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I. The ODE/IM Correspondence

Consider Schrödinger equation
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5.3. Examples. Consider the following a�ne sl(2)-oper [FF]

(5.10) L = @x +
l↵̌

x
+ e+ p(x,E)f ,

where p(x,E) = x2M � E.

In (5.1) we have v1 =

✓
1
0

◆
and v2 =

✓
0
1

◆
so

'v1
0 (e2⇡ix,E) = ⇣M+1'v1

0 (x,E) , 'v2
0 (e2⇡ix,E) = ⇣�M�1'v2

0 (x,E) ,

where ⇣ = !
l
2 , so the monodromy matrix is ZM+1 where Z = diag(⇣ ⇣�1).

Let us consider �(i) (5.6). For G = SL(2) then (4.34) reads

(5.11) Z�1W (qz)v1 = W (z)s�1(z)v1

In this case s�1(z) =

✓
0 1
1 0

◆
. The q-Wronskian in this case reads

(5.12) W (z) =

✓
Q+(z) ⇣�1Q+(qz)
Q�(z) ⇣Q�(qz)

◆
,

Let b(z) =

✓
Q+(z)
Q�(z)

◆
then W (z)�1b(z) = v1. Thus we have from (5.11) that

(5.13) b(qz) = M(z) · b(z) ,

where

(5.14) M(z) = ZW (z)s�1(z)W (z)�1

meaning that M(z) is the q-monodromy operator around z = 0. For SL(2) this operator
takes the following form

 
⇣(Q�(qz)Q+(qz)�Q�(z)Q+(z)) ⇣Q+(z)2 � Q+(qz)2

⇣

⇣Q�(qz)2 � Q�(z)2

⇣

Q�(z)Q+(z)�Q�(qz)Q+(qz)
⇣

!

5.3.1. Scalar Operator. The flatness condition L = 0, where  =

✓
 1

 2

◆
reads

 0
1 +

l

x
 1 + 2 = 0 ,

 0
2 �

l

x
 2 + p(x,E) 1 = 0 ,(5.15)

which after illumination of  2 reproduces the following scalar ODE of Schrödinger type was
studied in [BLZ]

(5.16)  00
1 +

✓
E � l(l + 1)

x2
� x2M

◆
 1 = 0 .

Can be presented in the vector form
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(5.16)  00
1 +

✓
E � l(l + 1)

x2
� x2M

◆
 1 = 0 .

[Bazhanov, Lukyanov,

Zamolodchikov]

Symmetries
<latexit sha1_base64="ndqte8rsIu5q+5XnMYH1IdzUGqQ="></latexit>

⇤ : x 7! x, E 7! E, l 7! �l � 1
<latexit sha1_base64="BY/20gFdi8eMSk2Q/zk/EBt+Bvc="></latexit>

⌦ : x 7! qx, E 7! q�2E, l 7! l

[Dorey, Dunning,

Tateo]

<latexit sha1_base64="LBnF/w4ocnS7FWFuSCCuAq890mc=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgEQSiJFPUiFL14ESrYD2hi2Wwn7dLNJu5uhBJz8K948aCIV/+GN/+N2zYHbX0w8Hhvhpl5fsyoVLb9bczNLywuLRdWiqtr6xub5tZ2Q0aJIFAnEYtEy8cSGOVQV1QxaMUCcOgzaPqDy5HffAAhacRv1TAGL8Q9TgNKsNJSx9y9P4e71A0EJil1Y5qlztF1lnXMkl22x7BmiZOTEspR65hfbjciSQhcEYalbDt2rLwUC0UJg6zoJhJiTAa4B21NOQ5Beun4/sw60ErXCiKhiytrrP6eSHEo5TD0dWeIVV9OeyPxP6+dqODMSymPEwWcTBYFCbNUZI3CsLpUAFFsqAkmgupbLdLHOgulIyvqEJzpl2dJ47jsnJQrN5VS9SKPo4D20D46RA46RVV0hWqojgh6RM/oFb0ZT8aL8W58TFrnjHxmB/2B8fkDFhGWKA==</latexit>

q = e
i⇡

1+M



Asymptotics at Infinity
Solution of the Schrödinger equation at  x = ∞

<latexit sha1_base64="r7ZhKZJQ1ARakTJLQ1wuYPAjumI="></latexit>

�(x,E, l) ⇠ x�M
2 exp

✓
� x1+M

1 +M
+ . . .

◆

Act with  to get another solutionΩ

<latexit sha1_base64="FtQvbS317v2GCFJNk1+lHD7JW5k=">AAACAnicbZDLSgMxFIbP1Futt1FX4iZYhIqlzEhRN0JRBJcV7AXasWTSTBuauZBkxFKKG1/FjQtF3PoU7nwbM+0stPpD4Mt/ziE5vxtxJpVlfRmZufmFxaXscm5ldW19w9zcqsswFoTWSMhD0XSxpJwFtKaY4rQZCYp9l9OGO7hI6o07KiQLgxs1jKjj417APEaw0lbH3GmTPrs9LNwXL4v84Cy5pdwx81bJmgj9BTuFPKSqdszPdjcksU8DRTiWsmVbkXJGWChGOB3n2rGkESYD3KMtjQH2qXRGkxXGaF87XeSFQp9AoYn7c2KEfSmHvqs7faz6craWmP/VWrHyTp0RC6JY0YBMH/JijlSIkjxQlwlKFB9qwEQw/VdE+lhgonRqOR2CPbvyX6gflezjUvm6nK+cp3FkYRf2oAA2nEAFrqAKNSDwAE/wAq/Go/FsvBnv09aMkc5swy8ZH9/wHZU4</latexit>

�+(x,E, l) = �(x,E, l)

<latexit sha1_base64="S3CMPzZwecLbDuTpx6zKG7PwixA=">AAACGnicbVDLSsNAFJ3UV62vqEs3wSJUaEtSiroRiiK4rGAf0KRlMp20QyePzkykJeQ73Pgrblwo4k7c+DdO2iy09cDA4ZxzuXOPHVDCha5/K5mV1bX1jexmbmt7Z3dP3T9ocj9kCDeQT33WtiHHlHi4IYiguB0wDF2b4pY9uk781gNmnPjevZgG2HLhwCMOQVBIqacaJhqSbqkwKd4U6eklGXejkukwiCIjjipxnNiF8aSY6JU4yfTUvF7WZ9CWiZGSPEhR76mfZt9HoYs9gSjkvGPogbAiyARBFMc5M+Q4gGgEB7gjqQddzK1odlqsnUilrzk+k88T2kz9PRFBl/Opa8ukC8WQL3qJ+J/XCYVzYUXEC0KBPTRf5IRUE76W9KT1CcNI0KkkEDEi/6qhIZTFCNlmTpZgLJ68TJqVsnFWrt5V87WrtI4sOALHoAAMcA5q4BbUQQMg8AiewSt4U56UF+Vd+ZhHM0o6cwj+QPn6Aap8n2k=</latexit>

��(x,E, l) = iq�
1
2�(qx, q�2E, l)

<latexit sha1_base64="S5N/kGv6rBkefu8BtRS7nEA1Thk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSIIaklKUTdC0Y3LCvYBaSyT6aQdOnkwMxFL6K+4caGIW3/EnX/jNM1CWw9c7uGce5k7x4s5k8qyvo2l5ZXVtfXCRnFza3tn19wrtWSUCEKbJOKR6HhYUs5C2lRMcdqJBcWBx2nbG91M/fYjFZJF4b0ax9QN8CBkPiNYaalnltpOlwzZw8lp1s7cq2rPLFsVKwNaJHZOypCj0TO/uv2IJAENFeFYSse2YuWmWChGOJ0Uu4mkMSYjPKCOpiEOqHTT7PYJOtJKH/mR0BUqlKm/N1IcSDkOPD0ZYDWU895U/M9zEuVfuikL40TRkMwe8hOOVISmQaA+E5QoPtYEE8H0rYgMscBE6biKOgR7/suLpFWt2OeV2l2tXL/O4yjAARzCMdhwAXW4hQY0gcATPMMrvBkT48V4Nz5mo0tGvrMPf2B8/gA5fpNG</latexit>

W [�+,��] = 2

Wronskian

<latexit sha1_base64="BY/20gFdi8eMSk2Q/zk/EBt+Bvc="></latexit>

⌦ : x 7! qx, E 7! q�2E, l 7! l
<latexit sha1_base64="LBnF/w4ocnS7FWFuSCCuAq890mc=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgEQSiJFPUiFL14ESrYD2hi2Wwn7dLNJu5uhBJz8K948aCIV/+GN/+N2zYHbX0w8Hhvhpl5fsyoVLb9bczNLywuLRdWiqtr6xub5tZ2Q0aJIFAnEYtEy8cSGOVQV1QxaMUCcOgzaPqDy5HffAAhacRv1TAGL8Q9TgNKsNJSx9y9P4e71A0EJil1Y5qlztF1lnXMkl22x7BmiZOTEspR65hfbjciSQhcEYalbDt2rLwUC0UJg6zoJhJiTAa4B21NOQ5Beun4/sw60ErXCiKhiytrrP6eSHEo5TD0dWeIVV9OeyPxP6+dqODMSymPEwWcTBYFCbNUZI3CsLpUAFFsqAkmgupbLdLHOgulIyvqEJzpl2dJ47jsnJQrN5VS9SKPo4D20D46RA46RVV0hWqojgh6RM/oFb0ZT8aL8W58TFrnjHxmB/2B8fkDFhGWKA==</latexit>

q = e
i⇡

1+M

Let



Asymptotics cont’d

Solutions around x = 0
<latexit sha1_base64="K+5Ksg+zesypcE9XEJ0lCPaMYAs=">AAACDHicbVDLSgMxFM3UV62vqks3wSK0tJQZLeqyKII7K9gHdMaSSTNtaOZBkpGWYT7Ajb/ixoUibv0Ad/6N6XQW2nogcDjnXG7usQNGhdT1by2ztLyyupZdz21sbm3v5Hf3WsIPOSZN7DOfd2wkCKMeaUoqGekEnCDXZqRtjy6nfvuBcEF9705OAmK5aOBRh2IkldTLF8xA0OK4clVhJVNQF6LxfcTKRly+KSbsJC6plF7VE8BFYqSkAFI0evkvs+/j0CWexAwJ0TX0QFoR4pJiRuKcGQoSIDxCA9JV1EMuEVaUHBPDI6X0oeNz9TwJE/X3RIRcISaurZIukkMx703F/7xuKJ1zK6JeEEri4dkiJ2RQ+nDaDOxTTrBkE0UQ5lT9FeIh4ghL1V9OlWDMn7xIWsdV47Rau60V6hdpHVlwAA5BERjgDNTBNWiAJsDgETyDV/CmPWkv2rv2MYtmtHRmH/yB9vkD9j2Zqw==</latexit>

 (x,E, l) ⇠ ax
l+1 +O(xl+3)

Act with  to get a different basisΛ
<latexit sha1_base64="7NMI4+oSe3fPaEFayqnAJddNes4=">AAACAHicbZDLSsNAFIZPvNZ6i7pw4SZYhBZLSaSoG6EogssK9gJtLJPptB06mYSZiVhCN76KGxeKuPUx3Pk2TtostPWHgY//nMOZ83sho1LZ9rexsLi0vLKaWcuub2xubZs7u3UZRAKTGg5YIJoekoRRTmqKKkaaoSDI9xhpeMOrpN54IELSgN+pUUhcH/U57VGMlLY65n47lPT+OP9YvC5cJJxQkRU6Zs4u2RNZ8+CkkINU1Y751e4GOPIJV5ghKVuOHSo3RkJRzMg4244kCREeoj5paeTIJ9KNJweMrSPtdK1eIPTjypq4vydi5Es58j3d6SM1kLO1xPyv1opU79yNKQ8jRTieLupFzFKBlaRhdakgWLGRBoQF1X+18AAJhJXOLKtDcGZPnof6Sck5LZVvy7nKZRpHBg7gEPLgwBlU4AaqUAMMY3iGV3gznowX4934mLYuGOnMHvyR8fkD/JCUvA==</latexit>

 +(x,E) =  (x,E, l)
<latexit sha1_base64="ysTNOWWYuokYQKnq3rSazjFwGVk=">AAACA3icbZDLSsNAFIYnXmu9Rd3pZrAILbQlkaJuhKIILivYC7SxTKaTduhkEmYmYgkFN76KGxeKuPUl3Pk2TtostPWHgY//nMOZ87sho1JZ1rexsLi0vLKaWcuub2xubZs7uw0ZRAKTOg5YIFoukoRRTuqKKkZaoSDIdxlpusPLpN68J0LSgN+qUUgcH/U59ShGSltdc78TSnpXyj8UrwrnCSdULLGSXeiaOatsTQTnwU4hB1LVuuZXpxfgyCdcYYakbNtWqJwYCUUxI+NsJ5IkRHiI+qStkSOfSCee3DCGR9rpQS8Q+nEFJ+7viRj5Uo58V3f6SA3kbC0x/6u1I+WdOTHlYaQIx9NFXsSgCmASCOxRQbBiIw0IC6r/CvEACYSVji2rQ7BnT56HxnHZPilXbiq56kUaRwYcgEOQBzY4BVVwDWqgDjB4BM/gFbwZT8aL8W58TFsXjHRmD/yR8fkDV9uVZw==</latexit>

 �(x,E) =  (x,E,�l � 1)
<latexit sha1_base64="qN3mbMz3rL/Dj1zZ+rwLxdlzKyk=">AAACInicbZDLSsNAFIYnXmu9RV26CRahUluSUrwshKIblxXsBZK0TKaTdujk4sxEKCHP4sZXceNCUVeCD+M0zaK2Hhjm5/vPYeb8TkgJF7r+rSwtr6yurec28ptb2zu76t5+iwcRQ7iJAhqwjgM5psTHTUEExZ2QYeg5FLed0c3Ebz9ixkng34txiG0PDnziEgSFRD31sm1aISfd0ml6le2rKik+dGNaslwGUWwkcTVJypKUaXkWnfTUgl7R09IWhZGJAsiq0VM/rX6AIg/7AlHIuWnoobBjyARBFCd5K+I4hGgEB9iU0oce5nacrphox5L0NTdg8vhCS+nsRAw9zseeIzs9KIZ83pvA/zwzEu6FHRM/jAT20fQhN6KaCLRJXlqfMIwEHUsBESPyrxoaQpmDkKnmZQjG/MqLolWtGGeV2l2tUL/O4siBQ3AEisAA56AObkEDNAECT+AFvIF35Vl5VT6Ur2nrkpLNHIA/pfz8Agfao2Q=</latexit>

W [ +, �] = 2i(ql+
1
2 � q�l� 1

2 )

Wronskian

Discrete values of energy arise when  as ψ± → 0 x → ∞

Spectral determinants

<latexit sha1_base64="jDYic6OC6u7ZWde+pC8NqyeKllg="></latexit>

D±(E, l) =
1Y

n=1

✓
1� E

E±

◆

<latexit sha1_base64="T4r4gQkd6Ri9S51pXn8fAqjnmSg=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVUY9FETxWsB/QXUs2TdvQJLsm2UJZ9nd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcyZNq777RRWVtfWN4qbpa3tnd298v5BU0eJIrRBIh6pdog15UzShmGG03asKBYhp61wdDP1W2OqNIvkg5nENBB4IFmfEWysFPjpbVc+pn4sMj/rlitu1Z0BLRMvJxXIUe+Wv/xeRBJBpSEca93x3NgEKVaGEU6zkp9oGmMywgPasVRiQXWQzo7O0IlVeqgfKVvSoJn6eyLFQuuJCG2nwGaoF72p+J/XSUz/KkiZjBNDJZkv6iccmQhNE0A9pigxfGIJJorZWxEZYoWJsTmVbAje4svLpHlW9S6q5/fnldp1HkcRjuAYTsGDS6jBHdShAQSe4Ble4c0ZOy/Ou/Mxby04+cwh/IHz+QMchJJW</latexit>

{E±
n }

WKB approximation
<latexit sha1_base64="0BK7Gpg08Y1WgBQEI/59vERyjME=">AAACCHicbVDLSgMxFM34rPU16tKFwSIIQpkpRV0WRXBTqGAf0JmWTJppQ5PMkGSEMszSjb/ixoUibv0Ed/6N6WOhrQcuHM65l3vvCWJGlXacb2tpeWV1bT23kd/c2t7Ztff2GypKJCZ1HLFItgKkCKOC1DXVjLRiSRAPGGkGw+ux33wgUtFI3OtRTHyO+oKGFCNtpK59dNMVHS/m0FOUQ9FJvVAinJaqWeqeVbOsaxecojMBXCTujBTADLWu/eX1IpxwIjRmSKm268TaT5HUFDOS5b1EkRjhIeqTtqECcaL8dPJIBk+M0oNhJE0JDSfq74kUcaVGPDCdHOmBmvfG4n9eO9HhpZ9SESeaCDxdFCYM6giOU4E9KgnWbGQIwpKaWyEeIJOENtnlTQju/MuLpFEquufF8l25ULmaxZEDh+AYnAIXXIAKuAU1UAcYPIJn8ArerCfrxXq3PqatS9Zs5gD8gfX5A+6SmUw=</latexit>

E±
n ⇠ n

2M
1+M

<latexit sha1_base64="ndqte8rsIu5q+5XnMYH1IdzUGqQ="></latexit>

⇤ : x 7! x, E 7! E, l 7! �l � 1



Expansion in -basisχ

Expand  in  basisψ χ
<latexit sha1_base64="OJwmR4KRUMM1cWGP9sVo5fvkuaA=">AAACCXicbVDLSgMxFM34rPU16tJNsAiVapmRom6EYhVcVrAP6Iwlk2ba0ExmSDJCGbp146+4caGIW//AnX9j2g6orQcC555zLzf3eBGjUlnWlzE3v7C4tJxZya6urW9smlvbdRnGApMaDlkomh6ShFFOaooqRpqRICjwGGl4/crIb9wTIWnIb9UgIm6Aupz6FCOlpbYJnUjSu8J5JX91yA4c3NNF4fKnOGqbOatojQFniZ2SHEhRbZufTifEcUC4wgxJ2bKtSLkJEopiRoZZJ5YkQriPuqSlKUcBkW4yvmQI97XSgX4o9OMKjtXfEwkKpBwEnu4MkOrJaW8k/ue1YuWfuQnlUawIx5NFfsygCuEoFtihgmDFBpogLKj+K8Q9JBBWOrysDsGePnmW1I+L9kmxdFPKlS/SODJgF+yBPLDBKSiDa1AFNYDBA3gCL+DVeDSejTfjfdI6Z6QzO+APjI9vcRqXpA==</latexit>

 + = C(E, l)�+ +D(E, l)��

Act with Ω, Λ
<latexit sha1_base64="AKbiWzrwP7eCo5a542kMB58CrRE=">AAACBHicbVDLSgMxFM3UV62vUZfdBIvgqsyIqBuh6MaFiwr2AZ2xZDKZNjTJhCQjlNKFG3/FjQtF3PoR7vwb03YW2nogcDjnXG7uiSSj2njet1NYWl5ZXSuulzY2t7Z33N29pk4zhUkDpyxV7QhpwqggDUMNI22pCOIRI61ocDXxWw9EaZqKOzOUJOSoJ2hCMTJW6rrl4MaGYwQDqel9IDm8yCmXXbfiVb0p4CLxc1IBOepd9yuIU5xxIgxmSOuO70kTjpAyFDMyLgWZJhLhAeqRjqUCcaLD0fSIMTy0SgyTVNknDJyqvydGiGs95JFNcmT6et6biP95ncwk5+GICpkZIvBsUZIxaFI4aQTGVBFs2NAShBW1f4W4jxTCxvZWsiX48ycvkuZx1T+tntyeVGqXeR1FUAYH4Aj44AzUwDWogwbA4BE8g1fw5jw5L8678zGLFpx8Zh/8gfP5A6cDl3o=</latexit>

⇤ ± =  ⌥
<latexit sha1_base64="0p3FaYD5k7gFAOL1N+3m+g1IVKo=">AAACBHicbVDLSgMxFM3UV62vUZfdBIvgqsxIUTdC0Y0LFxXsAzpjyWQybWiSGZKMUIYu3Pgrblwo4taPcOffmLaDaOuBwOGcc7m5J0gYVdpxvqzC0vLK6lpxvbSxubW9Y+/utVScSkyaOGax7ARIEUYFaWqqGekkkiAeMNIOhpcTv31PpKKxuNWjhPgc9QWNKEbaSD277F2bcIighwf0zks4PP+hPbviVJ0p4CJxc1IBORo9+9MLY5xyIjRmSKmu6yTaz5DUFDMyLnmpIgnCQ9QnXUMF4kT52fSIMTw0SgijWJonNJyqvycyxJUa8cAkOdIDNe9NxP+8bqqjMz+jIkk1EXi2KEoZ1DGcNAJDKgnWbGQIwpKav0I8QBJhbXormRLc+ZMXSeu46p5Uaze1Sv0ir6MIyuAAHAEXnII6uAIN0AQYPIAn8AJerUfr2Xqz3mfRgpXP7IM/sD6+AVw0l0o=</latexit>

⇤�± = �±
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 are entire functions — eigenvalues of Baxter Q-operators which appear in the eight-vertex model.D(E, l)

QQ-system is ubiquitous to quantum integrable systems (XXX, XXZ, XYZ)

[BLZ] description of  CFT as completely integrable theoryc < 1



Examples
Consider M = 1

Although strictly speaking our proof of (20) is valid only if α > 1, the above arguments

and the definition (18) can be modified to accommodate wider range of this parameter.

We will not elaborate this point here.

In a few special cases the function A+(λ, p) was calculated explicitly [2,8]. Let us

consider these examples to illustrate the identity (20). First, for harmonic oscillator case

α = 1 (which corresponds the c = −2 CFT, i.e. the “free fermion” theory) the spectrum

of (12) is very well known

E+
n = 4n+ 2l − 1 , n = 1, 2 . . . , (34)

which allows one to obtain

D+(E, l)
∣

∣

α=1
=

Γ( 3
4
+ l

2
) eCE

Γ( 3
4
+ l

2
− E

4
)
, (35)

where C is a constant whose value depends on the choice of Weierstrass factors required

in this case to make the product (18) convergent. The Eq.(35) is identical to the known

expression for A+(λ, p)
∣

∣

β2=1/2
[2]. Next, in the limit α → +∞ and l fixed (which cor-

responds to the classical limit c → −∞ in CFT) the equation (12) reduces to the radial

Schrödinger equation for the spherically symmetric “rigid well” potential

x2α
∣

∣

α→+∞
=

{

0, if 0 < x < 1
+∞, if x > 1

, (36)

for which the energy levels are related to the zeroes of the Bessel function, and (18) yields

D+(E, l)
∣

∣

α→+∞
= Γ(l + 3/2)

(
√
E/2

)−l− 1
2 Jl+ 1

2

(
√
E
)

, (37)

where Jν(z) is the conventional Bessel function. Again, this expression coincides with the

limiting form of A+(λ, p)
∣

∣

β2→0
[2]. Finally, for α = 1/2 and l = 0 the spectral determinants

(18) are expressed in terms of the Airy function [7,1], in agreement with A±(λ, 1/6)
∣

∣

β2=2/3

obtained in [8].

We would like to mention also some possible applications of the relation (20). In [2]

the exact asymptotic expansions for A±(λ, p) at large λ were found. The coefficients in

these expansions are expressed in terms of the spectral characteristics of CFT, namely the

vacuum eigenvalues of its local and non-local integrals of motion. In view of (20) these
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Spectral determinant of the ODE Q-function
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 � = D(E,�l � 1)�� � iql+
1
2D(q�2E,�l � 1)�+

Monodromy properties of solutions QQ-system

How can we understand this geometrically?



II. Affine Opers
Study analytic solutions of the following linear problem

2 THE QDE/IM CORRESPONDENCE

is the the one required in (2.2). Its action in any representation is as prescribed by the
proposition, since

⇤
Thus we arrive to the following theorem.

Theorem 2.2. There following expression Wg(x,E) = x�`U(x)g, where g 2 G and U 2
G[[x, xM , E]] constructed as in Proposition 2.1 gives a formal group-valued solution to the
problem LW = 0.

Therefore we have the following Corollary.

Corollary 2.3. In any highest weight representation V , choosing a standard basis {vi}dim(V )
i=1

accoriding to the weight decomposition, so that �i = wt(vi), there is a family of V -valued

solutions of equation L⇢ = 0, namely {'�i,vi(x,E)}dim(V )
i=1 , so that

'�i,vi(x,E) = We(x,E)vi = x�h`,�ii(vi + xṽi(x)), i = 1, . . . , dim(V ),(2.6)

where ṽi(x) 2 V [E, xM ][[x]].

This leads to the following Proposition.

Proposition 2.4. Any analytic solution  (x,E) in x,E of L (x,E) = 0 on x 2 D 2 C\R
and E 2 C can be decomposed in terms of formal solutions '�i,vi in the following way:

 (x,E) =

dim(V )X

i=1

Qvi(E)'�i,vi(x,E),(2.7)

where Qvi(E) are analytic functions of E.

Also, in the special cae, we have the following corollary:

Corollary 2.5. In the case when M = 0, the formal solutions ⇢i(x,E) diagonalize the
monodromy matrix, namely '�i,vi(e2⇡ix,E) = e�2⇡ih`,�ii'�i,vi(x,E).

3. Canonical operator, evaluation representations and analytic solutions

3.1. Notation. Let us introduce the function s : I �! Z, where I is the ordered set of
vertices of the Dynkin’s diagram. It is defined as p̂(1) = 0, p̂(i) = p̂(j) + 1, for j < i,
such that aij < 0. The function p : I �! Z2 is the composition of p and homomorphism
Z �! Z2.

Let us denote the evaluation representations corresponding to highest weight representa-
tion V!i of g with t = e2⇡ip(i)/2 as V (i) and with t = 1 as V̄ i.

3.2. Canonical operator and its twists. We will discuss the analytic solutions of pre-
scribed linear problem:

(3.1) L(x,E) = @x +
`

x
+ e+ p(x,E)e0 ,

where p(x,E) = xMh
_ � E, with M > 0 and E 2 C.

Consider the element ⇢_ =
P

r

i=1 !
_
i
, which satisfy the following relations with e and e0:

[⇢_, e] = e, [⇢_, e0] = �(h_ � 1)e0(3.2)
where
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is the the one required in (2.2). Its action in any representation is as prescribed by the
proposition, since

⇤
Thus we arrive to the following theorem.

Theorem 2.2. There following expression Wg(x,E) = x�`U(x)g, where g 2 G and U 2
G[[x, xM , E]] constructed as in Proposition 2.1 gives a formal group-valued solution to the
problem LW = 0.

Therefore we have the following Corollary.

Corollary 2.3. In any highest weight representation V , choosing a standard basis {vi}dim(V )
i=1

accoriding to the weight decomposition, so that �i = wt(vi), there is a family of V -valued

solutions of equation L⇢ = 0, namely {'�i,vi(x,E)}dim(V )
i=1 , so that

'�i,vi(x,E) = We(x,E)vi = x�h`,�ii(vi + xṽi(x)), i = 1, . . . , dim(V ),(2.6)

where ṽi(x) 2 V [E, xM ][[x]].

This leads to the following Proposition.

Proposition 2.4. Any analytic solution  (x,E) in x,E of L (x,E) = 0 on x 2 D 2 C\R
and E 2 C can be decomposed in terms of formal solutions '�i,vi in the following way:

 (x,E) =

dim(V )X

i=1

Qvi(E)'�i,vi(x,E),(2.7)

where Qvi(E) are analytic functions of E.

Also, in the special cae, we have the following corollary:

Corollary 2.5. In the case when M = 0, the formal solutions ⇢i(x,E) diagonalize the
monodromy matrix, namely '�i,vi(e2⇡ix,E) = e�2⇡ih`,�ii'�i,vi(x,E).
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5.3. Examples. Consider the following a�ne sl(2)-oper [FF]

(5.10) L = @x +
l↵̌

x
+ e+ p(x,E)f ,

where p(x,E) = x2M � E.

In (5.1) we have v1 =

✓
1
0

◆
and v2 =

✓
0
1

◆
so

'v1
0 (e2⇡ix,E) = ⇣M+1'v1

0 (x,E) , 'v2
0 (e2⇡ix,E) = ⇣�M�1'v2

0 (x,E) ,

where ⇣ = !
l
2 , so the monodromy matrix is ZM+1 where Z = diag(⇣ ⇣�1).

Let us consider �(i) (5.6). For G = SL(2) then (4.34) reads

(5.11) Z�1W (qz)v1 = W (z)s�1(z)v1

In this case s�1(z) =

✓
0 1
1 0

◆
. The q-Wronskian in this case reads

(5.12) W (z) =

✓
Q+(z) ⇣�1Q+(qz)
Q�(z) ⇣Q�(qz)

◆
,

Let b(z) =

✓
Q+(z)
Q�(z)

◆
then W (z)�1b(z) = v1. Thus we have from (5.11) that

(5.13) b(qz) = M(z) · b(z) ,

where

(5.14) M(z) = ZW (z)s�1(z)W (z)�1

meaning that M(z) is the q-monodromy operator around z = 0. For SL(2) this operator
takes the following form

 
⇣(Q�(qz)Q+(qz)�Q�(z)Q+(z)) ⇣Q+(z)2 � Q+(qz)2

⇣

⇣Q�(qz)2 � Q�(z)2

⇣

Q�(z)Q+(z)�Q�(qz)Q+(qz)
⇣

!

5.3.1. Scalar Operator. The flatness condition L = 0, where  =

✓
 1

 2

◆
reads

 0
1 +

l

x
 1 + 2 = 0 ,

 0
2 �

l

x
 2 + p(x,E) 1 = 0 ,(5.15)

which after illumination of  2 reproduces the following scalar ODE of Schrödinger type was
studied in [BLZ]

(5.16)  00
1 +

✓
E � l(l + 1)

x2
� x2M

◆
 1 = 0 .
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Can rewrite it using the following affine connection
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1. Introduction

2. Differential operators and canonical systems of solutions

Consider the di↵erential operator of the following type:

L = @x +
`

x
+A(x,E)(2.1)

HereA(x,E) 2 g[xM , E][[x]], ⇠ 2 R+[{0}\Q+, so thatA(x,E) =
P

i=0

P
mi
k=0Ai,k(E)xi+kM ,

where Ai,k(E) 2 C[E], ` =
P

r

i=1 `i↵̌i is generic regular semisimple.

Proposition 2.1. There exist an element U 2 G[[x, xM , E]], such that

U�1
LU = @x +

`

x
(2.2)

and for any finite-dimensional representation V of g, U(x, xM , E)v = v + xṽ(x), where
ṽ(x) 2 V [E, xM ][[x]].

Proof. We will define U in a recursive way.
Suppose A(x,E, xM ) = xi+kMAi,k(E)+xi+1+kMC(E, x)+xi+(k+1)MD(E, x), where C 2

g[x, xM , E], D 2 g[xM , E]. Consider the transformation Ui,k = exp(�xi+kM+1B(E)). Thus

U�1
i,k

LUi,k =

@x +
`

x
+ (Ai,k(E)� (i+ kM + 1)B(E) + [B(E), `])xi+kM + Ã(x,E),(2.3)

where Ã(x,E) 2 g[xM , E][[x]] = xi+1+kM C̃(E, x) + xi+(k+1)MD(E, x).
For generic ` the solution to the equation

(2.4) Ai,k(E)� (i+ kM + 1)B(E) + [B(E), `] = 0.

always exists. Thus the element

(2.5) U =
1Y

i=0

siY

k=0

Ui,k 2 G[[x, xM , E]]
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is the the one required in (2.2). Its action in any representation is as prescribed by the
proposition, since

⇤
Thus we arrive to the following theorem.

Theorem 2.2. There following expression Wg(x,E) = x�`U(x)g, where g 2 G and U 2
G[[x, xM , E]] constructed as in Proposition 2.1 gives a formal group-valued solution to the
problem LW = 0.

Therefore we have the following Corollary.

Corollary 2.3. In any highest weight representation V , choosing a standard basis {vi}dim(V )
i=1

accoriding to the weight decomposition, so that �i = wt(vi), there is a family of V -valued

solutions of equation L⇢ = 0, namely {'�i,vi(x,E)}dim(V )
i=1 , so that

'�i,vi(x,E) = We(x,E)vi = x�h`,�ii(vi + xṽi(x)), i = 1, . . . , dim(V ),(2.6)

where ṽi(x) 2 V [E, xM ][[x]].

This leads to the following Proposition.

Proposition 2.4. Any analytic solution  (x,E) in x,E of L (x,E) = 0 on x 2 D 2 C\R
and E 2 C can be decomposed in terms of formal solutions '�i,vi in the following way:

 (x,E) =

dim(V )X

i=1

Qvi(E)'�i,vi(x,E),(2.7)

where Qvi(E) are analytic functions of E.

Also, in the special cae, we have the following corollary:

Corollary 2.5. In the case when M = 0, the formal solutions ⇢i(x,E) diagonalize the
monodromy matrix, namely '�i,vi(e2⇡ix,E) = e�2⇡ih`,�ii'�i,vi(x,E).

3. Canonical operator, evaluation representations and analytic solutions

3.1. Notation. Let us introduce the function s : I �! Z, where I is the ordered set of
vertices of the Dynkin’s diagram. It is defined as p̂(1) = 0, p̂(i) = p̂(j) + 1, for j < i,
such that aij < 0. The function p : I �! Z2 is the composition of p and homomorphism
Z �! Z2.

Let us denote the evaluation representations corresponding to highest weight representa-
tion V!i of g with t = e2⇡ip(i)/2 as V (i) and with t = 1 as V̄ i.

3.2. Canonical operator and its twists. We will discuss the analytic solutions of pre-
scribed linear problem:

(3.1) L(x,E) = @x +
`

x
+ e+ p(x,E)e0 ,

where p(x,E) = xMh
_ � E, with M > 0 and E 2 C.

Consider the element ⇢_ =
P

r

i=1 !
_
i
, which satisfy the following relations with e and e0:

[⇢_, e] = e, [⇢_, e0] = �(h_ � 1)e0(3.2)
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where ṽi(x) 2 V [E, xM ][[x]].

This leads to the following Proposition.

Proposition 2.4. Any analytic solution  (x,E) in x,E of L (x,E) = 0 on x 2 D 2 C\R
and E 2 C can be decomposed in terms of formal solutions '�i,vi in the following way:

 (x,E) =

dim(V )X

i=1

Qvi(E)'�i,vi(x,E),(2.7)

where Qvi(E) are analytic functions of E.

Also, in the special cae, we have the following corollary:

Corollary 2.5. In the case when M = 0, the formal solutions ⇢i(x,E) diagonalize the
monodromy matrix, namely '�i,vi(e2⇡ix,E) = e�2⇡ih`,�ii'�i,vi(x,E).

3. Canonical operator, evaluation representations and analytic solutions

3.1. Notation. Let us introduce the function s : I �! Z, where I is the ordered set of
vertices of the Dynkin’s diagram. It is defined as p̂(1) = 0, p̂(i) = p̂(j) + 1, for j < i,
such that aij < 0. The function p : I �! Z2 is the composition of p and homomorphism
Z �! Z2.

Let us denote the evaluation representations corresponding to highest weight representa-
tion V!i of g with t = e2⇡ip(i)/2 as V (i) and with t = 1 as V̄ i.

3.2. Canonical operator and its twists. We will discuss the analytic solutions of pre-
scribed linear problem:

(3.1) L(x,E) = @x +
`

x
+ e+ p(x,E)e0 ,

where p(x,E) = xMh
_ � E, with M > 0 and E 2 C.

Consider the element ⇢_ =
P

r

i=1 !
_
i
, which satisfy the following relations with e and e0:

[⇢_, e] = e, [⇢_, e0] = �(h_ � 1)e0(3.2)

2 THE QDE/IM CORRESPONDENCE

is the the one required in (2.2). Its action in any representation is as prescribed by the
proposition, since

⇤
Thus we arrive to the following theorem.

Theorem 2.2. There following expression Wg(x,E) = x�`U(x)g, where g 2 G and U 2
G[[x, xM , E]] constructed as in Proposition 2.1 gives a formal group-valued solution to the
problem LW = 0.

Therefore we have the following Corollary.

Corollary 2.3. In any highest weight representation V , choosing a standard basis {vi}dim(V )
i=1

accoriding to the weight decomposition, so that �i = wt(vi), there is a family of V -valued

solutions of equation L⇢ = 0, namely {'�i,vi(x,E)}dim(V )
i=1 , so that

'�i,vi(x,E) = We(x,E)vi = x�h`,�ii(vi + xṽi(x)), i = 1, . . . , dim(V ),(2.6)
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1. Affine Kac-Moody algebras and their finite dimensional

representations

In this section we review some basic facts about simple Lie algebras, affine Kac-
Moody algebras and their finite dimensional representations which will be used
throughout the paper. The discussion is restricted to simple Lie algebras of ADE
type, but most of the results hold also in the non-simply laced case; we refer to
[19, 24] for further details. At the end of the section we introduce a class of ĝ-valued
connections and the associated differential equations.

1.1. Simple lie algebras and fundamental representations. Let g be a simple
finite dimensional Lie algebra of ADE type, and let n be its rank. The Dynkin
diagrams associated to these algebras are given in Table 1. Let C = (Cij)i,j∈I

be the Cartan matrix of g, and let us denote by B = 2 n − C the corresponding
incidence matrix. Since g is simply-laced, it follows that Bij = 1 if the nodes i, j
of the Dynkin diagram of g are linked by an edge, and Bij = 0 otherwise.

An α1 α2

. . .
αn−1 αn

E6 α1 α2 α3 α5 α6

α4

Dn α1 α2
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Let {fi, hi, ei | i ∈ I = {1, . . . , n}} ⊂ g be the set of Chevalley generators of g.
They satisfy the following relations (i, j ∈ I):

[hi, hj ] = 0 , [hi, ej] = Cijej , [hi, fj] = −Cijfj , [ei, fj ] = δijhi , (1.1)

together with the Serre’s identities. Recall that

h =
⊕

i∈I

Chi ⊂ g

is a Cartan subalgebra of g with corresponding Cartan decomposition

g = h⊕

(
⊕

α∈R

gα

)

. (1.2)

As usual, the gα are the eigenspaces of the adjoint representation and R ⊂ h∗ is the
set of roots. For every i ∈ I, let αi ∈ h∗ be defined by αi(hj) = Cij , for every j ∈ I.
Then gαi = Ceαi . Hence, ∆ = {αi | i ∈ I} ⊂ R. The elements α1, . . . ,αn are
called the simple roots of g. They can be associated to each vertex of the Dynkin
diagram as in Table 1. We denote by

P = {λ ∈ h∗ | λ(hi) ∈ Z, ∀i ∈ I} ⊂ h∗

the set of weights of g and by

P+ = {λ ∈ P | λ(hi) ≥ 0, ∀i ∈ I} ⊂ P

the subset of dominant weights of g. We recall that we can define a partial ordering
on P as follows: for λ, µ ∈ P , we say that λ < µ if λ− µ is a sum of positive roots.
For every λ ∈ h∗ there exists a unique irreducible representation L(λ) of g such
that there is v ∈ L(λ) \ {0} satisfying

hiv = λ(hi)v , eiv = 0 , for every i ∈ I .

L(λ) is called the highest weight representation of weight λ, and v is the highest
weight vector of the representation. We have that L(λ) is finite dimensional if and
only if λ ∈ P+, and conversely, any irreducible finite dimensional representation of
g is of the form L(λ) for some λ ∈ P+. For λ ∈ P+, the representation L(λ) can be
decomposed in the direct sum of its (finite dimensional) weight spaces L(λ)µ, with
µ ∈ P , and we have that L(λ)µ '= 0 if and only if µ < λ. We denote by Pλ the set
of weights appearing in the weight space decomposition of L(λ); the multiplicity
of µ in the representation L(λ) is defined as the dimension of the weight space L(λ)µ.

Recall that the fundamental weights of g are those elements ωi ∈ P+, i ∈ I, satis-
fying

ωi(hj) = δij , for every j ∈ I . (1.3)

The corresponding highest weight representations L(ωi), i ∈ I, are known as funda-
mental representations of g, and for every i ∈ I we denote by vi ∈ L(ωi) the highest
weight vector of the representation L(ωi). Since the simple roots and the funda-
mental weights of g are related via the Cartan matrix (which is non-degenerate) by
the relation

ωi =
∑

j∈I

(C−1)jiαj , i ∈ I ,

then we can associate to the i−th vertex of the Dynkin diagram of g the corre-
sponding fundamental representation L(ωi) of g.
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Fundamental representations

Affine Kac-Moody algebra

(a) For every j ∈ I, we have that

ejwi = 0 .

(b) For every h ∈ h, we have that

hwi = ηi(h)wi .

(c) Any other weight of the representation
⊗

j∈I L(ωj)⊗Bij is smaller than ηi.

Proof. Same as the proof of Lemma 1.1. !

As for the previous discussion, by Lemma 1.2 it follows that wi ∈
⊗

j∈I L(ωj)⊗Bij

is a highest weight vector which generates an irreducible subrepresentation isomor-
phic to L(ηi). Lemmas 1.1 and 1.2, together with the Schur Lemma, imply that
there exists a unique morphism of representations

mi :
2∧
L(ωi) →

⊗

j∈I

L(ωj)
⊗Bij , (1.4)

such that Kermi = U and mi(fivi ∧ vi) = wi.

1.3. Affine Kac-Moody algebras and finite dimensional representations.

Let h∨ be the dual Coxeter number of g. Let us denote by κ the Killing form of g
and let us fix the following non-degenerate symmetric invariant bilinear form on g
(a, b ∈ g):

(a|b) =
1

h∨
κ(a|b) .

Let g ⊗ C[t, t−1] be the space of Laurent polynomials with coefficients in g. For
a(t) =

∑N
i=−M aiti ∈ C[t, t−1], we let

Rest=0 a(t)dt = a−1 .

The affine Kac-Moody algebra ĝ is the vector space ĝ = g⊗C[t, t−1]⊕Cc endowed
with the following Lie algebra structure (a, b ∈ g, f(t), g(t) ∈ C[t, t−1]):

[a⊗ f(t), b ⊗ g(t)] = [a, b]⊗ f(t)g(t) + (a|b)Rest=0 (f
′(t)g(t)dt) c ,

[c, ĝ] = 0 .
(1.5)

The set of Chevalley generators of ĝ is obtained by adding to the Chevalley genera-
tors of g some new generators f0, h0, e0 (for the construction, see for example [24]).
The generator e0, which plays an important role in the paper, can be constructed
as follows. There exists a root −θ ∈ R, known as the lowest root of g, such that
−θ − αi '∈ R, for every i ∈ I. Then

e0 = a⊗ t , for some a ∈ g−θ . (1.6)

We now consider an important class of representations of ĝ. Let V be a finite
dimensional representation of g. For ζ ∈ C∗ we define a representation of ĝ, which
we denote by V (ζ), as follows: as a vector space we take V (ζ) = V , and the action
of ĝ is defined by

(a⊗ f(t))v = f(ζ)(av) , c v = 0 , for a ∈ g , f(t) ∈ C[t, t−1] , v ∈ V .

The representation V (ζ) is called an evaluation representation of ĝ. If V and W
are representations of g then any morphism of representations f : V → W can
obviously be extended to a morphism of representations f : V (ζ) → W (ζ), which
we denote by the same letter by an abuse of notation. Similarly, when referring
to weights or weight vectors of the evaluation representation V (ζ), we mean the
weights and weight vectors of the representation V with respect to the action of g.
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we denote by the same letter by an abuse of notation. Similarly, when referring
to weights or weight vectors of the evaluation representation V (ζ), we mean the
weights and weight vectors of the representation V with respect to the action of g.
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Twisted Connection
Consider the evaluation representation  corresponding to the highest weight representation  of  with 

evaluation parameter 

V(i) Vωi
𝔤

t = eπip(i)

Here  is a homomorphism from the ordered set of vertices of the Dynkin diagram of  to p(i) 𝔤 ℤ

Denote  the twisted differential operator by automorphism of ℒk
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Definition 3.1. We denote Lk the di↵erential operator L twisted by the automorphism of
bg: t �! te2⇡ik.

Let us denote:

! = e
2⇡i

h_(M+1) , ⌦ = e
2⇡iM
M+1 = !h

_
M(3.3)

Proposition 3.2. If �(x,E) is the solution of the linear problem L(x,E)�(x,E) = 0, then
�k(x,E) = !�k⇢

_
�(!kx,⌦kE) is a solution of linear problem Lk(x,E)�k(x,E) = 0.

Remark 3.3. Given that � is a solution of the linear problem L(x,E)�(x,E) = 0, so that
�(x,E) takes value in evaluation representation V , then �k(x,E) is the solution in evaluation
representation Vk = Vt�!te2⇡ik .

3.3. Eigenvalues of ⇤. Consider ⇤̄ = ⇤t=1. Let us enumerate vertices in the Dynkin
diagram. Here p(i) is defined as p(1) = 0, p(i) = p(j) + 1, for j < i, such that aij < 0. Let

� = e
2⇡i
h_ . Then we have the following Proposition.

Theorem 3.4. There exists a Cartan subalgebra with Chevalley generators ↵0_
i
, e0

i
, f 0

i
such

that ⇤̄ can be represented as follows:

(3.4) ⇤̄ =
X

i2I
�

p(i)
2 xi↵

0_
i ,

where xi 2 R,
X

j 6=i

(2�ij � aij)xj = (��1/2 + �1/2)xi,(3.5)

where xi 2 R+.

Let us compare ⇤ in various evaluation representations.

Lemma 3.5. The following formula is satisfed:

��k ad⇢_⇤ = �k⇤t�!te2⇡ik .

In particular, if  is an eigenvector of ⇤ in an evaluation representation V , then  k = ��kh 
is an eigenvector of ⇤ in the representation Vk, and we have

(3.6) ⇤ = � if and only if ⇤ k = �k� k .

The following Proposition is true.

Proposition 3.6. The representations V (i) have a maximal real eigenvalue xi corresponding

to the vector  (i)
i

= �
p(i)
2 ⇢

_
v0!i

. Also, f 0
i
 (i) = c��h (i), c 2 C⇥.

3.4. Analytic solutions  k(x). In this section we discuss the WKB-type equations of the
given first-order linear problem associated with (3.1) in a given evaluation representation:

(3.7) L(x,E) (x) =  0(x) +

✓
`

x
+ e+ p(x,E)e0

◆
 (x) = 0 .

We would like to reduce our problem to the one which reads as follows:

 0(x) +
˜̀

x
+ q(x,E)⇤+O(x�1��)

To do that we have the following Lemma.
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Lemma 3.7. p(x,E)
1

h_ has the asymptotic expansion

p(x,E)
1

h_ = q(x,E) +O(x�1��),

where

(3.8) � = M(h_(1 + s)� 1)� 1 > 0, s = bM + 1

h_M
c,

and

(3.9) q(x,E) = xM +
sX

j=1

cj(E)xM(1�h
_
j).

Thus we obtain the following Proposition.

Proposition 3.8. Let L(x,E) be the di↵erential operator defined above. Then, we have the
following gauge transformation of L:

(3.10) q(x,E)ad⇢
_
L(x,E) = @x + q(x,E)⇤+

`�M⇢_

x
+O(x�1��)

where ⇤ = e0 + e, the function q(x,E) is given by (3.9) and � by (3.8).

Introducing S(x,E) =
R
x

0 q(y, E)dy, we obtain:

Theorem 3.9. Let V be an evaluation representation of bg, and let the matrix representing
⇤ 2 bg in V have a maximal eigenvalue �. Let  2 V be the corresponding unique (up to a
constant) eigenvector. Then, there exists a unique solution  (x,E) : eC �! V to equation
(3.7) with the following asymptotic behavior:

 (x,E) = e��S(x,E)q(x,E)�h
�
 + o(1)

�
as x �! +1 .

Moreover, the same asymptotic behavior holds in the sector | arg x| < ⇡

2(M+1) , that is, for
any � > 0 it satisfies

(3.11)  (x,E) = e��S(x,E)q(x,E)�h
�
 + o(1)

�
, in the sector | arg x| < ⇡

2(M + 1)
� � .

The function  (x,E) is an entire function of E.

It turns out that based on the solution  we can construct a family of h_ solutions in
representation Vh_

2 + 1
2
. Namely, let us consider  k(x,E) = !�k⇢

_
 (!kx,⌦kE), then we

have:

Proposition 3.10. For any k 2 R such that |k| < h
_(M+1)

2 , on the positive real semi-axis
the function  k has the asymptotic behavior

(3.12)  k(x,E) = e���
k
S(x,E)q(x,E)�h��kh( + o(1)) , x � 0 ,

where  is defined as in Theorem 3.9 and � = e
2⇡i
h_ . Then, the functions  s, s 2 Z, s 2

[12 � h
_

2 , h
_

2 + 1
2 ], are solutions to equation (3.7) in the representation Vh_

2 + 1
2
.

Let us denote the solution  corresponding to representation V = V (i) as  (i). Then the
following proposition holds.

4 THE QDE/IM CORRESPONDENCE

Lemma 3.7. p(x,E)
1

h_ has the asymptotic expansion

p(x,E)
1

h_ = q(x,E) +O(x�1��),

where

(3.8) � = M(h_(1 + s)� 1)� 1 > 0, s = bM + 1

h_M
c,

and

(3.9) q(x,E) = xM +
sX

j=1

cj(E)xM(1�h
_
j).

Thus we obtain the following Proposition.

Proposition 3.8. Let L(x,E) be the di↵erential operator defined above. Then, we have the
following gauge transformation of L:

(3.10) q(x,E)ad⇢
_
L(x,E) = @x + q(x,E)⇤+

`�M⇢_

x
+O(x�1��)

where ⇤ = e0 + e, the function q(x,E) is given by (3.9) and � by (3.8).

Introducing S(x,E) =
R
x

0 q(y, E)dy, we obtain:

Theorem 3.9. Let V be an evaluation representation of bg, and let the matrix representing
⇤ 2 bg in V have a maximal eigenvalue �. Let  2 V be the corresponding unique (up to a
constant) eigenvector. Then, there exists a unique solution  (x,E) : eC �! V to equation
(3.7) with the following asymptotic behavior:

 (x,E) = e��S(x,E)q(x,E)�h
�
 + o(1)

�
as x �! +1 .

Moreover, the same asymptotic behavior holds in the sector | arg x| < ⇡

2(M+1) , that is, for
any � > 0 it satisfies

(3.11)  (x,E) = e��S(x,E)q(x,E)�h
�
 + o(1)

�
, in the sector | arg x| < ⇡

2(M + 1)
� � .

The function  (x,E) is an entire function of E.

It turns out that based on the solution  we can construct a family of h_ solutions in
representation Vh_

2 + 1
2
. Namely, let us consider  k(x,E) = !�k⇢

_
 (!kx,⌦kE), then we

have:

Proposition 3.10. For any k 2 R such that |k| < h
_(M+1)

2 , on the positive real semi-axis
the function  k has the asymptotic behavior

(3.12)  k(x,E) = e���
k
S(x,E)q(x,E)�h��kh( + o(1)) , x � 0 ,

where  is defined as in Theorem 3.9 and � = e
2⇡i
h_ . Then, the functions  s, s 2 Z, s 2

[12 � h
_

2 , h
_

2 + 1
2 ], are solutions to equation (3.7) in the representation Vh_

2 + 1
2
.

Let us denote the solution  corresponding to representation V = V (i) as  (i). Then the
following proposition holds.

4 THE QDE/IM CORRESPONDENCE

Lemma 3.7. p(x,E)
1

h_ has the asymptotic expansion

p(x,E)
1

h_ = q(x,E) +O(x�1��),

where

(3.8) � = M(h_(1 + s)� 1)� 1 > 0, s = bM + 1

h_M
c,

and

(3.9) q(x,E) = xM +
sX

j=1

cj(E)xM(1�h
_
j).

Thus we obtain the following Proposition.

Proposition 3.8. Let L(x,E) be the di↵erential operator defined above. Then, we have the
following gauge transformation of L:

(3.10) q(x,E)ad⇢
_
L(x,E) = @x + q(x,E)⇤+

`�M⇢_

x
+O(x�1��)

where ⇤ = e0 + e, the function q(x,E) is given by (3.9) and � by (3.8).

Introducing S(x,E) =
R
x

0 q(y, E)dy, we obtain:

Theorem 3.9. Let V be an evaluation representation of bg, and let the matrix representing
⇤ 2 bg in V have a maximal eigenvalue �. Let  2 V be the corresponding unique (up to a
constant) eigenvector. Then, there exists a unique solution  (x,E) : eC �! V to equation
(3.7) with the following asymptotic behavior:

 (x,E) = e��S(x,E)q(x,E)�h
�
 + o(1)

�
as x �! +1 .

Moreover, the same asymptotic behavior holds in the sector | arg x| < ⇡

2(M+1) , that is, for
any � > 0 it satisfies

(3.11)  (x,E) = e��S(x,E)q(x,E)�h
�
 + o(1)

�
, in the sector | arg x| < ⇡

2(M + 1)
� � .

The function  (x,E) is an entire function of E.

It turns out that based on the solution  we can construct a family of h_ solutions in
representation Vh_

2 + 1
2
. Namely, let us consider  k(x,E) = !�k⇢

_
 (!kx,⌦kE), then we

have:

Proposition 3.10. For any k 2 R such that |k| < h
_(M+1)

2 , on the positive real semi-axis
the function  k has the asymptotic behavior

(3.12)  k(x,E) = e���
k
S(x,E)q(x,E)�h��kh( + o(1)) , x � 0 ,

where  is defined as in Theorem 3.9 and � = e
2⇡i
h_ . Then, the functions  s, s 2 Z, s 2

[12 � h
_

2 , h
_

2 + 1
2 ], are solutions to equation (3.7) in the representation Vh_

2 + 1
2
.

Let us denote the solution  corresponding to representation V = V (i) as  (i). Then the
following proposition holds.

Let 

4 THE QDE/IM CORRESPONDENCE

Lemma 3.7. p(x,E)
1

h_ has the asymptotic expansion

p(x,E)
1

h_ = q(x,E) +O(x�1��),

where

(3.8) � = M(h_(1 + s)� 1)� 1 > 0, s = bM + 1

h_M
c,

and

(3.9) q(x,E) = xM +
sX

j=1

cj(E)xM(1�h
_
j).

Thus we obtain the following Proposition.

Proposition 3.8. Let L(x,E) be the di↵erential operator defined above. Then, we have the
following gauge transformation of L:

(3.10) q(x,E)ad⇢
_
L(x,E) = @x + q(x,E)⇤+

`�M⇢_

x
+O(x�1��)

where ⇤ = e0 + e, the function q(x,E) is given by (3.9) and � by (3.8).

Introducing S(x,E) =
R
x

0 q(y, E)dy, we obtain:

Theorem 3.9. Let V be an evaluation representation of bg, and let the matrix representing
⇤ 2 bg in V have a maximal eigenvalue �. Let  2 V be the corresponding unique (up to a
constant) eigenvector. Then, there exists a unique solution  (x,E) : eC �! V to equation
(3.7) with the following asymptotic behavior:

 (x,E) = e��S(x,E)q(x,E)�h
�
 + o(1)

�
as x �! +1 .

Moreover, the same asymptotic behavior holds in the sector | arg x| < ⇡

2(M+1) , that is, for
any � > 0 it satisfies

(3.11)  (x,E) = e��S(x,E)q(x,E)�h
�
 + o(1)

�
, in the sector | arg x| < ⇡

2(M + 1)
� � .

The function  (x,E) is an entire function of E.

It turns out that based on the solution  we can construct a family of h_ solutions in
representation Vh_

2 + 1
2
. Namely, let us consider  k(x,E) = !�k⇢

_
 (!kx,⌦kE), then we

have:

Proposition 3.10. For any k 2 R such that |k| < h
_(M+1)

2 , on the positive real semi-axis
the function  k has the asymptotic behavior

(3.12)  k(x,E) = e���
k
S(x,E)q(x,E)�h��kh( + o(1)) , x � 0 ,

where  is defined as in Theorem 3.9 and � = e
2⇡i
h_ . Then, the functions  s, s 2 Z, s 2

[12 � h
_

2 , h
_

2 + 1
2 ], are solutions to equation (3.7) in the representation Vh_

2 + 1
2
.

Let us denote the solution  corresponding to representation V = V (i) as  (i). Then the
following proposition holds.

Theorem: There exist a unique solution
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Theorem 3.4. There exists a Cartan subalgebra with Chevalley generators ↵0_
i
, e0

i
, f 0

i
such

that ⇤̄ can be represented as follows:

(3.4) ⇤̄ =
X

i2I
�

p(i)
2 xi↵

0_
i ,

where xi 2 R,
X

j 6=i

(2�ij � aij)xj = (��1/2 + �1/2)xi,(3.5)

where xi 2 R+.

Let us compare ⇤ in various evaluation representations.

Lemma 3.5. The following formula is satisfed:

��k ad⇢_⇤ = �k⇤t�!te2⇡ik .

In particular, if  is an eigenvector of ⇤ in an evaluation representation V , then  k = ��kh 
is an eigenvector of ⇤ in the representation Vk, and we have

(3.6) ⇤ = � if and only if ⇤ k = �k� k .

The following Proposition is true.

Proposition 3.6. The representations V (i) have a maximal real eigenvalue xi corresponding

to the vector  (i)
i

= �
p(i)
2 ⇢

_
v0!i

. Also, f 0
i
 (i) = c��h (i), c 2 C⇥.

3.4. Analytic solutions  k(x). In this section we discuss the WKB-type equations of the
given first-order linear problem associated with (3.1) in a given evaluation representation:

(3.7) L(x,E) (x) =  0(x) +

✓
`

x
+ e+ p(x,E)e0

◆
 (x) = 0 .

We would like to reduce our problem to the one which reads as follows:

 0(x) +
˜̀

x
+ q(x,E)⇤+O(x�1��)

To do that we have the following Lemma.
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is the the one required in (2.2). Its action in any representation is as prescribed by the
proposition, since

⇤
Thus we arrive to the following theorem.

Theorem 2.2. There following expression Wg(x,E) = x�`U(x)g, where g 2 G and U 2
G[[x, xM , E]] constructed as in Proposition 2.1 gives a formal group-valued solution to the
problem LW = 0.

Therefore we have the following Corollary.

Corollary 2.3. In any highest weight representation V , choosing a standard basis {vi}dim(V )
i=1

accoriding to the weight decomposition, so that �i = wt(vi), there is a family of V -valued

solutions of equation L⇢ = 0, namely {'�i,vi(x,E)}dim(V )
i=1 , so that

'�i,vi(x,E) = We(x,E)vi = x�h`,�ii(vi + xṽi(x)), i = 1, . . . , dim(V ),(2.6)

where ṽi(x) 2 V [E, xM ][[x]].

This leads to the following Proposition.

Proposition 2.4. Any analytic solution  (x,E) in x,E of L (x,E) = 0 on x 2 D 2 C\R
and E 2 C can be decomposed in terms of formal solutions '�i,vi in the following way:

 (x,E) =

dim(V )X

i=1

Qvi(E)'�i,vi(x,E),(2.7)

where Qvi(E) are analytic functions of E.

Also, in the special cae, we have the following corollary:

Corollary 2.5. In the case when M = 0, the formal solutions ⇢i(x,E) diagonalize the
monodromy matrix, namely '�i,vi(e2⇡ix,E) = e�2⇡ih`,�ii'�i,vi(x,E).

3. Canonical operator, evaluation representations and analytic solutions

3.1. Notation. Let us introduce the function s : I �! Z, where I is the ordered set of
vertices of the Dynkin’s diagram. It is defined as p̂(1) = 0, p̂(i) = p̂(j) + 1, for j < i,
such that aij < 0. The function p : I �! Z2 is the composition of p and homomorphism
Z �! Z2.

Let us denote the evaluation representations corresponding to highest weight representa-
tion V!i of g with t = e2⇡ip(i)/2 as V (i) and with t = 1 as V̄ i.

3.2. Canonical operator and its twists. We will discuss the analytic solutions of pre-
scribed linear problem:

(3.1) L(x,E) = @x +
`

x
+ e+ p(x,E)e0 ,

where p(x,E) = xMh
_ � E, with M > 0 and E 2 C.

Consider the element ⇢_ =
P

r

i=1 !
_
i
, which satisfy the following relations with e and e0:

[⇢_, e] = e, [⇢_, e0] = �(h_ � 1)e0(3.2)
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Lemma 3.7. p(x,E)
1

h_ has the asymptotic expansion

p(x,E)
1

h_ = q(x,E) +O(x�1��),

where

(3.8) � = M(h_(1 + s)� 1)� 1 > 0, s = bM + 1

h_M
c,

and

(3.9) q(x,E) = xM +
sX

j=1

cj(E)xM(1�h
_
j).

Thus we obtain the following Proposition.

Proposition 3.8. Let L(x,E) be the di↵erential operator defined above. Then, we have the
following gauge transformation of L:

(3.10) q(x,E)ad⇢
_
L(x,E) = @x + q(x,E)⇤+

`�M⇢_

x
+O(x�1��)

where ⇤ = e0 + e, the function q(x,E) is given by (3.9) and � by (3.8).

Introducing S(x,E) =
R
x

0 q(y, E)dy, we obtain:

Theorem 3.9. Let V be an evaluation representation of bg, and let the matrix representing
⇤ 2 bg in V have a maximal eigenvalue �. Let  2 V be the corresponding unique (up to a
constant) eigenvector. Then, there exists a unique solution  (x,E) : eC �! V to equation
(3.7) with the following asymptotic behavior:

 (x,E) = e��S(x,E)q(x,E)�h
�
 + o(1)

�
as x �! +1 .

Moreover, the same asymptotic behavior holds in the sector | arg x| < ⇡

2(M+1) , that is, for
any � > 0 it satisfies

(3.11)  (x,E) = e��S(x,E)q(x,E)�h
�
 + o(1)

�
, in the sector | arg x| < ⇡

2(M + 1)
� � .

The function  (x,E) is an entire function of E.

It turns out that based on the solution  we can construct a family of h_ solutions in
representation Vh_

2 + 1
2
. Namely, let us consider  k(x,E) = !�k⇢

_
 (!kx,⌦kE), then we

have:

Proposition 3.10. For any k 2 R such that |k| < h
_(M+1)

2 , on the positive real semi-axis
the function  k has the asymptotic behavior

(3.12)  k(x,E) = e���
k
S(x,E)q(x,E)�h��kh( + o(1)) , x � 0 ,

where  is defined as in Theorem 3.9 and � = e
2⇡i
h_ . Then, the functions  s, s 2 Z, s 2

[12 � h
_

2 , h
_

2 + 1
2 ], are solutions to equation (3.7) in the representation Vh_

2 + 1
2
.

Let us denote the solution  corresponding to representation V = V (i) as  (i). Then the
following proposition holds.
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Definition 3.1. We denote Lk the di↵erential operator L twisted by the automorphism of
bg: t �! te2⇡ik.

Let us denote:

! = e
2⇡i

h_(M+1) , ⌦ = e
2⇡iM
M+1 = !h

_
M(3.3)

Proposition 3.2. If �(x,E) is the solution of the linear problem L(x,E)�(x,E) = 0, then
�k(x,E) = !�k⇢

_
�(!kx,⌦kE) is a solution of linear problem Lk(x,E)�k(x,E) = 0.

Remark 3.3. Given that � is a solution of the linear problem L(x,E)�(x,E) = 0, so that
�(x,E) takes value in evaluation representation V , then �k(x,E) is the solution in evaluation
representation Vk = Vt�!te2⇡ik .

3.3. Eigenvalues of ⇤. Consider ⇤̄ = ⇤t=1. Let us enumerate vertices in the Dynkin
diagram. Here p(i) is defined as p(1) = 0, p(i) = p(j) + 1, for j < i, such that aij < 0. Let

� = e
2⇡i
h_ . Then we have the following Proposition.
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i
, f 0

i
such
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�
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i ,

where xi 2 R,
X

j 6=i

(2�ij � aij)xj = (��1/2 + �1/2)xi,(3.5)

where xi 2 R+.

Let us compare ⇤ in various evaluation representations.

Lemma 3.5. The following formula is satisfed:

��k ad⇢_⇤ = �k⇤t�!te2⇡ik .

In particular, if  is an eigenvector of ⇤ in an evaluation representation V , then  k = ��kh 
is an eigenvector of ⇤ in the representation Vk, and we have

(3.6) ⇤ = � if and only if ⇤ k = �k� k .

The following Proposition is true.

Proposition 3.6. The representations V (i) have a maximal real eigenvalue xi corresponding

to the vector  (i)
i

= �
p(i)
2 ⇢

_
v0!i

. Also, f 0
i
 (i) = c��h (i), c 2 C⇥.

3.4. Analytic solutions  k(x). In this section we discuss the WKB-type equations of the
given first-order linear problem associated with (3.1) in a given evaluation representation:

(3.7) L(x,E) (x) =  0(x) +

✓
`
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Theorem 3.11. Let g be a simple Lie algebra of ADE type, and let the solution  (x,E) :
eC �! V , i 2 I, have the asymptotic behavior (3.12). Then, the following identity holds:
(3.13)

mi

�
 (i)

�1/2(x,E) ^ (i)
1/2(x,E)

�
=

O

j>i2I
 (j)(x,E)⌦(�aij)

O

j<i2I
 (j)(x,E)⌦(�aij) , 8i 2 I .

The relations between those solutions are given by the Corollary of Theorem 3.11.

4. (G, q)-Opers and Generalized Quantum Wronskians

At this point we need to introduce (G, q)-Opers and generalized minors which will be
used later in the understanding of the decomposition of the analytic solutions (see [KZ] for
more details).

4.1. q-connections and the structure of (G, q)-opers. Given a principal G-bundle FG

over formal disc D, let Fq

G
denote its pullback under the map Mq : D �! D sending z 7! qz.

A meromorphic (G, q)-connection on a principal G-bundle FG onD is a meromorphic section
A of HomOU

(FG,F
q

G
), where U is an open dense subset of D. We can always choose U so

that the restriction FG|U of FG to U is isomorphic to the trivial G-bundle. Changing the
trivialization of FG|U via g(z) 2 G(z) changes A(z) by the following q-gauge transformation:

(4.1) A(z) 7! g(qz)A(z)g(z)�1.

Definition 4.1. Ameromorphic (G, q)-oper (or simply a q-oper) onD is a triple (FG, A,FB+),
where A is a meromorphic (G, q)-connection on a G-bundle FG on D and FB+ is a reduc-
tion of FG to B+ satisfying the following condition: there exists an open dense subset
U 2 D together with a trivialization ıB+ of FB+ such that the restriction of the connection
A : FG �! F

q

G
to U , written as an element of G(z) using the trivializations of FG and F

q

G

on U , induced by ıB+ , takes values in the Bruhat cell B+(C[[U ]])cB+(C[[U ]]).

Any oper on a disk D can be represented as

(4.2) A(z) = n0(z)
Y

i

(�i(z)
�↵̌i si)n(z), n(z), n0(z) 2 N+((z)), �i(z) 2 C⇥((z)).

The Miura (G, q)-opers are q-opers together with an additional datum: a reduction of
the underlying G-bundle to the Borel subgroup B� (opposite to B+) that is preserved by
the oper q-connection.

Definition 4.2. AMiura (G, q)-oper onD is a quadruple (FG, A,FB+ ,FB�), where (FG, A,FB+)
is a meromorphic (G, q)-oper on D and FB� is a reduction of the G-bundle FG to B� that
is preserved by the q-connection A.

We say that flags FB+ and FB� have generic relative position at point x if the element of
the Weyl group WG assigned to them at x is equal to 1. This means that the corresponding
element a�1b belongs to the open dense Bruhat cell B+B� ⇢ G.

Theorem 4.3. For any Miura (G, q)-oper on D, there exists an open dense subset V ⇢ P1

such that the reductions FB+ and FB� are in generic relative position for all x 2 V .

It is clear that (G, q)-opers depend on the choice of the lift of the Coxeter element c to
G(z), namely the functions {�i(z)}i=1,...,r. We will be interested in the case when they all
are set �i(z) ⌘ 1, i = 1, . . . , r. We call such (G, q)-opers regular.

Using structure theorems of [FKSZ] we can prove the following
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Let us denote the solution  corresponding to representation V = V (i) as  (i). Then the
following proposition holds.

Here unique morphism of representations

(a) For every j ∈ I, we have that

ejwi = 0 .

(b) For every h ∈ h, we have that

hwi = ηi(h)wi .

(c) Any other weight of the representation
⊗

j∈I L(ωj)⊗Bij is smaller than ηi.

Proof. Same as the proof of Lemma 1.1. !

As for the previous discussion, by Lemma 1.2 it follows that wi ∈
⊗

j∈I L(ωj)⊗Bij

is a highest weight vector which generates an irreducible subrepresentation isomor-
phic to L(ηi). Lemmas 1.1 and 1.2, together with the Schur Lemma, imply that
there exists a unique morphism of representations

mi :
2∧
L(ωi) →

⊗

j∈I

L(ωj)
⊗Bij , (1.4)

such that Kermi = U and mi(fivi ∧ vi) = wi.

1.3. Affine Kac-Moody algebras and finite dimensional representations.

Let h∨ be the dual Coxeter number of g. Let us denote by κ the Killing form of g
and let us fix the following non-degenerate symmetric invariant bilinear form on g
(a, b ∈ g):

(a|b) =
1

h∨
κ(a|b) .

Let g ⊗ C[t, t−1] be the space of Laurent polynomials with coefficients in g. For
a(t) =

∑N
i=−M aiti ∈ C[t, t−1], we let

Rest=0 a(t)dt = a−1 .

The affine Kac-Moody algebra ĝ is the vector space ĝ = g⊗C[t, t−1]⊕Cc endowed
with the following Lie algebra structure (a, b ∈ g, f(t), g(t) ∈ C[t, t−1]):

[a⊗ f(t), b ⊗ g(t)] = [a, b]⊗ f(t)g(t) + (a|b)Rest=0 (f
′(t)g(t)dt) c ,

[c, ĝ] = 0 .
(1.5)

The set of Chevalley generators of ĝ is obtained by adding to the Chevalley genera-
tors of g some new generators f0, h0, e0 (for the construction, see for example [24]).
The generator e0, which plays an important role in the paper, can be constructed
as follows. There exists a root −θ ∈ R, known as the lowest root of g, such that
−θ − αi '∈ R, for every i ∈ I. Then

e0 = a⊗ t , for some a ∈ g−θ . (1.6)

We now consider an important class of representations of ĝ. Let V be a finite
dimensional representation of g. For ζ ∈ C∗ we define a representation of ĝ, which
we denote by V (ζ), as follows: as a vector space we take V (ζ) = V , and the action
of ĝ is defined by

(a⊗ f(t))v = f(ζ)(av) , c v = 0 , for a ∈ g , f(t) ∈ C[t, t−1] , v ∈ V .

The representation V (ζ) is called an evaluation representation of ĝ. If V and W
are representations of g then any morphism of representations f : V → W can
obviously be extended to a morphism of representations f : V (ζ) → W (ζ), which
we denote by the same letter by an abuse of notation. Similarly, when referring
to weights or weight vectors of the evaluation representation V (ζ), we mean the
weights and weight vectors of the representation V with respect to the action of g.
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1.2. The representations L(ηi). Let us consider the dominant weights

ηi =
∑

j∈I

Bijωj , i ∈ I ,

where B = (Bij)i,j∈I is the incidence matrix defined in Section 1.1, and let L(ηi)
be the corresponding irreducible finite dimensional representations. In addition, we
consider the tensor product representations

⊗

j∈I

L(ωj)
⊗Bij , i ∈ I .

We now show that we can find a copy of the irreducible representation L(ηi) inside
the representations

∧2 L(ωi) and
⊗

j∈I L(ωj)⊗Bij . This will be used in Section 3
to construct the so-called ψ-system.

Lemma 1.1. The following facts hold in the representation
∧2 L(ωi).

(a) For every j ∈ I, we have that

ej(fivi ∧ vi) = 0 .

(b) For every h ∈ h, we have that

h(fivi ∧ vi) = ηi(h)(fivi ∧ vi) .

(c) Any other weight of the representation
∧2 L(ωi) is smaller than ηi.

Proof. Since vi is a highest weight vector for L(ωi) we have that ejvi = 0 for every
j ∈ I. Moreover, using the relations [ej , fi] = δijhi together with equation (1.3),
we have

ejfivi = fiejvi + δijhivi = δijvi ,

and therefore ej(fivi ∧ vi) = δijvi ∧ vi = 0, proving part (a). By linearity, it
suffices to show part (b) for h = hi, i ∈ I. Recall that, by equation (1.1), we have
[hi, fj ] = −Cijfj , for every i, j ∈ I. Then,

hjfivi = (fihj + [hj , fi]) vi = (δij − Cji)fivi .

Hence, hj(fivi ∧ vi) = (2δij − Cji)(fivi ∧ vi) = ηi(hj)(fivi ∧ vi). Finally, let w $=
ωi, ηi − ωi be a weight appearing in L(ωi). It follows from representation theory of
simple Lie algebras that

ω < ηi − ωi = ωi −
∑

j∈I

Cjiωj < ωi .

Therefore, by part (b), the maximal weight of
∧2 L(ωi) is wi + ηi − ωi = ηi, thus

proving part (c). !

As a consequence of the above Lemma it follows that fivi∧vi ∈
∧2 L(ωi) is a highest

weight vector of weight ηi. Since g is simple, the subrepresentation of
∧2 L(ωi)

generated by the highest weight vector fivi ∧ vi is irreducible. Therefore, it is
isomorphic to L(ηi). By the complete reducibility of

∧2 L(ωi) we can decompose
it as follows:

2∧
L(ωi) = L(ηi)⊕ U ,

where U is the direct sum of all the irreducible representations different from L(ηi).
By an abuse of notation we denote with the same symbol the representation L(ηi)

and its copy in
∧2 L(ωi). For every i ∈ I, let us denote by wi = ⊗j∈Iv

⊗Bij

j . The

following analogue of Lemma 1.1 in the case of the representation
⊗

j∈I L(ωj)⊗Bij

holds true.

Lemma 1.2. The following facts hold in the representation
⊗

j∈I L(ωj)⊗Bij .
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(a) For every j ∈ I, we have that

ejwi = 0 .

(b) For every h ∈ h, we have that

hwi = ηi(h)wi .

(c) Any other weight of the representation
⊗

j∈I L(ωj)⊗Bij is smaller than ηi.

Proof. Same as the proof of Lemma 1.1. !

As for the previous discussion, by Lemma 1.2 it follows that wi ∈
⊗

j∈I L(ωj)⊗Bij

is a highest weight vector which generates an irreducible subrepresentation isomor-
phic to L(ηi). Lemmas 1.1 and 1.2, together with the Schur Lemma, imply that
there exists a unique morphism of representations

mi :
2∧
L(ωi) →

⊗

j∈I

L(ωj)
⊗Bij , (1.4)

such that Kermi = U and mi(fivi ∧ vi) = wi.

1.3. Affine Kac-Moody algebras and finite dimensional representations.

Let h∨ be the dual Coxeter number of g. Let us denote by κ the Killing form of g
and let us fix the following non-degenerate symmetric invariant bilinear form on g
(a, b ∈ g):

(a|b) =
1

h∨
κ(a|b) .

Let g ⊗ C[t, t−1] be the space of Laurent polynomials with coefficients in g. For
a(t) =

∑N
i=−M aiti ∈ C[t, t−1], we let

Rest=0 a(t)dt = a−1 .

The affine Kac-Moody algebra ĝ is the vector space ĝ = g⊗C[t, t−1]⊕Cc endowed
with the following Lie algebra structure (a, b ∈ g, f(t), g(t) ∈ C[t, t−1]):

[a⊗ f(t), b ⊗ g(t)] = [a, b]⊗ f(t)g(t) + (a|b)Rest=0 (f
′(t)g(t)dt) c ,

[c, ĝ] = 0 .
(1.5)

The set of Chevalley generators of ĝ is obtained by adding to the Chevalley genera-
tors of g some new generators f0, h0, e0 (for the construction, see for example [24]).
The generator e0, which plays an important role in the paper, can be constructed
as follows. There exists a root −θ ∈ R, known as the lowest root of g, such that
−θ − αi '∈ R, for every i ∈ I. Then

e0 = a⊗ t , for some a ∈ g−θ . (1.6)

We now consider an important class of representations of ĝ. Let V be a finite
dimensional representation of g. For ζ ∈ C∗ we define a representation of ĝ, which
we denote by V (ζ), as follows: as a vector space we take V (ζ) = V , and the action
of ĝ is defined by

(a⊗ f(t))v = f(ζ)(av) , c v = 0 , for a ∈ g , f(t) ∈ C[t, t−1] , v ∈ V .

The representation V (ζ) is called an evaluation representation of ĝ. If V and W
are representations of g then any morphism of representations f : V → W can
obviously be extended to a morphism of representations f : V (ζ) → W (ζ), which
we denote by the same letter by an abuse of notation. Similarly, when referring
to weights or weight vectors of the evaluation representation V (ζ), we mean the
weights and weight vectors of the representation V with respect to the action of g.

7

Such that

THE QDE/IM CORRESPONDENCE 5

Theorem 3.11. Let g be a simple Lie algebra of ADE type, and let the solution  (x,E) :
eC �! V , i 2 I, have the asymptotic behavior (3.12). Then, the following identity holds:
(3.13)

mi

�
 (i)

�1/2(x,E) ^ (i)
1/2(x,E)

�
=

O

j>i2I
 (j)(x,E)⌦(�aij)

O

j<i2I
 (j)(x,E)⌦(�aij) , 8i 2 I .

The relations between those solutions are given by the Corollary of Theorem 3.11.

4. (G, q)-Opers and Generalized Quantum Wronskians

At this point we need to introduce (G, q)-Opers and generalized minors which will be
used later in the understanding of the decomposition of the analytic solutions (see [KZ] for
more details).

4.1. q-connections and the structure of (G, q)-opers. Given a principal G-bundle FG

over formal disc D, let Fq

G
denote its pullback under the map Mq : D �! D sending z 7! qz.

A meromorphic (G, q)-connection on a principal G-bundle FG onD is a meromorphic section
A of HomOU

(FG,F
q

G
), where U is an open dense subset of D. We can always choose U so

that the restriction FG|U of FG to U is isomorphic to the trivial G-bundle. Changing the
trivialization of FG|U via g(z) 2 G(z) changes A(z) by the following q-gauge transformation:

(4.1) A(z) 7! g(qz)A(z)g(z)�1.

Definition 4.1. Ameromorphic (G, q)-oper (or simply a q-oper) onD is a triple (FG, A,FB+),
where A is a meromorphic (G, q)-connection on a G-bundle FG on D and FB+ is a reduc-
tion of FG to B+ satisfying the following condition: there exists an open dense subset
U 2 D together with a trivialization ıB+ of FB+ such that the restriction of the connection
A : FG �! F

q

G
to U , written as an element of G(z) using the trivializations of FG and F

q

G

on U , induced by ıB+ , takes values in the Bruhat cell B+(C[[U ]])cB+(C[[U ]]).

Any oper on a disk D can be represented as

(4.2) A(z) = n0(z)
Y

i

(�i(z)
�↵̌i si)n(z), n(z), n0(z) 2 N+((z)), �i(z) 2 C⇥((z)).

The Miura (G, q)-opers are q-opers together with an additional datum: a reduction of
the underlying G-bundle to the Borel subgroup B� (opposite to B+) that is preserved by
the oper q-connection.

Definition 4.2. AMiura (G, q)-oper onD is a quadruple (FG, A,FB+ ,FB�), where (FG, A,FB+)
is a meromorphic (G, q)-oper on D and FB� is a reduction of the G-bundle FG to B� that
is preserved by the q-connection A.

We say that flags FB+ and FB� have generic relative position at point x if the element of
the Weyl group WG assigned to them at x is equal to 1. This means that the corresponding
element a�1b belongs to the open dense Bruhat cell B+B� ⇢ G.

Theorem 4.3. For any Miura (G, q)-oper on D, there exists an open dense subset V ⇢ P1

such that the reductions FB+ and FB� are in generic relative position for all x 2 V .

It is clear that (G, q)-opers depend on the choice of the lift of the Coxeter element c to
G(z), namely the functions {�i(z)}i=1,...,r. We will be interested in the case when they all
are set �i(z) ⌘ 1, i = 1, . . . , r. We call such (G, q)-opers regular.

Using structure theorems of [FKSZ] we can prove the following

Theorem:
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2. (G, q)-opers with regular singularities

2.1. Group-theoretic data. Let G be a connected, simply connected, simple algebraic
group of rank r over C. We fix a Borel subgroup B− with unipotent radical N− = [B−, B−]
and a maximal torus H ⊂ B−. Let B+ be the opposite Borel subgroup containing H. Let
{α1, . . . ,αr} be the set of positive simple roots for the pair H ⊂ B+. Let {α̌1, . . . , α̌r} be
the corresponding coroots; the elements of the Cartan matrix of the Lie algebra g of G are
given by aij = 〈αj , α̌i〉. The Lie algebra g has Chevalley generators {ei, fi, α̌i}i=1,...,r, so
that b− = Lie(B−) is generated by the fi’s and the α̌i’s and b+ = Lie(B+) is generated by
the ei’s and the α̌i’s. Let ω1, . . .ωr be the fundamental weights, defined by 〈ωi, α̌j〉 = δij .

LetWG = N(H)/H be the Weyl group of G. Let wi ∈ W , (i = 1, . . . , r) denote the simple
reflection corresponding to αi. We also denote by w0 be the longest element of W , so that
B+ = w0(B−). Recall that a Coxeter element of W is a product of all simple reflections in
a particular order. It is known that the set of all Coxeter elements forms a single conjugacy
class in WG. We will fix once and for all (unless otherwise specified) a particular ordering
(αi1 , . . . ,αir) of the simple roots. Let c = wi1 . . . wir be the Coxeter element associated to
this ordering. In what follows (unless otherwise specified), all products over i ∈ {1, . . . , r}
will be taken in this order; thus, for example, we write c =

∏
iwi. We also fix representatives

si ∈ N(H) of wi. In particular, s =
∏

i si will be a representative of c in N(H).
Although we have defined the Coxeter element c using H and B−, it is in fact the case

that the Bruhat cell BcB makes sense for any Borel subgroup B. Indeed, let (Φ,∆) be the
root system associated to G, where ∆ is the set of simple roots as above and Φ is the set of
all roots. These data give a realization of the Weyl group of G as a Coxeter group, i.e., a
pair (WG, S), where S is the set of Coxeter generators wi of WG associated to elements of
∆. Now, given any Borel subgroup B, set b = Lie(B). Then the dual of the vector space
b/[b, b] comes equipped with a set of roots and simple roots, and this pair is canonically
isomorphic to the root system (Φ,∆) [CG, §3.1.22]. The definition of the sets of roots and
simple roots on this space involves a choice of maximal torus T ⊂ B, but these sets turn
out to be independent of the choice. Accordingly, the group N(T )/T together with the set
of its Coxeter generators corresponding to these simple roots is isomorphic to (WG, S) as a
Coxeter group. Under this isomorphism, w ∈ WG corresponds to an element of N(T )/T by
the following rule: we write w as a word in the Coxeter generators of WG corresponding to
elements of S and then replace each Coxeter generator in it by the corresponding Coxeter
generator of N(T )/T . Accordingly, the Bruhat cell BwB is well-defined for any w ∈ WG.

2.2. Meromorphic q-opers. The definitions given below can be given for an arbitrary
algebraic curve equipped with an automorphism of infinite order. For the sake of definitive-
ness, we will focus here on the case of the curve P1 and its automorphism Mq : P1 −→ P1

sending z '→ qz, where q ∈ C× is not a root of unity.
Given a principal G-bundle FG over P1 (in the Zariski topology), let F

q
G denote its

pullback under the map Mq : P1 −→ P1 sending z '→ qz. A meromorphic (G, q)-connection
on a principal G-bundle FG on P1 is a section A of HomOU

(FG,F
q
G), where U is a Zariski

open dense subset of P1. We can always choose U so that the restriction FG|U of FG to U is
isomorphic to the trivial G-bundle. Choosing such an isomorphism, i.e. a trivialization of
FG|U , we also obtain a trivialization of FG|M−1

q (U). Using these trivializations, the restriction

A U-open dense set

Change of trivialization 
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).

on
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F
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q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
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∏
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(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
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1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-
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(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
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Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
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q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
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B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
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Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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of A to the Zariski open dense subset U∩M−1
q (U) can be written as a section of the trivial G-

bundle on U ∩M−1
q (U), and hence as an element A(z) of G(z).1 Changing the trivialization

of FG|U via g(z) ∈ G(z) changes A(z) by the following q-gauge transformation:

(2.1) A(z) #→ g(qz)A(z)g(z)−1 .

This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
the quotient of G(z) by the q-gauge transformations (2.1).

Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1

equipped with a reduction to the Borel subgroup B− that is not preserved by the (G, q)-
connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.

Definition 2.1. Ameromorphic (G, q)-oper (or simply a q-oper) on P1 is a triple (FG, A,FB−),
where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
tion of FG to B− satisfying the following condition: there exists a Zariski open dense
subset U ⊂ P1 together with a trivialization ıB− of FB− such that the restriction of the
connection A : FG −→ F

q
G to U ∩M−1

q (U), written as an element of G(z) using the triv-
ializations of FG and F

q
G on U ∩ M−1

q (U) induced by ıB− , takes values in the Bruhat cell
B−(C[U ∩M−1

q (U)])cB−(C[U ∩M−1
q (U)]).

Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form

(2.2) A(z) = n′(z)
∏

i

(φi(z)
α̌i si)n(z),

where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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This shows that the set of equivalence classes of pairs (FG, A) as above is in bijection with
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Following [FRS,SS], we define a (G, q)-oper as a (G, q)-connection on a G-bundle on P1
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connection but instead satisfies a special “transversality condition” which is defined in terms
of the Bruhat cell associated to the Coxeter element c. Here is the precise definition.
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where A is a meromorphic (G, q)-connection on a G-bundle FG on P1 and FB− is a reduc-
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Note that this property does not depend on the choice of trivialization ıB− .
Since G is assumed to be simply connected, any q-oper connection A can be written

(using a particular trivialization ıB−) in the form
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∏
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where φi(z) ∈ C(z) and n(z), n′(z) ∈ N−(z) are such that their zeros and poles are outside
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q (U) of P1.
We remark that the choice of a particular Coxeter element c in this definition can be

viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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viewed as a choice of a particular gauge, at least for orderings differing by a cyclic permu-
tation. Indeed, we will see below in Proposition 4.10 that the spaces of q-opers we consider
for such a pair of Coxeter elements are isomorphic under a specific q-gauge transformation.

2.3. Miura q-opers. We will also need a q-difference version of the notion of differential
Miura opers introduced in [F2,F3]. These are q-opers together with an additional datum:
a reduction of the underlying G-bundle to the Borel subgroup B+ (opposite to B−) that is
preserved by the oper q-connection.

Definition 2.2. AMiura (G, q)-oper on P1 is a quadruple (FG, A,FB− ,FB+), where (FG, A,FB−)
is a meromorphic (G, q)-oper on P1 and FB+ is a reduction of the G-bundle FG to B+ that
is preserved by the q-connection A.

Forgetting FB+ , we associate a (G, q)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, q)-oper underlying the Miura (G, q)-oper.

The following result is an analogue of a statement about differential Miura opers proved
in [F2,F3].

Suppose we are given a principal G-bundle FG on any smooth complex manifold X
equipped with reductions FB− and FB+ to B− and B+ respectively. We then assign to

1Throughout the paper, if K is a complex algebraic group, we set K(z) = K(C(z)).
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any point x ∈ X an element of the Weyl group WG. To see this, first note that the fiber
FG,x of FG at x is a G-torsor with reductions FB−,x and FB+,x to B− and B+ respectively.
Choose any trivialization of FG,x, i.e. an isomorphism of G-torsors FG,x " G. Under this
isomorphism, FB−,x gets identified with aB− ⊂ G and FB+,x with bB+. Then, a−1b is
a well-defined element of the double quotient B−\G/B+, which is in bijection with WG.
Hence, we obtain a well-defined element of WG.

We will say that FB− and FB+ have generic relative position at x ∈ X if the element of
WG assigned to them at x is equal to 1. This means that the corresponding element a−1b
belongs to the open dense Bruhat cell B−B+ ⊂ G.

Theorem 2.3. For any Miura (G, q)-oper on P1, there exists an open dense subset V ⊂ P1

such that the reductions FB− and FB+ are in generic relative position for all x ∈ V .

Proof. Let U be a Zariski open dense subset on P1 as in Definition 2.1. Choosing a trivial-
ization ıB− of FG on U ∩M−1

q (U), we can write the q-connection A in the form (2.2). On
the other hand, using the B+-reduction FB+ , we can choose another trivialization of FG on

U ∩ M−1
q (U) such that the q-connection A acquires the form Ã(z) ∈ B+(z). Hence there

exists g(z) ∈ G(z) such that

(2.3) g(zq)n′(z)
∏

i

(φi(z)
α̌i si)n(z)g(z)

−1 = Ã(z) ∈ B+(z).

Recall the Bruhat decomposition (see [B][Theorem 21.15]):

(2.4) G(z) =
⊔

w∈WG

B+(z)wN−(z).

The statement of the proposition is equivalent to the statement that

g(z) ∈ B+(z)N−(z)

(corresponding to w = 1), or equivalently, that g(z) /∈ B+(z)wN−(z) for w %= 1.
Suppose that this is not the case. Then g(z) = b+(z)wn−(z) for some b+(z) ∈ B+(z), n−(z) ∈

N−(z), and w %= 1. Setting ñ′(z) = n−(zq)n′(z) and ñ(z) = n(z)n−(z)−1, we can rewrite
(2.3) as

(2.5) ñ′(z)
∏

i

(φi(z)
α̌i si)ñ(z) ∈ wB+(z)w

−1.

Now, the Borel subgroup decomposes as

wB+w
−1 = H(N− ∩ wN+w

−1)(N+ ∩ wN+w
−1)

because wN+w−1 = (N− ∩ wN+w−1)(N+ ∩ wN+w−1)). Hence, denoting the element (2.5)
by A, we can write

A = hu−u+, h ∈ H, u− ∈ N− ∩ wN+w
−1, u+ ∈ N+ ∩ wN+w

−1.

It follows that u+ ∈ B−cB− ∩N+ ∩wN+w−1. In particular, u+ ∈ N+ ∩wN+w−1, which is
the product of the one-dimensional unipotent subgroups Xα, where α runs over the set of
positive roots for which w(α) is positive.

On the other hand, according to Theorem 2.5, every element of N−
∏

i φi(z)
α̌isiN− ∩B+

can be written in the form
∏

i

gi(z)
α̌ie

φi(z)ti
gi(z)

ei , gi(z) ∈ C(z)×, ti ∈ C
×.

under this isomorphism 
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We will say that FB− and FB+ have generic relative position at x ∈ X if the element of
WG assigned to them at x is equal to 1. This means that the corresponding element a−1b
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−1.
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−1)(N+ ∩ wN+w
−1)

because wN+w−1 = (N− ∩ wN+w−1)(N+ ∩ wN+w−1)). Hence, denoting the element (2.5)
by A, we can write

A = hu−u+, h ∈ H, u− ∈ N− ∩ wN+w
−1, u+ ∈ N+ ∩ wN+w

−1.

It follows that u+ ∈ B−cB− ∩N+ ∩wN+w−1. In particular, u+ ∈ N+ ∩wN+w−1, which is
the product of the one-dimensional unipotent subgroups Xα, where α runs over the set of
positive roots for which w(α) is positive.

On the other hand, according to Theorem 2.5, every element of N−
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WG assigned to them at x is equal to 1. This means that the corresponding element a−1b
belongs to the open dense Bruhat cell B−B+ ⊂ G.
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(corresponding to w = 1), or equivalently, that g(z) /∈ B+(z)wN−(z) for w %= 1.
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the product of the one-dimensional unipotent subgroups Xα, where α runs over the set of
positive roots for which w(α) is positive.
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any point x ∈ X an element of the Weyl group WG. To see this, first note that the fiber
FG,x of FG at x is a G-torsor with reductions FB−,x and FB+,x to B− and B+ respectively.
Choose any trivialization of FG,x, i.e. an isomorphism of G-torsors FG,x " G. Under this
isomorphism, FB−,x gets identified with aB− ⊂ G and FB+,x with bB+. Then, a−1b is
a well-defined element of the double quotient B−\G/B+, which is in bijection with WG.
Hence, we obtain a well-defined element of WG.

We will say that FB− and FB+ have generic relative position at x ∈ X if the element of
WG assigned to them at x is equal to 1. This means that the corresponding element a−1b
belongs to the open dense Bruhat cell B−B+ ⊂ G.

Theorem 2.3. For any Miura (G, q)-oper on P1, there exists an open dense subset V ⊂ P1

such that the reductions FB− and FB+ are in generic relative position for all x ∈ V .

Proof. Let U be a Zariski open dense subset on P1 as in Definition 2.1. Choosing a trivial-
ization ıB− of FG on U ∩M−1

q (U), we can write the q-connection A in the form (2.2). On
the other hand, using the B+-reduction FB+ , we can choose another trivialization of FG on
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q (U) such that the q-connection A acquires the form Ã(z) ∈ B+(z). Hence there
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The statement of the proposition is equivalent to the statement that
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(corresponding to w = 1), or equivalently, that g(z) /∈ B+(z)wN−(z) for w %= 1.
Suppose that this is not the case. Then g(z) = b+(z)wn−(z) for some b+(z) ∈ B+(z), n−(z) ∈
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(2.3) as

(2.5) ñ′(z)
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positive roots for which w(α) is positive.
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any point x ∈ X an element of the Weyl group WG. To see this, first note that the fiber
FG,x of FG at x is a G-torsor with reductions FB−,x and FB+,x to B− and B+ respectively.
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isomorphism, FB−,x gets identified with aB− ⊂ G and FB+,x with bB+. Then, a−1b is
a well-defined element of the double quotient B−\G/B+, which is in bijection with WG.
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We will say that FB− and FB+ have generic relative position at x ∈ X if the element of
WG assigned to them at x is equal to 1. This means that the corresponding element a−1b
belongs to the open dense Bruhat cell B−B+ ⊂ G.

Theorem 2.3. For any Miura (G, q)-oper on P1, there exists an open dense subset V ⊂ P1
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Proof. Let U be a Zariski open dense subset on P1 as in Definition 2.1. Choosing a trivial-
ization ıB− of FG on U ∩M−1

q (U), we can write the q-connection A in the form (2.2). On
the other hand, using the B+-reduction FB+ , we can choose another trivialization of FG on
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(2.3) g(zq)n′(z)
∏

i

(φi(z)
α̌i si)n(z)g(z)
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(corresponding to w = 1), or equivalently, that g(z) /∈ B+(z)wN−(z) for w %= 1.
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It follows that u+ ∈ B−cB− ∩N+ ∩wN+w−1. In particular, u+ ∈ N+ ∩wN+w−1, which is
the product of the one-dimensional unipotent subgroups Xα, where α runs over the set of
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Then  is a well defined element of the double quotient of  a−1b B−\B/B+ ≃ WG

assigned to them at x is equal to 1 or  a−1b ∈ B− ⋅ B+
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Theorem 3.11. Let g be a simple Lie algebra of ADE type, and let the solution  (x,E) :
eC �! V , i 2 I, have the asymptotic behavior (3.12). Then, the following identity holds:
(3.13)

mi

�
 (i)

�1/2(x,E) ^ (i)
1/2(x,E)

�
=

O

j>i2I
 (j)(x,E)⌦(�aij)

O

j<i2I
 (j)(x,E)⌦(�aij) , 8i 2 I .

The relations between those solutions are given by the Corollary of Theorem 3.11.

4. (G, q)-Opers and Generalized Quantum Wronskians

At this point we need to introduce (G, q)-Opers and generalized minors which will be
used later in the understanding of the decomposition of the analytic solutions (see [KZ] for
more details).

4.1. q-connections and the structure of (G, q)-opers. Given a principal G-bundle FG

over formal disc D, let Fq

G
denote its pullback under the map Mq : D �! D sending z 7! qz.

A meromorphic (G, q)-connection on a principal G-bundle FG onD is a meromorphic section
A of HomOU

(FG,F
q

G
), where U is an open dense subset of D. We can always choose U so

that the restriction FG|U of FG to U is isomorphic to the trivial G-bundle. Changing the
trivialization of FG|U via g(z) 2 G(z) changes A(z) by the following q-gauge transformation:

(4.1) A(z) 7! g(qz)A(z)g(z)�1.

Definition 4.1. Ameromorphic (G, q)-oper (or simply a q-oper) onD is a triple (FG, A,FB+),
where A is a meromorphic (G, q)-connection on a G-bundle FG on D and FB+ is a reduc-
tion of FG to B+ satisfying the following condition: there exists an open dense subset
U 2 D together with a trivialization ıB+ of FB+ such that the restriction of the connection
A : FG �! F

q

G
to U , written as an element of G(z) using the trivializations of FG and F

q

G

on U , induced by ıB+ , takes values in the Bruhat cell B+(C[[U ]])cB+(C[[U ]]).

Any oper on a disk D can be represented as

(4.2) A(z) = n0(z)
Y

i

(�i(z)
�↵̌i si)n(z), n(z), n0(z) 2 N+((z)), �i(z) 2 C⇥((z)).

The Miura (G, q)-opers are q-opers together with an additional datum: a reduction of
the underlying G-bundle to the Borel subgroup B� (opposite to B+) that is preserved by
the oper q-connection.

Definition 4.2. AMiura (G, q)-oper onD is a quadruple (FG, A,FB+ ,FB�), where (FG, A,FB+)
is a meromorphic (G, q)-oper on D and FB� is a reduction of the G-bundle FG to B� that
is preserved by the q-connection A.

We say that flags FB+ and FB� have generic relative position at point x if the element of
the Weyl group WG assigned to them at x is equal to 1. This means that the corresponding
element a�1b belongs to the open dense Bruhat cell B+B� ⇢ G.

Theorem 4.3. For any Miura (G, q)-oper on D, there exists an open dense subset V ⇢ P1

such that the reductions FB+ and FB� are in generic relative position for all x 2 V .

It is clear that (G, q)-opers depend on the choice of the lift of the Coxeter element c to
G(z), namely the functions {�i(z)}i=1,...,r. We will be interested in the case when they all
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6 THE QDE/IM CORRESPONDENCE
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of Every element of N+((z))

Q
i
siN+((z)) \ B�((z))
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(4.3) A(z) =
Y

i

gi(z)
�↵̌i e

tifi
gi(z) , gi(z) 2 C((z))⇥,

where ti 2 C⇥ are complex parameters corresponding to the lift of ci to si.

From now on we assume that ti = 1.
Next, we consider a class of regular Miura (G, q)-opers that are gauge equivalent to a

constant element of G (as (G, q)-connections). Let Z be an element of the maximal torus
H. Since G is simply connected, we can write

(4.4) Z =
rY

i=1

⇣�↵̌i
i

, ⇣i 2 C⇥.

Definition 4.5. 1) A Z-twisted (G, q)-oper on D is a (G, q)-oper that is equivalent to the
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bundle), there exists g(z) 2 G(z) such that
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i
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Y
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h
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+(qz)
i�aji Y

j<i

h
Qj

+(z)
i�aji
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Y
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⇣
aji

j
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i

Y
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⇣
�aji

j

and we use the ordering of simple roots from the definition of (G, q)-opers. Here element
Z =

Q
i
⇣↵̌i
i

2 H satisfies the following property:

(4.8)
rY

i=1

⇣
aij

i
/2 qZ, 8j = 1, . . . , r .

Theorem:
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We now specialize to the case of the Coxeter element c. The factorization in Theorem 2.5
yields an explicit version of the Fomin-Zelevinsky factorization for C c̃

0, where c̃ =
∏
λα̌i
i si.

Theorem 2.5 thus implies that C c̃
0 = C c̃ and Gc

0 = Gc, i.e., in this case, the Fomin-Zelevinsky
map (2.9) gives a factorization for the entire double Bruhat cell. In fact, the same argument
applies to show Gw

0 = Gw for any w whose reduced decompositions do not involve repeated
simple reflections. We remark that this statement is apparently known to specialists and
may also be proved using cluster algebra techniques.2

2.6. q-opers and Miura q-opers with regular singularities. Let {Λi(z)}i=1,...,r be a
collection of nonconstant polynomials.

Definition 2.8. A (G, q)-oper with regular singularities determined by {Λi(z)}i=1,...,r is a
q-oper on P1 whose q-connection (2.2) may be written in the form

(2.10) A(z) = n′(z)
∏

i

(Λi(z)
α̌i si)n(z), n(z), n′(z) ∈ N−(z).

Definition 2.9. A Miura (G, q)-oper with regular singularities determined by polynomials
{Λi(z)}i=1,...,r is a Miura (G, q)-oper such that the underlying q-oper has regular singularities
determined by {Λi(z)}i=1,...,r.

According to Corollary 2.4, we can write the q-connection underlying such a Miura (G, q)-
oper in the form

A(z) ∈ N−(z)
∏

i

((Λi(z)
α̌isi)N−(z) ∩ B+(z).

Recall Theorem 2.5. Observe that we can choose liftings si of the simple reflections
wi ∈ WG in such a way that ti = 1 for all i = 1, . . . , r. From now on, we will only consider
such liftings.

The following theorem follows from Theorem 2.5 in the case F = C(z) and gives an
explicit parametrization of generic elements of the above intersection.

Theorem 2.10. Every element of N−(z)
∏

i(Λi(z))α̌isi)N−(z) ∩ B+ may be written in the
form

(2.11) A(z) =
∏

i

gi(z)
α̌i e

Λi(z)
gi(z)

ei , gi(z) ∈ C(z)×.

Corollary 2.11. For every Miura (G, q)-oper with regular singularities determined by the
polynomials {Λi(z)}i=1,...,r, the underlying q-connection can be written in the form (2.11).

3. Z-twisted q-opers and Miura q-opers

Next, we consider a class of (Miura) q-opers that are gauge equivalent to a constant
element of G (as (G, q)-connections). Let Z be an element of the maximal torus H. Since
G is simply connected, we can write

(3.1) Z =
r∏

i=1

ζ α̌i
i , ζi ∈ C

×.

2We thank Greg Muller for a discussion of these matters.
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Using structure theorem every Miura (G,q)-oper with singularities reads
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(G,q)-oper is Z-twisted if  it is equivalent to a constant element of G
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Definition 3.1. A Z-twisted (G, q)-oper on P1 is a (G, q)-oper that is equivalent to the
constant element Z ∈ H ⊂ H(z) under the q-gauge action of G(z), i.e. if A(z) is the
meromorphic oper q-connection (with respect to a particular trivialization of the underlying
bundle), there exists g(z) ∈ G(z) such that

A(z) = g(qz)Zg(z)−1.(3.2)

Definition 3.2. A Z-twisted Miura (G, q)-oper is a Miura (G, q)-oper on P1 that is equiv-
alent to the constant element Z ∈ H ⊂ H(z) under the q-gauge action of B+(z), i.e.

A(z) = v(qz)Zv(z)−1, v(z) ∈ B+(z).(3.3)

3.1. From Z-twisted q-opers to Miura q-opers. It follows from Definition 3.1 that any
Z-twisted (G, q)-oper is also Z ′-twisted for any Z ′ in the WG-orbit of Z. However, if we
endow it with the structure of a Z-twisted Miura (G, q)-oper (by adding a B+-reduction
FB+ preserved by the oper q-connection), then we fix a specific element in this WG-orbit.

Indeed, suppose that (FG, A,FB−) is a Z-twisted (G, q)-oper. Choose a trivialization of
FG on a Zariski open dense subset U of P1 with respect to which A is equal to Z. Then
a choice of an A-invariant B+-reduction FB+ of FG on a Zariski open dense subset V ⊂ U
is the same as a choice of a Z-invariant B+-reduction of the fiber FG,v of FG at any point
v ∈ V . Our trivialization of FG|U identifies FG,v with G, and hence a B+-reduction of
FG,v with a right coset gB+ of G. The Z-invariance of this B+-reduction means that gB+,
viewed as a point of the flag variety G/B+, is a fixed point of Z. This is equivalent to
Z ∈ gB+g−1 or g−1Zg ∈ B+.

Adding the B+-reduction FB+ corresponding to a coset gB+ satisfying this property to
our (G, q)-oper (FG, A,FB−), we endow it with the structure of a Miura (G, q)-oper. A choice
of trivialization of FB+ is equivalent to a choice of an identification of the coset gB+ with
B+, which is the same as a choice of an element of this coset (this element corresponds to
1 ∈ B+ under the given isomorphism B+ # gB+). Without loss of generality, we denote this
element also by g. Then, with respect to the corresponding trivialization of the (G, q)-oper
bundle FG, the q-connection becomes equal to g−1Zg ∈ B+. However, note that because
we can multiply g on the right by any element of B+, we still have the freedom to conjugate
g−1Zg by an element of B+, and there is a unique element in the B+-conjugacy class of
g−1Zg of the form w−1Zw, where w ∈ WG. Denote this element by Z ′. We now conclude
that the Miura (G, q)-oper obtained by endowing our (G, q)-oper with the B+-reduction
FB+ corresponding to gB+ is Z ′-twisted.

As a result, we also construct a map µZ from (G/B+)Z = {f ∈ G/B+ | Z · f = f}
to WG · Z, sending gB+ with g−1Zg ∈ B+ to the unique element Z ′ of WG · Z that is
B+-conjugate to g−1Zg. According to the above construction, the set of points of the
fiber µ−1

Z (Z ′) of µZ over a specific Z ′ ∈ WG · Z is in bijection with the set of A-invariant
B+-reductions FB+ on our (G, q)-oper such that the corresponding Miura (G, q)-oper is
Z ′-twisted.

Thus, we have proved the following result.

Proposition 3.3. Let Z ∈ H. For any Z-twisted (G, q)-oper (FG, A,FB−) and any choice
of B+-reduction FB+ of FG preserved by the oper q-connection A, the resulting Miura (G, q)-
oper is Z ′-twisted for a particular Z ′ ∈ WG · Z.

Moreover, the set of A-invariant B+-reductions FB+ on the (G, q)-oper (FG, A,FB−)
making it into a Z ′-twisted Miura (G, q)-oper is in bijection with the set of points of µ−1

Z (Z ′).
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Z is regular semisimple. WGThere are

Miura (G,q)-opers for each (G,q)-opers
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It is also the case that AH(z) determines the yi(z)’s uniquely up to scalar. Indeed, if
∏

i

ỹi(qz)
α̌iZ

∏

i

ỹi(z)
−α̌i = Z

as well, then
∏

i

(
ỹi(qz)

yi(qz)

)α̌i

Z
∏

i

(
ỹi(z)

yi(z)

)−α̌i

= Z.

The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is

Line stable under B+

Plucker relations: for two integral dominant weights
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ỹi(z)
−α̌i = Z

as well, then
∏

i

(
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satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is
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ỹi(qz)
α̌iZ

∏

i
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ỹi(qz)

yi(qz)

)α̌i

Z
∏

i

(
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satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is

under canonical projection

Conversely, for a collection of lines
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
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satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is

satisfying Plucker relations 9B ⇢ G such that
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
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satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is

This is a vector of weight
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ỹi(qz)

yi(qz)

)α̌i

Z
∏

i

(
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is
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The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
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satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi is
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It is also the case that AH(z) determines the yi(z)’s uniquely up to scalar. Indeed, if
∏

i

ỹi(qz)
α̌iZ

∏

i

ỹi(z)
−α̌i = Z

as well, then
∏

i

(
ỹi(qz)

yi(qz)

)α̌i

Z
∏

i

(
ỹi(z)

yi(z)

)−α̌i

= Z.

The commutativity of H(z) immediately implies that the rational functions hi(z) = ỹi(z)
yi(z)

satisfy hi(qz) = hi(z). Since q is not a root of unity, we find that hi(z) ∈ C×.

4. Nondegenerate Miura-Plücker q-opers

Our main goal is to link Miura q-opers to solutions of a certain system of equations called
the QQ-system, which is in turn related to the system of Bethe Ansatz equations. We do
this in two steps: first, we introduce the notion of Z-twisted Miura-Plücker (G, q)-opers;
these are Miura q-opers satisfying a slightly weaker condition than the Z-twisted Miura
q-opers discussed in the previous section. Second, we impose two nondegeneracy conditions
on these Z-twisted Miura-Plücker (G, q)-opers.

We start in Section 4.1 with an outline of the Plücker description of B+-bundles. When
G has rank greater than 1, we use this to associate to a Miura (G, q)-oper a collection of
Miura (GL(2), q)-opers indexed by the fundamental weights of G. This will motivate the
definition of Z-twisted Miura-Plücker (G, q)-opers in Section 4.2. We will then define two
nondegeneracy conditions for these objects: the first one in Section 4.3, and the second one
in Sections 4.4 (for G = SL(2)) and 4.5 (for general G).

4.1. The associated Miura (GL(2), q)-opers. In this section, we associate to a Miura
(G, q)-oper with regular singularities a collection of Miura (GL(2), q)-opers indexed by the
fundamental weights. This is done using the Plücker description of B+-bundles which we
learned from V. Drinfeld.

Recall that ωi denotes the ith fundamental weight of G. Let Vi be the irreducible rep-
resentation of G with highest weight ωi with respect to B+. It comes equipped with a
line Li ⊂ Vi (of highest weight vectors) stable under the action of B+. Likewise, there is
a B+-stable line Lλ in the irreducible representations Vλ of G for every dominant integral
highest weight λ. These lines satisfy the following generalized Plücker relations: for any
two dominant integral weights λ and µ, Lλ+µ ⊂ Vλ+µ is the image of Lλ ⊗ Lµ ⊂ Vλ ⊗ Vµ

under the canonical projection Vλ ⊗ Vµ −→ Vλ+µ. Conversely, given a collection of lines
Lλ ⊂ Vλ for all λ satisfying the Plücker relations, there is a Borel subgroup B ⊂ G such that
Lλ is stabilized by B for all λ. A choice of B is equivalent to a choice of B+-torsor in G.
Hence, we can identify the datum of a B+-reduction FB+ of a G-bundle FG with the “linear
algebra” data of line subbundles Li of the associated vector bundles Vλ = F×

G
Vλ satisfying

the Plücker relations. If we have a connection or a q-connection on FG that preserves FB+

(or has another relation with FB+ , such as the oper or q-oper condition), we can use this
formalism to express the properties of A(z) in terms of these “linear algebra” data.

In our discussion here, we will not make full use of this formalism. What we need is the
following simple fact. Let νωi be a generator of the line Li ⊂ Vi. It is a vector of weight
ωi with respect to our maximal torus H ⊂ B+. The subspace of Vi of weight ωi − αi isis one-dimensional and spanned 

q-OPERS, QQ-SYSTEMS, AND BETHE ANSATZ 17

one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the

Thus the 2d subspace spanned by {⌫!i , fi · ⌫!i}
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the

νωi

fi νωi

}Wi
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the

Associated vector bundle
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the

contains rank-two subbundle
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.

Definition 4.2. A (GL(2), q)-oper on P1 is a triple (W, A, L̃), where W is a rank 2 bundle

on P1, A : W −→ Wq is a meromorphic q-connection on W, and L̃ is a line subbundle of W
such that the induced map Ā : L̃ −→ (W/L̃)q is an isomorphism on a Zariski open dense
subset of P1.

A Miura (GL(2), q)-oper on P1 is a quadruple (W, A, L̃,L), where (W, A, L̃) is a (GL(2), q)-
oper and L is an A-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) (SL(2), q)-opers:
these are the (Miura) (GL(2), q)-opers defined by the above triples (resp. quadruples)
satisfying the additional property that there exists an isomorphism between DetW and the
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one-dimensional and is spanned by fi · νωi . Therefore, the two-dimensional subspace Wi of
Vi spanned by the weight vectors νωi and fi · νωi is a B+-invariant subspace of Vi.

Now, let (FG, A,FB− ,FB+) be a Miura (G, q)-oper with regular singularities determined
by polynomials {Λi(z)}i=1,...,r (see Definition 2.9). Recall that FB+ is a B+-reduction of a
G-bundle FG on P1 preserved by the (G, q)-connection A. Therefore for each i = 1, . . . , r,
the vector bundle

Vi = FB+ ×
B+

Vi = FG ×
G
Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×
B+

Li

associated to Li ⊂ Wi.
Denote by φi(A) the q-connection on the vector bundle Vi (or equivalently, a (GL(Vi), q)-

connection) corresponding to the above Miura q-oper connection A. Since A preserves FB+

(see Definition 2.2), we see that φi(A) preserves the subbundles Li and Wi of Vi. Denote
by Ai the corresponding q-connection on the rank 2 bundle Wi.

Let us trivialize FB+ on a Zariski open subset of P1 so that A(z) has the form (2.11) with
respect to this trivialization (see Corollary 2.11). This trivializes the bundles Vi, Wi, and
Li, so that the q-connection Ai(z) becomes a 2× 2 matrix whose entries are in C(z).

Direct computation using formula (2.11) yields the following result.

Lemma 4.1. We have

(4.1) Ai(z) =




gi(z) Λi(z)

∏
j>i gj(z)

−aji

0 g−1
i (z)

∏
j "=i gj(z)

−aji



 ,

where we use the ordering of the simple roots determined by the Coxeter element c.

Using the trivialization of Wi in which Ai(z) has the form (4.1), we represent Wi as

the direct sum of two line subbundles. The first is Li, generated by the basis vector

(
1
0

)
.

The second, which we denote by L̃i, is generated by the basis vector

(
0
1

)
. The subbundle

Li is Ai-invariant, whereas the subbundle L̃i and Ai satisfy the following (GL(2), q)-oper
condition.
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Using structure theorems we obtain r Miura (GL(2),q)-opers
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Z-twisted Miura-Plücker (G,q)-oper is meromorphic Miura (G,q)-oper on P1 such that for each Miura (GL(2),q)-oper  
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For example, this holds for all i if all yj(z), j = 1, . . . , r, are polynomials, an observation we
will use below.

4.2. Z-twisted Miura-Plücker q-opers. Recall Definition 3.2 of Z-twisted Miura (G, q)-
opers, where Z is a regular semisimple element of the maximal torus H. These are Miura
(G, q)-opers whose underlying q-connection can be written in the form (3.3):

(4.8) A(z) = v(qz)Zv(z)−1, v(z) ∈ B+(z).

We will now relax this condition using the Miura (GL(2), q)-opers Ai(z) (or equivalently,
the Miura (SL(2), q)-opers Ai(z)) associated to A(z). Instead, we will require that there
exists an element v(z) from B+(z) such that Ai(z) satisfies formula (4.8) with v(z) replaced
by vi(z) = v(z)|Wi ∈ GL(2) and Z replaced by Z|Wi for all i = 1, . . . , r.

Definition 4.3. A Z-twisted Miura-Plücker (G, q)-oper is a meromorphic Miura (G, q)-oper
on P1 with underlying q-connection A(z) satisfying the following condition: there exists
v(z) ∈ B+(z) such that for all i = 1, . . . , r, the Miura (GL(2), q)-opers Ai(z) associated to
A(z) by formula (4.1) can be written in the form

(4.9) Ai(z) = v(zq)Zv(z)−1|Wi = vi(zq)Zivi(z)
−1,

where vi(z) = v(z)|Wi and Zi = Z|Wi .

The difference between Z-twisted Miura (G, q)-opers and Z-twisted Miura-Plücker (G, q)-
opers may be explained as follows: the former is a quadruple (FG, A, FB− ,FB+) as in
Definition 2.2 such that there exists a trivialization of FB+ with respect to which the q-
connection A is a constant element of G(z) equal to our element Z ∈ H. For the latter, we
only ask that there exists a trivialization of FB+ with respect to which the q-connections
Ai(z) are constant elements of GL(2)(z) equal to Zi for all i = 1, . . . , r.

Thus, every Z-twisted Miura (G, q)-oper is automatically a Z-twisted Miura-Plücker
(G, q)-oper, but the converse is not necessarily true if G "= SL(2).

Note, however, that it follows from the above definition that the (H, q)-connection AH(z)
associated to a Z-twisted Miura-Plücker (G, q)-oper can be written in the same form (4.2)
as the (H, q)-connection associated to a Z-twisted Miura (G, q)-oper.

4.3. H-nondegeneracy condition. We now introduce two nondegeneracy conditions for
Z-twisted Miura-Plücker q-opers. The first of them, called the H-nondegeneracy condition,
is applicable to arbitrary Miura q-opers with regular singularities. Recall from Corollary
2.11 that the underlying q-connection can be represented in the form (2.11).

In what follows, we will say that v,w ∈ C× are q-distinct if qZv ∩ qZw = ∅.

Definition 4.4. A Miura (G, q)-oper A(z) of the form (2.11) is called H-nondegenerate if
the corresponding (H, q)-connection AH(z) can be written in the form (3.8), where for all
i, j, k with i "= j and aik "= 0, ajk "= 0, the zeros and poles of yi(z) and yj(z) are q-distinct
from each other and from the zeros of Λk(z).

4.4. Nondegenerate Z-twisted Miura (SL(2), q)-opers. Next, we define the second
nondegeneracy condition. This condition applies to Z-twisted Miura-Plücker (G, q)-opers.
In this subsection, we give the definition for G = SL(2). (Note that Z-twisted Miura-Plücker
(SL(2), q)-opers are the same as Z-twisted Miura (SL(2), q)-opers.) In the next subsection,
we will give it in the case of an arbitrary simply connected simple complex Lie group G.
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Definition 4.3. A Z-twisted Miura-Plücker (G, q)-oper is a meromorphic Miura (G, q)-oper
on P1 with underlying q-connection A(z) satisfying the following condition: there exists
v(z) ∈ B+(z) such that for all i = 1, . . . , r, the Miura (GL(2), q)-opers Ai(z) associated to
A(z) by formula (4.1) can be written in the form

(4.9) Ai(z) = v(zq)Zv(z)−1|Wi = vi(zq)Zivi(z)
−1,

where vi(z) = v(z)|Wi and Zi = Z|Wi .

The difference between Z-twisted Miura (G, q)-opers and Z-twisted Miura-Plücker (G, q)-
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Thus, we have arrived at a nondegenerate Z-twisted Miura (SL(2), q)-oper in the sense

of Section 4: A(z) = gα̌(z)e
Λ(z)
g(z) e, where g(z) = ζQ+(zq)Q+(z)−1.

6. Miura-Plücker q-opers, QQ-system, and Bethe Ansatz equations

In this section, we generalize the results of the previous section to an arbitrary simply
connected simple complex Lie group G. We establish a one-to-one correspondence between
the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the set of nondegenerate
solutions of a system of Bethe Ansatz equations associated to G. A key element of the
construction is an intermediate object between these two sets: the set of nondegenerate
solutions of the so-called QQ-system.

6.1. Miura (G, q)-opers and the QQ-system. First, we construct a one-to-one corre-
spondence between the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers and the
set of nondegenerate solutions of the QQ-system.

Recall that we have chosen a set of non-zero polynomials {Λi(z)}i=1,...,r, which we will
assume from now on to be monic, and a set of non-zero complex numbers {ζi}i=1,...,r that
correspond to a regular element Z of the maximal torus H ⊂ G by formula (3.1). In this
section, these data are assumed to be fixed. (In the next section, we will also consider
elements w(Z) of the orbit of Z under the action of the Weyl group WG of G and the
corresponding ζi’s.)

From now on, we will assume that our element Z =
∏

i ζ
α̌i
i ∈ H satisfies the following

property:

(6.1)
r∏

i=1

ζ
aij
i /∈ qZ, ∀j = 1, . . . , r .

Since
∏r

i=1 ζ
aij
i $= 1 is a special case of (6.1), this implies that Z is regular semisimple.

Introduce the following system of equations:

(6.2) ξ̃iQ
i
−(z)Q

i
+(qz)− ξiQ

i
−(qz)Q

i
+(z) =

Λi(z)
∏

j>i

[
Qj

+(qz)
]−aji ∏

j<i

[
Qj

+(z)
]−aji

, i = 1, . . . , r,

where

(6.3) ξ̃i = ζi
∏

j>i

ζ
aji
j , ξi = ζ−1

i

∏

j<i

ζ
−aji
j

and we use the ordering of simple roots from the definition of (G, q)-opers.
We call this the QQ-system associated to G and a collection of polynomials Λi(z), i =

1, . . . , r.
A polynomial solution {Qi

+(z), Q
i
−(z)}i=1,...,r of (6.2) is called nondegenerate if it has

the following properties: condition (6.1) holds for the ζi’s; for all i, j, k with i $= j and
aik, ajk $= 0, the zeros of Qj

+(z) and Qj
−(z) are q-distinct from each other and from the

zeros of Λk(z); and the polynomials Qi
+(z) are monic.

Recall Definition 4.3 of nondegenerate Z-twisted Miura-Plücker (G, q)-opers.

Theorem 6.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted Miura-Plücker (G, q)-opers and the set of nondegenerate polynomial solutions of the
QQ-system (6.2).
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Theorem 6.1. There is a one-to-one correspondence between the set of nondegenerate Z-
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Proof uses 
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Proof. Let A(z) be a nondegenerate Z-twisted Miura-Plücker (G, q)-oper. According to
Corollary 2.11, it can be written in the form (2.11):

(6.4) A(z) =
∏

i

gi(z)
α̌i e

Λi(z)
gi(z)

ei , gi(z) ∈ C(z)×,

and there exists v(z) ∈ B+(z) such that for all i = 1, . . . , r, the Miura (GL(2), q)-opers
Ai(z) associated to A(z) by formula (4.1) can be written in the form (4.9):

(6.5) Ai(z) = vi(zq)Zivi(z)
−1, i = 1, . . . , r,

where vi(z) = v(z)|Wi and Zi = Z|Wi .
The element v(z) can be expressed in the form

(6.6) v(z) =
r∏

i=1

yi(z)
α̌i

r∏

i=1

e
−

Qi
−(z)

Qi
+(z)

ei
. . . ,

where the dots stand for the exponentials of higher commutator terms in n+ = LieN+ (these
terms will not matter in the computations below) and Qi

+(z), Q
i
−(z) are relatively prime

polynomials with Qi
+(z) monic for each i = 1, . . . , r. Formula (6.5) shows that, without loss

of generality, we can and will assume that each yi(z) is a monic polynomial.
Acting on the two-dimensional subspace Wi introduced in Section 4.1, v(z) has the form

(6.7) v(z)|W i =

(
yi(z) 0

0 y−1
i (z)

∏
j #=i y

−aji
j (z)

)(
1 −

Qi
−(z)

Qi
+(z)

0 1

)

while Z has the form

(6.8) Z|Wi =

(
ζi 0

0 ζ−1
i

∏
j #=i ζ

−aji
j

)
.

We now apply (4.1) and (6.5)to relate the yi(z)’s and Qi
±(z)’s. First, comparing the

diagonal entries on both sides of (6.5) gives formula (3.9):

(6.9) gi(z) = ζi
yi(qz)

yi(z)
.

Second, by comparing the upper triangular entries on both sides of (6.5), we obtain

(6.10) Λi(z)
∏

j>i

gj(z)
−aji =

yi(z)yi(qz)
∏

j #=i

yj(z)
aji



ζi
Qi

−(z)

Qi
+(z)

− ζ−1
i

∏

j #=i

ζ
−aji
j

Qi
−(qz)

Qi
+(qz)



 .

Since Λi(z) and yi(z) are monic polynomials, the nondegeneracy conditions can only be
satisfied if

(6.11) yi(z) = Qi
+(z), i = 1, . . . , r.

Substituting (6.11) into (6.10), we see that the polynomials Qi
+(z), Q

i
−(z), i = 1, . . . , r,

satisfy the system of equations (6.2). Thus, we obtain a map from the set of nondegenerate
Miura (G, q)-opers to the set of nondegenerate solutions of (6.2).

To show that this map is a bijection, we construct its inverse. Suppose that we are given
a nondegenerate solution {Qi

+(z), Q
i
−(z)}i=1,...,r of the system (6.2). The nondegeneracy
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condition implies that the polynomials Qi
+(z) and Qi

−(z) are relatively prime. We then
define A(z) by formula (6.4), where we set

gi(z) = ζi
Qi

+(qz)

Qi
+(z)

,

i.e.

A(z) =
∏

j

[

ζj
Qj

+(qz)

Qj
+(z)

]α̌j

e

Λj (z)Q
j
+(z)

ζjQ
j
+(qz)

ei
(6.12)

=
∏

j

[
ζjQ

j
+(qz)

]α̌j

e

Λj (z)

ζjQ
j
+(qz)Q

j
+(z)

ej[
Qj

+(z)
]−α̌j

.(6.13)

We also set

(6.14) v(z) =
r∏

i=1

yi(z)
α̌i

r∏

i=1

e
−

Q
j
−(z)

Q
j
+(z)

ei
.

Equations (6.5) are satisfied for all i = 1, . . . , r. Using Proposition 4.8, we check that the
nondegeneracy conditions on A(z) are satisfied. Therefore, A(z) defines a nondegenerate
Z-twisted Miura-Plücker (G, q)-oper. This completes the proof. !

Remark 6.2. The system (6.2) depends on our choice of ordering of the simple roots of
G. In Section 7.4 we will show that the systems corresponding to different orderings are
equivalent. !

6.2. Prior work on the QQ-system. The system (6.2) has an interesting history. As
far as we know, for G = SL(2) the corresponding equation (5.4) with Λ(z) = 1 was first
written by Bazhanov, Lukyanov, and Zamolodchikov [BLZ] in their study of the quantum
KdV system. It was then generalized to the case G = SL(3) (also with Λi(z) = 1) in [BHK].
However, in both of these works, the conditions imposed on Qi

±(z) are different from those
considered here; they are not polynomials, but rather entire functions in z with a particular
asymptotic behavior as z → ∞.

For a general simply laced G, the system (6.2) with Λi(z) = 1 is equivalent to a system
that, as far as we know, was first proposed by Masoero, Raimondo, and Valeri in [MRV1],
in their study of (differential) affine opers introduced in [FF]. (For G = SL(n), a Yangian
version of this system is closely related to the system introduced in [BFL+]; see Remark
3.4 of [FH2].) The goal of [MRV1] was to generalize the results of [BLZ] in light of the
conjecture of [FF] (see also [FH2]) linking the spectra of quantum ĝ-KdV system and affine
Lĝ-opers on P1 of a special kind. Here, Lĝ is the affine Kac-Moody algebra that is Langlands
dual to ĝ, i.e., its Cartan matrix is the transpose of that of ĝ. If g is simply laced, then
Lĝ = ĝ. The authors of [MRV1] considered the simplest of the ĝ-opers proposed in [FF],
those corresponding to the ground states of the quantum ĝ-KdV system, and associated
to each of them a solution of a system equivalent to (6.2) with Λi(z) = 1. (This was
subsequently generalized in [MR] by Masoero and Raimondo to the ĝ-opers conjectured
in [FF] to correspond to the excited states of the quantum ĝ-KdV system.) However, the
meaning of this system from the point of view of quantum integrable systems remained
unclear.
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4.6. Dependence on the Coxeter element. We end this section with a preliminary re-
sult on the dependence of our results on the specific Coxeter element fixed in the definition
of q-opers. We will see later in Section 7.4 that the QQ-systems obtained from different
choices of Coxeter element are equivalent. Here, we show that if two Coxeter elements c
and c′ are related by a cyclic permutation of their simple reflection factors, then the corre-
sponding spaces of (G, q)-opers with regular singularities are isomorphic via a map defined
in terms of B+(z)-gauge transformations. Moreover, this map preserves nondegeneracy.

Proposition 4.10. Let c and c′ be two Coxeter elements that differ by a cyclic permutation
of their simple reflection factors. Then, there is an isomorphism between the spaces of Z-
twisted Miura (G, q)-opers with regular singularities defined in terms of c and c′ of the form
A(z) !→ fA(qz)A(z)fA(z)−1, where fA ∈ B+(z). This isomorphism takes nondegenerate
opers to nondegenerate opers.

Proof. Without loss of generality, we may assume that c = wi1 . . . wir and c′ = wi2 . . . wirwi1 .
Given

A(z) =
r∏

j=1

gij (z)
α̌ij e

Λij
(z)

gij
(z) eij

,

set

fA(qz) =

(

gi1(z)
α̌i1 e

Λi1
(z)

gi1
(z) ei1

)−1

.

The effect of gauge transformation by fA(z) is to move the q−1-shift of the i1 component
of A to the end of the product, thereby giving the order corresponding to c′. The new yi’s
and Λi’s are the same except for the q−1-shift of yi1 and Λi1 , so it is obvious that the new
q-oper also has regular singularities and is nondegenerate if the original q-oper was. It is
also clear that this map is an isomorphism. !

5. (SL(2), q)-opers and the Bethe Ansatz equations

Our goal is to establish a bijection between the set of nondegenerate Z-twisted Miura-
Plücker (G, q)-opers and the set of nondegenerate solutions of a system of Bethe Ansatz
equations. In this section, we show this for G = SL(2), which corresponds to the XXZ model.
This was already shown in [KSZ], in which a slightly different definition of (SL(2), q)-opers
was used. Below, we explain the connection to the formalism used in [KSZ].

5.1. From non-degenerate (SL(2), q)-opers to the QQ-system. Suppose we have a Z-
twisted nondegenerate Miura (equivalently, a Miura-Plücker) (SL(2), q)-oper. As explained
in Section 4.4, the underlying q-connection may be written in the form

A(z) =

(
g(z) Λ(z)
0 g(z)−1

)
,

and furthermore, there exists v(z) ∈ B+(z) such that

(5.1) A(z) = v(zq)Zv(z)−1, Z =

(
ζ 0
0 ζ−1

)
.

Write

(5.2) v(z) =

(
y(z) 0
0 y(z)−1

)(
1 −Q−(z)

Q+(z)

0 1

)
=

(
y(z) −y(z)Q−(z)

Q+(z)

0 y(z)−1

)
,
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Z-twisted q-oper condition

Gauge transformation reads
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)
.

Write
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We find 
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where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
nomial. Formula (5.1) then yields

g(z) = ζiy(zq)y(z)
−1

and

(5.3) Λ(z) = y(z)y(zq)

(
ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.

Nondegeneracy (see Definition 4.6) means that Λ(z) and y(z) are polynomials whose roots
are q-distinct from each other. This can only be satisfied if y(z) equals a scalar multiple
of Q+(z). Since we have the freedom to rescale y(z), without loss of generality we can and
will assume that y(z) = Q+(z). Equation (5.3) then becomes

(5.4) ζQ−(z)Q+(zq)− ζ−1Q−(zq)Q+(z) = Λ(z).

We call equation (5.4) the QQ-system associated to SL(2). (See the last paragraph of
Section 5.2 and Section 6.2 for a discussion of the origins of this system in the XXZ model.)
Here, Λ(z) is fixed: it is the polynomial used in the definition of a Miura (SL(2), q)-opers
which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),
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The q-oper condition becomes the SL(2) QQ-system
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To get Bethe equations
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which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),
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where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
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g(z) = ζiy(zq)y(z)
−1

and

(5.3) Λ(z) = y(z)y(zq)

(
ζ
Q−(z)

Q+(z)
− ζ−1Q−(zq)

Q+(zq)

)
.
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that Q+(z) is a monic polynomial, we can write
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(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),
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where Q+(z) and Q−(z) are relatively prime polynomials such that Q+(z) is a monic poly-
nomial. Formula (5.1) then yields
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−1

and

(5.3) Λ(z) = y(z)y(zq)

(
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Q−(z)

Q+(z)
− ζ−1Q−(zq)
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Nondegeneracy (see Definition 4.6) means that Λ(z) and y(z) are polynomials whose roots
are q-distinct from each other. This can only be satisfied if y(z) equals a scalar multiple
of Q+(z). Since we have the freedom to rescale y(z), without loss of generality we can and
will assume that y(z) = Q+(z). Equation (5.3) then becomes

(5.4) ζQ−(z)Q+(zq)− ζ−1Q−(zq)Q+(z) = Λ(z).

We call equation (5.4) the QQ-system associated to SL(2). (See the last paragraph of
Section 5.2 and Section 6.2 for a discussion of the origins of this system in the XXZ model.)
Here, Λ(z) is fixed: it is the polynomial used in the definition of a Miura (SL(2), q)-opers
which contains the information about their regular singularities. Thus, the QQ-system is
an equation on two polynomials Q+(z), Q−(z).

Let us call a solution {Q+(z), Q−(z)} of (5.4) nondegenerate if Q+(z) is a monic poly-
nomial whose roots are q-distinct from the roots of the polynomial Λ(z). No conditions are
imposed on Q−(z), but note that the nondegeneracy condition and formula (5.4) imply that
Q+(z) and Q−(z) are relatively prime. The above discussion is summarized in the following
statement.

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the QQ-system (5.4).

5.2. From the QQ-system to the Bethe Ansatz equations. Under our assumption
that Q+(z) is a monic polynomial, we can write

Q+(z) =
m∏

k=1

(z − wk).

Evaluating (5.4) at q−1z, we get

Λ(q−1z) = ζQ−(q
−1z)Q+(z) − ζ−1Q−(z)Q+(q

−1z).

If we divide (5.4) by this equation and evaluate at the roots wk of Q+(z), we obtain the
following equations:

(5.5)
Λ(wk)

Λ(q−1wk)
= −ζ2

Q+(qwk)

Q+(q−1wk)
, k = 1, . . . ,m.

These equations are equivalent to the Bethe Ansatz equations of the XXZ model, i.e., the
quantum spin chain associated to Uq ŝl2. To express them in a more familiar form, suppose
that Λ(z) is a monic polynomial all of whose roots are non-zero and simple. Recalling that
we do not require the roots of Λ(z) to be mutually q-distinct, we write Λ(z) explicitly as

(5.6) Λ(z) =
L∏

p=1

rp−1∏

jp=0

(z − q−jpzp),Singularities
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As in the classical setting, we need to relax these conditions to allow for regular singular-
ities. Fix a collection of L points z1, . . . , zL 6= 0, 1 such that the q

Z-lattices they generate
are pairwise disjoint. We associate a dominant integral weight �m =

P
l
i
m!i to each zm.

Set `
i
m =

Pi
j=1

l
j
m.

Definition 4.2. An (SL(N), q)-oper with regular singularities at the points z1, . . . , zL 6=
0, 1 with weights �1, . . . �L is a meromorphic (SL(N), q)-oper such that each Āi is an

isomorphism except at the points q
�`i�1

m zm, q
�`i�1

m +1
zm, . . . , q

�`im+1
zm for each m, where it

has simple zeros.

znq
�1

znq
�2

zn

q

q
�lkn+1

zn
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Figure 1. Weight of the singularity zn as q-monodromy around the cylinder
(P1 with 0 and 1 removed).

In order to express the locations of the roots of the Wi(s)’s, it is convenient to introduce
the polynomials

(4.3) ⇤i =
LY

m=1

`im�1Y

j=`i�1
m

(z � q
�j

zm)

with zeros precisely where Āi is not an isomorphism. We also set

(4.4) Pi = ⇤1⇤2 · · · ⇤i =
LY

m=1

`im�1Y

j=0

(z � q
�j

zm).

We introduce the notation f
(j)(z) = D

j
q(f)(z) = f(qjz). The zeros of Wk(s) coincide with

those of the polynomial

(4.5)
Wk(s) = ⇤1

⇣
⇤(1)

1
⇤(1)

2

⌘
· · ·

⇣
⇤(k�2)

1
· · · ⇤(k�2)

k�1

⌘

= P1 · P
(1)

2
· P

(2)

3
· · · P (k�2)

k�1
.

We now define twisted q-opers. Let Z = diag(⇣1, . . . , ⇣N ) 2 SL(N, C) be a diagonal matrix
with distinct eigenvalues.

Definition 4.3. An (SL(N), q)-oper (E, A,L•) with regular singularities is called a Z-
twisted q-oper if A is gauge-equivalent to Z

�1.

As in the SL(2) case, this is a deformed version of opers with irregular singularities that
arise in the inhomogeneous version of the Gaudin model introduced in [FFTL,FFR2].
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where the zp’s are mutually q-distinct and non-zero. Setting r =
∑L

p=1 tp, the equations
(5.5) become

(5.7) qr
L∏

p=1

wk − q1−rpzp
wk − qzp

= −ζ2qm
m∏

j=1

qwk − wj

wk − qwj
, k = 1, . . . ,m.

This is a more familiar form of the Bethe Ansatz equations in the XXZ model (see e.g.
[FH1], Section 5.6).

Let us call a solution Q+(z) of the system of Bethe Ansatz equations (5.5) nondegenerate
if Q+(z) is a monic polynomial whose roots are q-distinct from the roots of Λ(z). It is clear
that if {Q+(z), Q−(z)} is a nondegenerate solution of (5.4), then Q+(z) is a nondegenerate
solution of (5.5), and vice versa. The above calculation, combined with Theorem 5.1, proves
the following result.

Theorem 5.2. There is a one-to-one correspondence between the set of nondegenerate Z-
twisted (SL(2), q)-opers with regular singularity determined by a polynomial Λ(z) and the
set of nondegenerate solutions of the Bethe Ansatz equations (5.5).

It is known that the Bethe Ansatz equations (5.5) parametrize the spectra of the quantum
transfer-matrices in the XXZ model corresponding to Uq′ ŝl2, where q′ = q−2, with the

space of states being the tensor product of finite-dimensional representations of Uq′ ŝl2 (see
e.g. [FH1]). The polynomial Λ(z) is the product of the Drinfeld polynomials of these
representations, up to multiplicative shifts by powers of q. Furthermore, we expect that
the QQ-system (5.4) can be derived from the QQ̃-relation in the Grothendieck ring of the

category O of Uq′ ŝl2 proved in [FH2].

5.3. An approach using the q-Wronskian. In [KSZ], the equations (5.4) and (5.5)
were derived in a slightly different way, and analogous results were also obtained for G =
SL(n). We now make an explicit connection between this approach and the approach of the
preceding section.

Recall Definition 4.2 of (GL(2), q)-opers. Adding the condition that the underlying rank
two vector bundle W can be identified with the trivial line bundle so that det(A) = 1, we
obtain the definition of Miura (SL(2), q)-opers. The oper condition is now expressed as the

existence of a line subbundle L̃ ⊂ W for which Ā : L̃ −→ W/L̃ is an isomorphism on a open
dense subset of P1. Choose any trivialization of W on an open dense subset U , and let s(z)

be a section of W on this subset that generates the line subbundle L̃. The q-connection
A(z) then satisfies the condition

s(qz) ∧A(z)s(z) %= 0

on a Zariski open dense subset V of U . This is the definition of a general meromorphic
(SL(2), q)-oper.

From this perspective, (SL(2), q)-opers with regular singularities are defined in [KSZ] as
follows.

Definition 5.3. An (SL(2), q)-oper with regular singularities determined by Λ(z) is a mero-

morphic (SL(2), q)-oper (E, A, L̃) such that s(qz) ∧A(z)s(z) = Λ(z).

This definition is equivalent to Definition 2.8.
Consider a diagonal matrix Z = diag(ζ, ζ−1) with ζ %= ±1. Recall that an (SL(2), q)-oper

(E, A, L̃) is a Z-twisted q-oper if A is gauge equivalent to Z. (We remark that in [KSZ], a

XXZ Bethe equations
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Upon making the substitution Qi
±(z) = Qi

±(q
N−i
2 z) and Λi(z) = Λi(q

N−i−1
2 z), we obtain a

more symmetric form of the system which was considered in [KSZ]:

Λi(z)Q
i+1
+ (z)Qi−1

+ (z) =
ζi
ζi+1

Qi
−(q

−1/2z)Qi
+(q

1/2z)−
ζi+1

ζi
Qi

−(q
1/2z)Qi

+(q
−1/2z).

If we set Λi(z) = 1, the latter is equivalent to the system from [MRV1,FH2] corresponding
to Uq′ ŝln with q′ = q−2.

Now, suppose that g is non-simply laced. In this case, the system (6.2) is different from
the QQ̃-system of [MRV2] and [FH2] corresponding to Uqĝ. Instead, it can be obtained by

“folding” the QQ̃-system corresponding to Uqĝ′, where g′ is the simply laced Lie algebra
with an automorphism σ such that (g′)σ = g. This will be discussed in [FHR].

6.3. QQ-system and Bethe Ansatz equations. As we will see, the QQ-system (6.2)
gives rise to a system of equations only involving the Qi

+(z)’s. Let {w
k
i }k=1,...,mi

be the set
of roots of the polynomial Qi

+(w). We call the system of equations

(6.16)
Qi

+(qw
k
i )

Qi
+(q

−1wk
i )

∏

j

ζ
aji
j = −

Λi(wi
k)
∏

j>i

[
Qj

+(qw
i
k)
]−aji∏

j<i

[
Qj

+(w
i
k)
]−aji

Λi(q−1wi
k)
∏

j>i

[
Qj

+(w
i
k)
]−aji∏

j<i

[
Qj

+(q
−1wi

k)
]−aji

for i = 1, . . . , r, k = 1, . . . ,mi the Bethe Ansatz equations for the group G and the set
{Λi(z)}i=1,...,r.

For simply laced G, this system is equivalent to the system of Bethe Ansatz equations
that appears in the Uqĝ XXZ-type model [OW,RW,R]. However, for non-simply laced G,
we obtain a different system of Bethe Ansatz equations, which, as far as we know, has
not yet been studied in the literature on quantum integrable systems. (As we mentioned
in the Introduction, an additive version of this system appeared earlier in [MV2].) As
will be explained in [FHR], these Bethe Ansatz equations correspond to a novel quantum
integrable model in which the spaces of states are representations of the twisted quantum
affine Kac-Moody algebra Uq

Lĝ, where Lĝ is the Langlands dual Lie algebra of ĝ.
Recall the nondegeneracy condition for the solutions of the QQ-system. We apply the

same notion to the solutions of (6.16).

Theorem 6.4. There is a bijection between the sets of nondegenerate polynomial solutions
of the QQ-system (6.2) and the Bethe Ansatz equations (6.16).

Proof. Let {Qi
+(z), Q

i
−(z)}i=1,...,r be a nondegenerate solution of the QQ-system (6.2). Set

(6.17) φi(z) =
Qi

−(z)

Qi
+(z)

and

(6.18) fi(z) = Λi(z)
∏

j>i

[
Qj

+(qz)
]−aji∏

j<i

[
Qj

+(z)
]−aji

.

Then, the ith equation of the QQ-system may be rewritten as

(6.19) ξ̃iφi(z)− ξiφi(qz) =
fi(z)

Qi
+(z)Q

i
+(qz)

.

Space of nondegenerate solutions of 

QQ-system for G 

Nondegenerate Z-twisted Miura (G,q)-opers 

with regular singularities 

roots of Q+

Space of nondegenerate solutions of 

XXZ for G

Nondegenerate Z-twisted Miura-Plucker (G,q)-opers 

with regular singularities 

?

?
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This follows from our assumption on Z in (6.1) because ξ̃i/ξi =
∏r

j=1 ζ
aji
j . Therefore, each

of the equations (6.24) has a unique solution.
It then follows that there exist unique polynomials {Qi

−(z)}i=1,...,r that together with
{Qi

+(z)}i=1,...,r satisfy the QQ-system (6.2). Furthermore, by construction, it follows that
this solution of the QQ-system is nondegenerate. !

7. Bäcklund-type transformations

Theorems 6.1 and 6.4 establish a bijection between the set of nondegenerate Z-twisted
Miura-Plücker (G, q)-opers and the sets of polynomial nondegenerate solutions of the QQ-
system and the Bethe Ansatz equations (6.16).

Now, the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers includes as a sub-
set those Z-twisted Miura-Plücker (G, q)-opers which are actually Z-twisted Miura (G, q)-
opers. Recall the difference between the two: a Z-twisted Miura (G, q)-oper is one whose
q-connection can be represented in the form (4.8):

(7.1) A(z) = v(qz)Zv(z)−1, v(z) ∈ B+(z),

whereas a Z-twisted Miura-Plücker (G, q)-oper is one for which only the associated (GL(2), q)-
opers Ai(z) have this property (compare with (6.5)). When we constructed the inverse map
in the proof of Theorem 6.1, we defined an element v(z) of B+(z) by formula (6.14). This
v(z) satisfies the equations (6.5), so we do get a Z-twisted Miura-Plücker (G, q)-oper, but
it is not clear whether this v(z) can be extended to an element of B+(z) satisfying formula
(7.1). More precisely, equations (6.5) uniquely fix the image v(z) of v(z) in the quotient
B+/[N+, N+], and the question is whether we can lift this v(z) to an element v(z) ∈ B+(z)
such that equation (7.1) is satisfied.

In this section, we will give a sufficient condition for this to hold (see Theorem 7.10 and
Remark 7.11). It is based on transformations described in the next subsection for generating
new solutions of the QQ-system from an existing one. (There is one such transformation
for each simple root of G.). We call them Bäcklund-type transformations.

Here, we follow an idea of Mukhin and Varchenko [MV1,MV2], who introduced similar
procedures for the solutions of the Bethe Ansatz equations arising from the XXX-type
models associated to Yangians. However, in contrast to their setting, we have a non-trivial
twist represented by a regular semisimple element Z of the Cartan subalgebra. As a result,
our transformations generically give rise to solutions labeled by elements of the Weyl group
of G, rather than by points of the flag manifold of G as in [MV1,MV2].

7.1. Definition of Bäcklund-type transformations. Consider a Z-twisted Miura-Plücker
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Proposition 7.1. Consider the q-gauge transformation of the q-connection A given by
formula (6.12):

A "→ A(i) = eµi(qz)fiA(z)e−µi(z)fi , where µi(z) =

∏
j "=i

[
Qj

+(z)
]−aji

Qi
+(z)Q

i
−(z)
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Then A(i)(z) can be obtained from A(z) by substituting in formula (6.12) (or (6.13))

Qj
+(z) !→ Qj

+(z), j #= i,(7.3)

Qi
+(z) !→ Qi

−(z), Z !→ si(Z) .(7.4)

In the proof of Theorem 7.1, we will use the following lemma, which is proved by a direct
computation. (The results of the lemma have appeared previously in [MV2]).

Lemma 7.2. The following relations hold for any u, v ∈ C:

uα̌ievej = exp (uajiv ei)u
α̌i

uα̌ievfj = exp
(
u−ajiv fi

)
uα̌i

euei evfi = exp

(
v

1 + uv
fi

)
(1 + uv)α̌i exp

(
u

1 + uv
ei

)
.

Proof of Proposition 7.1. Using the first identity from Lemma 7.2, we can move all factors
Qj

+(qz) in formula (6.12) to the left and all factors Qj
+(z) to the right. The resulting

expression is

A(z) =
∏

k

[
Qk

+(qz)
]α̌k

[
∏

i

ζ α̌i
i eΛ̃i(z)ei

]
∏

l

[
Ql

+(z)
]−α̌l

,(7.5)

where

(7.6) Λ̃i(z) =

∏
j<i

[
Qj

+(z)
]−aji ∏

j>i

[
Qj

+(qz)
]−aji

Λi(z)

ζiQi
+(qz)Q

i
+(z)

.

Let

(7.7) µ̃i(z) = µi(z)
∏

j

[
Qj

+(z)
]aji

.

Then, applying the second identity from Lemma 7.2 to (7.5), we obtain

(7.8) Ã(i) = eµi(qz)fiA(z)e−µi(z)fi = . . . ζ α̌i
i ew fi · eu ei · ev fi . . .

where

(7.9) w = ζ2i
∏

j<i

ζ
aji
j µ̃i(qz) , u = Λ̃i(z) , v = −

∏

j>i

ζ
aji
j µ̃i(z) ,

and the ellipses stand for all other terms including the elements of the maximal torus and
the exponentials of ej with j #= i. We now use the third identity from Lemma 7.2 to reshuffle
the middle and the last exponent in (7.8):

(7.10) Ã(i) = . . . ζ α̌i
i exp

((
w +

v

1 + uv

)
fi

)
(1 + uv)α̌i exp

(
u

1 + uv
ei

)
. . . .

In order to prove the proposition, we first need to show that

(7.11) w +
v

1 + uv
= 0,

changes the set of Q-functions
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Suppose that the polynomial Q i

�(u) constructed as the solution of
QQ-system is such that its roots are ~-distinct from the roots of
Q j

+(u), j 6= i , and ⇤k(u) such that aik 6= 0 and ajk 6= 0. Then the data

{ eQ j

+}j=1,...,r = {Q1
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+ . . . ,Q r

+}; (1)

{ezj}j=1,...,r = {z1, . . . , zi�1, z
�1
i

Y

j 6=i

z
�aji

j
, . . . , zr}

give rise to a nondegenerate solution of the Bethe Ansatz equations,
corresponding to si (Z) 2 H.

Furthermore, there exist polynomials { eQ j

�}j=1,...,r that together with

{ eQ j

+}j=1,...,r give rise to a nondegenerate solution of the QQ-system
corresponding to si (Z).

Now the strategy is to successively apply Bäcklund transformations according to the reduced decomposition of the element of the Weyl group 
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7.3. From Miura-Plücker to Miura q-opers. We shall now describe a sufficient condi-
tion for a Z-twisted Miura-Plücker (G, q)-opers to be a Miura (G, q)-oper.

Let w0 = si1 . . . si! be a reduced decomposition of the longest element of the Weyl group.
In what follows, we refer to an (i1, . . . , i!)-generic object as w0-generic.

Theorem 7.10. Every w0-generic Z-twisted Miura-Plücker (G, q)-oper is a nondegenerate
Z-twisted Miura (G, q)-oper.

Proof. Let

A(z) =
∏

j

[

ζj
Qj

+(qz)

Qj
+(z)

]α̌j

e
Λj (z)ej
gj (z)

be the w0-generic Z-twisted Miura-Plücker (G, q)-oper coming from a w0-generic solution
{Qj

+} of the QQ-system. By Proposition 7.6, there exists an element b−(z) ∈ B−(z) such
that

b−(qz)w0(Z)v = A(z)b−(z)v,

where v is any highest weight vector in a finite-dimensional irreducible representation of G;
moreover,

b−(z) = eci1fi1eci2fi2 . . . ecikfi!h(z)

with cij (z) ∈ C(z)× and h(z) ∈ H(z).
By Proposition 7.8,

b−(z) = b+(z)w0n+(z),

where b+(z) ∈ B+(z) and n+(z) ∈ N+(z). Therefore, we have

b+(qz)Zw0v = A(z)b+(z)w0v,

so if we set

(7.30) U(z) = Z−1b−1
+ (qz)A(z)b+(z) ∈ B+(z),

then

w0v = U(z)w0v

for any irreducible finite-dimensional representation ofGwith highest weight vector v. Thus,
U(z) is an element of B+(z) which fixes the lowest weight vector w0v of any irreducible finite-
dimensional representation of G. This means that U(z) = 1. Equation (7.30) then implies
that A(z) satisfies

(7.31) A(z) = b+(qz)Zb+(z)
−1

for some b+(z) ∈ B+(z). Thus, we have proved that every w0-generic Z-twisted Miura-
Plücker (G, q)-oper is a nondegenerate Z-twisted Miura (G, q)-oper. Equivalently, every
w0-generic solution of the QQ-system corresponds to a nondegenerate Z-twisted Miura
(G, q)-oper. !

Remark 7.11. Given a regular semisimple element Z ∈ H and a collection of polynomials
{Λi(z)}i=1,...,r as above, consider the following three sets of objects on P1:

• q -MPOpZG, the set of nondegenerate Z-twisted Miura-Plücker (G, q)-opers;

• q -MPOpZ,w0
G , the set of w0-generic Z-twisted Miura-Plücker (G, q)-opers;

• q -MOpZG, the set of nondegenerate Z-twisted Miura (G, q)-opers.

Theorem: Every Z-twisted Miura-Plucker (G,q)-oper is Z-twisted Miura (G,q)-oper

The proof based on properties of double Bruhat cells addresses the existence of the diagonalizing element  (to be constructed later)v(z)
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One can show that for WG-generic Miura-Plücker (G, q)-oper there exists b−(z) ∈ B−(z)
such that2:

(3.28) A(z) = b−(qz)Zb−(z)
−1.

Then the following Theorem holds (see [FKSZ]).

Theorem 3.20. Every WG-generic Z-twisted Miura-Plücker (G, q)-oper is a nondegenerate
Z-twisted Miura (G, q)-oper.

4. Z-twisted q-opers and generalized Wronskians

4.1. Generalized Minors and Plücker coordinates. In the next section we will discuss
another approach to Miura (G, q)-opers. This approach is based on the datum of the
corresponding connection in the set of fundamental representations. There is a way to
encode this datum in terms of certain explicit “coordinates” one can associate to a group
element. These coordinates are the generalizations of minors for SL(N). They were used
by Berenstein, Fomin and Zelevinsky in the study of Schubert cells and double Bruhat cells
in the combinatorial context of cluster algebras.

Let us define what generalized minors are. Consider the big cell in Bruhat decomposition:
G0 = N−HN+. For a given element g ∈ G0 we can write it as

g = n− h n+.(4.1)

Let V +
i be the irreducible representation of G with highest weight ωi and highest weight

vector ν+ωi
which isthe eigenvector for any h ∈ H, i.e. hν+ωi

= [h]ωiν+ωi
, [h]ωi ∈ C×. That

allows us to introduce the following definition (see [FZ1]).

Definition 4.1. The following regular functions {∆ωi}i=1,...,r on G, whose values on a dense
set G0 are given

∆ωi(g) = [h]ωi , i = 1, . . . , r(4.2)

will be referred to as principal minors of a group element g.

In case of G = SL(N) these functions stand for principal minors of the standard matrix
realization of SL(N).

Other generalized minors are obtained by the action of the Weyl group elements on the
left and the right of g and then applying the appropriate lifts of Weyl group elements u, v
on the right and the left and then applying principal minors to the result.

Namely, we have the following

Definition 4.2. For u, v ∈ WG, we define a regular function ∆uωi,vωi on G by setting

(4.3) ∆uωi,vωi(g) = ∆ωi(ũ−1gṽ).

Notice that in this notation ∆ωi,ωi(g) = ∆ωi(g). Consider the orbit OWG
= WG · Cν+ωi

,
This way we have the following Proposition.

2The conditions of WG-genericity can be relaxed, by allowing nondegenerate solutions of the QQ-system
to propagate along the decomposition of w0 the longest root. However, we use this, more restrictive condition
here for the reasons explained in the next section
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Proposition 4.3. Action of the group element on the highest weight vector in

g · ν+ωi
=
∑

w∈W

∆w·ωi,ωi(g)w̃ · ν+ωi
+ . . . ,(4.4)

where dots stand for the vectors, which do not belong to the orbit OW .

The set of generalized minors {∆w·ωi,ωi}w∈W ;i=1,...,r creates a set of coordinates on G/B+,
known as generalized Plücker coordinates. In particular, the set of zeroes of each of ∆w·ωi,ωi

is a uniquely and unambiguously defined hypersurface in G/B. This feature is important
for characterizing Schubert cells as quasi-projective subvarieties of a generalized flag variety,
see [FZ2] for details. We will need the following Corollary.

Corollary 4.4. If the collection {∆w·ωi,ωi(g)}w∈W ;i=1,...,r does not have vanishing elements,
then g ∈ B+w0B+.

One of the first consequences of the formalism of generalized minors is the following
Proposition.

Proposition 4.5. For a W -generic Z-twisted Miura-Plücker (G, q)-oper with q-connection
A(z) = v(qz)Zv(z)−1, where v(z) ∈ B−(z) we have the following relation:

(4.5) ∆w·ωi,ωi(v
−1(z)) = Qw,i

+ (z)

for any w ∈ W .

Proof. Notice that ∆ωi(v−1(z)) = Qi
+(z). Indeed, following (3.19), we have:

v−1(z) =
r∏

i=1

e

Qi
−

(z)

Qi
+(z)

fi
r∏

i=1

[
Qi

+(z)
]α̌i

. . . ,

where dots stand for exponentials of higher commutators of {fi}, we obtain that

v−1(z)ν+ωi
= Qi

+(z)ν
+
ωi

+Qi
−(z)fiν

+
ωi

+ . . . ,(4.6)

where dots stand for the vectors of lower weights.
Now take into account that v(z)w̃−1 = u+(z)vw(z), where u+(z) ∈ N+(z), vw(z) ∈
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(G, q)-oper.

Proof. Let us first assume that Z-twisted Miura-Plücker (G, q)-oper is W -generic. Then
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A(z) = v(qz)Zv(z)−1, where v(z) ∈ B−(z) we have the following relation:

(4.5) ∆w·ωi,ωi(v
−1(z)) = Qw,i

+ (z)

for any w ∈ W .

Proof. Notice that ∆ωi(v−1(z)) = Qi
+(z). Indeed, following (3.19), we have:

v−1(z) =
r∏

i=1

e

Qi
−

(z)

Qi
+(z)

fi
r∏

i=1

[
Qi

+(z)
]α̌i

. . . ,

where dots stand for exponentials of higher commutators of {fi}, we obtain that

v−1(z)ν+ωi
= Qi

+(z)ν
+
ωi

+Qi
−(z)fiν

+
ωi

+ . . . ,(4.6)

where dots stand for the vectors of lower weights.
Now take into account that v(z)w̃−1 = u+(z)vw(z), where u+(z) ∈ N+(z), vw(z) ∈

B−(z). Here vw(z) is the trivializing element for Aw(z) = vw(z)w(Z)v−1
w (z). This means

that ∆ωi(v−1
w (z)) = Qw,i
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We started this section from the explicit definition of the principal minors by means of
Gaussian decomposition. The following proposition (see Corollary 2.5 in [FZ1]) provides a
necessary and sufficient condition of its existence for a given group element.

Proposition 4.7. An element g ∈ G admits the Gaussian decomposition if and only if
∆ωi(g) "= 0 for any i = 1, . . . , r.

Finally, we end this section with the fundamental relation ([FZ1], Theorem 1.17) between
generalized minors, which we will relate to the QQ-systems.

Proposition 4.8. Let, u, v ∈ W , such that for i ∈ {1, . . . , r}, !(uwi) = !(u) + 1, !(vwi) =
!(v) + 1. Then

(4.7) ∆u·ωi,v·ωi∆uwi·ωi,vwi·ωi −∆uwi·ωi,v·ωi∆u·ωi,vwi·ωi =
∏

j !=i

∆
−aji
u·ωj ,v·ωj ,

4.2. Generalized Wronskians and generalized minors. First, we introduce a notion
of generalized q-Wronskian which, as we will see later is, under certain nondegenracy con-
ditions, is equivalent to the definition of Z-twisted Miura (G, q)-oper.

Let V +
i be the irreducible representation of G with highest weight ωi with respect to B+.

It comes equipped with a line L+
i ⊂ V +

i of highest weight vectors stable under the action of
B+. Let ν+ωi

be a generator of the line L+
i ⊂ V +

i . It is a vector of weight ωi with respect to
our maximal torus H ⊂ B−. The subspace L+

c,i of Vi of weight c−1 · ωi is one-dimensional

and is spanned by s−1ν+ωi
.

Suppose we have a principal G-bundle FG and its B+-reduction FB+ and thus an H-
reduction FH as well. Therefore for each i = 1, . . . , r, the vector bundle

V
+
i = FB+ ×

B+

V +
i = FG ×

G
V +
i

associated to V +
i contains an H-line subbundles

L
+
i = FH ×

H
L+
i , L

+
c,i = FH ×

H
L+
c,i

associated to L+
i , L

+
c,i ⊂ V +

i .
Consider a meromorphic section G of FG. It is a section of FG on U , a Zariski dense set

of P1. Given the fact that can always choose U , so that restriction of FG to U is a trivial
G-bundle, one can express this section as an element G (z) ∈ G(z).

Definition 4.9. The generalized q-Wronskian on P1 is the quadruple (FG,FB+ ,G , Z), where
G is a meromorphic section of a principle bundle FG, FB+ is a reduction of FG to B+,
Z ∈ H = B+/[B+, B+], satisfying the following condition. There exist a Zariski open dense
subset U ⊂ P1 together with the trivialization ıB+ of FB+ , so that for certain {v+i , v

+
c,i}i=1,...,r

which are the sections of line bundles {L+
i ,L

+
c,i}i=1,...,r on U ∩ M−1

q (U) we have G as an
element of G(z) satisfy the following condition:

G
q · v+i = Z · G · v+c,i,(4.8)

where the superscript q stands for the pull-back of the corresponding section with respect
to the map Mq.

Effectively, the definition implies that there exists a Zariski open dense subset U ⊂ P1

together with a trivialization ıB+ of FB+ such that the restriction of G to U ∩ M−1
q (U)

V +
i irrep of G with highest weight  !i
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Definition 4.9. The generalized q-Wronskian on P1 is the quadruple (FG,FB+ ,G , Z), where
G is a meromorphic section of a principle bundle FG, FB+ is a reduction of FG to B+,
Z ∈ H = B+/[B+, B+], satisfying the following condition. There exist a Zariski open dense
subset U ⊂ P1 together with the trivialization ıB+ of FB+ , so that for certain {v+i , v

+
c,i}i=1,...,r

which are the sections of line bundles {L+
i ,L

+
c,i}i=1,...,r on U ∩ M−1

q (U) we have G as an
element of G(z) satisfy the following condition:

G
q · v+i = Z · G · v+c,i,(4.8)

where the superscript q stands for the pull-back of the corresponding section with respect
to the map Mq.

Effectively, the definition implies that there exists a Zariski open dense subset U ⊂ P1

together with a trivialization ıB+ of FB+ such that the restriction of G to U ∩ M−1
q (U)



Adding Singularities

Effectively the above definition means that the Wronskian, written as an element of G(z), satisfies
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written as an element of G(z) satisfies the following conditions

Z−1
G (qz) ν+ωi

= G (z) · sφ(z)
−1 · ν+ωi

,(4.9)

where sφ(z) =
∏

i φ
−α̌i
i si is a lift of the Coxeter element c ∈ W to G(z), which is fixed for

all i ∈ {1, . . . , r}.
It is clear that the structure of the generalized Wronskian depends on the generalized

minors of G (z) through the action of G (z) on ν+i and the choice of the lift sφ(z), which
through the coefficients {φi(z)}i=1,...,r depends on the choice of the sections {v+i , v

+
c,i}i=1,...,r.

The following two definitions clarify the type of objects will restrict the type of generalized
Wronskians we will study in this paper.

Definition 4.10. Generalized Wronskian has regular singularities if

sΛ(z)
−1 =

inv∏

i

siΛ
α̌i
i ,(4.10)

where {Λi}i=1,...,r are polynomials and the superscript “inv” stands for the inverse order to
the ordering in the Coxeter element c.

Definition 4.11. We say that generalized q-Wronskian with regular singularities is nonde-
generate if ∆w·ωi,ωi(G (z)) are nonzero polynomials for all w ∈ W and i = 1, . . . , r. For all
i, j, k with i "= j and aik, ajk "= 0, the zeros of ∆ωi,ωi and ∆siωi,ωi are q-distinct from each
other, and also zeroes of ∆w·ωi,ωi are q-distinct from the zeros of {Λk(z)}k=1,...,r for all i.

These definitions leads to the following Corollary.

Corollary 4.12. The nondegeneracy condition of generalized q-Wronskian with regular
singularities implies:

(1) G (z) admits Gaussian decomposition: G (z) ∈ N−(z)H(z)N+(z),
(2) G (z) belongs to the largest Bruhat cell: G (z) ∈ B+(z)w0B+(z).

Proof. Condition (2) implies first of all that ∆ωi,ωi(G (z)) "= 0. That implies Gaussian de-
composition according to Corollary 2.5 of [FZ1]. The second property follows from Propo-
sition 3.3 of [FZ2]. !

An important property is a non-uniqueness of the generalized q-Wronskian as defined by
the generalized minors.

Proposition 4.13. Given a solution G (z) of the equation (4.9), G (z)n+(z) is a solution
of (4.9) if and only if

(4.11) s n+(z) s−1 ∈ N+(z).

Later we will eliminate this ambiguity and add more constraints than (4.9), but first we
investigate its lower triangular part and relate it to QQ-system and q-opers.

Let us list another important property of generalized quantum Wronskian:

Proposition 4.14. For any w ∈ W and the q-Wronskian (FG,FB+ ,G , Z) with regular
singularities, the element w̃ ·G (z) stands for a generalized q-Wronskian (FG,FB+ ,G , w(Z))
with the same regular singularities.

Proof. The proof is obtained by the direct application of w̃ to G (z) in (4.9). !
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Thus, identifying

∆ωi,ωi(G (z)) −→ Qi
+(z), ∆wiωi,ωi(G (z)) −→ Qi

−(z),(4.24)

we obtain that the familiar nondegenerate QQ system (3.17) is equivalent to (4.17).
Moreover, the following Theorem holds.

Theorem 4.18. 1) Let (FG,FB+,G , Z) be a non-degenerate generalized q-Wronskian with
regular singularities parametrized by the polynomials {Λi(z)}i=1,...,r. The lower-triangular
part v(z) ∈ B−(z) of the Gaussian decomposition G = v(z)u(z), u(z) ∈ N+(z) defines
a nondegenerate Z-twisted Miura (G, q)-oper connection with regular singularities by the
formula A(z) = v−1(qz)Zv(z).

2) There is a one-to-one correspondence between classes of nondegenerate generalized
q-Wronskians with regular singularities as stated in the Proposition 4.13 and nondegen-
erate Z-twisted Miura (G, q) opers with regular singularities parametrized by the same
{Λi}i=1,...,r, such that zeroes of the polynomials in the extended QQ-system are q-distinct
from {Λi}i=1,...,r.

Proof. (FG,FB+,G , Z) be a non-degenerate generalized q-Wronskian with regular singular-
ities parametrized by the polynomials {Λi(z)}i=1,...,r. Let us apply the relation (4.17) from
the Proposition 4.17 to w̃ · G (z) for all w ∈ W . By Proposition 4.14 we know that w̃ · G (z)
is a generalized q-Wronskian (FG,FB+,G , w(Z)). Thus Proposition 4.17 implies that gen-
eralized minors ∆w·ωi,ωi generate the extended QQ-system through the generalization of
identification (4.24):

∆w·ωi,ωi(G (z)) = ∆ωi,ωi(w̃
−1

G (z)) −→ Qw,i
+ (z).(4.25)

The resulting minors ∆w·ωi,ωi(G (z)) determine v(z) entirely and thus produce an element
which defines Z-twisted Miura (G, q)-oper as stated in the theorem. That proves part 1).
To prove part 2) let us construct G (z) explicitly given Z-twisted Miura (G, q)-oper, so that
its q -connection is given by the formula

(4.26) A(z) = v−1(qz)Zv(z),

where v(z) ∈ B−(z). Note, that

A−1(z) = n+(z)s
−1
Λ (z)ñ+(z), n+(z), ñ+(z) ∈ N+(z).(4.27)

Thus, combining (4.26), (4.27) we obtain

Z−1v(qz) = v(z)n+(z)s
−1
Λ (z)ñ+(z)(4.28)

and

(4.29) G (z) = v(z)n+(z)

satisfies the familiar equation

Z−1
G (qz)ν+ωi

= G (z)s−1
Λ (z)ν+ωi

.(4.30)

Notice, that the constructed G (z) is defined modulo the transformations from the Propo-
sition 4.13. This is related to the fact that choice of n+(z) in the gauge class of A−1(z) =
n+(z)s

−1
Λ (z)ñ+(z) is non-unique, but again is up to the multiplication on the elements from

Proposition 4.13. This proves the second part of the Theorem. !

In the next section we will introduce the unique element in the family of generalized
q-Wronskians corresponding to a given Miura (G, q)-oper, which is a generalization of a
standard q-Wronskian considered in [KSZ] for any simply-connected simple group G.
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4.4. Universal quantum Wronskian for Miura (G, q)-oper. In this section we assume
that the Lie group G has an even Coxeter number h and a choice of a Coxeter element is
such that ch/2 = w0. That only excludes SL(N) case for N odd, which was studied in detail
in [KSZ,KZ1].

The Z-twisted condition for (G, q)-oper, which was instrumental in our considerations
can be restated in the following way:

Z−1g(qz) = g(z)A−1(z).

One could iterate this relation to introduce a collection of relations of the following form:

Z−kg(qk+1z) = g(z)A−1(z)A−1(qz) . . . A−1(qkz)(4.31)

The following Lemma is true and a direct consequence of the property of the multiplica-
tion of Bruhat cells.

Lemma 4.19. The product

A−1(z)A−1(qz) . . . A−1(qkz)

belongs to the Bruhat cell B+(z)s−kB+(z) as long as 0 ≤ k < h, where h is the Coxeter
number of G.

Let us use now the system of equations (4.31) to construct a universal q-Wronskian
element associated to a given Z-twisted Miura (G, q)-oper in a similar way we did with the
first of them in the proof of Theorem 4.18. Namely, the following Theorem is true.

Proposition 4.20. For a given Z-twisted (G, q)-Miura oper, there exists a unique gener-
alized q-Wronskian

W (z) ∈ B−(z)w0B−(z) ∩B+(z)w0B+(z) ⊂ G(z),

satisfying the system of equations

W (qk+1z)ν+ωi
= Zk

W (z)s−1(z)s−1(qz) . . . s−1(qkz)ν+ωi
,

i = 1, . . . , r, k = 0, 1, . . . , h− 1,(4.32)

where h is the Coxeter number of G.

Proof. Let us use gauge transformations to reduce A−1(z) to the following form:

A−1(z) = n1
+(z)s

−1(z),

where s(z)n1
+(z)s

−1(z) ∈ N−(z) by applying the version of Theorem 3.2 to A−1(z). We
remind, that it is a unique element in the N+(z)-gauge class of (G, q)-opers. Therefore, the
element W 1(z) = g(z)n1

+(z) satisfies (4.32).
Now let us have a look at the product A−1(z)A−1(qz) = n1

+(z)s
−1(z)n1

+(qz)s
−1(qz). This

is an element from N+(z)s−1(z)s−1(qz)N+(z) and thus can be written as A−1(z)A−1(qz) =
n1
+(z)n

2
+(z)s

−1(z)s−1(qz)ñ2
+(z), so that

s(qz)s(z)n2
+(z)s

−1(z)s−1(qz) ∈ N−(z) ,

for some n2
+(z), ñ

2
+(z) ∈ N+(z), and

s−1(z)n1
+(qz)s

−1(qz) = n2
+(z)s

−1(z)s−1(qz)ñ2
+(z).(4.33)

Multiplying by s(qz)s(z) on both sides, we obtain:

s(qz)n1
+(qz)s

−1(qz) = s(qz)s(z)n2
+(z)s

−1(z)s−1(qz)ñ2
+(z),(4.34)

Theorem 2:



Examples: SL(2)
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5.1. Let G = SL(2) then (4.32) reads

(5.1) W (qz)ν+ω = ZW (z)s−1(z)ν+ω

In this case

(5.2) s−1(z) = s̃−1Λ(z)α̌ =

(
0 Λ(z)−1

Λ(z) 0

)
, ν+ω =

(
1
0

)
, Z =

(
ζ 0
0 ζ−1

)
.

One can immediately see that

(5.3) W (z) =

(
∆ωi,ωi(G (z)) ∆ωi,s−1ωi

(G (z))
∆sωi,ωi(G (z)) ∆sωi,s−1ωi

(G (z))

)

satisfies (5.1) provided that (4.15) takes place. Indeed, it follows from (5.1) that
(5.4)
∆ωi,ωi(G (qz)) = ζΛ(z)∆sωi,ωi(G (z)) , ∆ωi,s−1ωi

(G (qz)) = ζ−1Λ(z)∆sωi,s−1ωi
(G (z)) .

Using the identification rule (4.24) we obtain

(5.5) W (z) =

(
Q+(z) ζ−1Λ(z)−1Q+(qz)
Q−(z) ζΛ(z)−1Q−(qz)

)
,

where we put Q+(z) = Qω(z) and Q−(z) = Qsω(z) according to the notations from our
previous papers. Notice that the QQ-equation in this case

ζQ+(z)Q−(qz)− ζ−1Q+(qz)Q−(z) = Λ(z)

is equivalent to detW (z) = 1.

5.2. Now let G = SL(r + 1). The quantum Wronskian consists of h columns

(5.6) W (z) =
(
∆wω,ω

∣∣∣∆wω,s−1ω

∣∣∣ . . .
∣∣∣∆wω,sr+1ω

)
(G (z)) ,

where We have ν+ω = (1 0 . . . 0), Z = diag(ξ1, . . . , ξn), where ξ1 = ζ1, ξi = ζi/ζi−1 for
i = 2, . . . , r and ξr+1 = 1/ζr. According to (4.13) if we pick standard ordering along the
Dynkin diagram we have

s−1
Λ (z) = s̃−1

∏

i

Λdi
i ,

where di =
∑i

j=1 α̌j and

s̃−1 =





0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . · · ·

...
0 0 . . . 1 0




,

so that s̃−lν+ω = (0, . . . , 0, 1 0 . . . 0), where 1 is on the lth place. Thus, according to Propo-
sition 4.17 the q-Wronskian reads

(5.7) W (z) =
(
Qw·ω(z)

∣∣∣ZF1(z)Q
w·ω(qz)

∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)
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Q−(z) ζΛ(z)−1Q−(qz)
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where we put Q+(z) = Qω(z) and Q−(z) = Qsω(z) according to the notations from our
previous papers. Notice that the QQ-equation in this case

ζQ+(z)Q−(qz)− ζ−1Q+(qz)Q−(z) = Λ(z)
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(
∆wω,ω

∣∣∣∆wω,s−1ω

∣∣∣ . . .
∣∣∣∆wω,sr+1ω

)
(G (z)) ,

where We have ν+ω = (1 0 . . . 0), Z = diag(ξ1, . . . , ξn), where ξ1 = ζ1, ξi = ζi/ζi−1 for
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s−1
Λ (z) = s̃−1

∏

i

Λdi
i ,

where di =
∑i

j=1 α̌j and

s̃−1 =





0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . · · ·

...
0 0 . . . 1 0




,
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∣∣∣ . . .
∣∣∣Zr−1Fr−1(q

r−1z)Qw·ω(qr−1z)
)
,

where Fi(z) =
∏i

j=1Λj(z)−1.
The conditions for the dual (SL(r + 1), q)-oper, according to Theorem 4.18 can be for-

mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)
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Proposition 4.15. For a given Z-twisted (G, q)-Miura oper, there exists a unique pair of
generalized (G, q)-Wronskian

W±(z) 2 B�((z))w0B�((z)) \B+((z))w0B+((z)) ⇢ G(z),

satisfying the system of equations

Z±kW±(q
⌥(k+1)z)⌫+!i

= W±(z)s
±k⌫+!i

,

i = 1, . . . , r, k = 0, 1, . . . , h/2� 1,(4.34)

where h is the Coxeter number of G.

Now notice that Z±kG±(q⌥(k+1)z)⌫+!i
= Z±kW±(q⌥(k+1)z)⌫+!i

= s(k)±,i
(z). Notice, that

W±(z) are unique group element exchanging two pairs of sets of basis elements {s±k⌫+
i
}

and {s(k)±,i
(z)}.

Given that correspondence, we have the following Proposition, giving another formula
for wall-crossing transformation.

Proposition 4.16. The wall-crossing transformation, which relates meromorphic sections

S(k)
± is given by the following transformation:

S(k+r)
±,i

(z) = W±(z)s
±kW �1

± (z)S(r)
±,i

(z),(4.35)

where 0  k, k + r  h/2� 1.

5. Decomposition of the Analytic Solutions via Generalized Minors

5.1. Formal solutions and decomprosition of  -solutions. Let us consider the formal
solutions 'i

k
to the problem L� = 0 as in Corollary 2.3. Namely, we have the following

Proposition.

Proposition 5.1. i)In any evaluation representation V̄ i

k
there is a system of formal solu-

tions of the linear problem (3.7):

'i,vs
k

(x) = x�<`,�s>(vs + xṽs(x)),(5.1)

where ṽs(x) 2 V [E, xM ][[x]]. Here �s = wt(vs).
ii) The following transformation properties hold:

!�k⇢
_
'i,vs
k0 (!kx,⌦kE) = !�kh`+⇢

_
,�si'i,vs

k+k0(x)(5.2)

Proof. The first statement follows directly from the Corollary 2.3. The second statement
follows from the study of the asymptotic behavior of the solutions. ⇤

Notice that any of the analytic solutions  (i) can be represented as follows according to
the Proposition 2.4:

Proposition 5.2. There is a following decomposition of the analytic solution  (i)(x,E)
considered in the region x ! 0 in terms of formal solutions 'i

0(x,E):

 (i)(x,E) =
dimVX

n=1

Qi

vs
(E)'i,vn

0 (x,E)(5.3)

so that {Qi
vn
(E)}dimV

n=1 are analytic in E.
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Let us make the following identification:

(5.4) Z = !�`�⇢
_
, q = ⌦ .

Then, combining Proposition 5.1 and Theorem 3.10 we obtain the following result.

Proposition 5.3. The solutions  i

�k+1/2 have the following form:

 (i)
�k+1/2(x,E) =

dimVX

s=1

Qi

vs
(q�k+1/2E)'i,Z

k
vs

1/2 (x,E)(5.5)

Let us denote the function Qi

⌫
+
!i

(E) = Qi
+(E), Qi

fi⌫
+
!i

(E) = Qi
�(E) and if v = w̃⌫+!i

,

where w̃ is a lift of w 2 W , we denote the corresponding Qv(E) = Qi,w

+ (E), where .

Theorem 5.4. Elements {Qi,w(E)}w2W , where Qi,w(E) = Q+(q�g(i)/2�1/2E) generate an
extended QQ-system.

Proof. This follows from the Theorem 3.11. ⇤

Theorem 5.5. One can represent  (i) as follows:

 (i)
�k+1/2(x,E) =

(
We(x,E)S(k)

+,i
(q1+g(i)/2E) = We(x,E)ZkW±(q1+g(i)/2q�kE)⌫+

i
if k > 0

We(x,E)S(�k)
+,i

(q1+g(i)/2E) = We(x,E)Z�kW±(q1+g(i)/2qkE)⌫+
i

if k < 0,
(5.6)

where W±(E) is a (G, q)-Wronskian associated to the extended QQ-system from i),and
We(x,E) is a formal group-like solution from Corollary 2.3.

5.2. The case of M 2 Z+. In this case the formal solutions 'i,vs
k

(x) diagonalize the mon-
odromy matrix.

Theorem 5.6. 1)In case if M 2 Z+ (qM+1 = 1), the monodromy matrix is represented by
regular semisimple element Z(M+1)h_

in the basis of 'i,vs
0 :

'i,vs
k

(e2⇡ix,E) = (�1)2h⇢
_
,!ii'i,Z

(M+1)h_
vs

k
(x,E),(5.7)

2)For  (i)
�k+1/2(x,E) solutions, the monodromy operator can be expressed as follows:

 (i)
�k+1/2(e

2⇡ix,E) = (�1)2h⇢
_
,!iiWe(x,E)Z(M+1)h_

W�1
e (x,E) (i)

�k+1/2(x,E)(5.8)

3) The Monodromy matrix is conjugated to the following operator

h
A(qME)A(qM�1E) . . . A(E)

i
h
_

= v(E)Z(M+1)h_
v(E)�1 ,(5.9)

where A(E) = v(qE)Zv(E)�1 is the Miura (G, q)-oper connection, defined by the QQ-
system.

[PK, Frenkel, Zeitlin]
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Affine  oper on formal disk𝔤 -oper on a disc(G, q)

Theorem:


