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Happy families are all alike;
      every unhappy family is unhappy in its own way. 

Happy Families:

Elliptic Integrable models

6d (1,0) SCFTs



Outline

❖ General logic: From Indices and Surface Defects to 

❖ Three roads from rank one E-string to the van Diejen Model

❖   The       van Diejen Model

❖   The       van Diejen Model

❖   The  van Diejen Model

❖ The  generalization

❖ Comments

AΔO

BC1

AN=1

CN=1

(A1)N=1

AN



Part I:  from 6d SCFTs AΔO



4d  SQFTs from 6d SCFTs𝒩 = 1 Gaiotto 2009 and many others

6d SCFTUV

4d SQFTIR[𝒞]

RG Flow

𝒢UV

𝒢IR

6d SCFTUV + Δ

Δ = 4d SCFTUV[𝒞]

𝒢′ UV

4d SCFTUV[𝒞] + Δ′ 

𝒞
❖  can be IR free or strongly coupled

❖ There might or might not be a weakly coupled 
 deformation of which flows to/

directly describes 

❖ In case such a flow in 4d exists many of its properties 
are encoded by the   and geometry 

❖ Many strong coupling phenomena follow from 
geometry

4d SQFTIR[𝒞]

4d SCFTUV[𝒞]
4d SQFTIR[𝒞]

6d SCFTUV 𝒞❖ Q: Given  and  
what is   ?

6d SCFTUV 𝒞
4d SCFTUV[𝒞]

F



4d Theories and indices

T :=

❖ Say the  has been derived

❖ We can compute various protected quantities for  

❖ Such partition functions can be non-perturbatively computed and encode interesting 
information about the strongly coupled fixed point: invariants of continuous parameters

❖ Example of such a quantity is the supersymmetric index

4d SQFTIR[𝒞]

4d SQFTIR[𝒞]

𝒞

F

⊕6d SCFT ℐ[𝒞]

ℐ[T](q, p, {u}) = Tr(−1)Fqj1−j2+ 1
2 Rpj1+j2+ 1

2 R
rank GF

∏
i=1

uQi
i



The various parameters of the index

❖ The parameters  and  are there for any  SCFT: superconformal fugacities

❖ The parameters  are of two sorts:

❖ (a) Correspond to Cartan generators of the symmetry of 6d SCFT  : internal

❖ (b) Correspond to Cartan generators of the symmetry associated to the puncture

❖ Different types of punctures: 

❖ Maximal with symmetry 

❖ Minimal with rank one symmetry 

p q 𝒩 = 1

u

G6d

G5d

U(1) or SU(2)



Examples

❖ Take  (2,0) SCFT on three punctured sphere with  preserving flux

❖ The theory is given by a tri-fundamental chiral superfirld 

A1 𝒩 = 2

ℐ[T ] = Γe(t
1
2 x±1y±1z±1) Γe(z) :=

∞

∏
i,j=0

1 − qi+1pj+1z−1

1 − qipjz

❖ Take rank 1 E-string (1,0) SCFT on three punctured sphere with certain flux 

❖ The theory is   SQCD with 

ℱ

SU(3) 𝒩 = 1 Nf = 6

ℐ[T ] =
(q; q)2(p; p)2

6 ∮
dt1

2πit1

dt2
2πit2

3
∏
i=1 [Γe((pq)1/6u6tix

±1)Γe((pq)1/6v6tiy
±1)Γe((pq)1/6w6tiz

±1)
6

∏
j=1

Γe((pq)1/3u−2v−2w−2t−1
i aj)]

3
∏
i≠j

Γe(
ti
tj
)

(a; b) :=
∞

∏
i=0

(1 − bia)



Gluing indices
❖ Let us assume that we have derived theories corresponding to two surfaces  and  

with fluxes  and  and have computed the corresponding indices 

❖ We then can compute the index of the theory corresponding to a glued surface:

𝒞 𝒞′ 

ℱ ℱ′ 

ℐ[𝒞 ⊕ 𝒞′ , ℱ + ℱ′ ] = ∮
rank G5d

∏
i=1

dzi

2πizi
Δ(z5d; u6d; q, p) ×

ℐ[𝒞, ℱ](zi, u6d, ⋯; q, p) × ℐ[𝒞′ , ℱ′ ](zi, u6d, ⋯; q, p)

z5d

𝒞 𝒞′ 

ℱ ℱ′ 



Analytic structure of indices
❖ The index is a meromorphic function of the various parameters: what are the poles and 

the residues?

❖ Take  to be an operator which can obtain a vacuum expectation value 

❖ Then the claim is that     where   contributes to the index with weight 

❖ Residues of indices encode the index of the theory obtain in the IR after turning on a vev

❖ The vev can be space time dependent if  involves  or/and 

❖ Such a vev will lead to a surface defect in the IR SCFT

❖ Residues of poles involving  or/and  encode indices in presence of surface defects

𝒪 ⟨𝒪⟩ ≠ 0

Resu→u*ℐ = ℐIR 𝒪
u−1 ⋅ u*

u* p q

p q

Gaiotto, Rastelli, SR 2012



Flows between surfaces

z

̂a zvev 𝒜 for ̂a

𝒞g,s[u]

𝒯ℱ′ 
z,u, ̂a

u

𝒞g,s[z]

ℐ

❖ Let us then compute residues of indices of theories labeled by geometries and 6d SCFTs

❖ Assume we have derived a theory corresponding to a sphere with two maximal punctures, one 
minimal and some value of flux :   

❖ Let us  glue this theory to a generic one along a maximal puncture and give a constant vev to 
some operator  charged under the minimal puncture symmetry . 

❖ Different choices of the operator  we give the vev to  lead to different theories in the IR

❖ The theory in the IR corresponds to the same surface but with the flux shifted by some amount 
 depending on the operator we give a vev to.

ℱ′ 𝒯ℱ′ 
z,u, ̂a

𝒪 ̂a

𝒜

ℱ ℱ + ℱ′ + 𝒜



 from IndicesAΔO

z

̂a zvev 𝒜 for ̂a

𝒞g,s[u]

𝒯ℱ′ 
z,u, ̂a

u

𝒞g,s[z]

ℐ𝒪( ̂a, 𝒜)
z

❖ Let us now assume that an operator  exists such that 

❖ Then with constant vev the theory in the IR is the same as the one we glued the three 
punctured sphere to: the gluing and the vev can be though as action of identity operator

❖ Now in this setup let us turn on a non constant vev for this operator

❖ The result turns out to be an  acting on the index of the theory we glued.   

𝒪 𝒜 + ℱ′ = 0

AΔO

ℱ ℱ



Kernel functions from indices

z
u

̂a

S dualit y

z
u

̂a

z
u

z
u

ℐ

ℐ

𝒪( ̂a, 𝒜)
z

𝒪( ̂a, 𝒜)
u

vev 𝒜 for ̂a

vev 𝒜 for ̂a

❖ As the index is independent of continuous parameters the  satisfy various 
properties

❖ We can construct the same surface in different ways leading to equivalent theories 

❖ It does not matter in which duality frame we compute the index it is the same

❖  The index is a Kernel function of the 

AΔO

→ AΔO



Commutativity from Indices

z
̂a

S dualit y

ℐ

ℐ

𝒪( ̂a, 𝒜)
z

𝒪(b̂, ℬ)
z

vev 𝒜 for ̂a

vev 𝒜 for ̂a

b̂

z

̂a
b̂

vev ℬ for b̂

vev ℬ for b̂

𝒪(b̂, ℬ)
z

𝒪( ̂a, 𝒜)
z

z

z

[𝒪( ̂a, 𝒜)
z , 𝒪(b̂, ℬ)

z ] = 0

❖ We can in general produce different   turning on different vevs

❖ These  introduce different types of surface defects 

❖ It does not matter in which order we introduce the defects

❖  The  derived in this way from a commuting set of operators

AΔO

AΔO

→ AΔO



Summary Part I

❖ Given a derivation of 4d theories resulting from compactifications 
these need to satisfy various non trivial properties, such as dualities

❖ By manipulating the indices of these theories we can derive a set of  
s

❖ The dualities imply that these s have to be commuting and that 
the indices are Kernel functions

❖ Since the duality properties are conjectural if the above properties of 
s  can be shown to hold true would be a highly non trivial check 

of these conjectures

AΔO

AΔO

AΔO



Part II: Three roads to the vD model



The setup and the result

❖ Let us apply this procedure to the 6d SCFT being rank one E-string theory

❖ The 6d symmetry is 

❖ The maximal puncture and minimal are the same with symmetry 

❖ There are known (at least) three rather different three punctured spheres 
for this compactification.

❖ These differ by values of flux and subtle details of  the punctures.

❖ Each three punctured sphere will lead in principle to  operator 

❖ The  will turn out to be all van Diejen  s shifted by a constant

❖ The three punctured spheres will be Kernel functions depending on three  
sets of parameters

G6d = E8

G5d = SU(2)

AΔO

AΔO AΔO



E-string three punctured sphere I ( )AN=1

❖   SQCD

❖

❖ punct:  

❖

SU(3) Nf = 6

SU(6) × SU(6) × U(1)B →

SU(2) × SU(2) × SU(2)

SU(6) × U(1)3 ⊂ E8

``Moment Map’’ Operators:

Mu : 2x ⊗ (6 u4
v2w2

⊕ 1u6v12 ⊕ 1u6w12) Mv : 2y ⊗ (6 v4
u2w2

⊕ 1v6u12 ⊕ 1v6w12) Mw : 2z ⊗ (6 w4
u2v2

⊕ 1w6u12 ⊕ 1w6v12)

3 22

2

6

x y

z

u6 v6

w6

1
u2v2w2

1
3

2
3

1
3

1
3

F

𝒦(x, y, z) =
(q; q)2(p; p)2

6 ∮
dt1

2πit1

dt2
2πit2

3
∏
i=1 [Γe((pq)1/6u6tix

±1)Γe((pq)1/6v6tiy
±1)Γe((pq)1/6w6tiz

±1)
6

∏
j=1

Γe((pq)1/3u−2v−2w−2t−1
i aj)]

3
∏
i≠j

Γe(
ti
tj
)

The index:

SR, Sabag 20



 from E-string three punctured sphere IAΔO

We can choose any component of Mw : 2y ⊗ (6 w4
u2v2

⊕ 1w6u12 ⊕ 1w6v12)

𝒥(x, y, z) = [ (q; q)(p; p)
2 ]

2

∮
dt1

2πit1

dt2
2πit2

𝒦(x, y, t1) ⋅ 𝒦(t1, z, t2) ⋅ ℐ𝒞(t2)
Γe(t±2

1 )Γe(t±2
2 )

t1 t2

x

y

z(I) Construct index 𝒥(x, y, z)

(II) Compute the residue:

Resz→z* Resy→y* 𝒥(x, y, z) ∼ 𝒟(y*,z*)
x ⋅ ℐ𝒞(x)

to give a vev to.

For concreteness let us choose: y* = (qp)− 1
2 u−12w−6q−1 z* = (qp)− 1

2 u12w6



The        AN=1 AΔO
❖ The residue computation is lengthy but in principle straightforward procedure

❖ (Analyze pinching of the integration contours and use various known integral identities)

𝒟(y*,z*)
x ⋅ ℐ𝒞(x) =

θp((pq)1
2u−6w−12x)θp((pq)1

2u−6v−12x)
θp(qx2)θp(x2)

6

∏
j=1

θp((pq)1
2u−4v2w2a−1

j x) ℐ𝒞(qx)+

θp((pq)1
2u−6w−12x−1)θp((pq)1

2u−6v−12x−1)
θp(qx−2)θp(x−2)

6

∏
j=1

θp((pq)1
2u−4v2w2a−1

j x−1) ℐ𝒞(q−1x) + W (y*,z*)(x) ℐ𝒞(x)

W (y*,z*)(x) =
θp((pq)1

2u6w12x)θp((pq)1
2v12u6x)

θp((pq)1
2u18qx)θp(q−1x−2)θp(x2)

θp((pq)1
2u18x−1)

6

∏
j=1

θp((pq)1
2u4v−2w−2ajx) + (x → x−1)

+
6

∏
j=1

θp(u−14v−2w−2q−1aj)
θp(q−1v12u−12)θp((pq)1

2u6w12x±1)

θp(pq2w12u24)θp((pq)− 1
2 u−18q−1x±1)

θp(z) :=
∞

∏
l=0

(1 − zpl)(1 − z−1pl+1)



The   van Diejen   BC1 AΔO
❖ The  van Diejen operator is defined as follows:BC1

𝒟x ⋅ ℐ(x) =

8
∏
j=1

θp((pq)1
2 aj x)

θp(qx2)θp(x2)
ℐ(qx) +

8
∏
j=1

θp((pq)1
2 aj x−1)

θp(qx−2)θp(x−2)
ℐ(q−1x) + W(x; ai) ℐ(x)

W(x; ai) =
∑3

j=0 pj(a)(ℰj(ξ; x) − ℰj(ξ; ωj))

2θp(ξ)θp(q−1ξ)

p0(a) =
8

∏
i=1

θp(p
1
2 ai) , p1(a) =

8

∏
i=1

θp(−p
1
2 ai) ,

ω0 = 1, ω1 = − 1, ω2 = p
1
2, ω3 = − p

1
2

p2(a) = p
8

∏
i=1

a− 1
2

i θp(ai) , p3(a) = p
8

∏
i=1

a
1
2
i θp(−a−1

i )

ℰi(ξ; x) =
θp(q− 1

2 ξω−1
i x)θp(q− 1

2 ξωix−1)

θp(q− 1
2 ω−1

i x)θp(q− 1
2 ωix−1)

❖ The choice of  is inessentialξ

Use notations of Rains, Ruijsenaars 12



The   and the van Diejen  AN=1 AΔO AΔO

❖ The operator we derived is precisely (up to conjugations) the  van Diejen 

❖ The eight parameters of van Diejen are:

❖ One can repeat the exercise with any component of the moment map and with any 
puncture, the computations might be different but the result is always the same 
(up to x-independent constant shift)

❖ All these operators are thus trivially commuting and  is expected to be a 
Kernel function:  

BC1 AΔO

𝒦(x, y, z)

(6 v2w2
u4

⊕ 1u−6v−12 ⊕ 1u−6w−12)

𝒟(y*,z*)
x ⋅ 𝒦(x, y, z) = 𝒟(y*,z*)

y ⋅ 𝒦(x, y, z) = 𝒟(y*,z*)
z ⋅ 𝒦(x, y, z)

E8 → E7 × SU(2)u6v6w6 → SU(6) × SU(3)u8/(w4v4),v8/(w4u4) × SU(2)u6v6w6

❖ The imbedding of  in  isSU(6) × U(1)3 E8

Proof?



The  structureE8

❖ One can combine the three punctured sphere into closed Riemann surface 
of genus  with zero flux index of which should be invariant under the 
action of the Weyl group of .

g
E8

3

3

33

3 3

9

𝒞g

𝒯(x, y) = [ (q; q)(p; p)
2 ]

2

∮
dt1

2πit1

dt2
2πit2

𝒦(x, t2, t1) ⋅ 𝒦(t1, t2, y)
Γe(t±2

1 )Γe(t±2
2 )

Define:

ℐ𝒞g
= [ (q; q)(p; p)

2 ]
g−1

∮
g−1

∏
j=1

dtj
2πitj

𝒯(tj, tj+1)
Γe(t±2

j )
Then:

is invariant under the Weyl group of  acting on E8 {u, v, w, ai}

Proof?

SR, Zafrir 19



E-string three punctured sphere II ( )CN=1

❖   SQCD with 

❖

❖ punct:  

❖

SU(3) Nf = 8 W

SU(8) × SU(8) × U(1)B →

SU(2) × SU(2) × SU(2)

SU(8) × U(1) ⊂ E8

``Moment Map’’ Operators:

M : 2x,y,z ⊗ (8
w

9
2)

F

(q; q)2(p; p)2

6 ∮
dt1

2πit1

dt2
2πit2

3
∏
i=1 [Γe((pq)1/6w6tix

±1)Γe((pq)1/6w6tiy
±1)Γe((pq)1/6w6tiz

±1)Γe((pq)2/3w−12ti)2
8

∏
j=1

Γe((pq)1/3w− 3
2 t−1

i aj)]
3

∏
i≠j

Γe(
ti
tj
)

The index:

3 22

8

x y

z

w6 w6

w6

1

w
3
2

2
3

1
3

w−12 w−124
3

4
3

2
1
3

1
3

𝒦(x, y, z) =



 from E-string three punctured sphere IIAΔO

We can choose any component of M : 2y ⊗ (8
w

9
2)

𝒥(x, y, z) = [ (q; q)(p; p)
2 ]

2

∮
dt1

2πit1

dt2
2πit2

𝒦(x, y, t1) ⋅ 𝒦(t1, z, t2) ⋅ ℐ𝒞(t2)
Γe(t±2

1 )Γe(t±2
2 )

t1 t2

x

y

z(I) Construct index 𝒥(x, y, z)

(II) Compute the residue:

Resz→z* Resy→y* 𝒥(x, y, z) ∼ 𝒟(y*,z*)
x ⋅ ℐ𝒞(x)

to give a vev to.

For concreteness let us choose: y* = (qp)− 1
2 w− 9

2 a−1
1 q−1 z* = (qp)− 1

2 w
9
2 a1



The        CN=1 AΔO
❖ The residue computation is lengthy but in principle straightforward procedure

❖ (Analyze pinching of the integration contours and use various known integral identities)

𝒟(y*,z*)
x ⋅ ℐ𝒞(x) =

8
∏
j=1

θp((pq)1
2 w− 9

2 a−1
j x)

θp(qx2)θp(x2)
ℐ𝒞(qx) +

8
∏
j=1

θp((pq)1
2 w− 9

2 a−1
j x−1)

θp(qx−2)θp(x−2)
ℐ𝒞(q−1x) + W (y*,z*)ℐ𝒞(x)

W (y*,z*)(x) = [θp((pq)1
2 w18x)θp((pq)1

2 w
9
2 a1x

±1)∏8
i=2 θp((pq)1

2 w− 9
2 a−1

i x)

θp((pq)1
2 w−18x)θp((pq)1

2qw 9
2 a1x)θp(x2)θp(q−1x−2)

+ {x → x−1}]+

θp(q−1w
27
2 a−1

1 )∏8
i=2 θp(q−1w−9a−1

1 a−1
i )θp((pq)1

2 w
9
2 a1x

±1)

θp(q−2w−9a−2
1 )θp(q−1w− 45

2 a−1
1 )θp((pq)− 1

2 q−1w− 9
2 a−1

1 x±1)
+

∏8
i=2 θp(w 27

2 a−1
i )θp((pq)1

2 w
9
2 a1x

±1)

θp(qw 45
2 a1)θp((pq)− 1

2 w18x±1)



The   and the van Diejen  CN=1 AΔO AΔO

❖ This operator is (up to conjugation) precisely the  van Diejen 

❖ The eight parameters of van Diejen are:

❖ One can repeat the exercise with any component of the moment map, 
the result is always the same (up to x-independent constant shift)

❖ All these operators are thus trivially commuting and  is 
expected to be a Kernel function:  

BC1 AΔO

𝒦(x, y, z)

𝒟(y*,z*)
x ⋅ 𝒦(x, y, z) = 𝒟(y*,z*)

y ⋅ 𝒦(x, y, z) = 𝒟(y*,z*)
z ⋅ 𝒦(x, y, z)

Proof?

(8
w− 9

2)



E-string three punctured sphere III ( )(A1)N=1

❖   SQCD with  
and gauge singlets

❖ punct:  

❖

(SU(2) Nf = 4)2 W

SU(2) × SU(2) × SU(2)

SU(3)2 × U(1)4 ⊂ E8

``Moment Map’’ Operators:

F

2

3

1

2

2

Z

v

2

3

1
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

11 1

ci /c c̃i / c̃

c2 c̃ 2

ϵ

cϵ− 1
2

ϵ
ϵ−1

c−1ϵ− 1
2

c̃ϵ− 1
2

c̃−1ϵ− 1
2

t−1aϵ
1
2

taϵ
1
2

t−1a−1ϵ
1
2

ta−1ϵ
1
2

Mv : {ta−1c1, ta−1c2, ta−1c3, ta−1c4, tac̃1, tac̃2, tac̃3, tac̃4}

Mz; : {t−1ac1, t−1ac2, t−1ac3, t−1ac4, t−1a−1c̃1, t−1a−1c̃2, t−1a−1c̃3, t−1a−1c̃4}

Mϵ : {c−1
1 c−1

2 , c−1
1 c−1

3 , c−1
2 c−1

3 , c̃−1
1 c̃−1

2 , c̃−1
1 c̃−1

3 , c̃−1
2 c̃−1

3 , t2a−2, t2a2}

SR, Sabag 19



 from E-string three punctured sphere IIIAΔO

𝒦(ϵ, v, z) = (q; q)2(p; p)2

4 ∮
dy1

2πiy1 ∮
dy2

2πiy2

∏4
i=1 Γe ((pq)

1
4 ϵ− 1

2 ciy
±1
1 ) Γe ((pq)

1
4 ϵ− 1

2 y±1
2 c̃i)

Γe (y±2
1 ) Γe (y±2

2 )
×

Γe ((pq)1/4 t−1aϵ1/2y±1
1 z±1) Γe ((pq)1/4 t−1a−1ϵ1/2z±1y±1

2 ) Γe ( pqϵ−1z±1v±1) ×

Γe ((pq)1/4 ta−1ϵ1/2y±1
1 v±1) Γe ((pq)1/4 taϵ1/2v±1y±1

2 )
3

∏
i=1

Γe ( pqϵcic4) Γe ( pqϵc̃ic̃4) Γe ( pqt2a±2ϵ−1)
(I) Construct index 𝒥(x, y, z)

𝒥(x, y, z) = [ (q; q)(p; p)
2 ]

2

∮
dt1

2πit1

dt2
2πit2

𝒦(x, y, t1) ⋅ 𝒦(t1, z, t2) ⋅ ℐ𝒞(t2)
Γe(t±2

1 )Γe(t±2
2 )

(II) Compute the residue:

We can choose any component of Mϵ : 2ϵ ⊗ (c−1
i c−1

j , c̃−1
i c̃−1

j , t2a−2, t2a2)

Resz→z* Resy→y* 𝒥(x, y, z) ∼ 𝒟(y*,z*)
x ⋅ ℐ𝒞(x)

to give a vev to.

For concreteness let us choose: y* = (qp)1
2t2a2q z* = (qp)1

2t−2a−2



The        (A1)N=1 AΔO
❖ The residue computation is lengthy but in principle straightforward procedure

❖ (Analyze pinching of the integration contours and use various known integral identities)

𝒟(y*,z*)
v ⋅ ℐ𝒞(v) =

∏4
i=1 θp ((pq)1

2t−1ac−1
i v) θp ((pq)1

2t−1a−1c̃−1
i v)

θp(v2)θp(qv2)
ℐ𝒞(qv) + W (y*,z*)(v)ℐ𝒞(v) + (v → v−1)

W (y*,z*)(v) =
θp(q−1a−4)θp(q−1t−4a−4v2)∏4

i=1 θp((pq)1
2ta−1civ)θp((pq)1

2tac̃iv)

θp(q−2t−4a−4)θp(a−4v2)θp(v2)θp(q−1v−2)
+

θp(q−1t−4)∏4
i=1 θp((pq)1

2ta3civ−1)θp((pq)1
2tac̃iv)

θp(v2)θp(a4v−2)θp(q−2t−4a−4)



The   and the van Diejen  (A1)N=1 AΔO AΔO

❖ This operator is (up to conjugation) precisely the  van Diejen 

❖ The eight parameters of van Diejen are:

❖ One can repeat the exercise with any component of the moment map, 
the result is always the same (up to v-independent constant shift)

❖ All these operators are thus trivially commuting and  is 
expected to be a Kernel function:  

BC1 AΔO

𝒦(x, y, z)

𝒟(y*,z*)
x ⋅ 𝒦(x, y, z) = 𝒟(y*,z*)

y ⋅ 𝒦(x, y, z) = 𝒟(y*,z*)
z ⋅ 𝒦(x, y, z)

Proof?

{t−1ac−1
i , t−1a−1c̃−1

i }



Summary Part II

❖ We obtain three different Kernel functions for the  van Diejen 
model

❖ The fact that we get the same   for the three different three-
punctured spheres is a consistency check on the physics arguments

❖ The fact that all these operators (trivially) commute is yet another 
check

❖ Proving the Kernel property will be a rather non trivial check of the 
physics

❖ We have a second copy of commuting operators by exchanging 

❖ In principle there are residues with higher powers of , we do not 
expect these to give new operators but rather polynomials of the basic 
van Diejen operator.

BC1

AΔO

q ↔ p

q



Part III: and beyond …



Minimal D conformal matter

Del Zotto, Heckman, Tomasiello, Vafa 2014

Hayashi, Kim, Taki, Lee, Yagi 2015

❖ E-string is the theory residing on a  single M5 brane probing  singularity

❖ Let us consider the theory residing on a single M5 brane probing  
singularity

❖ A non-trivial 6d SCFT, 
❖ (N>0, Enhances to   for )

❖ Minimal  conformal matter  

❖ Three different possibilities for :

❖                              , , 

❖ Each one of the constructions generalises to these groups

D4

DN+3

G6d = SO(4N + 12)
E8 N = 1

(DN+3, DN+3)

G5d

G5d = : SU(N + 1) USp(2N ) SU(2)N



Minimal -cm three punctured sphere ( )DN+3 AN

❖   SQCD

❖

❖ punct: 
 

❖

SU(N + 2) Nf = 2N + 4

SU(2N + 4) × SU(2N + 4) × U(1)B →

SU(N + 1) × SU(N + 1) × SU(2)

SU(2N + 4) × U(1)3 ⊂ SO(4N + 12)

``Moment Map’’ Operators:

F

N+2 N+1N+1

2

2N+4

x y

z

u2N+4 v2N+4

w2N+4

1
(uv)N+1w2

N + 1
N + 2

1
N + 2

1
N + 2

1
N + 2

Mu : N + 1x ⊗ (2N + 4uN+3v−(N+1)w−2 ⊕ 1(uvN+1)2N+4) ⊕ N + 1x ⊗ 1(uNw2)2N+4

Mv : N + 1y ⊗ (2N + 4vN+3u−(N+1)w−2 ⊕ 1(vuN+1)2N+4) ⊕ N + 1y ⊗ 1(vNw2)2N+4

Mw : 2z ⊗ (2N + 4(uv)−(N+1)w2N+2 ⊕ 1(wvN+1)2N+4 ⊕ 1(wuN+1)2N+4)

SR, Sabag 20



 from E-string three punctured sphere IIIAΔO

𝒦(xi, yj, z) = (q; q)N+1(p; p)N+1

(N + 2)! ∮
N+1

∏
j=1

dyj

2πiyj

∏N+2
i=1

2N+4
∏
l=1

Γe((pq)
N + 1

2(N + 2)(uv)−N−1 w−2t−1
i al)

∏i≠j Γ (yi /yj)
×

N+2

∏
i=1

N+1

∏
j=1

Γe((pq)
1

2(N + 2)u2N+4tixj)Γe((pq)
1

2(N + 2)v2N+4tiyj)Γe((pq)
1

2(N + 2) w2N+4tiz
±1)

(I) Construct index 𝒥(x, y, z)

𝒥(xl, y, z) = [ (q; q)N(p; p)N

(N + 1)! ]
2

∮
N+1

∏
i, j=1

dt1
i

2πit1
i

dt2
j

2πit2
j

𝒦(xl, y, t1
i ) ⋅ 𝒦(t1

i , z, t2
j ) ⋅ ℐ𝒞(t2

j )
∏i≠j Γe(t1

i /t1
j )Γe(t2

i /t2
j )

(II) Compute the residue:

We can choose any component of 

Resz→z* Resy→y* 𝒥(xi, y, z) ∼ 𝒟(y*,z*)
x ⋅ ℐ𝒞(xi)

to give a vev to.

For concreteness let us choose: y* = (qp)1
2(wuN+1)−2N−4q−1 z* = (qp)1

2(wuN+1)2N+4

The index:

(2N + 4(uv)−(N+1)w2N+2 ⊕ 1(wvN+1)2N+4 ⊕ 1(wuN+1)2N+4)



The     AN AΔO
𝒟(y*,z*)

x ⋅ ℐ𝒞(xi) =
N+1

∑
l≠m

A(y*,z*)
lm (x)Δlm + W (y*,z*)

x (x) ℐ𝒞(xi)

W (y*,z*)(xi) =
2N+4

∏
j=1

θp(u−(N+1)(2N+5)v−N−1w−2q−1aj)
θp(q−1 (vu−1)(N+1)(2N+4))
θp(pq2w4N+8u2(N+1)(2N+4))

×
N+1

∏
i=1

θp((qp)1
2 w4N+8uN(2N+4)x−1

i )

θp(qp)− 1
2 u−(N+2)(2N+4)q−1x−1

i )
+

Δlm(x)f(x) ≡ f (xl → q−1xl , xm → qxm)

A(y*,z*)
lm (xi) :=

θp((qp)1
2u−2N−4v−(N+1)(2N+4)x−1

l )θp((qp)1
2 w−4N−8u−N(2N+4)xm)

θp(q xm

xl
)θp( xm

xl
)

×

2N+4

∏
j=1

θp((qp)1
2u−N−3vN+1w2x−1

l a−1
j )

N+1

∏
i≠m≠l

θp((qp)1
2 w4N+8uN(2N+4)x−1

i )θp((qp)1
2u(N+2)(2N+4)xi)

θp( xi

xl
)θp( xm

xi
)

N+1

∑
m=1

θp((qp)1
2u2N+4v(N+1)(2N+4)xm)

θp((qp)1
2u(N+2)(2N+4)qxm)

× ∏
i≠m

θp((qp)1
2 w4N+8uN(2N+4)x−1

i )θp((qp)1
2u(N+2)(2N+4)xi)

θp(q−1 xi

xm
)θp( xm

xi
)

2N+4

∏
j=1

θp((qp)1
2uN+3v−N−1w−2xmaj)



Properties of the    sAN AΔO

❖ This operator is an  generalization of the  van Diejen 

❖ The  depends on  parameters

❖ One can repeat the exercise with any component of the moment map, 
the result is a set of similarly looking but different operators

❖ All these operators are commuting and  is expected to be a 
Kernel function:  

AN BC1 AΔO

AΔO 2N + 6

𝒦(xi, yj, z)

𝒟(y*,z*)
x ⋅ 𝒦(xi, yj, z) = 𝒟(y*,z*)

y ⋅ 𝒦(xi, yj, z)

Proof?



Part IV: Comments



Generalizations to  and  and moreCN (A1)N

❖ In a similar manner one can define  and  generalisations

❖ (We have not computed the operators yet.)

❖ In fact the  has a further generalization to 

❖ This corresponds to non-minimal  conformal matter

❖ In turn this generalized to  conformal matter with 

CN (A1)N

(A1)N (Ak−1)4 × (A2k−1)N

(DN+3, DN+3)

G = ADE
G6d = G × G

k

k

k

k

2k 2k 2k2k

N

❖ One can construct Kernel functions mixing the various types of parameters



Example of a mixed Kernel functions

❖ A joint Kernel function for  and  sAN CN AΔO

N+12N

2N+6

1 1

0

2

USp(2N ) SU(N + 1)

𝒦(zi, yj) =
N

∏
i=1

N+1

∏
j=1

Γe(t− 3 + N
4 z±1

i yj)
N+1

∏
j=1

2N+6

∏
l=1

Γe((qp)1
2t

1
2 aly−1

j )
N

∏
j=1

2N+6

∏
l=1

Γe((qp)1
2t

N + 1
4 a−1

l z±1
j ) ∏

i≠j

Γe(qpt
N + 3

2 z−1
i z−1

j )

FKim, SR, Vafa, Zafrir 18



Integrable models vs 6d SCFTs

E-
string SU(3) SO(8)

? ? ? ? ?

A1 (2,0) F4 E6 E7 E7+ 1
2

E8

A1 RS BC1 vD A2 A3

SR 19, Ruijsenaars 20

ADE (2,0) → ADE RS

minimal Dn+3 c . matter → An /Cn /An
1

,,vD ,,

non − minimal Dn+3 c . matter → A4
k−1 × An

2k−1
,,vD ,,

Nazzal, Nedelin, SR — wip

Nazzal, SR 18

non − minimal Ak−1 c . matter → Ak
n−1

,,RS,,

Gaiotto, SR 14; Maruyoshi, Yagi 16 

General 6d SCFT → ?

``Simplest 6d 
SCFTs’’

rank n E − string → BCn vD

Schur, H
L, M

acdonald,

Chira
l algebra

Integrable
Models

 SR, Sabag 18; Bourton, Pini, Pomoni 20 

(Incarnation of BPS/CFT, AGT )
Nekrasov and Nekrasov, Shatashvili

(Pasquetti, SR, Sacchi, Zafrir 19, (Rains 18))



Outlook

❖ Proving the conjectures

❖ What is the integrable model corresponding to a general 6d SCFT?

❖ To a given SCFT can associate different models, how many?

❖ Can we map the classification of 6d SCFTs and/or 5d gauge theories 
with 6d UV completion to ``classification’’ of elliptic integrable 
models?

Thank You!!


