# q-Opers — what they are and what are they good for?

Peter Koroteev

#### Literature

[arXiv:2108.04184]

q-Opers, QQ-systems, and Bethe Ansatz II: Generalized Minors

P. Koroteev, A. M. Zeitlin

[arXiv:2105.00588]

3d Mirror Symmetry for Instanton Moduli Spaces

P. Koroteev, A. M. Zeitlin

[arXiv:2007.11786] J. Inst. Math. Jussieu

**Toroidal q-Opers** 

P. Koroteev, A. M. Zeitlin

[arXiv:2002.07344] J. Europ. Math. Soc.

q-Opers, QQ-Systems, and Bethe Ansatz

E. Frenkel, P. Koroteev, D. S. Sage, A. M. Zeitlin

[arXiv:1811.09937] Commun.Math.Phys. 381 (2021) 641

(SL(N),q)-opers, the q-Langlands correspondence, and quantum/classical duality

P. Koroteev, D. S. Sage, A. M. Zeitlin

[arXiv:1705.10419] Selecta Math. **27** (2021) 87

**Quantum K-theory of Quiver Varieties and Many-Body Systems** 

P. Koroteev, P. P. Pushkar, A. V. Smirnov, A. M. Zeitlin







#### Motivation

Quantum Geometry and Integrable Systems

[Okounkov et al]

[Pushkar, Zeitlin, Smirnov]

[PK, Pushkar, Smirnov, Zeitlin]

**BPS/CFT Correspondence** 

[Nekrasov Shatashvili]

Geometric q-Langlands Correspondence

[Frenkel] [Aganagic, Frenkel, Okounkov]

ODE/IM Correspondence

[Bazhanov, Lukyanov, Zamolodchikov]

[Dorey, Tateo]

# L q-Opers — SL(2) Example

Consider vector bundle E over  $\mathbb{P}^1$ 

$$M_q: \mathbb{P}^1 \to \mathbb{P}^1 \qquad q \quad \swarrow$$

$$z \mapsto qz \qquad \qquad \swarrow$$

Map of vector bundles  $A:E\longrightarrow E^q$ 

Upon trivialization  $A(z) \in \mathfrak{gl}(N,\mathbb{C}(z))$ 

q-gauge transformation  $A(z)\mapsto g(qz)A(z)g^{-1}(z)$ 

Difference equation  $D_q(s) = As$ 

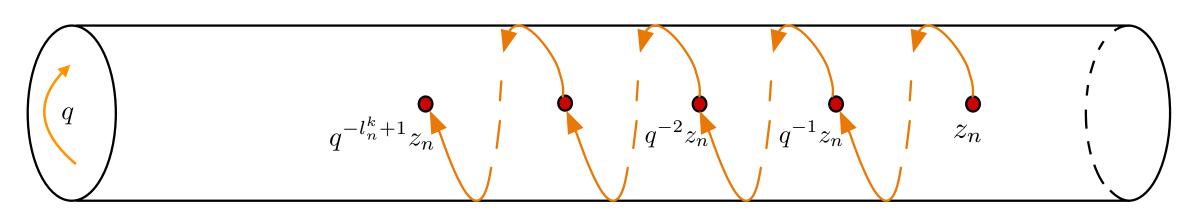
**Definition:** A meromorphic (GL(N), q)-connection over  $\mathbb{P}^1$  is a pair (E, A), where E is a (trivializable) vector bundle of rank N over  $\mathbb{P}^1$  and A is a meromorphic section of the sheaf  $\operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^1}}(E, E^q)$  for which A(z) is invertible, i.e. lies in  $\operatorname{GL}(N, \mathbb{C}(z))$ . The pair (E, A) is called an  $(\operatorname{SL}(N), q)$ -connection if there exists a trivialization for which A(z) has determinant 1.

### q-Opers

**Definition:** A (GL(2), q)-oper on  $\mathbb{P}^1$  is a triple  $(E, A, \mathcal{L})$ , where (E, A) is a (GL(2), q)-connection and  $\mathcal{L}$  is a line subbundle such that the induced map  $\bar{A}: \mathcal{L} \longrightarrow (E/\mathcal{L})^q$  is an isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-connection.

in a trivialization  $s(z) \wedge A(z) s(qz) \neq 0$ 

**Definition:** A  $(\operatorname{SL}(2), q)$ -oper with regular singularities at the points  $z_1, \ldots, z_L \neq 0, \infty$  with weights  $k_1, \ldots k_L$  is a meromorphic  $(\operatorname{SL}(2), q)$ -oper  $(E, A, \mathcal{L})$  for which  $\bar{A}$  is an isomorphism everywhere on  $\mathbb{P}^1 \setminus \{0, \infty\}$  except at the points  $z_m, q^{-1}z_m, q^{-2}z_m, \ldots, q^{-k_m+1}z_m$  for  $m \in \{1, \ldots, L\}$ , where it has simple zeros.



Finally, (SL(2),q)-oper is **Z-twisted** in A(z) is gauge equivalent to a diagonal matrix Z

$$Z = g(qz)A(z)g(z)^{-1}$$

## Miura q-Opers

**Miura (SL(2),q)-oper** is a quadruple  $(E,A,\mathcal{L},\hat{\mathcal{L}})$  where  $(E,A,\mathcal{L})$  is an (SL(2),q)-oper and  $\hat{\mathcal{L}}$  is preserved by the q-connection A

Chose trivialization of  $\mathcal{L}$ 

$$s(z) = \begin{pmatrix} Q_{+}(z) \\ Q_{-}(z) \end{pmatrix}$$

Twist element 
$$Z = \operatorname{diag}(\zeta, \zeta^{-1})$$

q-Oper condition — SL(2) QQ-system

$$s(z) \wedge A(z)s(qz) = \Lambda(z)$$

$$\det\begin{pmatrix} Q_{+}(z) & \zeta Q_{+}(qz) \\ Q_{-}(z) & \zeta^{-1} Q_{-}(qz) \end{pmatrix} = \Lambda(z) \qquad \zeta Q_{-}(z)Q_{+}(zq) - \zeta^{-1}Q_{-}(zq)Q_{+}(z) = \Lambda(z)$$

$$\zeta Q_{-}(z)Q_{+}(zq) - \zeta^{-1}Q_{-}(zq)Q_{+}(z) = \Lambda(z)$$

One of the polynomials can be made monic

$$Q_{+}(z) = \prod_{k=1}^{m} (z - w_{k})$$

singularities

$$\Lambda(z) = \prod_{p=1}^{L} \prod_{j_p=0}^{r_p-1} (z - q^{-j_p} z_p)$$

From QQ-system to Bethe equations

$$\frac{\Lambda(w_k)}{\Lambda(q^{-1}w_k)} = -\zeta^2 \frac{Q_+(qw_k)}{Q_+(q^{-1}w_k)}, \qquad k = 1, \dots, m.$$

$$q^r \prod_{p=1}^{L} \frac{w_k - q^{1-r_p} z_p}{w_k - q z_p} = -\zeta^2 q^m \prod_{j=1}^{m} \frac{q w_k - w_j}{w_k - q w_j}, \qquad k = 1, \dots, m$$

# q-Miura Transformation

$$A(z) = \begin{pmatrix} \zeta \frac{Q_{+}(qz)}{Q_{+}(z)} & \Lambda(z) \\ 0 & \zeta^{-1} \frac{Q_{+}(z)}{Q_{+}(qz)} \end{pmatrix}$$

Z-twisted q-oper condition

$$A(z) = v(zq)Zv(z)^{-1}, Z = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}$$

q-gauge transformation

$$v(z) = Q_{+}^{\check{\alpha}} \exp\left(-\frac{Q_{-}}{Q_{+}}(z)e\right) = \begin{pmatrix} Q_{+}(z) & \frac{Q_{-}}{Q_{+}}(z) \\ 0 & \frac{1}{Q_{+}(z)} \end{pmatrix}$$

The q-oper condition becomes the SL(2) QQ-system

$$\zeta Q_{-}(z)Q_{+}(zq) - \zeta^{-1}Q_{-}(zq)Q_{+}(z) = \Lambda(z)$$

Difference Equation

$$D_q(s) = As$$

$$D_q(s_1) = \Lambda(z)s_2$$

after elimination

$$\left(D_q^2 - T(qz)D_q - \frac{\Lambda(qz)}{\Lambda(z)}\right)s_1 = 0$$

#### Trigonometric Ruijsenaars Hamiltonians

Nondegenerate (SL(2),q)-oper condition

$$\begin{vmatrix} Q_{-} = z - p_{-} \\ Q_{+} = c(z - p_{+}) \end{vmatrix} = (\zeta - \zeta^{-1})(z - z_{+})(z - z_{-})$$

$$\begin{vmatrix} z - p_{+} & \zeta(qz - p_{+}) \\ z - p_{-} & \zeta^{-1}(qz - p_{-}) \end{vmatrix} = (\zeta - \zeta^{-1})(z - z_{+})(z - z_{-})$$

$$z^{2} - \frac{z}{q} \left[ \frac{\zeta - q\zeta^{-1}}{\zeta - \zeta^{-1}} p_{+} + \frac{q\zeta - \zeta^{-1}}{\zeta - \zeta^{-1}} p_{-} \right] + \frac{p_{+}p_{-}}{q} = (z - z_{+})(z - z_{-})$$

qOper condition yields tRS Hamiltonians!

$$\det(z - L_{tRS}) = (z - z_{+})(z - z_{-})$$

# Calogero-Moser Space

Let V be an N-dimensional vector space over  $\mathbb{C}$ . Let  $\mathcal{M}'$  be the subset of  $GL(V) \times GL(V) \times V \times V^*$  consisting of elements (M, T, u, v) such that

$$qMT - TM = u \otimes v^T$$

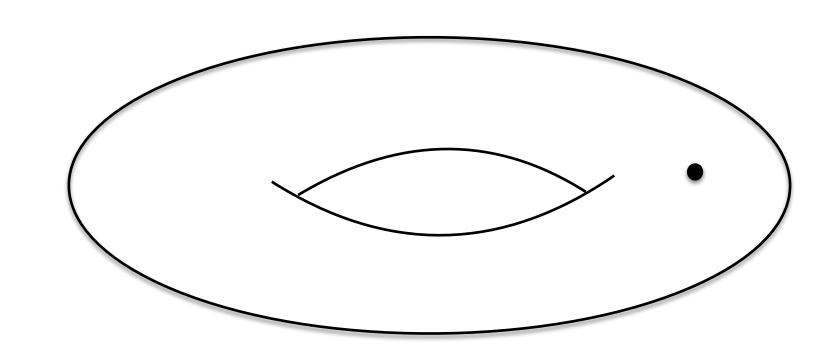
The group  $GL(N; \mathbb{C}) = GL(V)$  acts on  $\mathcal{M}'$  by conjugation

$$(M, T, u, v) \mapsto (gMg^{-1}, gTg^{-1}, gu, vg^{-1})$$

The quotient of  $\mathscr{M}'$  by the action of GL(V) is called **Calogero-Moser space**  $\mathscr{M}$ 

Also can be understood as moduli space of flat connections on punctured torus

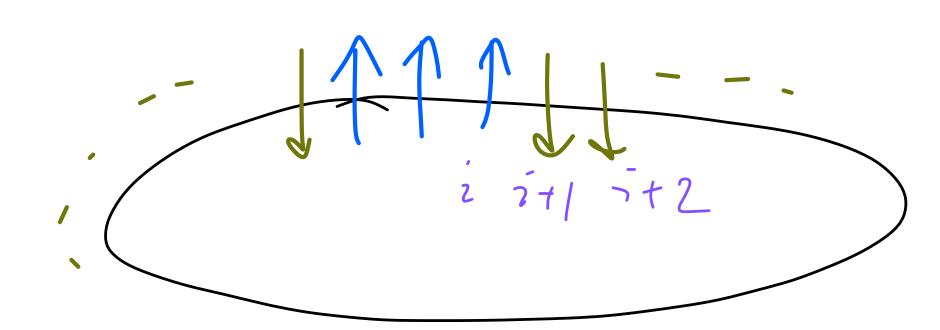
Integrable Hamiltonians are  ${}^{\sim} {\rm Tr} T^k$ 



$$\mathcal{M}_n = \{A, B, C\}/GL(n; \mathbb{C})$$

$$ABA^{-1}B^{-1} = C$$

$$C = \mathsf{diag}(q, ..., q, q^{n-1})$$



SU(n) XXZ spin chain on n sites w/ anisotropies and twisted periodic boundary conditions

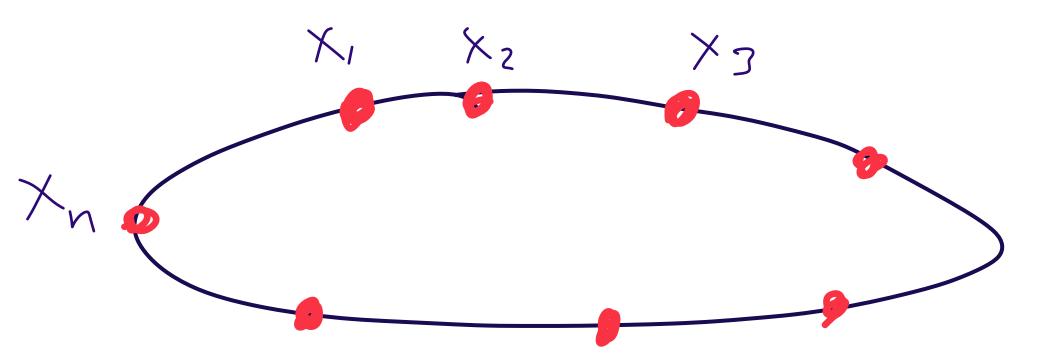
Planck's constant ħ

twist eigenvalues  $z_i$ 

equivariant parameters (anisotropies)  $a_i$ 

Bethe Ansatz Equations:  $\frac{\partial Y}{\partial \sigma_i} = 0$ 

$$\frac{\zeta_i}{\zeta_{i+1}} \prod_{\beta=1}^{\mathbf{v}_{i-1}} \frac{\sigma_{i,\alpha} - \hbar^{1/2} \sigma_{i-1,\beta}}{\sigma_{i-1,\beta} - \hbar^{1/2} \sigma_{i,\alpha}} \cdot \prod_{\beta \neq \alpha}^{\mathbf{v}_i} \frac{\hbar \sigma_{i,\alpha} - \sigma_{i,\beta}}{\hbar \sigma_{i,\beta} - \sigma_{i,\alpha}} \cdot \prod_{\beta=1}^{\mathbf{v}_{i+1}} \frac{\sigma_{i,\alpha} - \hbar^{1/2} \sigma_{i+1,\beta}}{\sigma_{i+1,\beta} - \hbar^{1/2} \sigma_{i,\alpha}} = (-1)^{\delta_i}$$



**n**-particle trigonometric Ruijsenaars-Schneider model

$$\begin{bmatrix} T_i, T_j \end{bmatrix} = 0$$

Coupling constant  $\hbar$   $T_1 = \sum_{i=1}^n \prod_{j \neq i} \frac{\hbar z_i - z_j}{z_i - z_j} p_i$ 

coordinates  $z_i$ 

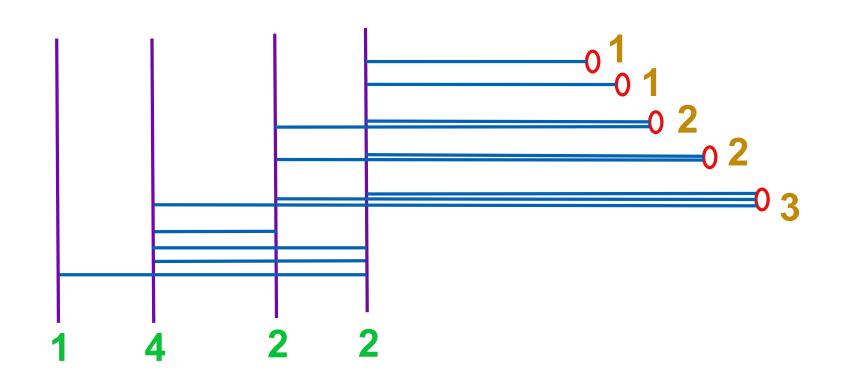
**energy** (eigenvalues of Hamiltonians)  $e_i(a_i)$ 

Energy level equations

$$T_i(\mathbf{z}, \hbar) = e_i(\mathbf{a}), \qquad i = 1, \dots, n$$

# Quantum/Classical Duality

[PK Gaiotto]
[PK Zeitlin]



Symplectic form

$$\Omega = \sum_{i=1}^{N} \frac{dp_i^{\xi}}{p_i^{\xi}} \wedge \frac{d\xi_i}{\xi_i} - \frac{dp_i^a}{p_i^a} \wedge \frac{da_i}{a_i}$$

tRS momenta

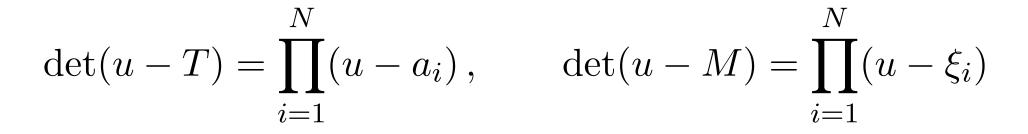
$$p_i^{\xi} = \exp \frac{\partial Y}{\partial \xi_i}, \qquad p_i^a = \exp \frac{\partial Y}{\partial a_i}$$

tRS energy relations

$$\mathcal{M} \times \mathcal{M}^!$$

$$Y = Y!$$

3d mirror symmetry

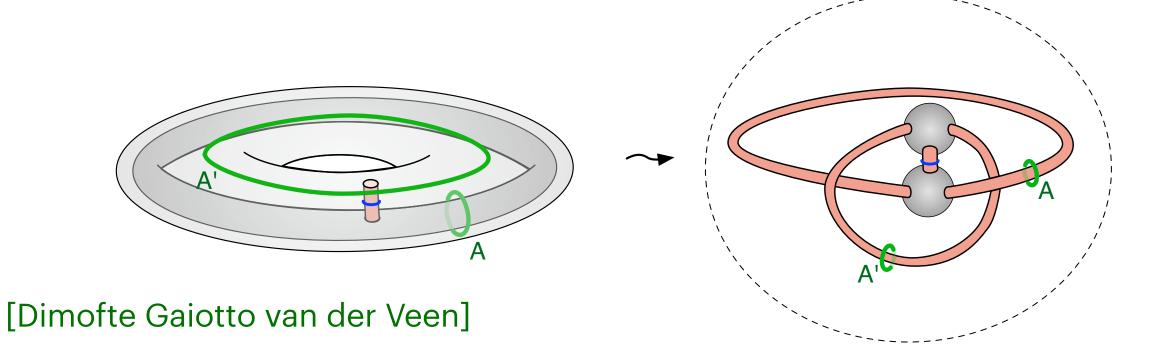


$$\sum_{\substack{\mathfrak{I}\subset\{1,\ldots,L\}\\|\mathfrak{I}|=k}}\prod_{\substack{i\in\mathfrak{I}\\j\notin\mathfrak{I}}}\frac{a_i-\hbar\,a_j}{a_i-a_j}\prod_{m\in\mathfrak{I}}p_m=\ell_k(\xi_i)$$

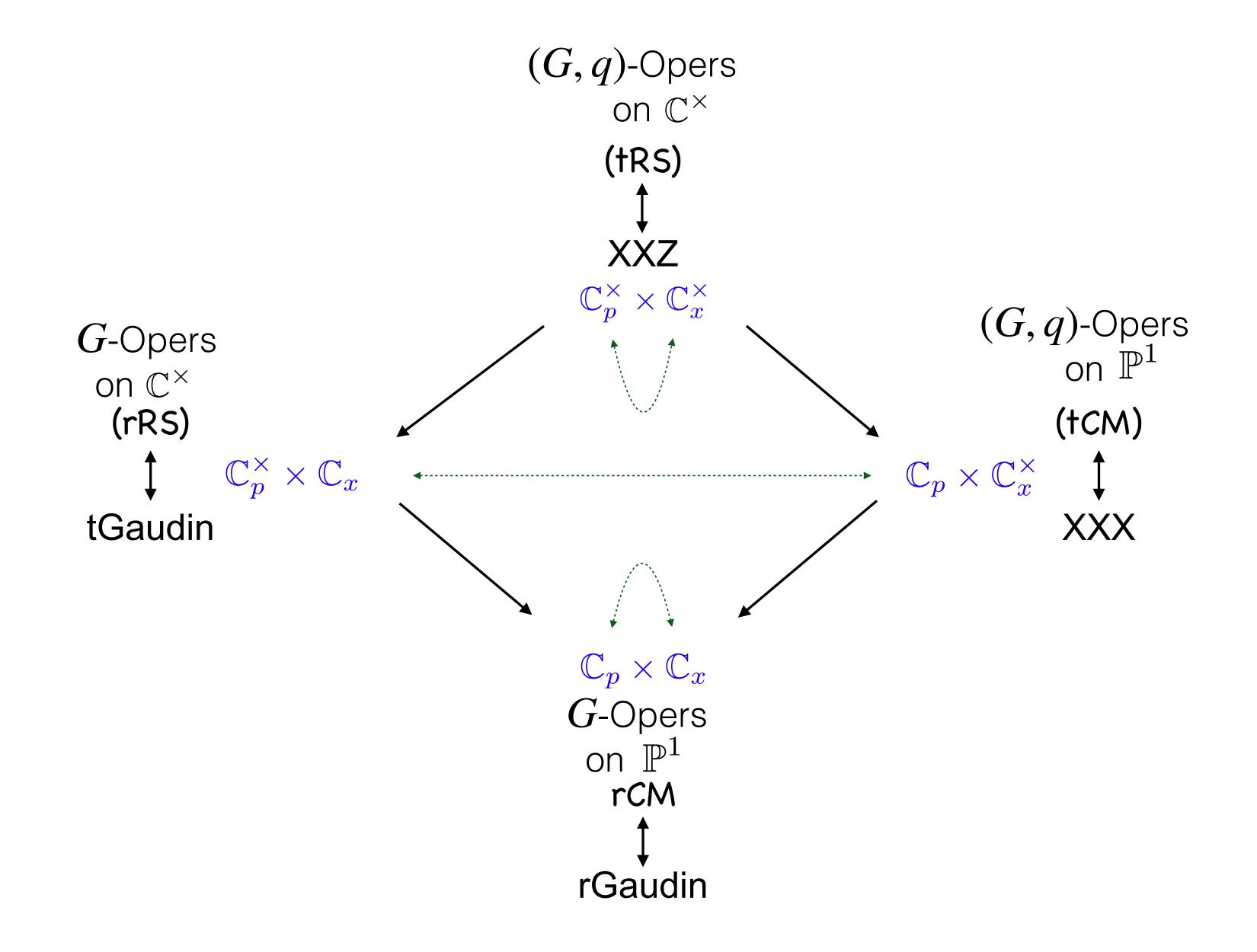
 $\mathcal{L}_{\mu}$  Eigenvalues of M and Slodowy form on T

 $\mathcal{L}_{ au}$  Eigenvalues of T and Slodowy form on M

Solutions of Bethe equations — intersection points



#### Network of Dualities



# (SL(N),q)-Opers

(SL(N),q)-oper can also be constructed from flag of subbundles  $(E,A,\mathcal{L}_ullet)$  such that the induced maps  $ar{A}_i:\mathcal{L}_i/\mathcal{L}_{i-1}\longrightarrow\mathcal{L}_{i+1}^q/\mathcal{L}_i^q$ 

The quantum determinants

$$\mathcal{D}_k(s) = e_1 \wedge \cdots \wedge e_{r+1-k} \wedge Z^{k-1}s(z) \wedge Z^{k-2}s(qz) \wedge \cdots \wedge Zs(q^{k-2}) \wedge s(q^{k-1}z)$$

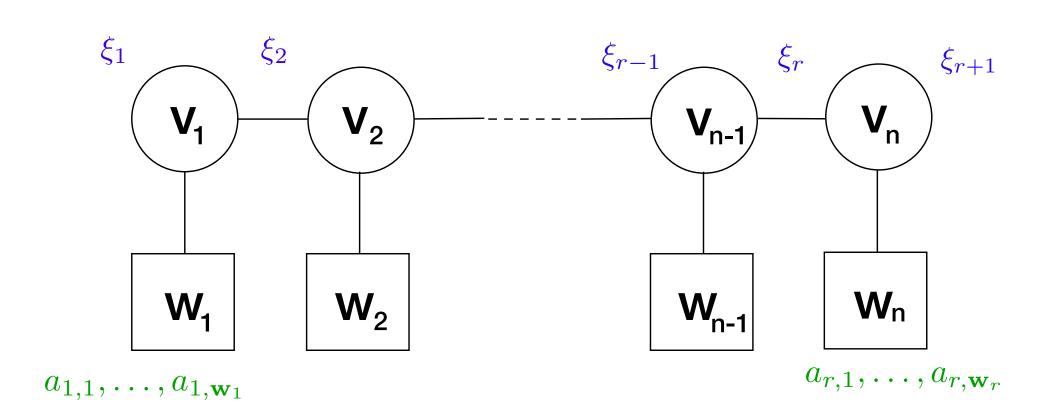
vanish at q-oper singularities

$$W_k(s) = P_1(z) \cdot P_2(q^2 z) \cdots P_k(q^{k-1} z), \qquad P_i(z) = \Lambda_r \Lambda_{r-1} \cdots \Lambda_{r-i+1}(z)$$

$$P_i(z) = \Lambda_r \Lambda_{r-1} \cdots \Lambda_{r-i+1}(z)$$

Diagonalizing condition

$$\det_{i,j} \left[ \xi_{r+1-k+i}^{k-j} s_{r+1-k+i} (q^{j-1} z) \right] = \alpha_k W_k \mathcal{V}_k$$



Components of the section of the line subbundle are the Q-polynomials!

$$s_{r+1}(z) = Q_r^+(z)$$
,

$$s_r(z) = Q_r^-(z) \,,$$

$$s_{r+1}(z) = Q_r^+(z), \qquad s_r(z) = Q_r^-(z), \qquad s_k(z) = Q_{k,\dots,r}^-(z)$$

# (SL(N),q)-Opers

The extended QQ-system

$$\xi_{i}Q_{i}^{+}(qz)Q_{i}^{-}(z) - \xi_{i+1}Q_{i}^{+}(z)Q_{i}^{-}(qz) = \Lambda_{i}(z)Q_{i-1}^{+}(qz)Q_{i+1}^{+}(z),$$
  
$$\xi_{i}Q_{i+1}^{+}(qz)Q_{i,i+1}^{-}(z) - \xi_{i+2}Q_{i+1}^{+}(z)Q_{i,i+1}^{-}(qz) = \Lambda_{i+1}(z)Q_{i}^{-}(qz)Q_{i+2}^{+}(z)$$

q-Oper condition

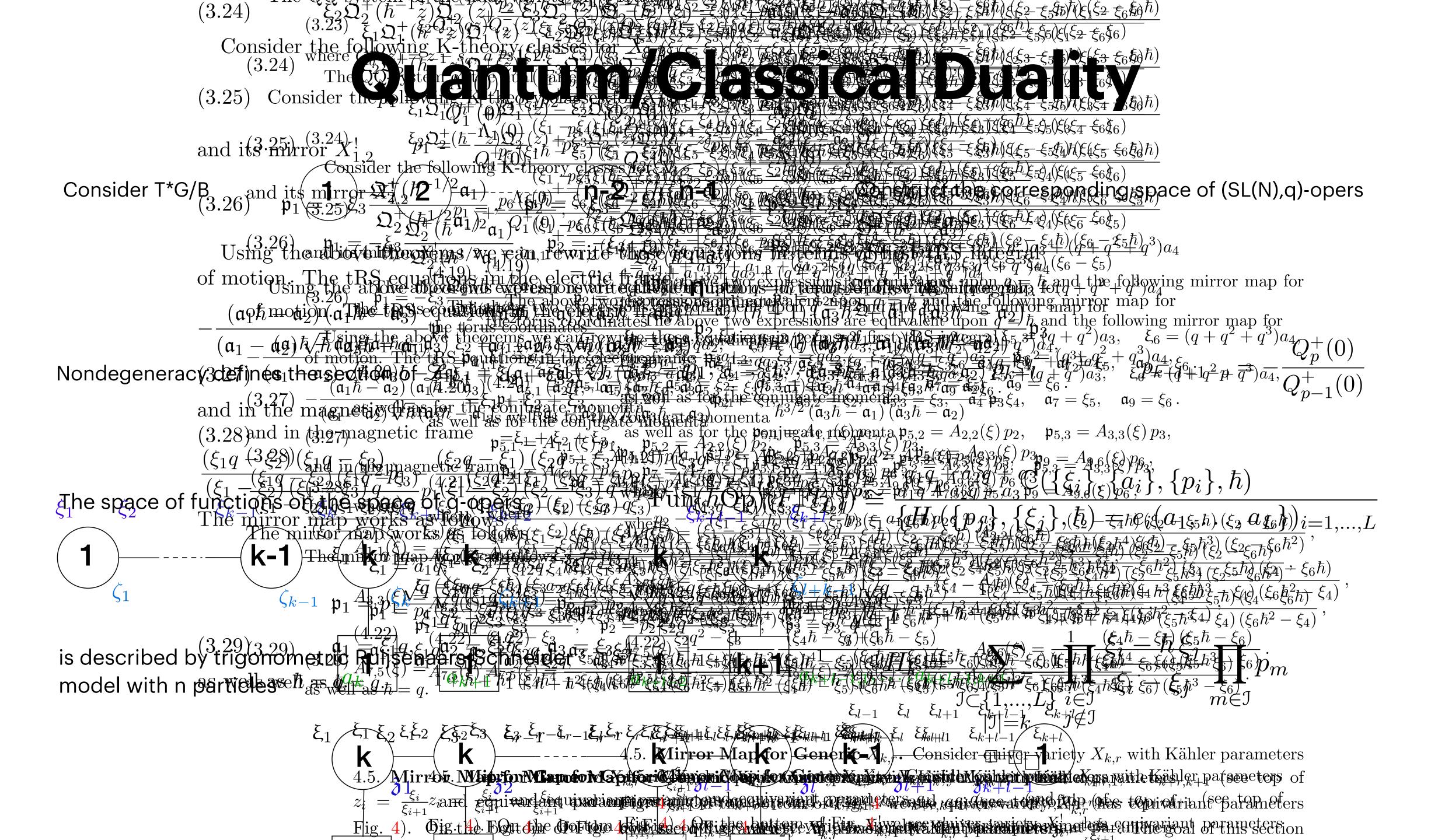
$$v(qz)^{-1}A(z) = Zv(z)^{-1}$$

Diagonalizing element

$$v(z)^{-1} = \begin{pmatrix} \frac{1}{Q_1^+(z)} & \frac{Q_1^-(z)}{Q_2^+(z)} & \frac{Q_{12}^-(z)}{Q_3^+(z)} & \cdots & \frac{Q_{1,\dots,r-1}^-(z)}{Q_r^+(z)} & Q_{1,\dots,r}^-(z) \\ 0 & \frac{Q_1^+(z)}{Q_2^+(z)} & \frac{Q_2^-(z)}{Q_3^+(z)} & \cdots & \frac{Q_{2,\dots,r-1}^-(z)}{Q_r^+(z)} & Q_{2,\dots,r}^-(z) \\ 0 & 0 & \frac{Q_2^+(z)}{Q_3^+(z)} & \cdots & \frac{Q_{3,\dots,r-1}^-(z)}{Q_r^+(z)} & Q_{3,\dots,r}^-(z) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & \frac{Q_{r-1}^+(z)}{Q_r^+(z)} & Q_r^-(z) \\ 0 & \cdots & \cdots & \cdots & 0 & Q_r^+(z) \end{pmatrix}$$

Polynomials  $Q_{i,...,j}^-(z)$ 

form extended QQ-system



#### n-particle tCM from q-opers

The QQ-system

$$\xi_{i+1}Q_i^+(z+\epsilon)Q_i^-(z) - \xi_iQ_i^+(z)Q_i^-(z+\epsilon) = (\xi_{i+1} - \xi_i)\Lambda_i(z)Q_{i-1}(z)Q_{i+1}(z)$$

Theorem: Qs can be represented using twisted Wronskians

$$Q_j^+(z) = \frac{\det(M_{1,...,j})}{\det(V_{1,...,j})}, \qquad Q_j^-(z) = \frac{\det(M_{1,...,j-1,j+1})}{\det(V_{1,...,j-1,j+1})}$$

$$M_{i_1,\dots,i_j}(z) = \begin{bmatrix} s_{i_1}(z) & \xi_{i_1}s_{i_1}(z+\epsilon) & \cdots & \xi_{i_1}^{j-1}s_{i_1}(z+\epsilon(j-1)) \\ \vdots & \vdots & \ddots & \vdots \\ s_{i_j}(z) & \xi_{i_j}s_{i_j}(z+\epsilon) & \cdots & \xi_{i_j}^{j-1}s_{i_j}(z+\epsilon(j-1)) \end{bmatrix}$$

$$V_{i_1,...,i_j} = \begin{bmatrix} 1 & \xi_{i_1} & \cdots & \xi_{i_1}^{j-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \xi_{i_j} & \cdots & \xi_{i_j}^{j-1} \end{bmatrix}$$

The QQ-system is equivalent to the Desnanot-Jacobi-Lewis Carrol identity

$$\det M_1^1 \det M_{k+1}^2 - \det M_{k+1}^1 \det M_1^2 = \det M_{1,k+1}^{1,2} \det M$$

### n-particle tCM from q-opers cont'd

**Theorem**: Let the last  $\Lambda_i(z)$  in the QQ-system  $P(z) = \prod_{i=1}^n (z-a_i)$ 

$$P(z) = \prod_{i=1}^{n} (z - a_i)$$

Let the (SL(n+1),q)-oper be non degenerate, meaning that all polynomials  $s_i(z) = z - p_i$ 

then  $P(z) = det \Big(z-m\Big)$  where m is the tCM Lax matrix

Proof:

$$P(z) = \frac{\det\left(M_{1,...,n}\right)(z)}{\det\left(V_{1,...,n}\right)} \qquad \text{where} \qquad (M_{1,...,n})_{i,j} = \xi_i^{j-1}(z - p_i + (j-1)\epsilon) \qquad (V_{1,...,n})_{ij} = \xi_i^{j-1}$$

So 
$$P(z) = \det(z - M_{1,...,n}(0)V_{1,...,n}^{-1})$$

tCM Lax matrix is a product

$$-M_{1,\dots,n}(0)V_{1,\dots,n}^{-1} = m$$

Diagonal compts

$$m_{ii} = p_i - \epsilon \xi_i \sum_{k \neq i} \frac{1}{\xi_i - \xi_k}$$

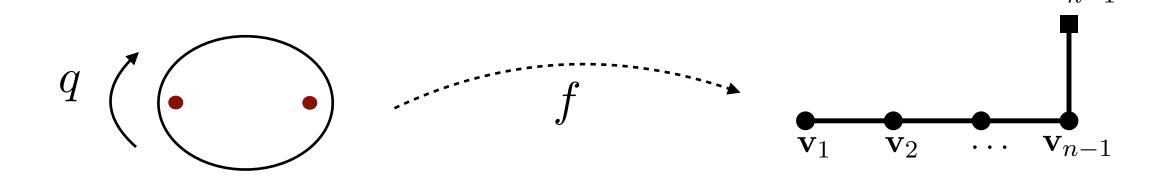
Off diagonal compts

$$m_{ij} = \frac{\epsilon \xi_i}{\xi_i - \xi_j} \frac{\prod\limits_{k \neq i} (\xi_i - \xi_k)}{\prod\limits_{k \neq j} (\xi_j - \xi_k)}$$

# **Enumerative AG/Integrable Systems**

Quantum equivariant K-theory of Nakajima quiver varieties

$$A \circledast B = A \otimes B + \sum_{d=1}^{\infty} A \circledast_d B z^d$$



$$\mathbf{V}^{(\tau)}(\boldsymbol{z}) = \sum_{\boldsymbol{d}} \operatorname{ev}_{p_2,*}(\widehat{\mathcal{O}}_{\operatorname{vir}}^{\boldsymbol{d}} \otimes \tau|_{p_1}, \operatorname{QM}_{\operatorname{nonsing} p_2}^{\boldsymbol{d}}) \boldsymbol{z}^{\boldsymbol{d}} \in K_{\mathsf{T} \times \mathbb{C}_q^{\times}}(X)_{loc}[[\boldsymbol{z}]]$$

Saddle point limit yields Bethe equations for XXZ

Quantum classes satisfy interesting difference equations in equivariant parameters and Kahler parameters qKZ, Dynamical equation

[Okounkov, Smirnov]

After symmetrization they can be rewritten as eigenvalue equations for trigonometric Ruijsenaars-Schneider (tRS) system

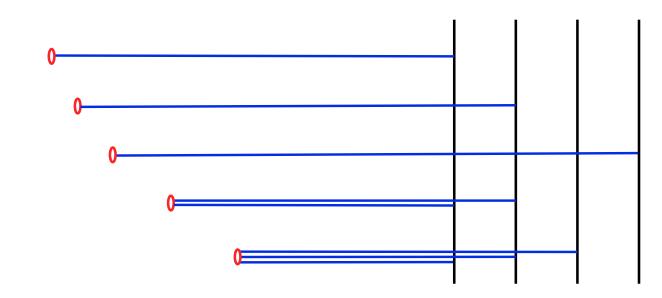
[PK, Zeitlin] [PK]

$$T_r(\mathbf{a}) = \sum_{\substack{\mathfrak{I} \subset \{1,\dots,n\} \\ |\mathfrak{I}| = r}} \prod_{\substack{i \in \mathfrak{I} \\ j \notin \mathfrak{I}}} \frac{t \, a_i - a_j}{a_i - a_j} \prod_{i \in \mathfrak{I}} p_i$$

$$T_r(\boldsymbol{a})V(\boldsymbol{a},\vec{\zeta}) = S_r(\vec{\zeta},t)V(\boldsymbol{a},\vec{\zeta})$$

In terms of string/gauge theory tRS eigenproblem is Ward identity

[Gaiotto, PK] [Bullimore, Kim, PK]



# (G,q)-Connection

G-simple simply-connected complex Lie group

Principal G-bundle 
$$\mathcal{F}_G$$
 over  $\mathbb{P}^1$ 

$$M_q: \mathbb{P}^1 o \mathbb{P}^1$$
  $z \mapsto qz$ 

A meromorphic (G,q)-connection on  $\mathcal{F}_G$  is a section A of  $\mathrm{Hom}_{\mathcal{O}_U}(\mathcal{F}_G,\mathcal{F}_G^q)$ Choose U so that the restriction  $\mathcal{F}_G|_U$  of  $\mathcal{F}_G$  to U is isomorphic to a trivial G-bundle

U-Zariski open dense set

$$A(z)\in G(\mathbb{C}(z))\quad \text{ on }\quad U\cap M_q^{-1}(U)$$

Change of trivialization  $A(z)\mapsto g(qz)A(z)g(z)^{-1}$ 

# (G,q)-Opers

A meromorphic (G,q)-oper on  $\mathbb{P}^1$  is a triple  $(\mathcal{F}_G, A, \mathcal{F}_{B_-})$ 

A is a meromorphic (G,q)-connection

 $\mathfrak{F}_{B-}$  is a reduction of  $\mathfrak{F}_{G}$  to  $B_{-}$ 

Oper condition: Restriction of the connection on some Zariski open dense set U

$$A: \mathcal{F}_G \longrightarrow \mathcal{F}_G^q \text{ to } U \cap M_q^{-1}(U)$$

takes values in the double Bruhat cell

$$B_{-}(\mathbb{C}[U\cap M_{q}^{-1}(U)])cB_{-}(\mathbb{C}[U\cap M_{q}^{-1}(U)])$$

Coxeter element:  $c = \prod_i s_i$ 

Locally

$$A(z) = n'(z) \prod_{i} (\phi_i(z)^{\check{\alpha}_i} s_i) n(z)$$

$$\phi_i(z) \in \mathbb{C}(z)$$
 and  $n(z), n'(z) \in N_-(z)$ 

# Miura (G,q)-Opers

**Definition:** A Miura (G, q)-oper on  $\mathbb{P}^1$  is a quadruple  $(\mathcal{F}_G, A, \mathcal{F}_{B_-}, \mathcal{F}_{B_+})$ , where  $(\mathcal{F}_G, A, \mathcal{F}_{B_-})$  is a meromorphic (G, q)-oper on  $\mathbb{P}^1$  and  $\mathcal{F}_{B_+}$  is a reduction of the G-bundle  $\mathcal{F}_G$  to  $B_+$  that is preserved by the q-connection A.

Choose a trivialization  $\mathcal{F}_{G,x}\simeq G$  under this isomorphism  $\mathcal{F}_{B_-,x}\simeq aB_-\subset G$   $\mathcal{F}_{B_+,x}\simeq bB_+$ 

Then  $a^{-1}b$  is a well defined element of the double quotient of  $B_-\backslash B/B_+\simeq W_G$ 

Flags  $\mathcal{F}_{B_-}$  and  $\mathcal{F}_{B_+}$  are in *generic relative position* at  $x \in X$  if the corresponding element of the Weyl group assigned to them at x is equal to 1 or  $a^{-1}b \in B_- \cdot B_+$ 

#### Structure Theorems

**Theorem 1:** For any Miura (G,q)-oper on  $\mathbb{P}^1$ , there exists a trivialization of the underlying G-bundle  $\mathfrak{F}_G$  on an open dense subset of  $\mathbb{P}^1$  for which the oper q-connection has the form

$$A(z) \in N_{-}(z) \prod_{i} ((\phi_{i}(z)^{\check{\alpha}_{i}} s_{i}) N_{-}(z) \cap B_{+}(z).$$

**Theorem 2:** Let F be any field, and fix  $\lambda_i \in F^{\times}$ , i = 1, ..., r. Then every element of the set  $N_- \prod_i \lambda_i^{\check{\alpha}_i} s_i N_- \cap B_+$  can be written in the form

$$\prod_{i} g_i^{\check{\alpha}_i} e^{\frac{\lambda_i t_i}{g_i} e_i}, \qquad g_i \in F^{\times},$$

where each  $t_i \in F^{\times}$  is determined by the lifting  $s_i$ .

# Adding Singularities and Twists

Consider family of polynomials

$$\{\Lambda_i(z)\}_{i=1,\ldots,r}$$

(G,q)-oper with regular singularities can be written as

$$A(z) = n'(z) \prod_{i} (\Lambda_i(z)^{\check{\alpha}_i} s_i) n(z), \qquad n(z), n'(z) \in N_{-}(z)$$

Using structure theorem every Miura (G,q)-oper with singularities reads

$$A(z) = \prod_{i} g_i(z)^{\check{\alpha}_i} e^{\frac{\Lambda_i(z)}{g_i(z)}e_i}, \qquad g_i(z) \in \mathbb{C}(z)^{\times}$$

(G,q)-oper is **Z-twisted** if it is equivalent to a constant element of G  $Z\in H\subset H(z)$  Z is regular semisimple. There are  $W_G$  Miura (G,q)-opers for each (G,q)-opers

**Z-twisted Miura (G,q)-oper** if gauge transform is from Borel

$$A(z) = v(qz)Zv(z)^{-1}, v(z) \in B_{+}(z)$$

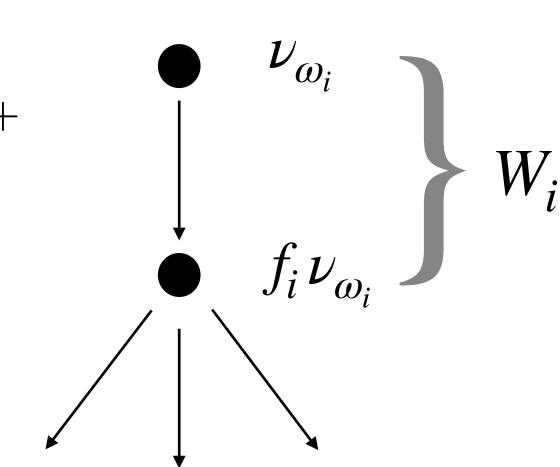
#### Plücker Relations

 $V_i^+$  irrep of G with highest weight  $\,\omega_i$  Line  $\,L_i\subset V_i$  stable under  $\,B_+$ 

 $L_{\lambda+\mu} \subset V_{\lambda+\mu}$  is the image of  $L_{\lambda} \otimes L_{\mu} \subset V_{\lambda} \otimes V_{\mu}$ Plucker relations: for two integral dominant weights under canonical projection  $V_{\lambda}\otimes V_{\mu}\longrightarrow V_{\lambda+\mu}$ 

Conversely, for a collection of lines  $L_\lambda \subset V_\lambda$  satisfying Plucker relations  $\exists B \subset G$  such that  $L_\lambda$  is stabilized by B for all  $\lambda$ A choice of B is equivalent to a choice of  $B_+$ -torsor in G

Let  $\nu_{\omega_i}$  be a generator of the line  $L_i\subset V_i$ . This is a vector of weight  $\omega_i$  wrt  $H\subset B_+$ The subspace of  $V_i$  of weight  $\omega_i-\alpha_i$  is one-dimensional and spanned  $f_i\cdot\nu_{\omega_i}$ Thus the 2d subspace spanned by  $\{\nu_{\omega_i},f_i\cdot\nu_{\omega_i}\}$  is a  $B_+$ -invariant subspace of  $V_i$ Thus the 2d subspace spanned by  $\{
u_{\omega_i}, f_i \cdot 
u_{\omega_i}\}$  is a  $B_+$ -invariant subspace of  $V_i$ 



## Miura-Plücker (G,q)-Opers

let  $(\mathcal{F}_G, A, \mathcal{F}_{B_-}, \mathcal{F}_{B_+})$  be a Miura (G, q)-oper with regular singularities  $\{\Lambda_i(z)\}_{i=1,...,r}$ 

Associated vector bundle  $V_i=\mathcal{F}_{B_+}\underset{B_+}{\times}V_i=\mathcal{F}_{G}\underset{G}{\times}V_i$  contains rank-two subbundle  $\mathcal{W}_i=\mathcal{F}_{B_+}\underset{B_+}{\times}W_i$ 

associated to  $W_i \subset V_i$ , and  $W_i$  in turn contains a line subbundle  $\mathcal{L}_i = \mathcal{F}_{B_+} \times L_i$ 

Using structure theorems we obtain r Miura (GL(2),q)-opers

$$A_{i}(z) = \begin{pmatrix} g_{i}(z) & \Lambda_{i}(z) \prod_{j>i} g_{j}(z)^{-a_{ji}} \\ 0 & g_{i}^{-1}(z) \prod_{j\neq i} g_{j}(z)^{-a_{ji}} \end{pmatrix}$$

Z-twisted Miura-Plücker (G,q)-oper is meromorphic Miura (G,q)-oper on P1 such that for each Miura (GL(2),q)-oper

$$A_i(z) = v(zq)Zv(z)^{-1}|_{W_i} = v_i(zq)Z_iv_i(z)^{-1}$$

where 
$$v_i(z) = v(z)|_{W_i}$$
 and  $Z_i = Z|_{W_i}$ 

#### QQ-System

**Theorem:** There is a one-to-one correspondence between the set of nondegenerate Z-twisted Miura-Plücker (G,q)-opers and the set of nondegenerate polynomial solutions of the QQ-system

$$\widetilde{\xi}_{i}Q_{-}^{i}(z)Q_{+}^{i}(qz) - \xi_{i}Q_{-}^{i}(qz)Q_{+}^{i}(z) = \Lambda_{i}(z) \prod_{j>i} \left[ Q_{+}^{j}(qz) \right]^{-a_{ji}} \prod_{j< i} \left[ Q_{+}^{j}(z) \right]^{-a_{ji}}, \qquad i = 1, \dots, r,$$

$$\widetilde{\xi}_i = \zeta_i \prod_{j>i} \zeta_j^{a_{ji}}, \qquad \xi_i = \zeta_i^{-1} \prod_{j< i} \zeta_j^{-a_{ji}}$$

$$v(z) = \prod_{i=1}^{r} y_i(z)^{\check{\alpha}_i} \prod_{i=1}^{r} e^{-\frac{Q_-^i(z)}{Q_+^i(z)}e_i} \dots, \qquad g_i(z) = \zeta_i \frac{Q_+^i(qz)}{Q_+^i(z)}$$

# XXZ Bethe Ansatz Equations for G



Space of nondegenerate solutions of QQ-system for G



Nondegenerate **Z-twisted Miura-Plucker** (G,q)-opers with regular singularities

Space of nondegenerate solutions of XXZ for G

?

Nondegenerate **Z-twisted Miura** (G,q)-opers with regular singularities

#### Quantum Bäcklund Transformation

**Theorem:** Consider the following q-gauge transformation

$$A \mapsto A^{(i)} = e^{\mu_i(qz)f_i} A(z) e^{-\mu_i(z)f_i}, \quad \text{where} \quad \mu_i(z) = \frac{\prod\limits_{j \neq i} \left[ Q^j_+(z) \right]^{-a_{ji}}}{Q^i_+(z)Q^i_-(z)}$$

changes the set of Q-functions

$$Q^j_+(z) \mapsto Q^j_+(z), \qquad j \neq i,$$
  $Q^i_+(z) \mapsto Q^i_-(z), \qquad Z \mapsto s_i(Z)$ 

$$\{\widetilde{Q}_{+}^{j}\}_{j=1,...,r} = \{Q_{+}^{1},...,Q_{+}^{i-1},Q_{-}^{i},Q_{+}^{i+1}...,Q_{+}^{r}\}_{j=1,...,r}$$

$$\{\widetilde{z}_{j}\}_{j=1,...,r} = \{z_{1},...,z_{i-1},z_{i}^{-1}\prod z_{j}^{-a_{ji}},...,z_{r}\}$$

Now the strategy is to successively apply Bäcklund transformations according to the reduced decomposition of the element of the Weyl group

Consider longest element  $w_0 = s_{i_1} \dots s_{i_\ell}$ 

**Theorem:** Every Z-twisted Miura-Plucker (G,q)-oper is Z-twisted Miura (G,q)-oper

The proof based on properties of double Bruhat cells addresses the existence of the diagonalizing element v(z) (to be constructed later)

#### III. Generalized Wronskians

Consider big cell in Bruhat decomposition

$$G_0 = N_- H N_+$$
$$g = n_- h n_+$$

 $V_i^+$  irrep of G with highest weight  $\omega_i$   $h 
u_{\omega_i}^+ = [h]^{\omega_i} 
u_{\omega_i}^+$ 

Define principal minors for group element g

For SL(N) they are standard minors of matrices

$$\Delta^{\omega_i}(g) = [h]^{\omega_i}, \quad i = 1, \dots, r$$

Then **generalized minors** are regular functions on G

$$\Delta_{u\omega_i,v\omega_i}(g) = \Delta^{\omega_i}(\tilde{u}^{-1}g\tilde{v})$$

 $u,v\in W_{G}$ 

**Proposition 4.5.** For a W-generic Z-twisted Miura-Plücker (G,q)-oper with q-connection  $A(z) = v(qz)Zv(z)^{-1}$ , where  $v(z) \in B_{-}(z)$  we have the following relation:

(4.5) 
$$\Delta_{w \cdot \omega_i, \omega_i}(v^{-1}(z)) = Q_+^{w,i}(z)$$

for any  $w \in W$ .

## Lewis Carroll Identity

In Type A FZ relation reduces to

$$\Delta_{u\omega_i,v\omega_i}\Delta_{us_i\omega_i,vs_i\omega_i} - \Delta_{us_i\omega_i,v\omega_i}\Delta_{u\omega_i,vs_i\omega_i} = \Delta_{u\omega_{i-1},v\omega_{i-1}}\Delta_{u\omega_{i+1},v\omega_{i+1}}$$

$$M_1^1 M_i^2 - M_i^1 M_1^2 = M_{1i}^{12} M$$

# IV. The qDE/IM Correspondence

[Bazhanov, Lukyanov, Zamolodchikov]

[Masoero, Raimondo, Valeri]

Consider Schrödinger equation

$$\Psi_1'' + \left(E - \frac{l(l+1)}{x^2} - x^{2M}\right)\Psi_1 = 0.$$

Can be presented in the vector form

$$\Psi_1' + \frac{l}{x}\Psi_1 + \Psi_2 = 0$$

$$\Psi_2' - \frac{l}{x}\Psi_2 + p(x, E)\Psi_1 = 0$$

Or as an **affine**  $\mathfrak{Sl}_2$  oper

$$\mathcal{L}\psi=0$$
, where  $\psi=\begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix}$  
$$\mathcal{L}=\partial_x+\frac{l\check{\alpha}}{x}+e+p(x,E)f$$
 
$$p(x,E)=x^{2M}-E$$

Symmetries

$$\Lambda: x \mapsto x, E \mapsto E, l \mapsto -l-1$$
 
$$\Omega: x \mapsto qx, E \mapsto q^{-2}E, l \mapsto l$$

 $\Omega$  is realized as shift of Kac-Moody loop parameter t

#### Solutions of the ODE

Solution of the Schrödinger equation at  $\infty$ 

$$\chi(x, E, l) \sim x^{-\frac{M}{2}} \exp\left(-\frac{x^{1+M}}{1+M} + \dots\right)$$

Act with  $\Omega$  to get another solution

$$\chi^{+}(x, E, l) = \chi(x, E, l)$$
  
 $\chi^{-}(x, E, l) = iq^{-\frac{1}{2}}\chi(qx, q^{-2}E, l)$ 

Solutions around x = 0

$$\psi(x, E, l) \sim ax^{l+1} + O(x^{l+3})$$

Act with  $\Lambda$  to get a different basis

$$\psi^{+}(x, E) = \psi(x, E, l)$$

$$\psi^{-}(x, E) = \psi(x, E, -l - 1)$$

Wronskian

$$W[\psi^+, \psi^-] = 2i(q^{l+\frac{1}{2}} - q^{-l-\frac{1}{2}})$$

Discrete values of energy arise when  $\psi^{\pm} \to 0$  as  $x \to \infty$ 

Spectral determinants

$$D^{\pm}(E,l) = \prod_{n=1}^{\infty} \left(1 - \frac{E}{E_{\pm}}\right)$$

# The ODE/IM Correspondence

Expand  $\psi$  in  $\chi$  basis

$$\psi^+ = C(E, l)\chi^+ + D(E, l)\chi^-$$

Act with  $\Omega, \Lambda$ 

$$\Lambda \psi^{\pm} = \psi^{\mp}$$

$$\Lambda \chi^{\pm} = \chi^{\pm}$$

$$\Omega \psi^{\pm} = q^{\frac{1}{2} \pm l \pm \frac{1}{2}} \psi^{\pm}$$

$$\Omega \chi^{+} = -iq^{\frac{1}{2}} \chi^{-}$$

$$\Omega \chi^- = -iq^{\frac{1}{2}}\chi^+ + u\chi^-$$

Thus

$$C(E,l) = -iq^{-l-\frac{1}{2}}D(q^{-2}E,l)$$

$$\psi^{-} = D(E, -l-1)\chi^{-} - iq^{l+\frac{1}{2}}D(q^{-2}E, -l-1)\chi^{+}$$

Wronskian yields the **QQ-system** 

$$q^{l+\frac{1}{2}}D(q^E,l)D(E,-l-1)-q^{-l-\frac{1}{2}}D(E,l)D(q^2E,-l-1)=q^{l+\frac{1}{2}}-q^{-l-\frac{1}{2}}$$

ODE/IM:

Monodromy of solutions around x = 0



QQ-system

## The qDE/IM Correspondence

Affine  $\mathfrak{g}$  oper on formal disk



(G,q)-oper on projective line

**Theorem 5.6.** 1)In case if  $M \in \mathbb{Z}_+$  ( $q^{M+1} = 1$ ), the monodromy matrix is represented by regular semisimple element  $Z^{(M+1)h^{\vee}}$  in the basis of  $\varphi_0^{i,v_s}$ :

(5.7) 
$$\varphi_k^{i,v_s}(e^{2\pi i}x, E) = (-1)^{2\langle \rho^{\vee}, \omega_i \rangle} \varphi_k^{i,Z^{(M+1)h^{\vee}}v_s}(x, E),$$

2) For  $\Psi_{-k+1/2}^{(i)}(x,E)$  solutions, the monodromy operator can be expressed as follows:

$$(5.8) \Psi_{-k+1/2}^{(i)}(e^{2\pi i}x, E) = (-1)^{2\langle \rho^{\vee}, \omega_i \rangle} W_e(x, E) Z^{(M+1)h^{\vee}} W_e^{-1}(x, E) \Psi_{-k+1/2}^{(i)}(x, E)$$

3) The Monodromy matrix is conjugated to the following operator

(5.9) 
$$\left[ A(q^M E) A(q^{M-1} E) \dots A(E) \right]^{h^{\vee}} = v(E) Z^{(M+1)h^{\vee}} v(E)^{-1} ,$$

where  $A(E) = v(qE)Zv(E)^{-1}$  is the Miura (G,q)-oper connection, defined by the QQ-system.

## SL(2) Example

In (5.1) we have  $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and  $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$  so

$$\varphi_0^{v_1}(e^{2\pi i}x, E) = \zeta^{M+1}\varphi_0^{v_1}(x, E), \qquad \varphi_0^{v_2}(e^{2\pi i}x, E) = \zeta^{-M-1}\varphi_0^{v_2}(x, E),$$

where  $\zeta = \omega^{\frac{l}{2}}$ , so the monodromy matrix is  $Z^{M+1}$  where  $Z = \operatorname{diag}(\zeta \zeta^{-1})$ .

Let us consider  $\Phi^{(i)}$  (5.6). For G = SL(2) then (4.34) reads

(5.11) 
$$Z^{-1}\mathcal{W}(qz)v_1 = \mathcal{W}(z)s^{-1}(z)v_1$$

In this case  $s^{-1}(z) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ . The q-Wronskian in this case reads

(5.12) 
$$\mathscr{W}(z) = \begin{pmatrix} Q^{+}(z) & \zeta^{-1}Q_{+}(qz) \\ Q^{-}(z) & \zeta Q^{-}(qz) \end{pmatrix},$$

Let  $b(z) = \begin{pmatrix} Q^{+}(z) \\ Q^{-}(z) \end{pmatrix}$  then  $\mathcal{W}(z)^{-1}b(z) = v_1$ . Thus we have from (5.11) that

$$(5.13) b(qz) = \mathfrak{M}(z) \cdot b(z),$$

where

(5.14) 
$$\mathcal{M}(z) = Z\mathcal{W}(z)s^{-1}(z)\mathcal{W}(z)^{-1}$$