qw-w(qr—lz))

-




Lewis Carroll Identity

In Type A FZ relation reduces to

Auwi,fuwi Ausiwi,vsiwi D Ausiwi,vwi UwW; , vs;W; Auwi_l,fuwi_lAuwiJrl,vwiJrl

M{M? — M!M; = M{# M



