The qDE/IM Correspondence

with E. Frenkel and A. Zeitlin, to appear

Talk at University of Melbourne

Peter Koroteev

Motivation

Quantum Geometry and Integrable Systems

BPS/CFT Correspondence

Geometric q-Langlands Correspondence

CFT as Integrable System

[Okounkov et al]

[Pushkar, Zeitlin, Smirnov] [PK, Pushkar, Smirnov, Zeitlin]

[Nekrasov Shatashvili]

[Frenkel] [Aganagic, Frenkel, Okounkov]

[Bazhanov, Lukyanov, Zamolodchikov] [Dorey, Dunning, Tateo]

I. The ODE/IM Correspondence

Consider Schrödinger equation

$$\Psi_1'' + \left(E - \frac{l(l+1)}{x^2} - x^{2M}\right)$$

Can be presented in the vector form

$$\Psi_1' + \frac{l}{x}\Psi_1 + \frac{l}{x}\Psi_2 + \frac{l}{x}\Psi_2 + p(x, E)$$

[Bazhanov, Lukyanov, Zamolodchikov] [Dorey, Dunning, Tateo]

Symmetries

 $\Psi_1 = 0$ $\Lambda: x \mapsto x, E \mapsto E, l \mapsto -l - 1$ $\Omega: x \mapsto qx, E \mapsto q^{-2}E, l \mapsto l$ $q = e^{\frac{i\pi}{1+M}}$ $\Psi_2 = 0$

 $\Psi_{1} = 0$

Asymptotics at Infinity

Solution of the Schrödinger equation at $x = \infty$ $\chi(x, x)$

Let χ

Act with Ω to get another solution $\chi^-(x, E, l)$

$$\Omega: x \mapsto qx, E \mapsto q^{-2}E, l \mapsto l$$
$$q = e^{\frac{i\pi}{1+M}}$$

$$(E, l) \sim x^{-\frac{M}{2}} \exp\left(-\frac{x^{1+M}}{1+M} + \dots\right)$$

$$\chi^+(x, E, l) = \chi(x, E, l)$$

 $\chi^{-}(x, E, l) = iq^{-\frac{1}{2}}\chi(qx, q^{-2}E, l)$

Wronskian

$$W[\chi^+,\chi^-]=2$$

Asymptotics cont'd

Solutions around x = 0

 $\psi(x, E, l) \sim ax^{l+1} + O(x^{l+3})$

Act with Λ to get a different basis

 $\psi^+(x, E) = \psi(x, E, l)$ $\psi^{-}(x, E) = \psi(x, E, -l - 1)$

 $\{E_n^{\pm}\}$ Discrete values of energy arise when $\psi^{\pm} \to 0$ as $x \to \infty$

Spectral determinants

$$D^{\pm}(E,l) = \prod_{n=1}^{\infty} \left(1 - \frac{E}{E_{\pm}}\right)$$

WKB approximation

$$E_n^{\pm} \sim n^{\frac{2M}{1+M}}$$

$\Lambda: x \mapsto x, E \mapsto E, l \mapsto -l - 1$

Wronskian

$$W[\psi^+, \psi^-] = 2i(q^{l+\frac{1}{2}} - q^{-l-1})$$

Expansion in χ -basis

Expand
$$\psi$$
 in χ basis $\psi^+ = C(E,l)\chi^+ + D(E,l)\chi^-$
Act with Ω, Λ $\Lambda \psi^\pm = \psi^\mp$ Λ^\pm

$$\Omega\psi^{\pm} = q^{\frac{1}{2}\pm l\pm\frac{1}{2}}\psi^{\pm} \qquad \Omega$$

Thus $C(E,l) = -iq^{-l-\frac{1}{2}}D(q^{-2}E,l)$

$$\psi^{-} = D(E, -l-1)\chi^{-} - iq^{l+\frac{1}{2}}D(q^{l+\frac{1}{2}})$$

 $(q^{-2}E, -l-1)\chi^+$

The QQ-System

Wronskian
$$\begin{split} W[\psi^+,\psi^-] &= 2i(q^{l+\frac{1}{2}}-q^{-l-\frac{1}{2}}) \\ q^{l+\frac{1}{2}}D(q^E,l)D(E,-l-1) - q^{-l-\frac{1}{2}}D(E,l)D(q^2E,-l-1) = q^{l+\frac{1}{2}} - q^{-l-\frac{1}{2}} \\ \text{yields the QQ-system} \qquad \zeta Q^+(q^2E)Q^-(E) - \zeta^{-1}Q^+(E)Q^-(q^2E) = \Delta \end{split}$$

D(E, l) are entire functions — eigenvalues of Baxter Q-operators which appear in the eight-vertex model.

[BLZ] description of c < 1 CFT as completely integrable theory

QQ-system is ubiquitous to quantum integrable systems (XXX, XXZ, XYZ)

Examples

Consider M = 1 c = -2 CFT, i.e. the "free fermion" theory

$$E_n^+ = 4n + 2l - 1, \quad n = 1,$$

 D^{-}

Consider $M \to \infty$ The Schrödinger potential becomes spherically symmetric rigid well

 D^+

 $2\ldots$,

$${}^{+}(E,l) = \frac{\Gamma(\frac{3}{4} + \frac{l}{2}) e^{\mathcal{C}E}}{\Gamma(\frac{3}{4} + \frac{l}{2} - \frac{E}{4})}$$

$$ig(egin{array}{ccc} 0, & \mbox{if } 0 < x < 1 \ +\infty, & \mbox{if } x > 1 \end{array} ig)$$

$$(E, l) = \Gamma(l + 3/2) \left(\sqrt{E}/2\right)^{-l - \frac{1}{2}} J_{l + \frac{1}{2}}\left(\sqrt{E}\right)$$

The ODE/IM Correspondence

 $\psi^{-} = D(E, -l-1)\chi^{-} - iq^{l+\frac{1}{2}}D(q^{-2}E, -l-1)\chi^{+}$

Spectral determinant of the ODE

How can we understand this geometrically?

I. Affine Opers

Study analytic solutions of the following linear problem

$$\Psi_1' + \frac{l}{x}\Psi_1 + \Psi_2 = 0$$

$$\Psi_2' - \frac{l}{x}\Psi_2 + p(x, E)\Psi_1 = 0$$

$$\Psi_1'' + \left(E - \frac{l(l+1)}{x^2} - x^{2M}\right)\Psi_1 = 0$$

Can rewrite it using the following **affine** connection

where

$$\mathcal{L}(x,E) = \partial_x + \frac{\ell}{x} + e + p(x,E)e_0$$

 $p(x, E) = x^{Mh^{\vee}} - E$, with M > 0 and $E \in \mathbf{C}$.

Differential Operator

Consider connection
$$\mathcal{L} = \partial_x + \frac{\ell}{x} + A(x, E)$$

Proposition 2.1. There exist an element $U \in G[[x, x^M, E]]$, such that $U^{-1}\mathcal{L}U = \partial_x + \frac{\ell}{x}$

and for any finite-dimensional representation V of \mathfrak{g} , $U(x, x^M, E)v = v + x\tilde{v}(x)$, where $\tilde{v}(x) \in V[E, x^M][[x]].$

Allows to find a formal solution

Theorem 2.2. There following expression $W_g(x, E) = x^{-\ell}U(x)g$, where $g \in G$ and $U \in G[[x, x^M, E]]$ constructed as in Proposition 2.1 gives a formal group-valued solution to the problem $\mathcal{L}W = 0$.

 $A(x, E) \in \mathfrak{g}[x^M, E][[x]]$

Canonical Solutions

Corollary 2.3. In any highest weight representation V, choosing a standard basis $\{v_i\}_{i=1}^{\dim(V)}$ accoriding to the weight decomposition, so that $\lambda_i = \operatorname{wt}(v_i)$, there is a family of V-valued solutions of equation $\mathcal{L}\rho = 0$, namely $\{\varphi^{\lambda_i, v_i}(x, E)\}_{i=1}^{\dim(V)}$, so that $\varphi^{\lambda_i, v_i}(x, E) = W_e(x, E)v_i = x^{-\langle \ell, \lambda_i \rangle}(v_i + x\tilde{v}_i(x)), \quad i = 1, \dots, \dim(V),$ where $\tilde{v}_i(x) \in V[E, x^M][[x]].$

Proposition 2.4. Any analytic solution $\Psi(x, E)$ in x, E of $\mathcal{L}\Psi(x, E) = 0$ on $x \in D \in \mathbb{C} \setminus \mathbb{R}$ and $E \in \mathbb{C}$ can be decomposed in terms of formal solutions φ^{λ_i, v_i} in the following way:

$$\Psi(x, E) = \sum_{i=1}^{\dim(V)} Q_{v_i}(E)$$

where $Q_{v_i}(E)$ are analytic functions of E.

 $\varphi^{\lambda_i,v_i}(x,E),$

Lie-Theoretic Data

Affine Kac-Moody algebra $\ \widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t,t^{-1}] \oplus \mathbb{C}c$

$$[a \otimes f(t), b \otimes g(t)] = [a, b] \otimes f(t)g(t) + (a|b) \operatorname{Res}$$

 $[c, \widehat{\mathfrak{g}}] = 0.$

Evaluation representation: as a vector space we take $V(\zeta) = V_{\zeta}$

$$(a \otimes f(t))v = f(\zeta)(av), \qquad cv =$$

Incidence matrix

$$B = 2\mathbb{1}_n - C$$

$$[e_i, f_j] = \delta_{ij} h_i$$

$$\omega_i = \sum_{j \in I} (C^{-1})_{ji} \alpha_j, \qquad i \in I$$

 $S_{t=0}\left(f'(t)g(t)dt\right)c$

 $for \ a \in \mathfrak{g}, f(t) \in \mathbb{C}[t, t^{-1}], v \in V$

Twisted Connection

Consider the evaluation representation $V^{(i)}$ corresponding to the highest weight representation V_{ω_i} of ${f g}$ with evaluation parameter $t = e^{\pi i p(i)}$

Here p(i) is a homomorphism from the ordered set of vertices of the Dynkin diagram of \mathfrak{g} to \mathbb{Z}

 $\widehat{\mathfrak{g}}: t \longrightarrow te^{2\pi ik}$ Denote \mathscr{L}_k the twisted differential operator by automorphism of

Proposition 3.2. If $\phi(x, E)$ is the solution of the linear problem $\mathcal{L}(x, E)\phi(x, E) = 0$, then $\phi_k(x, E) = \omega^{-k\rho^{\vee}} \phi(\omega^k x, \Omega^k E)$ is a solution of linear problem $\mathcal{L}_k(x, E) \phi_k(x, E) = 0.$

$$\omega = e^{\frac{2\pi i}{h^{\vee}(M+1)}}, \quad \Omega = e^{\frac{2\pi iM}{M+1}} = \omega^{h^{\vee}M}$$

WKB Analysis

Proposition 3.8. Let $\mathcal{L}(x, E)$ be the differential operator defined above. Then, we have the following gauge transformation of \mathcal{L} :

$$(3.10) \qquad q(x,E)^{\mathrm{ad}\rho^{\vee}}\mathcal{L}(x,E) = \partial_x + q(x,E)\Lambda + \frac{\ell - M\rho^{\vee}}{x} + O(x^{-1-\delta})$$

$$p(x,E)^{\frac{1}{h^{\vee}}} = q(x,E) + O(x^{-1-\delta}) \qquad \Lambda = e_0 + e \qquad \rho^{\vee} = \sum_{i=1}^r \omega_i^{\vee}$$

$$[\rho^{\vee},e] = e, \quad [\rho^{\vee},e_0] = -(h^{\vee}-1)e_0$$

$$q(x,E)^{\mathrm{ad}\rho^{\vee}}\mathcal{L}(x,E) = \partial_x + q(x,E)\Lambda + \frac{\ell - M\rho^{\vee}}{x} + O(x^{-1-\delta})$$

$$p(x,E)^{\frac{1}{h^{\vee}}} = q(x,E) + O(x^{-1-\delta}) \qquad \Lambda = e_0 + e \qquad \rho^{\vee} = \sum_{i=1}^r \omega_i^{\vee}$$

$$[\rho^{\vee},e] = e, \quad [\rho^{\vee},e_0] = -(h^{\vee}-1)e_0$$

Lei

$$S(x, E) = \int_0^x q(y, E) dy$$

Theorem: There exist a unique solution

$$\Psi(x, E) = e^{-\lambda S(x, E)} q(x, E)^{-h} (\psi + o(1)),$$

in the sector
$$|\arg x| < \frac{\pi}{2(M+1)} - \delta$$

 $\Lambda \psi = \lambda \psi$

 c_{0}

Family of Solutions

Consider $\Psi_k(x, E) = \omega^{-k\rho^{\vee}} \Psi(\omega^k x, \Omega^k E)$

Proposition 3.10. For any $k \in \mathbb{R}$ such that $|k| < \frac{h^{\vee}(M+1)}{2}$, on the positive real semi-axis the function Ψ_k has the asymptotic behavior

$$\Psi_k(x, E) = e^{-\lambda \gamma^k S(x, E)} q(x, E)^{-h} \gamma^{-kh}$$

$$\begin{array}{ll} \text{where} & \Lambda \psi = \lambda \psi & \text{and } \gamma = e^{\frac{2\pi}{h^{\vee}}} \\ [\frac{1}{2} - \frac{h^{\vee}}{2}, \frac{h^{\vee}}{2} + \frac{1}{2}], \text{ are solutions} & \text{in } z \end{array}$$

 $x \gg 0$, $e^{\frac{2\pi i}{h^{\vee}}}$. Then, the functions Ψ_s , $s \in \mathbb{Z}, s \in \mathbb{N}$ n the representation $V_{\frac{h^{\vee}}{2}+\frac{1}{2}}$.

Ψ -System

Theorem: Let \mathfrak{g} be a simple Lie algebra of ADE type, and let the solution $\Psi(x, E)$ Let us denote the solution Ψ corresponding to representation $V = V^{(i)}$ as $\Psi^{(i)}$

$$m_i \left(\Psi_{-1/2}^{(i)}(x, E) \land \Psi_{1/2}^{(i)}(x, E) \right) = \bigotimes_{j > i \in I} \Psi^{(j)}(x, E)^{\otimes (-a_{ij})} \bigotimes_{j < i \in I} \Psi^{(j)}(x, E)^{\otimes (-a_{ij})}, \qquad \forall i \in I.$$

Here unique morphism of representations

$$m_i: \bigwedge^2 L(\omega_i) \to \bigotimes_{j \in I} L(\omega_j)$$

Such that

$$m_i(f_i v_i \wedge v_i) = w_i$$

 $)^{\otimes B_{ij}}$

$$w_i = \bigotimes_{j \in I} v_j^{\otimes B_{ij}}$$

G-simple simply-connected complex Lie group Principal G-bundle \mathcal{F}_{G} over D

A meromorphic (G,q)-connection on \mathcal{F}_{G} is a section A of $\operatorname{Hom}_{\mathcal{O}_{U}}(\mathcal{F}_{G}, \mathcal{F}_{G}^{q})$ Choose U so that the restriction $\mathcal{F}_G|_U$ of \mathcal{F}_G to U is isomorphic to a trivial G-bundle

 $A(z) \in G(\mathbb{C}(z)) \quad \text{on} \quad U \cap M_q^{-1}(U)$

Change of trivialization $A(z) \mapsto g(qz)A(z)g(z)^{-1}$

q-Opers

- $M_q: D \to D$ $z \mapsto qz$

U-open dense set

A meromorphic (G,q)-oper on disc D is a triple ($\mathcal{F}_G, A, \mathcal{F}_B$)

A is a meromorphic (G, q)-connection

 $\mathcal{F}_{B_{-}}$ is a reduction of \mathcal{F}_{G} to B_{-}

Oper condition: Restriction of the connection on some open dense set U

 $A: \mathcal{F}_G \longrightarrow \mathcal{F}_G^q$ to $U \cap M_q^{-1}(U)$

takes values in the double Bruhat cell

$$B_{-}(\mathbb{C}[U \cap M_q^{-1}(U)])cB_{-}$$

Locally

$$A(z) = n'(z) \prod_{i} (\phi_i(z)^{\check{\alpha}_i} s_i) n(z)$$

 $-(\mathbb{C}[U \cap M_a^{-1}(U)])$

Coxeter element: $c = \prod_i s_i$

 $\phi_i(z) \in \mathbb{C}(z)$ and $n(z), n'(z) \in N_-(z)$

Miura (G,q)-Opers

A Miura (G, q)-oper on D is a quadruple $(\mathcal{F}_G, A, \mathcal{F}_{B_+}, \mathcal{F}_{B_-})$, where $(\mathcal{F}_G, A, \mathcal{F}_{B_+})$ **Definition:** is a meromorphic (G,q)-oper on D and $\mathcal{F}_{B_{-}}$ is a reduction of the G-bundle \mathcal{F}_{G} to B_{-} that is preserved by the q-connection A.

Choose a trivialization $\mathcal{F}_{G,x} \simeq G_{-}$ under this isomorphism

Then $a^{-1}b$ is a well defined element of the double quotient of $B_{B_+} \simeq W_G$

Flags $\mathcal{F}_{B_{-}}$ and $\mathcal{F}_{B_{+}}$ are in generic relative position at $x \in X$ if the corresponding element of the Weyl group assigned to them at x is equal to 1 or $a^{-1}b \in B_{-} \cdot B_{+}$

 $\mathcal{F}_{B_-,x} \simeq aB_- \subset G$ $\mathcal{F}_{B_+,x} \simeq bB_+$

Structure Theorem

Theorem: i) Each regular Miura
$$(G, q)$$
-oper on a disk can be rep
of $N_+((z)) \prod_i s_i N_+((z)) \cap B_-((z))$
ii) Elements from the above intersection may be written in the form
(4.3) $A(z) = \prod_i g_i(z)^{-\check{\alpha}_i} e^{\frac{t_i f_i}{g_i(z)}}, \quad g_i(z) \in \mathbb{C}((z))^{\times},$

where $t_i \in \mathbb{C}^{\times}$ are complex parameters corresponding to the lift of c_i to s_i .

presented as an element

Adding Singularities and Twists

Consider family of polynomials

 $\{\Lambda_i(z)\}_{i=1,\ldots,r}$

(G,q)-oper with regular singularities can be written as

$$A(z) = n'(z) \prod_{i} (\Lambda_i(z)^{\check{\alpha}_i} s_i) n(z), \qquad n(z), n'(z) \in N_-(z)$$

Using structure theorem every Miura (G,q)-oper with singularities reads

$$A(z) = \prod_{i} g_i(z)^{\check{\alpha}_i} e^{\frac{\Lambda_i(z)}{g_i(z)}e_i},$$

(G,q)-oper is **Z-twisted** if it is equivalent to a constant element of G

$$A(z) = g(qz)Zg(z)^{-1}$$

Z-twisted Miura (G,q)-oper if gauge transform is from Borel

$$A(z) = v(qz)Zv(z)^{-1},$$

 $g_i(z) \in \mathbb{C}(z)^{\times}$

 $Z \in H \subset H(z)$ Z is regular semisimple. There are W_G Miura (G,q)-opers for each (G,q)-opers

 $v(z) \in B_+(z)$

Plücker Relations

 V_i^+ irrep of G with highest weight ω_i Line $L_i \subset V_i$ stable under B_+

Plucker relations: for two integral dominant weights

A choice of B is equivalent to a choice of B_+ -torsor in G

Thus the 2d subspace spanned by $\{
u_{\omega_i}, f_i \cdot
u_{\omega_i}\}$ is a B_+ -invariant subspace of V_i

- $L_{\lambda+\mu} \subset V_{\lambda+\mu}$ is the image of $L_{\lambda} \otimes L_{\mu} \subset V_{\lambda} \otimes V_{\mu}$ under canonical projection $V_{\lambda} \otimes V_{\mu} \longrightarrow V_{\lambda+\mu}$ Conversely, for a collection of lines $L_{\lambda} \subset V_{\lambda}$ satisfying Plucker relations $\exists B \subset G$ such that L_{λ} is stabilized by B for all λ
- Let ν_{ω_i} be a generator of the line $L_i \subset V_i$. This is a vector of weight ω_i wrt $H \subset B_+$ The subspace of V_i of weight $\omega_i \alpha_i$ is one-dimensional and spanned $f_i \cdot \nu_{\omega_i}$ Thus the 2d subspace spanned by $\{\nu_{\omega_i}, f_i \cdot \nu_{\omega_i}\}$ is a B_+ -invariant subspace of V_i

Miura-Plücker (G,q)-Opers

let $(\mathcal{F}_G, A, \mathcal{F}_{B_-}, \mathcal{F}_{B_+})$ be a Miura (G, q)-oper with regular singularities Associated vector bundle $\mathcal{V}_i = \mathcal{F}_{B_+} \underset{B_+}{\times} V_i = \mathcal{F}_G \underset{G}{\times} V_i$ contains rank-two subbundle \mathcal{V} associated to $W_i \subset V_i$, and W_i in turn contains a line subbund

Using structure theorems we obtain **r** Miura (GL(2),q)-opers

 $A_i($

Z-twisted Miura-Plücker (G,q)-oper is meromorphic Miura (G,q)-oper on P1 such that for each Miura (GL(2),q)-oper

 A_i

where
$$v_i(z) = v(z)$$

$$\{\Lambda_i(z)\}_{i=1,\ldots,r}$$

$$\mathcal{N}_i = \mathcal{F}_{B_+} \underset{B_+}{\times} W_i$$

dle
$$\mathcal{L}_i = \mathcal{F}_{B_+} \underset{B_+}{\times} L_i$$

$$(z) = \begin{pmatrix} g_i(z) & \Lambda_i(z) \prod_{j>i} g_j(z)^{-a_{ji}} \\ 0 & g_i^{-1}(z) \prod_{j\neq i} g_j(z)^{-a_{ji}} \end{pmatrix}$$

$$u(z) = v(zq)Zv(z)^{-1}|_{W_i} = v_i(zq)Z_iv_i(z)^{-1}$$

 $|_{W_i}$ and $Z_i = Z|_{W_i}$

There is a one-to-one correspondence between the set of nondegenerate Z-**Theorem:** twisted Miura-Plücker (G,q)-opers and the set of nondegenerate polynomial solutions of the QQ-system

$$\widetilde{\xi}_{i}Q_{-}^{i}(z)Q_{+}^{i}(qz) - \xi_{i}Q_{-}^{i}(qz)Q_{+}^{i}(z) = \Lambda_{i}(z)\prod_{j>i} \left[Q_{+}^{j}(qz)\right]^{-a_{ji}}\prod_{j$$

 $\widetilde{\xi}_i = \zeta_i \prod$ j > j

$$v(z) = \prod_{i=1}^{r} y_i(z)^{\check{\alpha}_i} \prod_{i=1}^{r} e^{-\frac{Q_-^i(z)}{Q_+^i(z)}e_i} \dots,$$

Proof uses

QQ-System

$$\begin{bmatrix} \zeta_j^{a_{ji}}, & \xi_i = \zeta_i^{-1} \prod_{j < i} \zeta_j^{-a_{ji}} \end{bmatrix}$$

$$g_i(z) = \zeta_i \frac{Q_+^i(qz)}{Q_+^i(z)}$$

$$A(z) = \begin{pmatrix} g(z) & \Lambda(z) \\ 0 & g(z)^{-1} \end{pmatrix}$$

Z-twisted q-oper condition

Gauge transformation reads

$$v(z) = \begin{pmatrix} y(z) & 0\\ 0 & y(z)^{-1} \end{pmatrix}$$

We find
$$g(z) = \zeta_i y(zq) y(z)^{-1}$$

The q-oper condition becomes the **SL(2) QQ-system**

 $Q_+(z) = \prod_{k=1}^{m} (z - w_k)$ evaluate at roots To get Bethe equations $L r_p - 1$ $\Lambda(z) = \prod_{p=1}^{p} \prod_{p=1}^{p} (z - q^{-j_p} z_p)$ Singularities $p = 1 \, j_p = 0$ $q^{-l_n^k+1}z_n^{k}$

SL(2) Example

$$A(z) = v(zq)Zv(z)^{-1}, \qquad Z = \begin{pmatrix} \zeta & 0\\ 0 & \zeta^{-1} \end{pmatrix}$$

$$\begin{pmatrix} 1 & -\frac{Q_{-}(z)}{Q_{+}(z)} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} y(z) & -y(z)\frac{Q_{-}(z)}{Q_{+}(z)} \\ 0 & y(z)^{-1} \end{pmatrix}$$

$$\Lambda(z) = y(z)y(zq) \left(\zeta \frac{Q_{-}(z)}{Q_{+}(z)} - \zeta^{-1} \frac{Q_{-}(zq)}{Q_{+}(zq)}\right)$$

$$\zeta Q_{-}(z)Q_{+}(zq) - \zeta^{-1}Q_{-}(zq)Q_{+}(z) = \Lambda(z)$$

$$\frac{\Lambda(w_k)}{\Lambda(q^{-1}w_k)} = -\zeta^2 \frac{Q_+(qw_k)}{Q_+(q^{-1}w_k)}, \qquad k = 1, \dots, m.$$

XXZ Bethe equations

$$q^{r} \prod_{p=1}^{L} \frac{w_{k} - q^{1-r_{p}} z_{p}}{w_{k} - q z_{p}} = -\zeta^{2} q^{m} \prod_{j=1}^{m} \frac{q w_{k} - w_{j}}{w_{k} - q w_{j}}, \qquad k = 1, \dots, m$$

XXZ Bethe Ansatz Equations for G

?

roots of Q+ $\frac{Q_{+}^{i}(qw_{i}^{k})}{Q_{+}^{i}(q^{-1}w_{i}^{k})}\prod_{j}\zeta_{j}^{a_{ji}} = -\frac{\Lambda_{i}(w_{k}^{i})\prod_{j}\zeta_{j}^{a_{ji}}}{\Lambda_{i}(q^{-1}w_{k}^{i})\prod_{j}\zeta_{j}^{a_{ji}}}$

Space of nondegenerate solutions of QQ-system for G

Space of nondegenerate solutions of XXZ for G

$$\frac{1}{2^{j>i} \left[Q^{j}_{+}(qw^{i}_{k})\right]^{-a_{ji}} \prod_{j < i} \left[Q^{j}_{+}(w^{i}_{k})\right]^{-a_{ji}}}{\prod_{j < i} \left[Q^{j}_{+}(w^{i}_{k})\right]^{-a_{ji}} \prod_{j < i} \left[Q^{j}_{+}(q^{-1}w^{i}_{k})\right]^{-a_{ji}}}$$

Nondegenerate **Z-twisted Miura** (G,q)-opers with regular singularities

Quantum Bäcklund Transformation

Theorem: Consider the following q-gauge transformation

$$A \mapsto A^{(i)} = e^{\mu_i(qz)f_i}A(z)e^{-\mu_i(z)f_i}, \quad \text{where} \quad \mu_i(z) = \frac{\prod_{j \neq i} \left[Q_+^j(z)\right]^{-a_{ji}}}{Q_+^i(z)Q_-^i(z)}$$

$$ans \quad Q_+^j(z) \mapsto Q_+^j(z), \quad j \neq i, \quad \{\widetilde{Q}_+^j\}_{j=1,...,r} = \{Q_+^1, \ldots, Q_+^{i-1}, Q_-^i, Q_+^{i+1}, \ldots, Q_+^{i-1}, Q_+^i, Q_+^{i+1}, \ldots, Q_+^i, Q_+^i, Q_+^i, Q_+^i, \ldots, Q_+^i, Q_+^i, Q_+^i, Q_+^i, \ldots, Q_+^i$$

changes the set of Q-function

Now the strategy is to successively apply Bäcklund transformations according to the reduced decomposition of the element of the Weyl group

 $w_0 = s_{i_1} \dots s_{i_{\ell}}$ Consider longest element

Every Z-twisted Miura-Plucker (G,q)-oper is Z-twisted Miura (G,q)-oper **Theorem:**

The proof based on properties of double Bruhat cells addresses the existence of the diagonalizing element v(z) (to be constructed later)

Generalized Wronskians

Consider big cell in Bruhat decomposition

$$G_0 = N_- H N_+$$
$$g = n_- h n_+$$

Define **principal minors** for group element g

For SL(N) they are standard minors of matrices

Then generalized minors are regular functions on G

Proposition 4.5. For a W-generic Z-twisted Miura-Plücker (G,q)-oper with q-connection $A(z) = v(qz)Zv(z)^{-1}$, where $v(z) \in B_{-}(z)$ we have the following relation: (4.5) $\Delta_{w \cdot \omega_{i}, \omega_{i}}(v^{-1}(z)) = Q_{+}^{w,i}(z)$

for any $w \in W$.

 V_i^+ irrep of G with highest weight $\,\omega_i$

$$h\nu_{\omega_i}^+ = [h]^{\omega_i}\nu_{\omega_i}^+$$

$$\Delta^{\omega_i}(g) = [h]^{\omega_i}, \quad i = 1, \dots, r$$

$$\Delta_{u\omega_i,v\omega_i}(g) = \Delta^{\omega_i}(\tilde{u}^{-1}g\tilde{v}) \qquad u,v \in W_G$$

Generalized Minors and QQ-system

The set of generalized minors $\{\Delta_{w \cdot \omega_i, \omega_i}\}_{w \in W; i=1,...,r}$ creates a set of coordinates on G/B^+ , known as generalized Plücker coordinates. In particular, the set of zeroes of each of $\Delta_{w \cdot \omega_i, \omega_i}$ is a uniquely and unambiguously defined hypersurface in G/B.

For a W-generic Z-twisted Miura-Plücker (G,q)-oper with q-connection Proposition $A(z) = v(qz)Zv(z)^{-1}$, where $v(z) \in B_{-}(z)$ we have the following relation: $\Delta_{w \cdot \omega_i, \omega_i}(v^{-1}(z)) = Q^{w,i}(z)$

for any $w \in W$.

Proof: Since $\Delta^{\omega_i}(v^{-1}(z)) = Q^i_+(z)$

$$v^{-1}(z)\nu_{\omega_i}^+ = Q^i_+(z)\nu_{\omega_i}^+ + Q^i_-(z)f_i\nu_{\omega_i}^+ -$$

 $v^{-1}(z) = \prod_{i=1}^{r} e^{\frac{Q_{-}^{i}(z)}{Q_{+}^{i}(z)}f_{i}} \prod_{i=1}^{r} \left[Q_{+}^{i}(z)\right]^{\check{\alpha}_{i}} \dots$ Diagonalizing gauge transformation

 $+ \dots$

Generalized Wronskians

The approach is similar to Miura-Plucker q-Opers Let $\nu_{\omega_i}^+$ be a generator of the line $L_i^+ \subset V_i^+$ The subspace $L_{c,i}^+$ of V_i of weight $c^{-1} \cdot \omega_i$ is one-dimensional and is spanned by $s^{-1}\nu_{\omega_i}^+$

Associated vector bundle

$$\mathcal{V}_i^+ = \mathcal{F}_{B_+} \underset{B_+}{\times} V_i^+ = \mathcal{F}_i$$

Contains line subbundles

$$\mathcal{L}_i^+ = \mathcal{F}_H \underset{H}{\times} L_i^+, \quad \mathcal{L}_{c,i}^+$$

Define **generalized Wronskian** as quadruple $(\mathcal{F}_G, \mathcal{F}_{B_+}, \mathscr{G}, Z)$ \mathscr{G} is a meromorphic section of a principle bundle \mathcal{F}_G s.t. for sections $\{v_i^+, v_{c,i}^+\}_{i=1,...,r}$ of line bundles $\{\mathcal{L}_i^+, \mathcal{L}_{c,i}^+\}_{i=1,...,r}$ on $U \cap M_q^{-1}(U)$

 V_i^+ irrep of G with highest weight ω_i

 $\mathcal{F}_G \underset{G}{\times} V_i^+$

 $= \mathcal{F}_H \underset{H}{\times} L_{c,i}^+$

 $\mathscr{G}^q \cdot v_i^+ = Z \cdot \mathscr{G} \cdot v_{c,i}^+$

Adding Singularities

Effectively the above definition means that the Wronskian, written as an element of G(z), satisfies

 $Z^{-1}\mathscr{G}(qz) \ \nu_{\omega_i}^+ = \mathscr{G}(z)$

Define generalized Wronskian with regular singularities if

$$(z) \cdot s_{\phi}(z)^{-1} \cdot \nu_{\omega_i}^+$$

$$s_{\phi}(z) = \prod_{i} \phi_{i}^{-\dot{\alpha}_{i}}$$

 $s_{\Lambda}(z)^{-1} = \prod_{i}^{\text{inv}} s_i \Lambda_i^{\check{\alpha}_i}$

q-Opers and q-Wronskians

Theorem 1:

Nondegenerate generalized q-Wronskians with regular singularities $\{\Lambda_i\}_{i=1,...,r}$

Theorem 2: For a given Z-twisted (G,q)-Miura oper, there exists a unique generalized q-Wronskian

$$\mathscr{W}(z) \in B_{-}(z)w_{0}B_{-}(z) \cap A_{-}(z)$$

satisfying the system of equations

$$\mathscr{W}(q^{k+1}z)\nu_{\omega_i}^+ = Z^k \mathscr{W}(z)s^{-1}(z)s^{-1}(qz)\dots s^{-1}(q^kz)\nu_{\omega_i}^+,$$

 $i = 1, \dots, r, \qquad k = 0, 1, \dots, h-1,$

where h is the Coxeter number of G.

Nondegenerate Z-twisted Miura (G,q)-opers with regular singularities $\{\Lambda_i\}_{i=1,...,r}$

 $B_+(z)w_0B_+(z) \subset G(z),$

Examples: SL(2)

 $\mathscr{W}(qz)\nu_{\omega}^{+} = Z\mathscr{W}(z)s^{-1}(z)\nu_{\omega}^{+}$ $s^{-1}(z) = \tilde{s}^{-1} \Lambda(z)^{\check{\alpha}} = \begin{pmatrix} 0 & \Lambda(z)^{-1} \\ \Lambda(z) & 0 \end{pmatrix},$

In terms of Q-polynomials $\mathscr{W}(z) = \begin{pmatrix} Q \\ Q \end{pmatrix}$

 $\zeta Q^+(z)Q^-(qz) - \zeta^-$ is equivalent to det $\mathscr{W}(z) = 1$.

$$\nu_{\omega}^{+} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad Z = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}$$

$$\begin{array}{ll}Q^+(z) & \zeta^{-1}\Lambda(z)^{-1}Q_+(qz)\\Q^-(z) & \zeta\Lambda(z)^{-1}Q^-(qz)\end{array}\right)$$

$${}^{-1}Q^+(qz)Q^-(z) = \Lambda(z)$$

The qDE/IM Correspondence

Proposition 5.1. i) In any evaluation representation V_k^i there is a system of formal solutions of the linear problem

$$\varphi_k^{i,v_s}(x) = x^{-\langle \ell, \lambda_s \rangle}(v_s +$$

where $\tilde{v}_s(x) \in V[E, x^M][[x]]$. Here $\lambda_s = \operatorname{wt}(v_s)$. *ii)* The following transformation properties hold: $\omega^{-k\rho^{\vee}}\varphi_{k'}^{i,v_s}(\omega^k x,\Omega^k E) = \omega^{-k\langle \ell+\rho^{\vee},\lambda_s\rangle}\varphi_{k+k'}^{i,v_s}(x)$

Proposition 5.3. The solutions $\Psi^{i}_{-k+1/2}$ have the following form:

$$\Psi_{-k+1/2}^{(i)}(x,E) = \sum_{s=1}^{\dim V} Q_{v_s}^i(q^{-k-1})$$

[PK, Frenkel, Ze

 $x\tilde{v}_s(x)),$

 $(+1/2E)\varphi_{1/2}^{i,Z^{\kappa}v_{s}}(x,E)$

• •	•	
へ i t	lin	
711		
		_

Affine **q** oper on formal disk

1) In case if $M \in \mathbb{Z}_+$ $(q^{M+1} = 1)$, the monodromy matrix is represented by **Theorem:** regular semisimple element $Z^{(M+1)h^{\vee}}$ in the basis of φ_0^{i,v_s} :

$$\varphi_k^{i,v_s}(e^{2\pi i}x,E) = (-1)^{2\langle \rho \rangle}$$

2) For $\Psi_{-k+1/2}^{(i)}(x, E)$ solutions, the monodromy operator can be expressed as follows: $\Psi_{-k+1/2}^{(i)}(e^{2\pi i}x, E) = (-1)^{2\langle \rho^{\vee}, \omega_i \rangle} W_e(x, E)$

3) The Monodromy matrix is conjugated to the following operator

$$\left[A(q^{M}E)A(q^{M-1}E)\dots A(E)\right]^{h^{\vee}} = v(E)Z^{(M+1)h^{\vee}}v(E)^{-1}$$

system.

Main Theorem

(G,q)-oper on a disc

 $\langle \rho^{\vee}, \omega_i \rangle \varphi_k^{i, Z^{(M+1)h^{\vee}} v_s}(x, E),$

$$E)Z^{(M+1)h^{\vee}}W_e^{-1}(x,E)\Psi_{-k+1/2}^{(i)}(x,E)$$

where $A(E) = v(qE)Zv(E)^{-1}$ is the Miura (G,q)-oper connection, defined by the QQ-