Midterm 1 Friday 3uly gth Geredssupe (2hrs within 24nrs)
5-6 pubblems take nome

$$
{ }^{2+3} \quad \begin{aligned}
& \text { Iuchution } \\
& \text { wets }
\end{aligned}
$$

Introduction to Number Theory
Number thany is o study of integers $\mathbb{Z}_{1}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ Many problems ave about prine numbers.
Deb: We say that $a \mid b$ "a divicles b " for $a, b \in \mathbb{Z}$ if $\exists \subset \in \mathbb{Z}$ s.t. $b=a \cdot c$ (or b is diusitle by a)

Ex: $\quad 6 / 18 \quad 18=6.3$
$10110 \quad 10=10.1$
$710 \quad 0=7.0 \in$ cwerg interer alvices zero
3×5 afb it $\nexists c \in \mathbb{Z}$ s. $b=a \cdot c$
 Prost: $\exists d: \| b=a \cdot d \quad$ Je: $\quad c=b \cdot c=a \cdot(d \cdot e)$

- $a \mid b \Rightarrow a^{1000} / b^{1000} \quad\left(a^{n} / b^{n}\right)^{\mathbb{Z}} n \in \mathbb{Z}$

Proot: V
3cer st. $6=a \cdot c$

$$
\begin{aligned}
& b=a \cdot c \\
& b^{n}=(a \cdot c)^{n}=\left(a^{n}\right)\left(c^{n}\right)^{\in \mathbb{Z}}
\end{aligned}
$$

- if $a|x, a| y \Rightarrow a \mid m x+n y$ $\forall m, n \in \mathbb{Z}$
Proot: $\exists c, d \in \mathbb{Z}$ s.t.

$$
\begin{aligned}
& x=a \cdot c, \quad y=a \cdot d \\
& m_{x}+n y=m \cdot a \cdot c+n \cdot a \cdot d=a(\text { mctnd }) \\
& \text { 2 } \\
& \Rightarrow a \mid m x+n y \\
& \text { Ex: } \begin{array}{l}
6136^{x} \\
6 / 12
\end{array} \Rightarrow 6196 \\
& \text { 6) } \frac{12}{\mathrm{~g}} \\
& 96=\frac{1.36}{4}+\underbrace{5.12}_{m}
\end{aligned}
$$

Def: An even number x is st. $2 \mid x$
An odd number x is sit. $2 \lambda x$
Theorem (Euclid's division Algorithm)
If $a, b \in \mathbb{Z}, b>0$. Then $\left.\begin{array}{l}\text { qu } \\ \text { quotient }\end{array}\right) ~ q, r \in \mathbb{Z}$ st.

$$
a=b \cdot q^{\varepsilon^{q u b t i e n t}}+r_{\pi \text { remainder }}
$$

Ex: $\quad a>100, b=3$

$$
100=3 \cdot 33^{9}+1^{-6}
$$

Icha: try different values of 9 until 100-33.9 becomes negative \Rightarrow too tar

Plot: First find q, r, then prove unignuess
Let $S=\{a+b \cdot y \mid g \in \mathbb{Z}\}$

$$
S^{+} C S \text { - all van- relative } \text { elemats of } S
$$

r-smallest elenut inst
Claim: $\quad 0 \leqslant r<b$ since $r \in S \Rightarrow r=a+b \cdot y$ for some $y \in \mathbb{Z}$ $r \geqslant 0$ since rest
Suppose $r \geqslant b \quad r^{\prime}=r-b=a+b \cdot y-b=a+b(y-1) \geqslant 0$
Contradiction because r is fo smallest ekunt in S^{+}

$$
\Rightarrow r<b
$$

$$
r=a+b \cdot y \quad \Rightarrow \quad a=r+b(-y)
$$

Noe prove uniqueness: Assure not unique $\exists r^{\prime}, q^{\prime} \in \mathbb{Z}$ st.

$$
\begin{array}{rlrl}
a & =b \cdot q+r & 0 & 0 \leqslant r<b \\
a & =b q^{\prime}+r^{\prime} & 0 & \leqslant r^{\prime}<b \\
0=a-a & =b\left(q-q^{\prime}\right)+\left(r-r^{\prime}\right)
\end{array}
$$

Exr Show that $5 \mid n^{5}-n \quad \forall n \in \mathbb{Z}_{+}$

$$
\begin{array}{lll}
n=1 & n^{5}-n=0 & 510 \\
\text { 1) } & \begin{array}{ll}
n=2 & n^{5}-n=30
\end{array} \quad 5(30
\end{array} \quad \text { chase of induction }
$$

2) Inductive assumption: for some $n \quad 5 / n^{5}-n$
3) Inductive step: $(n+1)^{5}-(n+1)=n^{5}+5 n^{4}+10 n^{3}+10 n^{2}+5 n+1$

5 divides this
number $5(c+d)$
Prime numbers
Dee: Anumber $p \in \mathbb{Z}$ is prime is $p>0$ and has exactly two divisors: 1 and P.

$$
2,3,5,7,11,13,17,19, \ldots
$$

The larges t known prime: $\quad 2^{74,207,281}-1 \sim 0^{20,00,000}$

$$
\begin{aligned}
& \log _{6} a=\frac{\log a}{\log b} \\
& \log _{10} 2=\frac{\log 2}{\log 10} \simeq 0.301 \ldots \\
& 2^{10}=10^{\frac{3}{10 \cdot \log 2}} \sim 10^{3} \\
& 2^{100} \sim 10^{30} \\
& \pi(x)=\# \text { primes }<x \quad \pi(10)=4 \\
& x=20 \\
& \pi(20)=8 \leftarrow \\
& \frac{20}{\log 20} \approx 6.7 \\
& \pi(x) \approx \frac{x}{\log x}
\end{aligned}
$$

Thasem: There are infinitely many primes
idea:

$$
a \mid b, a>1
$$

6112 $a \times b+1$ $\begin{array}{ll}6 \times 13 & 7 / 21 \\ & 2 \times 22\end{array}$

$$
\exists c \in \mathbb{Z} \text { st. } b=a \cdot c>
$$

assume $a+B+1 \Rightarrow z d \in \mathbb{Z}$ s.t. $b+1=a \cdot d$

$$
\begin{array}{ll}
b^{b} c_{1}^{a} .^{a} & a \cdot c+1=a \cdot d \\
100=5 \cdot 20 & 1=a(d-c) \\
101 \neq 6 \cdot 20 & \\
120=0.20 &
\end{array}
$$

$20 \quad 40 \quad 60 \quad 80 \quad 100 \quad 120$
C. 1233450

Proof: Assume there are finitely many primes

$$
\left\{p_{1}, P_{2}, \ldots p_{K}\right\} \text { - completer lest of all primes. }
$$

$N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k} \quad b_{y}$ construction $\quad p_{i} \mid N, i=1, \ldots, k$

$$
\text { but } p_{i} \not \backslash N+1, i=1, \ldots, k
$$

Does N+1 bane any divisors?
Yes: : 1, N+1
and the divisors $\Rightarrow N+1$ is prime

- $N+1=a \cdot b, a, b<N+1$ a| $N+1$
How about a?
If a has a and 1 as its only divisors \Rightarrow aprime o/w $a=c \cdot d, c, d<a$ Howe about c ?
the process terminates Wen we find a prime P s.f. $P \mid N+1$

$$
p \neq p_{1}, p_{2}, \ldots p_{4}
$$

\Rightarrow contradiction so set of primes is infinite.
Finding primes Sieve of Eratosthenes
12 y 3 \& (7) do to

 - coss out all multiples of 2 except 2 - circle the first non crossed number

Ex: bn the loop 3 times

$$
\pi(30)=10
$$

Q: Given $N \in \mathbb{Z}$ bol many times do yon need to rem the algorithm?

$$
\begin{aligned}
& k>N \\
& k \leq N
\end{aligned}
$$

A. \sqrt{N}

If a> \sqrt{N}, rich $k<N$
a) $K \Rightarrow K=a \cdot c$

$$
K \sim N
$$

$$
C<\sqrt{N}
$$

Find the largest a st. $a^{2} \leq N$
Pick $K<N: K=a \cdot c \quad c<\sqrt{N}$
C hus already been crossed out

Proposition: Given any N there are two conseantive primes which are $\geqslant N$ apart from each other,
no primes

$$
\cdots \underbrace{P_{k} \ldots P_{4+1}, \ldots}_{\geqslant N}
$$

$$
\begin{aligned}
& \Leftrightarrow \quad p_{4+1}-p_{4} \geqslant N \\
& \Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t
\end{aligned}
$$

Prot:

$$
n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot(n-1) \cdot n
$$

Stirling approximation.

$$
\left\{\begin{array}{l}
a_{1}=(n+1)!+2 \\
a_{2}=(n+1)!+3 \\
\vdots \\
a_{i}=(n+1)!+i+1 \\
\vdots \\
a_{n}=(n+1)!+n+1
\end{array}\right.
$$

$$
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

$$
\begin{aligned}
& n=10 \\
& a_{1}=11!+2=481,466,702-e^{\left(n-\frac{1}{2}\right) \log n}\left(\frac{1}{e}\right. \\
& a_{2}=11!+3=481,466,703 \\
& \vdots
\end{aligned}
$$

$$
\sim e^{24}
$$

$$
\sim 10^{9}
$$

$$
(i+1) \mid a_{i} \quad \text { since } \quad(n+1)^{\prime}=1 \cdot 2-3 \cdot 4 \cdots \underset{\nearrow}{(i+1)} \cdots \cdots \cdot(n+1)
$$

$$
\begin{aligned}
& 2,3, V_{2}^{5}, V_{2}^{7}, \underbrace{11}_{4}, \underbrace{13}_{2} \underbrace{17}_{4}{\underset{2}{2}}_{19}^{19} \underbrace{23}_{4} \underbrace{29}_{6} 2_{2} 3) \\
& 4 k+1: 5,13,17,29 \ldots \text { congruent to } \\
& 13 \equiv 1(\bmod 4) \\
& 4 k+3: 3,7,19,23 \ldots=3(\bmod 4)
\end{aligned}
$$

$a_{i}=(i+1)\left(\frac{i+1}{n}+1\right)$, so all a_{i} arr composite

$$
\text { iv } \quad n=N_{-1}
$$

The Fundamental theorem of Arith mene (FTA)
For any integer $N>1$ there is a prime factorization of N :
There are distinct primes $p_{1}, p_{2} \ldots p_{k}$, and $\underbrace{r_{1} \ldots, r_{k}}_{\text {multiplesctios }}, r_{k} \geqslant 1, r_{k} \in \mathbb{Z}$ st.

$$
N=p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \cdot p_{3}^{r_{3}} \cdot \cdots \cdot p_{4}^{r_{4}}
$$

This factorization is unique up to reordering.

Ex: \mathbb{Z}-ring
Gaussian numbers ring
ring

$$
\mathbb{Z}[\sqrt{-5}]=\{a+\sqrt{-5} b \mid a, b \in \mathbb{Z}\}>\mathbb{Z}
$$

\mathbb{Z} adjoin element $\sqrt{-5}$

- $(1+\sqrt{-5})(1-\sqrt{-5})=6$
- $2 \cdot 3=6$

\Rightarrow Gaussian primo decomposition is not unique!

$$
\begin{aligned}
& z_{1} \cdot z_{2} \quad z_{1}=\mid z \\
& =\left|z_{1}\right|\left(z_{2}\right) \cdot e^{i \varphi_{1}+i \varphi_{2}}
\end{aligned}
$$

Deft: Lit $a, b \in \mathbb{Z}$ not both equal to zero. The greatest common diusor of a and $b \quad \operatorname{gcd}(a, b)=(a, b)=d$
is the largest integer that divides a and b.
Ex: $\quad \operatorname{gcd}(6,15)=3$

$$
\operatorname{gcd}(105,0)=105
$$

$$
\begin{aligned}
& \operatorname{gcd}(100,76)=2^{2}=4 \\
& 1, l \\
& 2^{2} \cdot 5^{2}, 2^{2} \cdot 19 \\
& \operatorname{gcd}(202,2022,2022,20,222022)-?
\end{aligned}
$$

$$
\begin{aligned}
& 16=2^{4} \quad p_{1}=2, r_{1}=4 \\
& 40=2^{3} \cdot 5 \\
& p_{1}=2, r_{1}=3 \\
& p_{2}=S, r_{2}=1 \\
& \mathbb{C}=\mathbb{R}[\sqrt{-1}] \quad i^{2}=-1 \\
& x^{2}+5=0
\end{aligned}
$$

Division alforithon Idea: $a, b \in \mathbb{Z} \quad a=b \cdot q+r, 0 \leqslant r<b$
$\operatorname{gcd}(a, b) \quad \operatorname{gcd}(b, r)$
Ex:

Ex:
$A \quad B$
Lemma: Let $a, b \in \mathbb{Z}, a, b \neq 0$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$
where $r=a-b \cdot q$ for sons $q \in \mathbb{Z}, 0 \leq r<b$.
Proof: $\{A=B\} \Leftrightarrow A \geqslant B\} \wedge\{B \geqslant A\}$.

$$
\begin{aligned}
& \Rightarrow c \mid r \\
& \Rightarrow \quad \operatorname{gcd}(a, b) \mid r
\end{aligned}
$$

So $\operatorname{gcd}(b, r) \geqslant \operatorname{gcd}(a, b)$
(\leqslant) Lt $d|b, d| r \Rightarrow d \mid \underbrace{(b \cdot q+r}_{d \in \mathbb{Z}})=d l a$

$$
d \in \mathbb{Z} \quad \underbrace{}_{a} \Rightarrow \operatorname{gcd}(b, r) \mid a
$$

So $\operatorname{gcd}(a, b) \geqslant \operatorname{gcd}(b, r)$
Therefore $\operatorname{gcd}(G r)=\operatorname{gcd}(a, b)$.
Algorithm of computing of $\operatorname{gcd}(a, b)$ (Euclid)
Lemma

- $a=b \cdot q_{1}+r_{1}$

$$
\begin{aligned}
& 0 \leq r_{1}<b \\
& 0 \leq r_{2}<r_{1} \\
& 0 \leq r_{B}<r_{2}
\end{aligned}
$$

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(b, r_{1}\right)
$$

- $b^{2}=r_{1} \cdot q_{2}+r_{2}$

$$
\operatorname{gcd}\left(b, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)
$$

$$
\cdot r_{1}=r_{2} \cdot q_{3}+r_{3}
$$

$$
\operatorname{gcd}\left(r_{1}, r_{2}\right)=\operatorname{gcd}\left(r_{2}, r_{3}\right)
$$

$$
\begin{aligned}
& \operatorname{gcd}(12,6,27)=3^{2}=9 \\
& 12 G^{2 \cdot 3^{3} ? 7}=27 \cdot 4+18 \\
& \operatorname{gcd}(27,18)=9 \\
& 3^{3} \quad 2 \cdot 3^{2} \\
& a=502, b=98 \\
& 502=6.5+12 \\
& \left.\operatorname{gcd}\left(\begin{array}{ll}
502,98 \\
2.251 \\
2.12
\end{array}\right)=2\right) \\
& \left.\operatorname{gcd}\left(\begin{array}{cc}
2.251 \\
98 \\
1 & 12 \\
12
\end{array}\right)^{2}=2\right) \\
& \begin{array}{cc}
1 & 1 \\
2.7^{2} & 2^{2} .3
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& r_{k-3}=r_{k-2} \cdot q_{k-1}+r_{k-1} \quad 0 \leqslant r_{k-1}<r_{k-2} & \operatorname{gcd}\left(r_{k-3}, r_{k-2}\right): \operatorname{gcd}\left(r_{k-1}, r_{k-1}\right) \\
\cdot & r_{k-2}=r_{k-1} \cdot q_{k}+r_{r} & \operatorname{gcd}\left(r_{k-2}, r_{k-1}\right)=\operatorname{gcd}\left(r_{k-1}, 0\right) \\
r_{k-1}= & \operatorname{gcd}(a, b) & r_{k-1}
\end{aligned}
$$

Ex: $\quad \operatorname{gcd}(12,10)=2$

$$
\begin{aligned}
& a=0 \\
& 12=10.1_{1}+2 \\
& 100^{k}=2.5-0 \\
& a_{1}=r_{1} q_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gcd}\left(\frac{E_{x}}{202,2022} 2022,20,22,022\right)=2022 \\
& 202220222022=20222022 \cdot 10000 \\
&+2022 \\
& 20222022=2022 \cdot 10000+2022 \\
&=2022 \cdot 10001+0 \\
& E_{x}: a=b .9+r \quad a \geqslant b
\end{aligned}
$$

$\operatorname{gcd}(27,15)=3$
1)

$$
\begin{aligned}
& 27=15 \cdot 1+12 \\
& 15^{2}=12 \cdot 1+\sqrt{3} \\
& 12=3 \cdot 4+0
\end{aligned}
$$

2)

$$
\begin{aligned}
& 15=27 \cdot 0+15 \\
& 27^{2}=15 \cdot 1+12 \\
& 15=12 \cdot 1+\sqrt{2} \\
& 12^{2}=3.4+0
\end{aligned}
$$

Theorem: Il $a, b \in \mathbb{Z}$, rot both equal to zero.
Then $\operatorname{gcd}(a, b)=\min _{i}\left\{X_{a}+Y B \mid X, Y \in \mathbb{Z}, X_{a}+Y_{b}>0\right\}$ $\left.\begin{array}{c}\substack{\text { simplest } \\ \text { number in set }}\end{array}\right\}$
Ex: $\operatorname{gcd}(701,33)=701 \cdot X+33 \cdot Y=1$
Fudid: $\quad 701=33 \cdot 21+8$

$$
\begin{aligned}
33 & =8.4+11 \\
8 & =1.8+0
\end{aligned}
$$

$$
1=33-8.4=33-(701-33.21) .4
$$

$$
\begin{aligned}
& =33-701 \cdot 4+33.84 \\
& =701 \cdot \underbrace{(-1)}_{X}+33 \cdot \underbrace{85}_{Y}
\end{aligned}
$$

Ex:
$\operatorname{gcd}(60,37)$
$660=37.1 \pm 23$
इ $\quad 37=23 \cdot 1+14$
$4 \quad 23=14 \cdot 1+9$
$3 \quad 14^{4}=9 \cdot 1+5$
$2 \quad q=5.1+4$

$$
\begin{aligned}
l & =5-4=5-(9-5) \\
& =5 \cdot 2-9 \\
& =(14-9) \cdot 2-9=14 \cdot 2-9 \cdot 3 \\
& 4(14 \cdot 2-(23-14) \cdot 3=14 \cdot 5-23 \cdot 3 \\
& =(37-23) \cdot 5-23 \cdot 3=37 \cdot 5-23 \cdot 8 \\
& =37 \cdot 5-(60-37) \cdot 8 \\
& =37 \cdot \underbrace{13}_{Y}+60 \underbrace{(-8)}_{X}
\end{aligned}
$$

Theorem: Il $a, b \in \mathbb{Z}$, rot both equal to zero.
Then $\operatorname{gcd}(a, b)=\min _{\tau}\left\{X_{a}+Y B \mid X_{1}, Y \in \mathbb{Z}, X_{a}+Y_{b}>0\right\}$

$$
\left.\begin{array}{c}
\tau \\
\text { Sundelest } \\
\text { number in set }
\end{array}\right\}
$$

Proof:

$$
S=\left\{x_{a}+\psi B \mid x, y \in \mathbb{Z}\right\}
$$

$S^{+}=\{$positive elements of $S\}$

1) Shoer that the minimum divides a ana b

Let $m a+n b$ be the swellest elemubs of S^{+}
Decision algorithon

$$
\begin{aligned}
& a=(m a+n b) \cdot q+r, \quad 0 \leq r<m a \times n b \\
& r=a-(m a+n b) q=a(1-m q) \times b \underbrace{(-n q)} \\
& \text { if } r \neq 0 \text { then } r=a X+b Y \in S^{+}
\end{aligned}
$$

but $r<m a+n 6$, contradiction since matub is the supplest element in 5^{+}
Which means $r=0$. so $\operatorname{maxing} \mid a$
Analogously, $m a+n b / b$ (Exerito)
2) Shaw that $m a+n b=\operatorname{gcd}(a, b)$

Sine $\operatorname{gcd}(a, b)|a, \operatorname{gcd}(a, b)| b \Rightarrow \operatorname{gcd}(a, b) \mid \operatorname{maxn} b$
According to step 1)

$$
\begin{aligned}
& \operatorname{ma+nb|a} \operatorname{ma+nb|b} \Rightarrow \underbrace{\operatorname{ma+n} b \leqslant \operatorname{gcd}(a, b)}_{U /}) \\
& \operatorname{gcd}(a, b)=\operatorname{mac}(a, b) \leqslant \operatorname{ma+nb} .
\end{aligned}
$$

