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[Bazhanov, Lukyanoy,
Zamolodchikov]

|. The ODE/IM Correspondence

[Dorey, Dunning,

Tateo]
Consider Schrodinger equation Symmetries
,1,+(E 1(14;1) xQM)%:O ANiz—a, E—E 1+ —1—1
X
Q:zx—qr, Ev— g *E, l—1
Can be presented in the vector form /
/ s
1—|—E\Ifl—|—\112: g = eT+M



Asymptotics at Infinity

Iyt £ th hrédi . _ M .CEH_M
Solution of the Schrodinger equation at x = o X(xv E7 l) ~ T 2 exp L+ M - ...

Let X—I_(Q?,E,l) :X(ZIZ’,E,Z)

Wronskian

Act with € to get another solution X (x,E,l) = iq_%x(qa:, q °F, [) WixT, x| =2

Q:x—qr, E— q °E, |1

17T

q — 61—|—M




Asymptotics cont'd

Solutions around x = 0 Y(x, B, 1) ~ ar't 4 O(xH'S) Noez—o, FE—FE [ — —[—1
Act with A to get a different basis w_l_(ﬂj, E) — @D(CIZ, E, l)
Wronskian
v (z,FB) =v¢(x, E, -1 —1) 1

Wt o] =2i(¢""2 —q~'"2)

Discrete values of energy arise when ™ — 0 asx — oo {E,r:;}
O
b
Spectral determinants DE(E,1) = 1:[1 (1 Ei) V/xﬂ\ \\\ ///
e 2M - >
WKB approximation F+t ~ ni+Mm




Expand yin y basis

Act with Q, A

Thus

Expansion in y-basis

YT =C(E, X" + D(E, )X~

wx



The QQ-System

Wronskian W[@b*’) ¢_] — Qi(qH'% —q _5)
¢ D(¢", )D(B,~1 = 1) — ¢~ 2 D(B,)D(¢*E, ~L = 1) = ¢'*% — g7

yields the QQ-system QQ_I_(QQE)Q_(E) — C_1Q+ (E)Q_(QQE) = A

D(E, [) are entire functions — eigenvalues of Baxter Q-operators which appear in the eight-vertex model.

[BLZ] description of ¢ < 1 CFT as completely integrable theory

QQ-system is ubiquitous to quantum integrable systems (XXX, XXZ, XYZ)



Examples

Consider M =1 c = —2 CFT, i.e. the “free fermion” theory

Ef=4n4+21—-1, n=1,2...,

, 03+ 4) "
DT (E,I) = T3, L_E
(3+3— %)
. 0, if0<x<1
Consider M — oo The Schrodinger potential becomes spherically symmetric rigid well <\ +o00, ifx>1

1

DT (E, 1) —=T(1+3/2) (VE/2)" "2 J, 1 (VE)

2



The ODE/IM Correspondence

YT =D(FE, -l —1)x" — iql+%D(q_2E, ——1)x™"
CRT(E)Q™(E) - (' QT (E)Q™ (¢"E) = A

Spectral determinant of the ODE Q-function

Monodromy properties of solutions QQ-system

How can we understand this geometrically?



ll. Affine Opers

Study analytic solutions of the following linear problem

[
/1_|_;\Ijl‘|—\112:0

[
Wy — E‘Ifz +plz, E)¥; =0

Can rewrite it using the following affine connection

/
L(x,E) = 0, + — + e+ p(x, E)eg
X

where plz, F) = g MhY _ E, with M >0and £ € C



Differential Operator

Consider connection L = 0 - - A(x, B) Az, E) € glz™, E][[z]]

Proposition 2.1. There exist an element U € G|[z, 2™, E]], such that
4

X

U LU =0, +

and for any finite-dimensional representation V of g, U(z,zM, E)v = v + x20(x), where
o(x) € VIE, x"][[2]].

Allows to find a formal solution

Theorem 2.2. There following expression Wy(x, E) = 27 U(x)g, where g € G and U €
G|z, 2™, E]| constructed as in Proposition 2.1 gives a formal group-valued solution to the

problem LW = 0.



Canonical Solutions

Corollary 2.3. In any highest weight representation V', choosing a standard basis {vi}fiqb(v)

accoriding to the weight decomposition, so that \; = wt(v;), there is a family of V-valued

solutions of equation Lp = 0, namely {¢™"Vi(x, E)}?ZL(V), so that

@Ai’vi (377 E) — We(xa E)Ui — x_<€’>\i>(vi + xﬂZ(x))a 1=1,... ,dim(V),
where v;(x) € V[E, 2M][[z]].

Proposition 2.4. Any analytic solution ¥(x, F) inx, E of LV (x, E) =0 onxz € D € C\R
and E € C can be decomposed in terms of formal solutions ™% in the following way:

where Q,,(E) are analytic functions of E.



Lie-Theoretic Data

O

| 76
ADE-type E, 0—0—0—0—0—0—0 Incidence matrix B =21, - C
%1 Q9 Q3 Q4 875 (8% 8%
hiyhyl =0, hisej] = Cijey, hi, 5] = —Cijfj, i, f5] = dijhy
— _1 P . )
Fundamental weights wi(h;) = 0;; Simple roots Wi = Z(C )jicj, 1€l
jel
Fundamental representations L(w;),1 €1

Affine Kac-Moody algebra g = g ® Clt, t_l]@ Cc

a® f(t),b® g(t)] = la,b] ® f(t)g(t) + (alb) Resi=o (f'(t)g(t)dl) c
c,g]l=0.

Evaluation representation: as a vector space we take V({) =V

(a® f(t))v= f({)(av), cv =20, foracg,f(t)€eClt,t ',veV



Twisted Connection

Consider the evaluation representation vy corresponding to the highest weight representation V_ of g with

evaluation parameter t = e™P)

Here p(i) is a homomorphism from the ordered set of vertices of the Dynkin diagram of g to Z

Denote &, the twisted differential operator by automorphism of g: t — te?™k
27 274 M

Proposition 3.2. If ¢(x, E) is the solution of the linear problem L(x, E)p(x, E) = 0, then
or(x, B) = w k" p(wFz, QFE) is a solution of linear problem Ly (x, E)éi(z, E) = 0.



WKB Analysis

Proposition 3.8. Let L(x, E) be the differential operator defined above. Then, we have the
following gauge transformation of L:

v — MpY
(3.10) ¢(z, B)2¥ L(x,E) = 0, + q(x, E)A - ‘ " G- Oz~ 179
p(a, B)W¥ = q(z, E) + O(z~7) A=eg+e pV =i w
p’
Let T
S(z, E) = |, a(y, E)dy
Theorem: There exist a unigue solution
U(x, E) = e @) gz, BYh (¥ +0(1)), in the sector |argx| < 2(M7T—|— 3 0

Ap = o)



Family of Solutions

Consider Up(z, B) = w_kpv\lf(wkx, OF )

Proposition 3.10. For any k € R such that |k| < hv(]\gﬂ), on the positive real semi-axis
the function V. has the asymptotic behavior

Uy(z, B) = e M 5@E) g BY hy ki (oh + 0(1)), 23>0,

271
where Ay = A\ and v = erV . Then, the functions Vs, s € Z,s &
1 B B |1 . . |
[2 5y 5 ] 2], are solutions in the representation Vv

2

1 -
2



¥Y-System

Theorem: Let g be a simple Lie algebra of ADE type, and let the solution ¥ (x, E)

Let us denote the solution ¥ corresponding to representation V' = V() a5 @)

mi (00 (2, B) AU, (2, B)) = @) 99 (2, B)®) Q) wU)(z, B)®w) | Viel
1>l 1<el

Here unique morphism of representations

m; : /\L(wz) — ®L(wj)®Bij

jel

Such that Wi = Wjerv,
m;(fivi Avi) = w;



ill. g-Opers

G-simple simply-connected complex Lie group

. . ) D .
Principal G-bundle JF¢ over M,:D — D
Z gz
: . : : q
A meromorphic (G,q)-connection on 37(; is a section A of Hom@U (9’(;, S’G) U-open dense set

Choose U so that the restriction Fg|y of Fg to U isisomorphic to a trivial G-bundle

A(z) € G(C(2)) on UﬁMq_l(U)

Change of trivialization ~ A(z) — Q(QZ)A(Z)Q(Z)_l



(G,q)-Opers

A meromorphic (G,q)-oper on disc D is a triple (F 5, A, 5 )

A is a meromorphic (G, ¢)-connection

F B isareduction of Fa to B_

Oper condition: Restriction of the connection on some open dense set U

A:Fg — FLto UN M Y(U)

takes values in the double Bruhat cell

B_(ClU N Mq_l(U)])CB_ (ClU N Mq_l(U)]) Coxeter element: ¢ = []; s;

Locally

) ¢i(z) € C(z) and n(z),n'(z) € N_(z)



Miura (G,q)-Opers

Definition: A Miura (G, q)-operon D is a quadruple (Fg, A,Fp,,Fp_), where (Fg, A,TFB, )
is a meromorphic (G, g)-oper on D and Fp_ is a reduction of the G-bundle Fo to B_ that
is preserved by the ¢-connection A.

Choose a trivialization Fg.: >~ G under this isomorphism ng_,a:

2

aB_ C G
bB.

[

STB_F,QZ‘

Then a™'b is a well defined element of the double quotient of B_\B/B, ~ W

Flags Jp_ and 378+ are in generic relative position at x € X if the corresponding element of the Weyl group

assigned to them at x is equal to 1 or a'beB_- B,



Structure Theorem

Theorem: i) Fach reqular Miura (G, q)-oper on a disk can be represented as an element

of N+((2)) 1 1; siN+((2)) N B_((2))

it) Elements from the above intersection may be written in the form

tifi

(4.3 AG) = [o:(x) en®,  gi(2) € ()",

where t; € C* are complex parameters corresponding to the lift of ¢; to s;.



Adding Singularities and Twists

Consider family of polynomials {AZ’ (Z) }izlj,“,rp

(G,q)-oper with regular singularities can be written as

Using structure theorem every Miura (G,q)-oper with singularities reads

A;(2)

Az) = [[ai(2)¥ en®,  gi(z) € C(2)"

(G,q)-oper is Z-twisted if it is equivalent to a constant elementof G Z € H C H(z) Zisregularsemisimple. Thereare W¢

B Miura (G,q)-opers for each (G,q)-opers
A(z) = g(qz)Zg(2) "

Z-twisted Miura (G,q)-oper if gauge transform is from Borel

A(2) = v(q2) Zv(2) 71, v(z) € Bi(2)



Plucker Relations

V" irrep of G with highest weight w); Line L; C V; stableunder B

Plucker relations: for two integral dominant weights L4, C V)4, 1s the image of Ly ® L, C V\ ® V,,

under canonical projection V) & Vu — V)\—|—,u

Conversely, for a collection of lines Ly C V) satisfying Plucker relations JFB C (G suchthat L) is stabilized by B for all A

A choice of B is equivalent to a choice of B, -torsor in GG

. ® o
Let v, be a generator of the line L; C V;. Thisis a vector of weight w; wrt H C B.
The subspace of V; of weight w; — «; is one-dimensional and spanned f; * Vo, ' f l
‘ i Yo

Thus the 2d subspace spanned by {V,., fi - Uy, } is a B-invariant subspace of V; / \




Miura-Plucker (G,q)-Opers

let (g, A,Tp_,Tp,) be a Miura (G, g)-oper with regular singularities ~ {Ai(2)}i=1,....r

Associated vector bundle V; = ?BJF X Vi =Fo xV; contains rank-two subbundle W, = S'VBJF x W;
B, G By

associated to W; C V;, and W; in turn contains a line subbundle £, = Fp L X L;
5y

Using structure theorems we obtain r Miura (GL(2),q)-opers
9i(z)  Ai(z)[l;5;9(z)7%

1 —ai
0 9; (2) Hj;éz' gj(z)~%
Z-twisted Miura-Pliicker (G,q)-oper is meromorphic Miura (G,q)-oper on P1 such that for each Miura (GL(2),q)-oper

Ai(z) = U(zq)Zv(z)_1|Wi = Ui(ZC])ZiUi(Z)_l

where v;(2) = v(2)|w, and Z; = Z|w,



QQ-System

Theorem: There 1s a one-to-one correspondence between the set of nondegenerate Z -
twisted Miura-Plicker (G, q)-opers and the set of nondegenerate polynomaial solutions of the

QQ-system

EQ(2)Q (g2) — &Q"(¢2)Q', (2)
L[ @bea] T @be] . =1

1> 1<

J>1 1<t
r r _Qi'_(z) | ) (QZ)
. ; €4
Proof uses v(z) = H i (2)" H e 9+ . : gz(z) = (; _IZ_ (Z) |
i=1 i=1 +



SL(2) Example

A(Z) — <g(OZ) g/(xsf—l> Z-twisted g-oper condition A(Z) (ZQ)ZU( ) 1, [ = (g <91>
auge transformation reads — y(z) 0 ! Ql(i) — y(z) _y(z) Q_(z)
Gaug f d fU(z) — ( 0 y(Z)_1> (() Ql( )) — ( 0 y(z)gl( )

We find g(z) = Cz‘y(ZCI)y(Z)_l

The g-oper condition becomes the SL(2) QQ-system

(Q-(2)Q+(29) — ¢C'Q-(2q)Q+(2) = A(2)

A(wy) __CQ Q1 (qug)

To get Bethe equations Q+(2) =] | (z —wg) evaluate at roots of Q = = — ,
k1 A(g= wi) Q+ (g 'wg)
L rp—1
Singularities A(z) = H H (2 —q77"2p) XXZ Bethe equations
p=17p,=0 I3
’ > r Wg — ql—rpzp 2 m qWg — wJ
/ qu_Zz—ch -~
0 0 o ® ® ! p=1 k— d<p W — (q ]
q —1F 4 z |
q q q n \
\




XXZ Bethe Ansatz Equations for G

roots of Q+
; . ; —Qjq . ; — Qg4
QLav) 17 o _ Ai(wi) T | @ (qui) | Ty | @ (w))]
i (y—1,,k 7 ; ] T ] e
g he) 5 Ailg i) TTjsy @4 (i) | Ty | @ (g wh)
Space of nondegenerate solutionsof| . . |Nondegenerate Z-twisted Miura-Plucker (G,q)-opers
QQ-system for G with regular singularities

?

Space of nondegenerate solutions of o Nondegenerate Z-twisted Miura (G,q)-opers
XXZ for G . with regular singularities



Quantum Backlund Transformation

Theorem: Consider the following g-gauge transformation | —a;;
] [@L)

A AW — eﬂi(qz)fz’A(Z)e_Nz‘(z)fi7 where  p1;(2) = J7 .
Q4 (2)QL(z)

| | ~. 1 1 . 1 .
changes the set of Q-functions Qi(z) — Qﬂ_(z), J # 1, {@r}jzl,---,r — {Q+a AR LL ; Ql—a QLL SR Q+}
Q%I_(Z) I%QZ_(Z), ZH S’[,(Z) {Z}le”r — {Z]_7. o o ,Z[—]_yzl_lHZJ_aﬂ7. o o 7ZI’}

Now the strategy is to successively apply Backlund transformations according to the reduced decomposition of the element of the Weyl group

Consider longest element Wy = Siq1 - - -S4y

Theorem: Every Z-twisted Miura-Plucker (G,q)-oper is Z-twisted Miura (G,q)-oper

The proof based on properties of double Bruhat cells addresses the existence of the diagonalizing element v(z) (to be constructed later)



Generalized Wronskians

Consider big cell in Go = IN_ HN, V; irrep of G with highest weight W;

Bruhat decomposition
— + — [h]wiyT
g — N— h TL_|_ hywi o [h] Vc,uit

Define principal minors for group element g | . .
A% (g) = |h]*", 1=1,...,r

For SL(N) they are standard minors of matrices

Then generalized minors are regular functions on G Auwi,vwi (g) = A*" (ﬂ_lg@) u,v e Wg

Proposition 4.5. For a W -generic Z-twisted Miura-Pliicker (G, q)-oper with g-connection
A(2) = v(qz)Zv(2)~t, where v(z) € B_(z) we have the following relation:

(4.5) Ay w, (U_l(z)) = qu’z(z)
for any w € W.



Generalized Minors and QQ-system

The set of generalized minors {Ay., w; Jwew:i=1....r Creates a set of coordinates on G/B™,
known as generalized Plucker coordinates. In particular, the set of zeroes of each of Ay ., w,
is a uniquely and unambiguously defined hypersurface in G/B. |

Proposition For a W -generic Z-twisted Miura-Plucker (G, q)-oper with g-connection

A(2) = v(qz)Zv(z)~ L, where v(2) € B_(z) we have the following relation:

A, w; (U_l(z)) — Qrﬁuﬁz(z)
for any w € W.
r QZ:_(Z)

proof:  Since A%i(v!(2) = Q) ()  Disgonalizing sauge -1,y _ [T 0" [ |

transformation -
1=

v_l(z)y(ji = Qi(z)u(jz + Qv (2) fivg + ...

(&

i=1

1

(2)




Generalized Wronskians

The approach is similar to Miura-Plucker g-Opers

Let v ~ be a generator of the line [PL C V+ V.t irrep of G with highest weight W;

(

The subspace LT .. of V; of weight ¢! - w; is one-dimensional and is spanned by s~ v »

’L

Associated vector bundle Vi=Fp, x VI =Fcx V7"
By G
ins i + _ + + _ +
Contains line subbundles LT = F 1y I>j<[ L', Lc,i = T I>j<[ LC)Z.

Define generalized Wronskian as quadruple (Fa, IB., G, 7Z)

¢ is a meromorphic section of a principle bundle F¢g

s.t. for sections 1V; , }z 1,...r oflinebundles {£., L+ iYiz1,..r on U N M-HU)

%qv Z%U



Adding Singularities

Effectively the above definition means that the Wronskian, written as an element of G(z), satisfies

Z7'9(qz) vi =9 (2) se(2)"" vt

Define generalized Wronskian with regular singularities if inv



q-Opers and g-Wronskians

Theorem1:

Theorem 2: For a given Z-twisted (G, q)-Miura oper, there exists a unique gener-
alized q- Wronskian

W (z) € B_(z)woB_(z) N By (2)wgB1(z) C G(2),
satisfying the system of equations

W(qkﬂz)% = 7" (2)s 1 (2)s Y (gz) ... s (")

1 =1,...,r, k=0,1,...,h—1,

where h is the Coxeter number of G.



Examples: SL(2)

In terms of Q-polynomials W(Z) o (Q+ (Z) C_lA(Z)—lQ—F (QZ

CQT(2)Q (g2) = (' Q™ (q2)Q (2) = A(2)
is equivalent to det” (z) = 1.



The gDE/IM Correspondence "

Proposition 5.1. i)In any evaluation representation ‘_/,j there 1s a system of formal solu-
tions of the linear problem

o (2) = a7 <0 (v + g (2)),

where vs(x) € V[E,zM][[x]]. Here A\ = wt(vs).
it) The following transformation properties hold:

Wk e (W, QF ) = w TR A e ()
Proposition 5.3. The solutions \Ij—k—l—l/Q have the following form:

dimV
) _ AP
T (e § j QL (¢ BT " (2, B)



Main Theorem

Affine g oper on formal disk (G, g)-oper on a disc

Theorem: 1)In case if M € Zy (M1 =1), the monodromy matriz is represented by

(M+1)hY

reqular semisimple element 2 in the basis of @y °:

i)z(M—l—l)hva

1,V T \/wi s
Spk (62 .CC,E):(—l)2<p’ >90]g (ZIZ‘,E),

2)For \Ifgeﬂ/z(a:, E) solutions, the monodromy operator can be expressed as follows:

(*™iz, B) = ()2 #0W, (a, B) 20N W (2, B) 0

(%)
v e —k+1/2

—k+1/2 (z, F)

3) The Monodromy matrix is conjugated to the following operator
hY '
A(E)AGMTE).AB)] = o(E) 20O ()

where A(E) = v(qE)Zv(E)™! is the Miura (G,q)-oper connection, defined by the QQ-
system.



