Discrete Probability
An experiment is a procedure that yields one of possible outcomes. The sample space (spue of states) of the experinal is the set of all possible atones. An event is a subset of sample space.

Ex: H, T Sample space $3 H, T\}=S$

$$
E=\{H\} \text { - event }
$$

Bet: If S is a finite nonempty sample space it equals likely ontormes and E is an event which is a subset of S, then the probability of E is

$$
p(E)=\frac{|E|}{|S|}
$$

Ex: $\left.\quad \begin{array}{ll}000 \\ 0\end{array}\right] \quad \begin{array}{ll}S & =\{00 \cdot 0 \\ E=\{00\}\end{array} \quad P(0)=\frac{2}{2+4}=\frac{1}{3}$
Er: 2 dice What's the probability that the sum of numbers is equal to 7 ?

2	1	2	3	4	5	0
1	2	3	4	5	6	7
2	3	4	5	6	1	8
3	4	5	6	7	8	9
4	5	6	7	0	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

$$
\begin{array}{ll}
|E|=6 & p(7)=\frac{1}{6} \\
|S|=36 & p(9)=\frac{1}{9}
\end{array}
$$

2 coins 1			
arcane	$(\# H, \# T)$	P	
2	$H T$	2,0	$1 / 4$
1	HT	1,1	$1 / 2$
	TH	0,2	$1 / 4$

$$
\begin{aligned}
& |S|=4 \quad E=\{H H\} \\
& E^{\prime}=3 H(T\} \quad P\left(E^{\prime}\right)=\frac{1}{4}
\end{aligned}
$$

$$
P(\underbrace{H-H}_{50})=\frac{1}{2^{5}}
$$

Binumidel dstiviention

Probability is hard

continues probestias

$$
Q: \quad P\left(|A B|<\frac{R}{3}\right)-
$$

S
not well posed..

Ex: 52 cards 5 cards. P (4 out of 5 of the save kind) -?
13 kinds
Hens
$|E|$

$$
\begin{aligned}
& |s|=\binom{52}{5}
\end{aligned}
$$

$$
P(E)=\frac{1}{\left(\frac{52}{5}\right)} \approx 0.00024 \ldots
$$

Complinerbs
$E, \bar{E}=S-E$ - complinal set to E
Net: $\quad P(\bar{E})=\frac{|E|}{|S|}=\frac{|S|-|E|}{|S|}=1-\frac{|E|}{|S|}=1-P(E)$

$$
P(E)+P(E)=1
$$

Ex: A sequne of 10 hits randouly geveratid.
P (boget at last one 1)

$$
\begin{aligned}
&1) \bar{E}=\{0, \ldots 0\} \\
& P(\bar{E})= \frac{1}{2^{10}} \\
& P(E)=1-P(E)=1-\frac{1}{1024}
\end{aligned}
$$

Tharem, E, E_{2}-events in sapple spane S

$$
p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+P\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)
$$

Proot: $P\left(E_{1} \cup E_{2}\right)=\frac{\left|E_{1} \cup E_{2}\right|}{|S|}=\frac{\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|}{|S|}$

$$
=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)
$$

Ey: $\quad 1 \leq h \leq 100 . \quad P(2 / n \vee 51 n)$

$$
\begin{aligned}
& E_{1} \quad 2 \ln , \quad E_{1} \cap E_{2}, \quad 2 \ln \wedge \sin \\
& E_{2} \quad \ln , \quad E_{2}\left(=20, \quad\left|E_{1} \cap E_{2}\right|=10\right. \\
& E_{1} \mid=50, \\
& P\left(E_{1} \cup E_{2}\right)= \\
& \hline \frac{50+20-10}{100}=\frac{3}{5}
\end{aligned}
$$

Conditional probability
Ex: Marty Hall 3-door puzzle (car, goat)
Ex: G, B
Two children in the fruity, one is a bay
P (the other chief is a boy?)

$$
S=\{\underbrace{B B}_{E}, B G, G B, G G\}
$$

$$
\begin{aligned}
& P(B B)=\frac{1}{4} \\
& P=\frac{1}{3}
\end{aligned}
$$

Ret! Let eunts $E, F, P(F)>0$. Tho conditimal probability of E given F is

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}
$$

$$
\begin{array}{ll}
\mid E C=1 & E=B B \\
|F|=3 & F=B B, B G, G B
\end{array}
$$

Deft: The events E and F we indepen out if $P(E \cap F)$ $=P(E) \cdot P(F)$
Ex: E - bit string began with 1
F - bit string contains even umber of 1 's
16 bit string
tore F,F independent it the strings of length of 4 are equally likely?

$$
\left\{\begin{array}{l}
1000 \\
\frac{1001}{1010} \\
1011 \\
\frac{1100}{1101} \\
1110 \\
1111
\end{array}\right.
$$

$$
\left.\begin{array}{c|c}
0000 \\
00011 \\
0101 \\
0110 \\
\hline 1000 \\
11000 \\
1001 \\
111 & 1
\end{array}\right) 8
$$

$$
\begin{aligned}
& P(E)=\frac{8}{16}=\frac{1}{2} \\
& P(F)=\frac{8}{16}=\frac{1}{2} \\
& P(E \cap F)=\frac{4}{16}=\frac{1}{4} \\
& P(E) \cdot P(F)=P(E \cap F)
\end{aligned}
$$

Bayes' Theorem

Ex: (1) $\left[\begin{array}{cc}2, & 7 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\right]$
Chance: 1 select a box
2 sled a ball
(2) $\left.\begin{array}{cc}4,3 \\ 0 & 0 \\ 0 & 0\end{array}\right]$

If a red ball is selected what is the probability that it came from the first box?

E	red	F	first box
\bar{E}	green	\bar{F} second box	$P(F \mid E)$

Theorem:

$$
P(F \mid E)=\frac{P(E \mid F) \cdot P(F)}{P(E)}
$$

$$
\begin{aligned}
\left.P(F)=P(E)=\frac{1}{2} \quad P(E \mid F) P(F)+P(E) \bar{F}\right) P(\bar{F}) \\
P(E \mid F)=\frac{7}{9}, P(E \mid \bar{F})=\frac{3}{7} \\
P(E)=\frac{7}{9} \cdot \frac{1}{2}+\frac{3}{7} \cdot \frac{1}{2}=\frac{7}{18}+\frac{3}{14}=\frac{76}{126} \\
=\frac{38}{63} \\
P(F \mid E)=\frac{\frac{7}{9} \cdot \frac{1}{2}}{\frac{38}{63}}=\frac{7.63 \cdot 7}{38 \cdot \frac{78}{2}}=\frac{49}{76} .
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& P(E \mid F)=\frac{P(E \cap F)}{P(F)} \text { - conditional probability } \\
& P(F \mid E)=\frac{P(E \cap F)}{P(E)} \Rightarrow P(F) P(E \mid F)=P(E) P(F \mid E)
\end{aligned}
$$

Find $P(E)$

$$
\text { so } \quad P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

et t S - sample set $E, F \subset S$

$$
\begin{aligned}
& \bar{F}=S-F \\
& F \cup \bar{F}=S
\end{aligned}
$$

$$
\begin{aligned}
E=E \cap S & =E \cap(F \cup \bar{F}) \\
& =(E \cap F) \cup(E \cap \bar{F})
\end{aligned}
$$

$\backslash \underset{\text { disjoint }}{l} \sin \varphi \quad F \cap \bar{F}=0$

$$
\text { So } \begin{aligned}
p \mid E) & =p(E \cap F)+p(E \cap F) \\
& =p(E \mid F) p(F)+p(E \mid \bar{F}) p(\bar{F})
\end{aligned}
$$

Geveralized Bages' therrem. Id $E \subset S$ by an evenul in the sample space $F_{1}, F_{2} \ldots F_{n}$ - mutudy exclusive events $\left(F_{i} \cap F_{j}=\varnothing\right)$ and $\bigcup_{i=1}^{n} F_{i}=S$. Assuve $P(E) \neq 0, \quad P\left(F_{i}\right) \neq 0 \quad \forall i$, then

$$
P\left(F_{i} \mid E\right)=\frac{P\left(E \mid F_{i}\right) \cdot P\left(F_{i}\right)}{\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)}
$$

Prove as an exessized
Bages spam fieters: Fengged kard "Apple Watch" in 250 oux ot 2000 messages knwen to be spane and 5 in 1000 are known not bo le spam. Fieter is sed at 90%. Wicl a ressage claar the filter?

$$
\begin{aligned}
& P(\text { Dpocle Kercu })=\frac{250}{2000}=0.125-\text { spmm probchility } \\
& \text { E. } q \text { (Apple wertu) }=\frac{5}{1000}=0.005 \text { - not spam probubilits } \\
& \text { E } \\
& \text { Assme } F \text { - end that an inconaly nessaye is span }
\end{aligned}
$$ F-oot spam $\quad p(F)=p(\hat{F})=\frac{1}{2}$

$$
\begin{aligned}
& r(\text { Apple vetch })= \frac{P(E \mid F) \cdot P(F)}{P(E) F) P(E)+P(E \mid \bar{F}) P(\bar{F})} \\
&= \frac{P\left(\text { Apple Wathin } \cdot \frac{1}{2}\right.}{P(\text { Aporl Vater }) \frac{1}{2}+9\left(\text { Apple valich } 2 \frac{1}{2}\right.}=\frac{0.125}{0.125+0.005} \\
&=\frac{125}{130}>0.9
\end{aligned}
$$

Deto: A random vaviable is a fuetion frun sauple speed S to reals

$$
\begin{aligned}
& S=\{H, T\}_{E} \longrightarrow \mathbb{R} \\
& 3 \text { cons }
\end{aligned}
$$

Deft: A distribution ot random variable X on sample space S i) $(r, p(x=r)), \quad r \in X(s), \quad p(x=r)$-probability that X takes value r.
The binomial distribution

$$
B(p, n, k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

$n \rightarrow \infty$?

$$
p_{1}+p_{2}{ }_{\ldots} \ldots+p_{n}=1
$$

Normal distillation

$$
-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma}
$$

σ-standard
dedication

Tho central limit Hecseme

Deft: The expectation value (expected value) of the random cariole X on the sample space S is

$$
(X=\langle X\rangle=) E(X)=\sum_{s \in S} p(s) \cdot X(s)
$$

Tho deviation of X at $s \in S$ is $X(s)-E(X)$
Ex: Toll one dice
X-number on ta dice

$$
\begin{aligned}
& E(x)=\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\frac{1}{6} \cdot 3+\frac{1}{6} \cdot 4+\frac{1}{6} \cdot 5+\frac{1}{6} \cdot 6=\frac{21}{6} \\
&=\frac{7}{2}=35
\end{aligned}
$$

Ex: 3 sin losses. X-hotel umber of heads

$$
\begin{aligned}
& E(x)=\frac{1}{8}\left(x \left(\begin{array}{l}
3 \\
\frac{2}{X(H H T)+X(H T H)}+\frac{2}{1} \frac{2}{1}(T H T) \\
\frac{1}{1}(H T)
\end{array}\right.\right. \\
& +x(\text { TH })+x(\text { THe })+X(\text { HsT }) \\
& +x(\pi \stackrel{\sigma}{\pi})) \\
& =\frac{12}{8}=\frac{3}{2}
\end{aligned}
$$

Theorem: If $x_{\text {is }}$ a randan variable, $p(x=r)=\sum_{\text {sos }} p(s)$
Then

$$
E(x)=\sum_{r \in X(s)} p(x=r) \cdot r
$$

Follows from detivitron

3	4	5	6	7	8	9
4	5	6	7	0	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

$$
\begin{aligned}
& +8 \cdot \frac{5}{36}+q \cdot \frac{1}{9}+10 \cdot \frac{1}{12} \\
& +11 \cdot \frac{1}{1 p}+12 \cdot \frac{1}{30}=\ldots 7
\end{aligned}
$$

Benoullitrial sucecrive independed experinents weth fovorable probalilety P Thewen: The expection valne of successes in ${ }^{n}$ Bermoulbi drids w/ probalility \bar{p} is equal to $n \cdot p$
Poot: $E(x)=\sum_{k=1}^{n} k \cdot p(x=k)=\sum_{n=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}$

$$
\begin{aligned}
& =\sum_{k=1}^{n=1} n\binom{n-1}{k-1} p^{k}(1-p)^{n-k} \\
& \% k\binom{n}{n}=k \frac{(n-1)!\cdot n}{\frac{n}{(k-1)!\cdot k \cdot(n-k)!}}= \\
& =n \frac{(n-1)!}{(k-1)!(n-k)!}=n\binom{n-1}{k-1} \% \\
& =n p \sum_{k=1}^{n}\binom{n-1}{\frac{k-1}{c}} p^{k-1}(1-p)^{n-k} \\
& \begin{array}{l}
=n \cdot p \sum_{\sum^{e=0}}^{n-1}\binom{n-1}{e} p^{e}(1-p)^{n-1-e} \\
=n \cdot p
\end{array} \\
& \begin{array}{rr}
k-1=l & \quad=l+1 \\
k=1 & l=0
\end{array}
\end{aligned}
$$

Theorems Let $x_{i}, i=1, \ldots, n$-raudan variclles for sauple set S, $a, b \in \mathbb{R}$
thon. $E\left(x_{1}+\ldots+x_{n}\right)=E\left(x_{1}\right)+\ldots+E\left(x_{n}\right)$

$$
E\left(a X_{i}+b\right)=a E\left(X_{i}\right)+b
$$

Proof:

$$
\begin{aligned}
E\left(X+X_{2}\right)=\sum_{s \in S} p(s)\left(X_{1}(s)+X_{2}(s)\right) & =\sum_{s \in S} p(s) X_{1}(s) \\
& +\sum_{s \in S} p(s) X_{2}(s)
\end{aligned}
$$

Er! 2 dice:
I dire

$$
=E\left(x_{1}\right)+E\left(x_{2}\right)
$$

$$
\begin{gathered}
E\left(x_{1}+x_{2}\right)=7 \quad E\left(x_{1}\right)=\frac{7}{2} \quad E\left(x_{2}\right)=\frac{7}{2} \\
E\left(x_{1}+x_{2}\right)=E\left(x_{1}\right)+E\left(x_{2}\right)
\end{gathered}
$$

Deft: Variance: Let X bo a radon variable on S
variance $\quad V(x)=\sum_{s \in S}(X(s)-E(x))^{2} p(s)$
The standard deviation $\sigma(x)=\sqrt{V(x)}$
Theorem: $V(x)=E\left(x^{2}\right)-E(x)^{2}$
Root:

$$
\begin{aligned}
V(x) & =\sum_{s \in s}(X(s)-E(x))^{2} p(s) \\
& =\sum_{s \in s} X(s)^{2} p(s)-2 E(x) \sum_{s \in s} X(s) p(s) \\
& =E\left(x^{2}\right) \\
& =E(x)^{2}\left(\sum_{s \in s} p(s)-2 E(x)^{2}+E(x)^{2}\right. \\
& =E\left(x^{2}\right)-E(x)^{2}
\end{aligned}
$$

Ex: Bernonti trial w/ probability P
X : success $\longmapsto 1$

$$
t \in S=\{\text { success, failure }\}
$$

$$
t^{2}=t
$$

$$
\begin{array}{rlrl}
E\left(x^{2}\right)=p, \quad E(x) & =p & q & =1-p \\
V(x)=p-p^{2}=p(1-p) & =p q, & \text { dor } n \text { faxes: } \\
V(x) & =n p
\end{array}
$$

Er: dice: $X: n \leftrightarrow n \quad S=31,2,3,4,5,6\}$

$$
\begin{aligned}
& E(x)=\frac{7}{2},(E(x))^{2}=\frac{49}{4} \\
& E\left(x^{2}\right)=\frac{1}{6}\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right)=\frac{91}{6}
\end{aligned}
$$

$$
\begin{gathered}
V(X)=\frac{11}{6}-\frac{\pi}{4}=\frac{12}{12}=\frac{30}{12} \sim 2.9 \\
\sigma=\sqrt{v(x)} \sim 1.7 \quad 2 \text { dice, } \quad X, \quad(i, j) \mapsto 2 i \quad x: \quad(i, j) \mapsto i+j \quad V(x)=\frac{35}{6} \\
E(x)=\frac{1}{6}\left(2+4+6+8 t \quad 2,4,6,8,10,12 \quad \sigma=\sqrt{\frac{35}{6}-2.2}\right. \\
\quad+10112)=7 \\
E\left(x^{2}\right)= \\
\frac{1}{6}\left(2^{2}+4^{2}+\sigma^{2}+8^{2}+10^{2}+12^{2}\right)=\ldots=\frac{182}{3} \\
V(x)=E\left(x^{2}\right)-E(x)=\frac{182}{3}-49=\frac{35}{3} \sim 12 \\
\sigma \sim 3.5
\end{gathered}
$$

Thevem: If X, Y are sandom variables for two idependest ecents then

$$
V(x+y)=V(x)+V(Y)
$$

abo, it $X_{1}, X_{2}, \ldots X_{n}$ are pairmise inlpenencent undoun variables then

$$
V\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} V\left(x_{i}\right)
$$

Proot:

$$
\begin{aligned}
V(X+Y)= & E\left((X+Y)^{2}\right)-(E(x+Y))^{2}=E\left(X^{2}+2 X Y+Y^{2}\right)-\left(E(x+E(i))^{2}\right. \\
= & \left(\begin{array}{l}
E\left(x^{2}\right)+2 E(x Y)+E\left(y^{2}\right) \\
\left.-E(x)^{2}-2 E(x) E(Y)-E(Y)^{2}\right) \\
\\
\end{array}\right)=(Y(Y) \\
= & V(X)+V(Y)
\end{aligned}
$$

Chelyshor's I requality

Q: $\quad P(|X(s)-E(x)| \geqslant r) \quad ?$
Thavem: let X be a vandom varictle on a sample spaa S, P-polability trution, $r \geqslant 0$. Then

$$
P(|X(s)-E(x)| \geqslant r) \leqslant \frac{V(x)}{r^{2}}
$$

Proot: Eunt $A=\{s \in S| | X(s)-E(x) \mid \geqslant 1\} \quad 1 r^{r^{2}}=\binom{\sigma}{r}^{2}$

$$
\begin{aligned}
& V(X)=\sum_{s \in S}(X(s)-E(x)) P(s)=\sum_{s \in A}(X(s)-E(x)) P(s) \\
&+\sum_{s \in S-A} \prod_{(A(s)-E(x))^{2} p(s)} \\
& V(X) \geqslant r^{2} \cdot \sum_{p(s)} \Rightarrow
\end{aligned}
$$

Ex: Counting trials. Toss ain n tines

$$
\begin{aligned}
& E(x)=\frac{n}{2} r=\sqrt{n} \quad V(x)=\frac{n}{4} \\
& P\left(\left|X(s)-\frac{n}{2}\right| \geqslant \sqrt{n}\right)^{2} \leqslant \frac{n / 4}{n}=\frac{1}{4}
\end{aligned}
$$

$$
P\left(A, B, S_{1}, \ldots\right)
$$

Ex: 123
$\left.\begin{array}{lll}3 & 1 & 2 \\ 2 & 3 & 1\end{array}\right\}$ not t derangement

$$
D_{3}=2
$$

$$
\left.\begin{array}{lll}
2 & 1 & 3 \\
3 & 2 & 1 \\
1 & 3 & 2
\end{array}\right\} o k
$$

Deft: Lat $S=\left\{a_{1},-a_{n}\right\}$. A permutation of $S \quad \Pi(S)=\left\{b_{1}, \ldots b_{n}\right\}$ is called derangement of S if $\quad a_{i} \neq b_{i} \quad \forall i=1, \ldots, n$.
D_{n} - number of derangenarts.
Small detour to tenn diagrams

$$
\begin{aligned}
|A \cup B|= & |A|+|B|-|A \cap B| \\
|A \cup B \cup C|= & |A|+|B|+|C| \\
D & -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

Tharem (inclusion-exclusion) Let $A_{1} \ldots A_{n}$ - finite sets
Then $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|$

$$
\begin{aligned}
& +\sum_{1 \leq i c j<k \leq n}\left|A_{v} \cap A_{j} \cap A_{k}\right| \ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof: Suppose a is an elemat of exactly r sets out ot $A_{1} \ldots A_{n}$ $1 \leqslant r \leqslant h$. In the first term $\sum_{i=1}^{n}\left|A_{i}\right|$ a is counted $\binom{r}{1}=r$ ting in the second term $-\sum_{i<i}\left(A_{i} \cap A_{j}\right)$ a is anted $\binom{r}{2}=\frac{r(r-1)}{2}$ in the with term a is counted $\binom{r}{m}$ times
So, according to the former, a is counted

$$
B=\binom{r}{1}-\binom{r}{2}+\binom{r}{3} \ldots+(-1)^{r+1}\binom{r}{r} \quad \text { times }
$$

Recall:

$$
\begin{equation*}
\text { So } B=\binom{r}{0}=1 \tag{-1}
\end{equation*}
$$

Bach to letters. Denote $N\left(P_{1}, \ldots P_{k}\right)$ - \# elenats w/ properties $P_{1} \ldots P_{k}$
Tharem:

$$
\begin{aligned}
D_{n}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}\right. & \left.-\frac{1}{3!}+\ldots+(-1)^{n} \frac{1}{n!}\right) \rightarrow \frac{n!}{e} \\
e^{x} & =1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \cdots \\
e^{-1} & =1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{2!} \cdots
\end{aligned}
$$

Let a permutation have property P_{i} manning that i^{\prime} th elewal is fixed property $P_{i} P ;$ - i and $;$ fixed

$$
\begin{gathered}
P_{i_{1}} P_{i_{2}} \ldots P_{i_{n}}-i_{1} \ldots i_{k} \text { are fixed } \\
D_{n}=N\left(\overline{P_{1}} \bar{P}_{2} \ldots \overline{P_{n}}\right) \text { - number of permbetions where no elements }
\end{gathered}
$$

Acceding to the inclusion-exdusion principle

$$
\begin{aligned}
& D_{n}=\underset{\substack{\text { perpmbain }}}{N}-\sum_{i} N\left(P_{i}\right)+\sum_{i<j} N\left(P_{i} P_{j}\right)+\ldots+(-1)^{n+1} N\left(P_{1} \ldots P_{n}\right) \\
& N=n! \\
& N\left(P_{i}\right)=(n-1)!\in\binom{n}{1} \text { urns } \\
& N\left(P_{i} P_{j}\right)=(n-2)!\leftarrow\binom{n}{2} \text { was } \\
& \text { i } \\
& N\left(P_{i}, \ldots P_{i_{m}}\right)=(n-m)!\in\binom{n}{m} \text { war } \\
& \text { So } D_{n}=n!-\binom{n}{1}(n-1)!+\binom{n}{2}(n-2)!+\ldots+(-1)^{n-1}\binom{n}{n} \cdot 1! \\
& \left.=n!-\frac{n!}{1!!(n-1)!} \cdot(n-1)!+\frac{n!}{2!(n-2)!}(n-2)!!+\ldots+\frac{n!}{m!(n-n)!}(n-m)!\right) \\
& \cdots(-1)^{7+1} \\
& =n!\left(1-\frac{1}{1!}+\frac{1}{2!}+\ldots(-1)^{n+11} \frac{n!}{n!}\right) \\
& n=7 \quad n=\infty \\
& \begin{array}{c}
P\binom{\text { nobody will got }}{\text { te tutor }}
\end{array}=\frac{D_{n}}{n!}=\sum_{k=0}^{n} \frac{(-1)^{k+1}}{k!}=0.367 \\
& P\binom{\text { someare will }}{\text { get a litres }}=1-\frac{D_{n}}{n!}=1-\frac{1}{e} \\
& =\frac{1}{e}=.368 \\
& \text { Actually, within } \frac{1}{(n+1)!} \quad \frac{D_{n}}{n!}=\frac{1}{e}
\end{aligned}
$$

Consider binomial distribution

$$
\begin{gathered}
f(x)=\binom{n}{x} p^{x} q^{n-x} \\
\left.(p+q)^{n}=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k} \right\rvert\, p \cdot \frac{d}{d p} \\
p \cdot \frac{d}{d p}(p+q)^{n}=\sum_{k=0}^{\infty} k\binom{n}{k} p^{k} q^{n-k} \\
p \cdot n(p+q)^{n-1}=
\end{gathered}
$$

Plug in $\quad q=1-p$

$$
\begin{aligned}
& n \cdot p=\sum_{k=0}^{n} k \cdot f(k)=E(x) \\
& p^{2} \frac{d^{2}}{d p^{2}}(p+q)^{n}=\sum_{k=0}^{n} k(k-1)\binom{n}{k} p^{k} q^{n-k} \\
& p^{2} \cdot n(n-1)(p+q)^{n-2}
\end{aligned}
$$

Plug in $q=1-p$

$$
\begin{aligned}
& p^{2} n(n-1)=\sum_{n=0}^{n}\left(k^{2}-k\right)\binom{n}{k} p^{n} q^{n-4}=E\left(x^{2}\right)-E(x) \\
& p^{2} n^{2}-p^{2} n=E\left(x^{2}\right)-n p \\
& E\left(x^{2}\right)=p^{2} n^{2}-p^{2} n+p n \\
& V(x)=E\left(x^{2}\right)-(E(x))^{2} \\
& V=p^{2} n^{2}-p^{2} n+p n-n^{2} p \\
& \\
& =n p(1-p) .
\end{aligned}
$$

$$
\sigma=\sqrt{n p(1-p)}
$$

Hove does he distrientum tuation betove s as $n \rightarrow \infty$?

$$
f(x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}
$$

Stivling approxiventon

$$
n_{-}^{\prime}=n^{n} e^{-n} \sqrt{2 \pi n}\left(1+o\left(\frac{1}{n}\right)\right)
$$

$$
\begin{gathered}
f(x)=e^{\log f(x)} \\
f(x)=\left(\frac{p}{x}\right)^{x}\left(\frac{q}{n-x}\right)^{n-x} \cdot n^{n} \sqrt{\frac{n}{2 \pi \times(n-x)}}\left(1+0\left(\frac{1}{n}\right)\right) \\
f(x) \rightarrow \frac{1}{\sqrt{2 \pi n p q}} e^{-\frac{(x-n p)^{2}}{2(i p q)} \sigma^{2}} \underbrace{\frac{1}{\sqrt{2}}}_{E(x)} \rightarrow \frac{1}{1}+\frac{\sigma}{1} \\
\text { Gnassian }
\end{gathered}
$$ normal distrilution.

