Three roads to the Van Diejen model, and beyond ...
 ZOOM, 8/3/2021
 Workshop on
 Elliptic Integrable Systems

Based mainly on work with Belal Nazzal and Anton Nedelin (to appear and WIP)

Happy families are all alike; every unhappy family is unhappy in its own way.

Outline

* General logic: From Indices and Surface Defects to $A \Delta O$
* Three roads from rank one E-string to the $B C_{1}$ van Diejen Model
* The $A_{N=1}$ van Diejen Model
- The $C_{N=1} \quad$ van Diejen Model
* The $\left(A_{1}\right)^{N=1}$ van Diejen Model
* The A_{N} generalization
* Comments

Part I: $A \Delta O$ from 6d SCFTs

$4 \mathrm{~d} \mathcal{N}=1 \mathrm{SQFTs}$ from 6d SCFTs Gaiototo 2009 and many others

Q: Given $6 d S C F T_{U V}$ and \mathscr{C} what is $4 d S C F T_{U V}[\mathscr{C}] ?$

* In case such a flow in 4d exists many of its properties are encoded by the $6 d S C F T_{U V}$ and geometry \mathscr{C}
* Many strong coupling phenomena follow from geometry

4d Theories and indices

- Say the $4 d S Q F T_{I R}[\mathscr{C}]$ has been derived
* We can compute various protected quantities for $4 d S Q F T_{I R}[\mathscr{C}]$
* Such partition functions can be non-perturbatively computed and encode interesting information about the strongly coupled fixed point: invariants of continuous parameters
* Example of such a quantity is the supersymmetric index

The various parameters of the index

- The parameters p and q are there for any $\mathcal{N}=1$ SCFT: superconformal fugacities
* The parameters u are of two sorts:
* (a) Correspond to Cartan generators of the symmetry of 6d SCFT $G_{6 d}$: internal
* (b) Correspond to Cartan generators of the symmetry associated to the puncture
* Different types of punctures:
- Maximal with symmetry $G_{5 d}$
* Minimal with rank one symmetry $U(1)$ or $S U(2)$

Examples

* Take $A_{1}(2,0)$ SCFT on three punctured sphere with $\mathcal{N}=2$ preserving flux
* The theory is given by a tri-fundamental chiral superfirld

$$
\mathscr{I}[T]=\Gamma_{e}\left(t^{\frac{1}{2}} x^{ \pm 1} y^{ \pm 1} z^{ \pm 1}\right)
$$

$$
\Gamma_{e}(z):=\prod_{i, j=0}^{\infty} \frac{1-q^{i+1} p^{j+1} z^{-1}}{1-q^{i} p^{j} z}
$$

* Take rank 1 E-string $(1,0)$ SCFT on three punctured sphere with certain flux \mathscr{F}
* The theory is $\operatorname{SU}(3) \mathcal{N}=1 \mathrm{SQCD}$ with $N_{f}=6$

$$
(a ; b):=\prod_{i=0}^{\infty}\left(1-b^{i} a\right)
$$

Gluing indices

* Let us assume that we have derived theories corresponding to two surfaces \mathscr{C} and \mathscr{C}^{\prime} with fluxes \mathscr{F} and \mathscr{F}^{\prime} and have computed the corresponding indices
* We then can compute the index of the theory corresponding to a glued surface:
$\mathscr{I}\left[\mathscr{C} \oplus \mathscr{C}^{\prime}, \mathscr{F}+\mathscr{F}^{\prime}\right]=\oint \prod_{i=1}^{\mathrm{rank}} G_{5 d} \frac{d z_{i}}{2 \pi i z_{i}} \Delta\left(z_{5 d} ; u_{6 d} ; q, p\right) \times$

$$
\mathscr{J}[\mathscr{C}, \mathscr{F}]\left(z_{i}, u_{6 d}, \cdots ; q, p\right) \times \mathscr{F}\left[\mathscr{C}^{\prime}, \mathscr{F}^{\prime}\right]\left(z_{i}, u_{6 d}, \cdots ; q, p\right)
$$

Analytic structure of indices

* The index is a meromorphic function of the various parameters: what are the poles and the residues?
- Take \mathcal{O} to be an operator which can obtain a vacuum expectation value $\langle\mathcal{O}\rangle \neq 0$
* Then the claim is that $\operatorname{Res}_{u \rightarrow u^{*}} \mathscr{I}=\mathscr{J}^{I R}$ where \mathcal{O} contributes to the index with weight $u^{-1} \cdot u^{*}$
* Residues of indices encode the index of the theory obtain in the IR after turning on a vev
* The vev can be space time dependent if u^{*} involves p or /and q
* Such a vev will lead to a surface defect in the IR SCFT
* Residues of poles involving p or/and q encode indices in presence of surface defects

Flows between surfaces

* Let us then compute residues of indices of theories labeled by geometries and 6d SCFTs
* Assume we have derived a theory corresponding to a sphere with two maximal punctures, one minimal and some value of flux $\mathscr{F}^{\prime}: \mathscr{T}_{z, u, \hat{a}}^{\mathscr{F}^{\prime}}$
* Let us glue this theory to a generic one along a maximal puncture and give a constant vev to some operator \mathcal{O} charged under the minimal puncture symmetry \hat{a}.
* Different choices of the operator we give the vev to lead to different theories in the IR
* The theory in the IR corresponds to the same surface but with the flux shifted by some amount \mathscr{A} depending on the operator we give a vev to.

$A \Delta O$ from Indices

* Let us now assume that an operator \mathcal{O} exists such that $\mathscr{A}+\mathscr{F}^{\prime}=0$
* Then with constant vev the theory in the IR is the same as the one we glued the three punctured sphere to: the gluing and the vev can be though as action of identity operator
* Now in this setup let us turn on a non constant vev for this operator

The result turns out to be an $A \Delta O$ acting on the index of the theory we glued.

Kernel functions from indices

* As the index is independent of continuous parameters the $A \Delta O$ satisfy various properties
* We can construct the same surface in different ways leading to equivalent theories
* It does not matter in which duality frame we compute the index it is the same
* \rightarrow The index is a Kernel function of the $A \Delta O$

Commutativity from Indices

* We can in general produce different $A \Delta O$ turning on different vevs
* These $A \Delta O$ introduce different types of surface defects
* It does not matter in which order we introduce the defects
* \rightarrow The $A \Delta O$ derived in this way from a commuting set of operators

Summary Part I

* Given a derivation of 4 d theories resulting from compactifications these need to satisfy various non trivial properties, such as dualities
* By manipulating the indices of these theories we can derive a set of $A \Delta O$ s
* The dualities imply that these $A \Delta O$ s have to be commuting and that the indices are Kernel functions
* Since the duality properties are conjectural if the above properties of $A \Delta O$ s can be shown to hold true would be a highly non trivial check of these conjectures

Part II: Three roads to the vD model

The setup and the result

* Let us apply this procedure to the 6d SCFT being rank one E-string theory
* The 6 d symmetry is $G_{6 d}=E_{8}$
* The maximal puncture and minimal are the same with symmetry $G_{5 d}=S U(2)$
* There are known (at least) three rather different three punctured spheres for this compactification.
* These differ by values of flux and subtle details of the punctures.
* Each three punctured sphere will lead in principle to $A \Delta O$ operator
* The $A \Delta O$ will turn out to be all van Diejen $A \Delta O$ s shifted by a constant
* The three punctured spheres will be Kernel functions depending on three sets of parameters

E-string three punctured sphere I $\left(A_{N=1}\right)$

SR, Sabag 20

* $\operatorname{SU}(3) N_{f}=6 \mathrm{SQCD}$
* $S U(6) \times S U(6) \times U(1)_{B} \rightarrow$
* punct: $S U(2) \times S U(2) \times S U(2)$
- $S U(6) \times U(1)^{3} \subset E_{8}$
"Moment Map" Operators:

$$
M_{u}: \mathbf{2}_{x} \otimes\left(\mathbf{6}_{\frac{u^{4}}{v^{2} w^{2}}} \oplus \mathbf{1}_{u^{6} \nu^{12}} \oplus \mathbf{1}_{u^{6} w^{12}}\right) \quad M_{v}: \mathbf{2}_{y} \otimes\left(\mathbf{6}_{\frac{v^{4}}{u^{2} w^{2}}} \oplus \mathbf{1}_{v^{6} u^{12}} \oplus \mathbf{1}_{v^{6} w^{12}}\right) \quad M_{w}: \mathbf{2}_{z} \otimes\left(\mathbf{6}_{\frac{w^{4}}{u^{2} v^{2}}} \oplus \mathbf{1}_{w^{6} u^{12}} \oplus \mathbf{1}_{w^{6} v^{12}}\right)
$$

The index:
$\mathscr{K}(x, y, z)=\frac{(q ; q)^{2}(p ; p)^{2}}{6} \oint \frac{d t_{1}}{2 \pi i t_{1}} \frac{d t_{2}}{2 \pi i t_{2}} \frac{\prod_{i=1}^{3}\left[\Gamma_{e}\left((p q)^{1 / 6} u^{6} t_{i} x^{ \pm 1}\right) \Gamma_{e}\left((p q)^{1 / 6} v^{6} t_{i} y^{ \pm 1}\right) \Gamma_{e}\left((p q)^{1 / 6} w^{6} t_{i} z^{ \pm 1}\right) \prod_{j=1}^{6} \Gamma_{e}\left((p q)^{1 / 3} u^{-2} v^{-2} w^{-2} t_{i}^{-1} a_{j}\right)\right]}{\prod_{i \neq j}^{3} \Gamma_{e}\left(\frac{t_{i}}{t_{j}}\right)}$

$A \Delta O$ from E-string three punctured sphere I

(I) Construct index $\mathcal{J}(x, y, z)$

$$
\mathscr{J}(x, y, z)=\left[\frac{(q ; q)(p ; p)}{2}\right]^{2} \oint \frac{d t_{1}}{2 \pi i t_{1}} \frac{d t_{2}}{2 \pi i t_{2}} \frac{\mathscr{K}\left(x, y, t_{1}\right) \cdot \overline{\mathscr{K}\left(t_{1}, z, t_{2}\right)} \cdot \mathscr{J}_{\mathscr{C}}\left(t_{2}\right)}{\Gamma_{e}\left(t_{1}^{ \pm 2}\right) \Gamma_{e}\left(t_{2}^{ \pm 2}\right)}
$$

(II) Compute the residue:

$$
\operatorname{Res}_{z \rightarrow z^{*}} \operatorname{Res}_{y \rightarrow y^{*}} \mathscr{J}(x, y, z) \sim \mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{I}_{\mathscr{C}}(x)
$$

We can choose any component of $M_{w}: \mathbf{2}_{y} \otimes\left(\boldsymbol{6}_{\frac{w^{4}}{u^{2} 2^{2}}} \oplus 1_{w^{6} u^{12}} \oplus 1_{w^{6} v^{12}}\right)$ to give a vev to.
For concreteness let us choose: $\quad y^{*}=(q p)^{-\frac{1}{2}} u^{-12} w^{-6} q^{-1} \quad z^{*}=(q p)^{-\frac{1}{2}} u^{12} w^{6}$

The $A_{N=1} A \Delta O$

- The residue computation is lengthy but in principle straightforward procedure
(Analyze pinching of the integration contours and use various known integral identities)

$$
\mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{J}_{\mathscr{C}}(x)=\frac{\theta_{p}\left((p q)^{\frac{1}{2}} u^{-6} w^{-12} x\right) \theta_{p}\left((p q)^{\frac{1}{2}} u^{-6} v^{-12} x\right)}{\theta_{p}\left(q x^{2}\right) \theta_{p}\left(x^{2}\right)} \prod_{j=1}^{6} \theta_{p}\left((p q)^{\frac{1}{2}} u^{-4} v^{2} w^{2} a_{j}^{-1} x\right) \mathscr{J}_{\mathscr{C}}(q x)+
$$

$$
\frac{\theta_{p}\left((p q)^{\frac{1}{2}} u^{-6} w^{-12} x^{-1}\right) \theta_{p}\left((p q)^{\frac{1}{2}} u^{-6} v^{-12} x^{-1}\right)}{\theta_{p}\left(q x^{-2}\right) \theta_{p}\left(x^{-2}\right)} \prod_{j=1}^{6} \theta_{p}\left((p q)^{\frac{1}{2}} u^{-4} v^{2} w^{2} a_{j}^{-1} x^{-1}\right) \mathscr{J}_{\mathscr{C}}\left(q^{-1} x\right)+W^{\left(y^{*}, z^{*}\right)}(x) \mathscr{J}_{\mathscr{C}}(x)
$$

$$
\begin{array}{r}
W^{\left(y^{*}, z^{*}\right)}(x)=\left[\begin{array}{r}
\left.\frac{\theta_{p}\left((p q)^{\frac{1}{2}} u^{6} w^{12} x\right) \theta_{p}\left((p q)^{\frac{1}{2}} v^{12} u^{6} x\right)}{\theta_{p}\left((p q)^{\frac{1}{2}} u^{18} q x\right) \theta_{p}\left(q^{-1} x^{-2}\right) \theta_{p}\left(x^{2}\right)} \theta_{p}\left((p q)^{\frac{1}{2}} u^{18} x^{-1}\right) \prod_{j=1}^{6} \theta_{p}\left((p q)^{\frac{1}{2}} u^{4} v^{-2} w^{-2} a_{j} x\right)+\left(x \rightarrow x^{-1}\right)\right] \\
+\prod_{j=1}^{6} \theta_{p}\left(u^{-14} v^{-2} w^{-2} q^{-1} a_{j}\right) \frac{\theta_{p}\left(q^{-1} v^{12} u^{-12}\right) \theta_{p}\left((p q)^{\frac{1}{2}} u^{6} w^{12} x^{ \pm 1}\right)}{\theta_{p}\left(p q^{2} w^{12} u^{24}\right) \theta_{p}\left((p q)^{-\frac{1}{2}} u^{-18} q^{-1} x^{ \pm 1}\right)}
\end{array}\right]
\end{array}
$$

$$
\theta_{p}(z):=\prod_{l=0}^{\infty}\left(1-z p^{l}\right)\left(1-z^{-1} p^{l+1}\right)
$$

The $B C_{1}$ van Diejen $A \Delta O$

* The $B C_{1}$ van Diejen operator is defined as follows: Use notations of Rains, Ruijsenaars 12

$$
\begin{gathered}
\mathscr{D}_{x} \cdot \mathscr{J}(x)=\frac{\prod_{j=1}^{8} \theta_{p}\left((p q)^{\frac{1}{2}} a_{j} x\right)}{\theta_{p}\left(q x^{2}\right) \theta_{p}\left(x^{2}\right)} \mathscr{J}(q x)+\frac{\prod_{j=1}^{8} \theta_{p}\left((p q)^{\frac{1}{2}} a_{j} x^{-1}\right)}{\theta_{p}\left(q x^{-2}\right) \theta_{p}\left(x^{-2}\right)} \mathscr{J}\left(q^{-1} x\right)+W\left(x ; a_{i}\right) \mathscr{J}(x) \\
\omega_{0}=1, \omega_{1}=-1, \omega_{2}=p^{\frac{1}{2}}, \omega_{3}=-p^{\frac{1}{2}} \\
W\left(x ; a_{i}\right)=\frac{\sum_{j=0}^{3} p_{j}(a)\left(\mathscr{C}_{j}(\xi ; x)-\mathscr{E}_{j}\left(\xi ; \omega_{j}\right)\right)}{2 \theta_{p}(\xi) \theta_{p}\left(q^{-1} \xi\right)} \quad \begin{array}{c}
p_{0}(a)=\prod_{i=1}^{8} \theta_{p}\left(p^{\frac{1}{2}} a_{i}\right), p_{1}(a)=\prod_{i=1}^{8} \theta_{p}\left(-p^{\frac{1}{2}} a_{i}\right), \\
p_{2}(a)=p \prod_{i=1}^{8} a_{i}^{-\frac{1}{2}} \theta_{p}\left(a_{i}\right), p_{3}(a)=p \prod_{i=1}^{8} a_{i}^{\frac{1}{2}} \theta_{p}\left(-a_{i}^{-1}\right) \\
\mathscr{E}_{i}(\xi ; x)=\frac{\theta_{p}\left(q^{-\frac{1}{2}} \xi \omega_{i}^{-1} x\right) \theta_{p}\left(q^{-\frac{1}{2}} \xi \omega_{i} x^{-1}\right)}{\theta_{p}\left(q^{-\frac{1}{2}} \omega_{i}^{-1} x\right) \theta_{p}\left(q^{-\frac{1}{2}} \omega_{i} x^{-1}\right)}
\end{array}
\end{gathered}
$$

* The choice of ξ is inessential

The $A_{N=1} A \Delta O$ and the van Diejen $A \Delta O$

* The operator we derived is precisely (up to conjugations) the $B C_{1}$ van Diejen $A \Delta O$
* The eight parameters of van Diejen are:

$$
\left(\mathbf{6}_{\frac{r_{2 w^{2}}}{u^{4}}} \oplus 1_{u^{-6} v^{-12}} \oplus 1_{u^{-6} w^{-12}}\right)
$$

* One can repeat the exercise with any component of the moment map and with any puncture, the computations might be different but the result is always the same (up to x-independent constant shift)
* All these operators are thus trivially commuting and $\mathscr{K}(x, y, z)$ is expected to be a Kernel function:

$$
\mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}(x, y, z)=\mathscr{D}_{y}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}(x, y, z)=\mathscr{D}_{z}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}(x, y, z)
$$

Proof?

* The imbedding of $S U(6) \times U(1)^{3}$ in E_{8} is

$$
E_{8} \rightarrow E_{7} \times S U(2)_{u^{6} v^{6} w^{6}} \rightarrow S U(6) \times S U(3)_{u^{8} /\left(w^{4} v^{4}\right), v^{8} /\left(w^{4} u^{4}\right)} \times S U(2)_{u^{6} v^{6} w^{6}}
$$

The E_{8} structure

* One can combine the three punctured sphere into closed Riemann surface of genus g with zero flux index of which should be invariant under the action of the Weyl group of E_{8}.

Define: $\mathscr{T}(x, y)=\left[\frac{(q ; q)(p ; p)}{2}\right]^{2} \oint \frac{d t_{1}}{2 \pi i t_{1}} \frac{d t_{2}}{2 \pi i t_{2}} \frac{\mathscr{K}\left(x, t_{2}, t_{1}\right) \cdot \overline{\mathscr{K}\left(t_{1}, t_{2}, y\right)}}{\Gamma_{e}\left(t_{1}^{ \pm 2}\right) \Gamma_{e}\left(t_{2}^{ \pm 2}\right)}$

Then: $\quad \mathscr{J}_{\mathscr{C}_{g}}=\left[\frac{(q ; q)(p ; p)}{2}\right]^{g-1} \oint \prod_{j=1}^{g-1} \frac{d t_{j}}{2 \pi i t_{j}} \frac{\mathscr{T}\left(t_{j}, t_{j+1}\right)}{\Gamma_{e}\left(t_{j}^{ \pm 2}\right)}$ is invariant under the Weyl group of E_{8} acting on $\left\{u, v, w, a_{i}\right\}$

E-string three punctured sphere II $\left(C_{N=1}\right)$

* $S U(3) N_{f}=8$ SQCD with W
* $S U(8) \times S U(8) \times U(1)_{B} \rightarrow$
* punct: $S U(2) \times S U(2) \times S U(2)$
* $S U(8) \times U(1) \subset E_{8}$
"Moment Map" Operators:

The index: $\quad \mathscr{K}(x, y, z)=$

$A \Delta O$ from E-string three punctured sphere II

(I) Construct index $\mathcal{J}(x, y, z)$

$$
\mathscr{J}(x, y, z)=\left[\frac{(q ; q)(p ; p)}{2}\right]^{2} \oint \frac{d t_{1}}{2 \pi i t_{1}} \frac{d t_{2}}{2 \pi i t_{2}} \frac{\mathscr{K}\left(x, y, t_{1}\right) \cdot \overline{\mathscr{K}\left(t_{1}, z, t_{2}\right)} \cdot \mathscr{I}_{\mathscr{C}}\left(t_{2}\right)}{\Gamma_{e}\left(t_{1}^{ \pm 2}\right) \Gamma_{e}\left(t_{2}^{ \pm 2}\right)}
$$

(II) Compute the residue:

$$
\operatorname{Res}_{z \rightarrow z^{*}} \operatorname{Res}_{y \rightarrow y^{*}} \mathscr{\mathscr { L }}(x, y, z) \sim \mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{I}_{\mathscr{C}}(x)
$$

We can choose any component of

$$
M: \mathbf{2}_{y} \otimes\left(\mathbf{8}_{w^{\frac{9}{2}}}\right)
$$

to give a vev to.
For concreteness let us choose: $\quad y^{*}=(q p)^{-\frac{1}{2}} w^{-\frac{9}{2}} a_{1}^{-1} q^{-1} \quad z^{*}=(q p)^{-\frac{1}{2}} w^{\frac{9}{2}} a_{1}$

The $C_{N=1} A \Delta O$

* The residue computation is lengthy but in principle straightforward procedure
* (Analyze pinching of the integration contours and use various known integral identities)

$$
\mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{I}_{\mathscr{C}}(x)=\frac{\prod_{j=1}^{8} \theta_{p}\left((p q)^{\frac{1}{2}} w^{-\frac{9}{2}} a_{j}^{-1} x\right)}{\theta_{p}\left(q x^{2}\right) \theta_{p}\left(x^{2}\right)} \mathscr{I}_{\mathscr{C}}(q x)+\frac{\prod_{j=1}^{8} \theta_{p}\left((p q)^{\frac{1}{2}} w^{-\frac{9}{2}} a_{j}^{-1} x^{-1}\right)}{\theta_{p}\left(q x^{-2}\right) \theta_{p}\left(x^{-2}\right)} \mathscr{I}_{\mathscr{C}}\left(q^{-1} x\right)+W^{\left(y^{*}, z^{*}\right)} \mathscr{J}_{\mathscr{C}}(x)
$$

$$
W^{\left(y^{*}, z^{*}\right)}(x)=\left[\frac{\theta_{p}\left((p q)^{\frac{1}{2}} w^{18} x\right) \theta_{p}\left((p q)^{\frac{1}{2}} w^{\frac{9}{2}} a_{1} x^{ \pm 1}\right) \prod_{i=2}^{8} \theta_{p}\left((p q)^{\frac{1}{2}} w^{-\frac{9}{2}} a_{i}^{-1} x\right)}{\theta_{p}\left((p q)^{\frac{1}{2}} w^{-18} x\right) \theta_{p}\left((p q)^{\frac{1}{2}} q w^{\frac{9}{2}} a_{1} x\right) \theta_{p}\left(x^{2}\right) \theta_{p}\left(q^{-1} x^{-2}\right)}+\left\{x \rightarrow x^{-1}\right\}\right]+
$$

$$
\frac{\theta_{p}\left(q^{-1} w^{\frac{27}{2}} a_{1}^{-1}\right) \prod_{i=2}^{8} \theta_{p}\left(q^{-1} w^{-9} a_{1}^{-1} a_{i}^{-1}\right) \theta_{p}\left((p q)^{\frac{1}{2}} w^{\frac{9}{2}} a_{1} x^{ \pm 1}\right)}{\theta_{p}\left(q^{-2} w^{-9} a_{1}^{-2}\right) \theta_{p}\left(q^{-1} w^{-\frac{45}{2}} a_{1}^{-1}\right) \theta_{p}\left((p q)^{-\frac{1}{2}} q^{-1} w^{-\frac{9}{2}} a_{1}^{-1} x^{ \pm 1}\right)}+\frac{\prod_{i=2}^{8} \theta_{p}\left(w^{\frac{27}{2}} a_{i}^{-1}\right) \theta_{p}\left((p q)^{\frac{1}{2}} w^{\frac{9}{2}} a_{1} x^{ \pm 1}\right)}{\theta_{p}\left(q w^{\frac{45}{2}} a_{1}\right) \theta_{p}\left((p q)^{-\frac{1}{2}} w^{18} x^{ \pm 1}\right)}
$$

The $C_{N=1} A \Delta O$ and the van Diejen $A \Delta O$

* This operator is (up to conjugation) precisely the $B C_{1}$ van Diejen $A \Delta O$
* The eight parameters of van Diejen are:
$\left(\mathbf{8}_{w^{-\frac{2}{2}}}\right)$
* One can repeat the exercise with any component of the moment map, the result is always the same (up to x-independent constant shift)
* All these operators are thus trivially commuting and $\mathscr{K}(x, y, z)$ is expected to be a Kernel function:

$$
\mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}(x, y, z)=\mathscr{D}_{y}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}(x, y, z)=\mathscr{D}_{z}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}(x, y, z)
$$

E-string three punctured sphere III $\left(\left(A_{1}\right)^{N=1}\right)$

SR, Sabag 19

* $\left(S U(2) N_{f}=4\right)^{2}$ SQCD with W and gauge singlets
* punct: $S U(2) \times S U(2) \times S U(2)$
- $S U(3)^{2} \times U(1)^{4} \subset E_{8}$

"Moment Map" Operators:

$$
\begin{array}{ll}
M_{v}: & \left\{t a^{-1} c_{1}, t a^{-1} c_{2}, t a^{-1} c_{3}, t a^{-1} c_{4}, t a \widetilde{c}_{1}, t a \widetilde{c}_{2}, t a \widetilde{c}_{3}, t a \widetilde{c}_{4}\right\} \\
M_{z} ;: & \left\{t^{-1} a c_{1}, t^{-1} a c_{2}, t^{-1} a c_{3}, t^{-1} a c_{4}, t^{-1} a^{-1} \widetilde{c}_{1}, t^{-1} a^{-1} \widetilde{c}_{2}, t^{-1} a^{-1} \widetilde{c}_{3}, t^{-1} a^{-1} \widetilde{c}_{4}\right\} \\
M_{\epsilon}: & \left\{c_{1}^{-1} c_{2}^{-1}, c_{1}^{-1} c_{3}^{-1}, c_{2}^{-1} c_{3}^{-1}, \widetilde{c}_{1}^{-1} \widetilde{c}_{2}^{-1}, \widetilde{c}_{1}^{-1} \widetilde{c}_{3}^{-1}, \widetilde{c}_{2}^{-1} \widetilde{c}_{3}^{-1}, t^{2} a^{-2}, t^{2} a^{2}\right\}
\end{array}
$$

$A \Delta O$ from E-string three punctured sphere III

$$
\begin{gathered}
\mathscr{K}(\epsilon, v, z)=\frac{(q ; q)^{2}(p ; p)^{2}}{4} \oint \frac{d y_{1}}{2 \pi i y_{1}} \oint \frac{d y_{2}}{2 \pi i y_{2}} \frac{\prod_{i=1}^{4} \Gamma_{e}\left((p q)^{\frac{1}{4}} e^{-\frac{1}{2}} c_{i} y_{1}^{ \pm 1}\right) \Gamma_{e}\left((p q)^{\frac{1}{4}} e^{-\frac{1}{2}} y_{2}^{ \pm 1} \widetilde{c}_{i}\right)}{\Gamma_{e}\left(y_{1}^{ \pm 2}\right) \Gamma_{e}\left(y_{2}^{ \pm 2}\right)} \times \\
\Gamma_{e}\left((p q)^{1 / 4} t^{-1} a \epsilon^{1 / 2} y_{1}^{ \pm 1} z^{ \pm 1}\right) \Gamma_{e}\left((p q)^{1 / 4} t^{-1} a^{-1} \epsilon^{1 / 2} z^{ \pm 1} y_{2}^{ \pm 1}\right) \Gamma_{e}\left(\sqrt{p q} \epsilon^{-1} z^{ \pm 1} v^{ \pm 1}\right) \times \\
\Gamma_{e}\left((p q)^{1 / 4} t a^{-1} \epsilon^{1 / 2} y_{1}^{ \pm 1} v^{ \pm 1}\right) \Gamma_{e}\left((p q)^{1 / 4} t a \epsilon^{1 / 2} v^{ \pm 1} y_{2}^{ \pm 1}\right) \prod_{i=1}^{3} \Gamma_{e}\left(\sqrt{p q} \epsilon c_{i} c_{4}\right) \Gamma_{e}\left(\sqrt{p q} \epsilon \widetilde{c}_{i} \widetilde{c}_{4}\right) \Gamma_{e}\left(\sqrt{p q} t^{2} a^{ \pm 2} \epsilon^{-1}\right)
\end{gathered}
$$

(I) Construct index $\mathcal{J}(x, y, z)$

$$
\mathscr{J}(x, y, z)=\left[\frac{(q ; q)(p ; p)}{2}\right]^{2} \oint \frac{d t_{1}}{2 \pi i t_{1}} \frac{d t_{2}}{2 \pi i t_{2}} \frac{\mathscr{K}\left(x, y, t_{1}\right) \cdot \overline{\mathscr{K}\left(t_{1}, z, t_{2}\right)} \cdot \mathscr{J}_{\mathscr{C}}\left(t_{2}\right)}{\Gamma_{e}\left(t_{1}^{ \pm 2}\right) \Gamma_{e}\left(t_{2}^{ \pm 2}\right)}
$$

(II) Compute the residue:

$$
\operatorname{Res}_{z \rightarrow z^{*}} \operatorname{Res}_{y \rightarrow y^{*}} \mathscr{J}(x, y, z) \sim \mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{I}_{\mathscr{C}}(x)
$$

We can choose any component of $\quad M_{\epsilon}: \mathbf{2}_{\epsilon} \otimes\left(c_{i}^{-1} c_{j}^{-1}, \widetilde{c}_{i}^{-1} \widetilde{c}_{j}^{-1}, t^{2} a^{-2}, t^{2} a^{2}\right)$ to give a vev to.
For concreteness let us choose:

$$
y^{*}=(q p)^{\frac{1}{2}} t^{2} a^{2} q \quad z^{*}=(q p)^{\frac{1}{2}} t^{-2} a^{-2}
$$

The $\left(A_{1}\right)^{N=1} A \Delta O$

* The residue computation is lengthy but in principle straightforward procedure
* (Analyze pinching of the integration contours and use various known integral identities)

$$
\mathscr{D}_{v}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{I}_{\mathscr{C}}(v)=\frac{\prod_{i=1}^{4} \theta_{p}\left((p q)^{\frac{1}{2}} t^{-1} a c_{i}^{-1} v\right) \theta_{p}\left((p q)^{\frac{1}{2}} t^{-1} a^{-1} \widetilde{c}_{i}^{-1} v\right)}{\theta_{p}\left(v^{2}\right) \theta_{p}\left(q v^{2}\right)} \mathscr{I}_{\mathscr{C}}(q v)+W^{\left(y^{*}, z^{*}\right)}(v) \mathscr{I}_{\mathscr{G}}(v)+\left(v \rightarrow v^{-1}\right)
$$

$$
W^{\left(y^{*}, z^{* *}\right)}(v)=\frac{\theta_{p}\left(q^{-1} a^{-4}\right) \theta_{p}\left(q^{-1} t^{-4} a^{-4} v^{2}\right) \prod_{i=1}^{4} \theta_{p}\left((p q)^{\frac{1}{2}} t a^{-1} c_{i} v\right) \theta_{p}\left((p q)^{\frac{1}{2}} t a \widetilde{c}_{i} v\right)}{\theta_{p}\left(q^{-2} t^{-4} a^{-4}\right) \theta_{p}\left(a^{-4} v^{2}\right) \theta_{p}\left(v^{2}\right) \theta_{p}\left(q^{-1} v^{-2}\right)}+
$$

$$
\frac{\theta_{p}\left(q^{-1} t^{-4}\right) \prod_{i=1}^{4} \theta_{p}\left((p q)^{\frac{1}{2}} t a^{3} c_{i} v^{-1}\right) \theta_{p}\left((p q)^{\frac{1}{2}} t a \widetilde{c}_{i} v\right)}{\theta_{p}\left(v^{2}\right) \theta_{p}\left(a^{4} v^{-2}\right) \theta_{p}\left(q^{-2} t^{-4} a^{-4}\right)}
$$

The $\left(A_{1}\right)^{N=1} A \Delta O$ and the van Diejen $A \Delta O$

* This operator is (up to conjugation) precisely the $B C_{1}$ van Diejen $A \Delta O$
* The eight parameters of van Diejen are:

$$
\left\{t^{-1} a c_{i}^{-1}, t^{-1} a^{-1} \widetilde{c}_{i}^{-1}\right\}
$$

* One can repeat the exercise with any component of the moment map, the result is always the same (up to v-independent constant shift)
* All these operators are thus trivially commuting and $\mathscr{K}(x, y, z)$ is expected to be a Kernel function:

$$
\mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}(x, y, z)=\mathscr{D}_{y}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}(x, y, z)=\mathscr{D}_{z}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}(x, y, z)
$$

Summary Part II

* We obtain three different Kernel functions for the $B C_{1}$ van Diejen model
* The fact that we get the same $A \Delta O$ for the three different threepunctured spheres is a consistency check on the physics arguments
* The fact that all these operators (trivially) commute is yet another check
* Proving the Kernel property will be a rather non trivial check of the physics
* We have a second copy of commuting operators by exchanging $q \leftrightarrow p$
* In principle there are residues with higher powers of q, we do not expect these to give new operators but rather polynomials of the basic van Diejen operator.

Part III: and beyond ...

Minimal D conformal matter

* E-string is the theory residing on a single M5 brane probing D_{4} singularity
* Let us consider the theory residing on a single M5 brane probing D_{N+3} singularity

A non-trivial 6d SCFT, $G_{6 d}=S O(4 N+12)$
($N>0$, Enhances to E_{8} for $N=1$)
Minimal $\left(D_{N+3}, D_{N+3}\right)$ conformal matterDel Zotto, Heckman, Tomasiello, Vafa 2014
*Three different possibilities for $G_{5 d}$:

$$
G_{5 d}=: S U(N+1), U S p(2 N), S U(2)^{N} \text { Hayashi, Kim, Taki, Lee, Yagi } 2015
$$

Each one of the constructions generalises to these groups

Minimal $D_{N+3^{-}}-\mathrm{cm}$ three punctured sphere $\left(A_{N}\right)$

SR, Sabag 20

* $S U(N+2) N_{f}=2 N+4 \mathrm{SQCD}$
* $S U(2 N+4) \times S U(2 N+4) \times U(1)_{B} \rightarrow$
* punct:
$S U(N+1) \times S U(N+1) \times S U(2)$
- $S U(2 N+4) \times U(1)^{3} \subset S O(4 N+12)$
"'Moment Map" Operators:

$M_{u}: \mathbf{N}+\mathbf{1}^{x} \otimes\left(\mathbf{2}+4_{u^{N+3} v^{-(N+1)} w^{-2}} \oplus \mathbf{1}_{\left(u v^{N+1}\right)^{2 N+4}}\right) \oplus \overline{\mathbf{N}+\mathbf{1}^{x}} \otimes \mathbf{1}_{\left(u^{N} w^{2}\right)^{2 N+4}}$
$M_{v}: \mathbf{N}+\mathbf{1}^{y} \otimes\left(\mathbf{2} \mathbf{N}+\mathbf{4}_{v^{N+3} u^{-(N+1)} W^{-2}} \oplus \mathbf{1}_{\left(v u^{N+1}\right)^{2 N+4}}\right) \oplus \overline{\mathbf{N}+\mathbf{1}^{y}} \otimes \mathbf{1}_{\left(v^{N} w^{2}\right)^{2 N+4}}$
$M_{w}: \quad \mathbf{2}^{z} \otimes\left(\mathbf{2 N}+\mathbf{4}_{(u v)^{-(N+1)} w^{2 N+2}} \oplus \mathbf{1}_{\left(w v^{N+1}\right)^{2 N+4}} \oplus \mathbf{1}_{\left(w u^{N+1}\right)^{2 N+4}}\right)$

$A \Delta O$ from E-string three punctured sphere III

The index:

$$
\mathscr{K}\left(x_{i}, y_{j}, z\right)=\frac{(q ; q)^{N+1}(p ; p)^{N+1}}{(N+2)!} \oint \prod_{j=1}^{N+1} \frac{d y_{j}}{2 \pi i y_{j}} \frac{\prod_{i=1}^{N+2} \prod_{l=1}^{2 N+4} \Gamma_{e}\left((p q)^{\frac{N+1}{2(N+2)}}(u v)^{-N-1} w^{-2} t_{i}^{-1} a_{l}\right)}{\prod_{i \neq j} \Gamma\left(y_{i} / y_{j}\right)} \times
$$

$$
\prod_{i=1}^{N+2} \prod_{j=1}^{N+1} \Gamma_{e}\left((p q)^{\frac{1}{2(N+2)}} u^{2 N+4} t_{i} x_{j}\right) \Gamma_{e}\left((p q)^{\frac{1}{2(N+2)}} v^{2 N+4} t_{i} y_{j}\right) \Gamma_{e}\left((p q)^{\frac{1}{2(N+2)}} w^{2 N+4} t_{i} z^{ \pm 1}\right)
$$

(I) Construct index $\mathcal{J}(x, y, z)$

$$
\mathscr{J}\left(x_{l}, y, z\right)=\left[\frac{(q ; q)^{N}(p ; p)^{N}}{(N+1)!}\right]^{2} \prod_{i, j=1}^{N+1} \frac{d t_{i}^{1}}{2 \pi i t_{i}^{1}} \frac{d t_{j}^{2}}{2 \pi i t_{j}^{2}} \frac{\mathscr{K}\left(x_{l}, y, t_{i}^{1}\right) \cdot \overline{\mathscr{K}\left(t_{i}^{1}, z, t_{j}^{2}\right)} \cdot \mathscr{J}_{\mathscr{C}}\left(t_{j}^{2}\right)}{\prod_{i \neq j} \Gamma_{e}\left(t_{i}^{1} / t_{j}^{1}\right) \Gamma_{e}\left(t_{i}^{2} / t_{j}^{2}\right)}
$$

(II) Compute the residue: $\operatorname{Res}_{z \rightarrow z^{*}} \operatorname{Res}_{y \rightarrow y^{*}} \mathscr{J}\left(x_{i}, y, z\right) \sim \mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{J}_{\mathscr{C}}\left(x_{i}\right)$

We can choose any component of $\left(2 N+4_{(u v)^{-(N+1)} w^{2 N+2}} \oplus \mathbf{1}_{\left(w w^{N+1}\right)^{N N+4}} \oplus \mathbf{1}_{\left(w u^{N+1}\right)^{2 N+4}}\right)$ to give a vev to.
For concreteness let us choose:

$$
y^{*}=(q p)^{\frac{1}{2}}\left(w u^{N+1}\right)^{-2 N-4} q^{-1} z^{*}=(q p)^{\frac{1}{2}}\left(w u^{N+1}\right)^{2 N+4}
$$

The $A_{N} A \Delta O$

$$
\begin{gathered}
\mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{F}_{\mathscr{C}}\left(x_{i}\right)=\left(\sum_{l \neq m}^{N+1} A_{l m}^{\left(y^{*}, z^{*}\right)}(x) \Delta_{l m}+W_{x}^{\left(y^{*}, z^{*}\right)}(x)\right) \mathscr{J}_{\mathscr{C}}\left(x_{i}\right) \\
\Delta_{l m}(x) f(x) \equiv f\left(x_{l} \rightarrow q^{-1} x_{l}, x_{m} \rightarrow q x_{m}\right) \\
A_{l m}^{\left(y^{*}, z^{*}\right)}\left(x_{i}\right):=\frac{\theta_{p}\left((q p)^{\frac{1}{2}} u^{-2 N-4} v^{-(N+1)(2 N+4)} x_{l}^{-1}\right) \theta_{p}\left((q p)^{\frac{1}{2}} w^{-4 N-8} u^{-N(2 N+4)} x_{m}\right)}{\theta_{p}\left(q \frac{x_{m}}{x_{l}}\right) \theta_{p}\left(\frac{x_{m}}{x_{l}}\right)} \times \\
\prod_{j=1}^{2 N+4} \theta_{p}\left((q p)^{\frac{1}{2}} u^{-N-3} v^{N+1} w^{2} x_{l}^{-1} a_{j}^{-1}\right) \prod_{i \neq m \neq l}^{N+1} \frac{\theta_{p}\left((q p)^{\frac{1}{2}} w^{4 N+8} u^{N(2 N+4)} x_{i}^{-1}\right) \theta_{p}\left((q p)^{\frac{1}{2}} u^{(N+2)(2 N+4)} x_{i}\right)}{\theta_{p}\left(\frac{x_{i}}{x_{l}}\right) \theta_{p}\left(\frac{x_{m}}{x_{i}}\right)} \\
W^{\left(y^{*}, z^{*}\right)}\left(x_{i}\right)=\prod_{j=1}^{2 N+4} \theta_{p}\left(u^{-(N+1)(2 N+5)} v^{-N-1} w^{-2} q^{-1} a_{j}\right) \frac{\theta_{p}\left(q^{-1}\left(v u^{-1}\right)^{(N+1)(2 N+4)}\right)}{\theta_{p}\left(p q^{2} w^{4 N+8} u^{2(N+1)(2 N+4)}\right)} \times \prod_{i=1}^{N+1} \frac{\theta_{p}\left((q p)^{\frac{1}{2}} w^{4 N+8} u^{N(2 N+4)} x_{i}^{-1}\right)}{\left.\theta_{p}(q p)^{-\frac{1}{2}} u^{-(N+2)(2 N+4)} q^{-1} x_{i}^{-1}\right)}+ \\
\sum_{m=1}^{N+1} \frac{\theta_{p}\left((q p)^{\frac{1}{2}} u^{2 N+4} v^{(N+1)(2 N+4)} x_{m}\right)}{\theta_{p}\left((q p)^{\frac{1}{2}} u^{(N+2)(2 N+4)} q x_{m}\right)} \times \prod_{i \neq m}^{\theta_{p}\left((q p)^{\frac{1}{2}} w^{4 N+8} u^{N(2 N+4)} x_{i}^{-1}\right) \theta_{p}\left((q p)^{\frac{1}{2}} u^{(N+2)(2 N+4)} x_{i}\right)} \prod_{j=1}^{2 N+4} \theta_{p}\left((q p)^{\frac{1}{2}} u^{N+3} v^{-N-1} w^{-2} x_{m} a_{j}\right)
\end{gathered}
$$

Properties of the $A_{N} A \Delta O$ s

* This operator is an A_{N} generalization of the $B C_{1}$ van Diejen $A \Delta O$
* The $A \Delta O$ depends on $2 N+6$ parameters
* One can repeat the exercise with any component of the moment map, the result is a set of similarly looking but different operators
* All these operators are commuting and $\mathscr{K}\left(x_{i}, y_{j}, z\right)$ is expected to be a Kernel function:

$$
\mathscr{D}_{x}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}\left(x_{i}, y_{j}, z\right)=\mathscr{D}_{y}^{\left(y^{*}, z^{*}\right)} \cdot \mathscr{K}\left(x_{i}, y_{j}, z\right)
$$

Proof?

Part IV: Comments

Generalizations to C_{N} and $\left(A_{1}\right)^{N}$ and more

* In a similar manner one can define C_{N} and $\left(A_{1}\right)^{N}$ generalisations
* (We have not computed the operators yet.)
* In fact the $\left(A_{1}\right)^{N}$ has a further generalization to $\left(A_{k-1}\right)^{4} \times\left(A_{2 k-1}\right)^{N}$
* This corresponds to non-minimal $\left(D_{N+3}, D_{N+3}\right)$ conformal matter
* In turn this generalized to $G=A D E$ conformal matter with $G_{6 d}=G \times G$

* One can construct Kernel functions mixing the various types of parameters

Example of a mixed Kernel functions

* A joint Kernel function for A_{N} and $C_{N} A \Delta O \mathrm{~s}$

$$
\mathscr{K}\left(z_{i}, y_{j}\right)=\left(\prod_{i=1}^{N} \prod_{j=1}^{N+1} \Gamma_{e}\left(t^{-\frac{3+N}{4}} z_{i}^{ \pm 1} y_{j}\right)\left(\prod_{j=1}^{N+1} \prod_{l=1}^{2 N+6} \Gamma_{e}\left((q p)^{\frac{1}{2}} t^{\frac{1}{2}} a_{l} y_{j}^{-1}\right)\right)\left(\prod_{j=1}^{N} \prod_{l=1}^{2 N+6} \Gamma_{e}\left((q p)^{\frac{1}{2}} t^{\frac{N+1}{4}} a_{l}^{-1} z_{j}^{ \pm 1}\right)\right) \prod_{i \neq j} \Gamma_{e}\left(q p t^{\frac{N+3}{2}} z_{i}^{-1} z_{j}^{-1}\right)\right.
$$

Integrable models vs 6d SCFTs

Nazzal, SR 18

Outlook

* Proving the conjectures
*What is the integrable model corresponding to a general 6d SCFT?
* To a given SCFT can associate different models, how many?
* Can we map the classification of 6d SCFTs and / or 5d gauge theories with 6d UV completion to "classification" of elliptic integrable models?

Thank You!!

