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Happy families are all alike;

every unhappy family 1s unhappy 1n its own way.
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Outline

+ General logic: From Indices and Surface Defects to AAO

* Three roads from rank one E-string to the BC,van Diejen Model
The Ay_;, van Diejen Model

The Cy_, van Diejen Model

The (Al)Nzl van Diejen Model

+ The Ay generalization

* Comments



Partl: AAO from 6d SCF'T's



Ad N = 1 SQFTS from 6d SCFTs caiotto2009 and many others
G IR

4d SCFT,,[€] + A’

4d SQF T x| €]
RG Flow
4d SCFTy;y[€]

4d SOFT,,| €| can be IR free or strongly coupled
Gisenr. LA e n e

There might or might not be a weakly coupled
6d SCFT;,, 4d SCFT[€] deformation of which flows to/
directly describes 4d SQFT,;[ €]

In case such a flow in 4d exists many of its properties

Q: Given 6d SCFTyy and € are encoded by the 6d SCFTy;, and geometry €
whatis 4d SCFTyy[€]?

Many strong coupling phenomena follow from
geometry



4d Theories and indices

Say the 4d SQFT;3[ €] has been derived

We can compute various protected quantities for 4d SOF T, €]

Such partition functions can be non-perturbatively computed and encode interesting
information about the strongly coupled fixed point: invariants of continuous parameters

Example of such a quantity is the supersymmetric index
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The various parameters of the index

The parameters p and g are there for any ./ = 1 SCFT: superconformal fugacities
The parameters # are of two sorts:

(a) Correspond to Cartan generators of the symmetry of 6d SCFT Gg : internal
(b) Correspond to Cartan generators of the symmetry associated to the puncture
Difterent types of punctures:

Maximal with symmetry Gs,

Minimal with rank one symmetry U(1) orSU(2)



Examples

0
_
O
0‘0

The theory is given by a tri-fundamental chiral superfirld

The theory is SU(3) #/ = 1 SQCD with N, =6

(@b = ﬁ(l 0
i=0



Gluing indices
Let us assume that we have derived theories corresponding to two surfaces € and 6"

with fluxes & and ' and have computed the corresponding indices

We then can compute the index of the theory corresponding to a glued surface:
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Analytc structure of indices

The index is a meromorphic function of the various parameters: what are the poles and
the residues?

Take O to be an operator which can obtain a vacuum expectation value (@) # 0

Then the claim is that |Res,_ =% = S8 where O contributes to the index with weight
_1 %
U u

Residues of indices encode the index of the theory obtain in the IR after turning on a vev
The vev can be space time dependent if ™ involves p or/and ¢
Such a vev will lead to a surface defect in the IR SCFT

Residues of poles involving p or/and g encode indices in presence of surface defects

Gaiotto, Rastelli, SR 2012



Flows between surtaces

Let us then compute residues of indices of theories labeled by geometries and 6d SCFTs

Assume we have derived a theory corresponding to a sphere with two maximal punctures, one

minimal and some value of flux - I Z‘f i

Let us glue this theory to a generic one along a maximal puncture and give a constant vev to
some operator @ charged under the minimal puncture symmetry|d.

Different choices of the operator we give the vev to lead to different theories in the IR

The theory in the IR corresponds to the same surface but with the flux shifted by some amount
9 depending on the operator we give a vev to.

F +

vev A for a j{ 0:

6, 7]



AAOQO from Indices

Let us now assume that an operator O exists such that & + " =0

Then with constant vev the theory in the IR is the same as the one we glued the three
punctured sphere to: the gluing and the vev can be though as action of identity operator

Now in this setup let us turn on a non constant vev for this operator

The result turns out to be an AAO acting on the index of the theory we glued.
F

vev A for a (O O
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Kernel funcuons from indices

As the index is independent of continuous parameters the AAO satisfy various
properties

We can construct the same surface in different ways leading to equivalent theories
It does not matter in which duality frame we compute the index it is the same

— The index is a Kernel function of the AAO

X& vev or d (A,.QY).
o g & s DU j{ o (g < }
iSduality ||

A vev A for d 2
° T O-Ba =g @;"’d)-f{oz 4 ao}



Commutativity from Indices

We can in general produce different AAO turning on different vevs
These AAO introduce different types of surface defects
[t does not matter in which order we introduce the defects

— The AAOQO derived in this way from a commuting set of operators

5 A %
xd b 7. vevdior& @(d, ,Qf). @(b, Q%’).
OZ a vevy %‘forls : : j

% ~ A
%; ¢ vev A for b @(b,%). @(ﬁ,ﬂ)o j %
OZ a vev o jor a % 5 $

[@gd, .Qf), @gb, 93’)] —0



Summary Part |

“ Given a derivation of 4d theories resulting from compactifications
these need to satisfy various non trivial properties, such as dualities

* By manipulating the indices of these theories we can derive a set of
AAQOs

+ The dualities imply that these AAOs have to be commuting and that
the indices are Kernel functions

* Since the duality properties are conjectural if the above properties of
AAOs can be shown to hold true would be a highly non trivial check

of these conjectures



Part Il: Three roads to the vD model



The setup and the result

“ Let us apply this procedure to the 6d SCFT being rank one E-string theory
+ The 6d symmetry is Ggy = Eg

* The maximal puncture and minimal are the same with symmetry

Gsy = SU(2)

“ There are known (at least) three rather different three punctured spheres
for this compactification.

* These differ by values of flux and subtle details of the punctures.
+ Each three punctured sphere will lead in principle to AAO operator
+ The AAQO will turn out to be all van Diejen AAQ s shifted by a constant

* The three punctured spheres will be Kernel functions depending on three
sets of parameters



E-string three punctured sphere | (Ay_)

SR, Sabag 20

+ SU(3) N, = 6 SQCD

« SU6) x SU6) x U(1)p —

+ punct: SU(2) X SU(2) X SU(2)
+ SU(6) x U(1)® C Eg

“"Moment Map” Operators:

Mu : 2x X <6L D 1u6v12 ) 1u6w12> MV . 2y X <6 4 D 1V6u12 S 1V6W12> Mw . 22 X <6W_4 D 1W6u12 D 1W6V12>
2w2 M2V2

v ulw?

The index:

3 6
I [Fe((pq)” Subtx O ((pg) "ovot,y O ((pg) "wot.z=) [ T.(pg) Pu=v w2t e, )]
VG

_(:9*(p:p)° ﬂg dy, dt, i= il
7 6 2xity 2rwit 3 :
1 . Hre(T)
it



AAOQ from E-string three punctured sphere |

X

(I) Construct index #(x, y, )

(@pip)]”

4‘) dtl dtz :%(x, YV, tl) : %(tl’ 2 tz) ’ jcg(tz)
2mit; 27ity el ()

2z = | >

(II) Compute the residue:

*,Z*
Res,_,«Res,_,,« F(x,y,2) ~ 99 ). 7 z(X)
We can choose any component of M, : 2y 1% <6 3 e il 1W6v12> to give a vev to.

Ll _10 g — _1
For concreteness let us choose: = Y* = (gp) 2u Ew 66] L= (gp) P R



The Ay_, AAO

The residue computation is lengthy but in principle straightforward procedure

(Analyze pinching of the integration contours and use various known integral identities)

o) ((pq)%u_6w_12.x)9 ((pq)%u_%_lzx) 6 :
p 4 I I el s el ]

Gl 7y =

0,((pgyu w20, ((pgyru—Sv=12x7") 8 1
p 2 Wy s | —1 (y*,2%)

0 2 - Io(g %) + WO I (x
0.(gx 90 6% E SCURAEER 0 (%) F ()

[ 0 oy 1,126 1 6 1
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W(y*,z*)(x) —

6 —1,,12.,—12 16,12 il_
i g OV Um0, (pg)ucw X T)

+H«9p(u VW g aj) — -

[ 0,(pg*w?u*h0,((pq)2u~18q=1x*1)

0,2 =[] —zpHd = z7'p")
[=0



The BC, van Dicjen AAQO

The BC, van Diejen operator is defined as follows: Use notations of Rains, Ruijsenaars 12

8 1 8 1
_H1 0,((pg)2a; x) H1 0,((pg)2a;x")
. e i i —1 *d:
T et BT g oy T SRR
Wy = l,a)1=—1,a)2=p%,a)3=—p%

8 8
3 . , poa) = [[6,(p?a) . pi(@) = [ ] 0,(~p7ap.
ij() p](a)(%](§7 )C) = %](53 a)])) i=1 i=1

8 : 8
20,($)6,(q7'¢) p@ =p[[a720,@). ps@ = p[ [ a20,(—ah
i=1 i=1

0,(g" ¢ 0)0,(q 2 éwx ™)

0,(q 2 w;1x)0,(g 2 w;x~1)

W(x; a;) =

%l(f ,X) =

The choice of £ is inessential



The Ay_{ AAO and the van Diejen AAO

+ The operator we derived is precisely (up to conjugations) the BC; van Diejen AAO
* The eight parameters of van Diejen are: (6# D 162D 1u—6w—12>

* One can repeat the exercise with any component of the moment map and with any
puncture, the computations might be different but the result is always the same
(up to x-independent constant shift)

+ All these operators are thus trivially commuting and F#'(x, y, z) is expected to be a
Kernel function:

Proof?

+ The imbedding of SU(6) x U(1)? in Eq is
E. S EXSU0 o SO U0 s s 2300



The Eg structure

SR, Zafrir 19

One can combine the three punctured sphere into closed Riemann surface
of genus g with zero flux index of which should be invariant under the

action of the Weyl group of E. ﬂ— G
o)

(cz;q)(p;p)]2 ﬂg dty dty KX, b,t)- K, 5,) O

Define: J(x,y) =
(%, ¥) [ 2 it it Bl )

(cl';q)(p;p)r_1 ﬁ dy, T (t,1t,1)

Then: ¢ = /
o [ 2 2zit; T ()

J=1

is invariant under the Weyl group of E; acting on {u, v, w, a;}

Proof?




E-string three punctured sphere 1l (Cy_ )

SU(3) N; = 8 SQCD with W
SURB) X SURB) X U(l)g —
punct: SU(2) X SU(2) X SU(2)
SU8) x U(1) C E

“"Moment Map” Operators:

The index: K (x,y,2) =

—ws

8 3
[Fe((pq)” “worx* DL ((pg) " wory™ T ((pg) "Wz L (pg) w20 TI T ((pg) Pw ™21 )
j=1

(Q;Q)z(p;p)zﬂg dt, dt, i=
6 2rit, 2wit 2 :
1 : Hre(T)
i#



AAO from E-string three punctured sphere 11

X

(I) Construct index #(x, y, )

(@ pip)]

<J‘> dt, dt, Kx,y, 1) K(t,2,1)  Fty)
2mit; 27ity B 10-21E (0=

F(x,y,2) = _ >

(II) Compute the residue:

Res,_,«Res,_,,« F(x,y,2) ~ @iy*’z*) - S (x)

We can choose any component of to give a vev to.

19 4 _ 19
For concreteness let us choose: ~ Y* = (gp) 2w 2q, 1C] = (gp)2w2a,



The Cy_; AAO

The residue computation is lengthy but in principle straightforward procedure

(Analyze pinching of the integration contours and use various known integral identities)

: ! 9 8 : 8
[16,((pgyw™2a;'x) [16,((pgyzw—=a;'x™)

g o e Folg™i0) + WO F ol
: z(X) 00,0 #(gx) 6@ D)0, &g~ x) (%)

0,((pg)2w'0)0,((pg)2wrax* [T, 0,((pg)™w2a; 'x)
0,((p)7w=18x)0,((pq)7qw2a;x)0,(x2)0,(g~1x~2)

WO (x) = + {x - x|+

1 27

0,(g" wZarH[T._,0,(¢ ' w™ar a7 )0, ((pg) wax®h) H_2 0,(wZ a0, ((pg)wraxt!)
0,(g~*w=2a;)0, (g~ 1w~ Tap Do, (pg)~ 7g-1w- 261‘136”) H(CIWWQ@ ((pg)~Twi8x=1)




The Cy_; AAO and the van Diejen AAO

+ This operator is (up to conjugation) precisely the BC; van Diejen AAO
“ The eight parameters of van Diejen are: (sw—%)

“ One can repeat the exercise with any component of the moment map,
the result is always the same (up to x-independent constant shift)

+ All these operators are thus trivially commuting and J# (x, y, z) is
expected to be a Kernel function:

Proof?



E-string three punctured sphere 1T ((A)Y=1)

SR, Sabag 19

(SU2)N; = 4)* SQCD with W

and gauge singlets
punct: SU(2) X SU2) X SU(2)
SEG el ek,

“"Moment Map” Operators:

1 1 1

Cilza b))

M;: Gielac 2 de, tlac tdcs = a0 b 020 b 07

: e e s e e e e e e e )
M- VGE 65 5 Cie 8 G C e Gl et 6 i G [ O 2



AAOQO from E-string three punctured sphere 111

A=
=
N

FH ot (T - S
R — . . :
4 2riy; ) 2niy, i (yi¢2> - (yzﬂ)

1/4 1/4
r, <(pq) t—1a€1/2ylilzil> r, <(pq) t—la—lel/zzilyzwﬂ) r, <\/p_qe—lzilvil) <

r, < (pq) Ve ta‘lel/zy;—“le—“l) r, < (pq) e tael/zvilyf) HFe <\/p_qecic4) r, <\/p_qegf4> r, (\/p_qtzaize_l>

i=1
(I) Construct index #(x, y, 7)
F(x,y,2) = [

(@ )(p;p)|° ﬂg dr, dty, Fx,y.t): Et,2.0) - Feb)
% 2xity 2xity [k (=)

* Sk
(IT) Compute the residue: Resz_%* ReSy oy f (x, y, Z) ~ 9)(637 ZF) F Cg(X)
We can choose any component of M, :2.® (cl-‘lc.‘ e tzaz) to give a vev to.

g ey

For concreteness let us choose: y* = (qp)%tzazq Z* = (clp)%t‘za‘2



The (A)Y! AAO

The residue computation is lengthy but in principle straightforward procedure

(Analyze pinching of the integration contours and use various known integral identities)

B ((pq)%t‘laci‘w 0, ((pq)%t‘la”?? 1V>

D) )
0,(v*)6,(qv?)

Fqv) + WD) F () + (v > v

-1 -4 —1.—4_—4 2TT4 L 1~
WO ) = 0,(q a0, (gt a"v)]]_, 0,((pg)*ta cl-v)Hp((pq)zmciv)_l_
0,(q=t*a=")8,(a=v)8,(v2)8,(g~'v=2)

0,(a' 1., 0,((pg)>tacy=)0,((pg)*taC )

0,(v)0,(a*v=2)0,(g~*t~*a~*)




The (A))M=! AAO and the van Diejen AAO

* This operator is (up to conjugation) precisely the BC, van Diejen AAO
“ The eight parameters of van Diejen are: {(r a7, rla™'ey

* One can repeat the exercise with any component of the moment map,
the result is always the same (up to v-independent constant shift)

+ All these operators are thus trivially commuting and J# (x, y, z) is
expected to be a Kernel function:

Proof?



Summary Part I1

+ We obtain three different Kernel functions for the BC; van Diejen
model

+ The fact that we get the same AAO for the three different three-
punctured spheres is a consistency check on the physics arguments

* The fact that all these operators (trivially) commute is yet another
check

+ Proving the Kernel property will be a rather non trivial check of the
physics

+ We have a second copy of commuting operators by exchanging g <> p
+ In principle there are residues with higher powers of g, we do not

expect these to give new operators but rather polynomials of the basic
van Diejen operator.



Part I11: and beyond ...



Minimal D conformal matter

+ E-string is the theory residing on a single M5 brane probing D, singularity

+ Let us consider the theory residing on a single M5 brane probing Dy, 5
singularity

* A non-trivial 6d SCFT, G¢; = SO(4N + 12)

* (N>0, Enhances to Eg for N = 1)

« Minimal (Dy, 3, Dy 3) conformal matterpel Zotto, Heckman, Tomasiello, Vafa 2014

+ Three different possibilities for Gs ;:

Gs,=:SUN + 1), USp(2N) , SU(2)" Hayashi, Kim, Taki, Lee, Yagi 2015

“ Each one of the constructions generalises to these groups



Minimal Dy, s-cm three punctured sphere (Ay)

SR, Sabag 20

> SUN +2) N; = 2N +4 SQCD
+ SUQN +4) X SU2N +4) x U(1) —

SPUncE

SUN + 1) x SUN + 1) x SU(2)
» SUQN+ 4) x U1 c SO@4N + 12)

“"Moment Map” Operators:

M, : N+1" ® <2N + 4, n+3,-@ir1),,-2 D l(qu+1)2N+4) D N+ 1 X 1(MNW2)2N+4

Mv : N ly ® <2N 4VN+3u—(N+1)W—2 EB l(qu+1)2N+4> @ N ly ® l(vNW2)2N+4
MW : 2Z ® <2N =+ 4(uv)_(N+1)w2N+2 EB 1(WVN+1)2N+4 @ I(WMN+1)2N+4>



AAOQO from E-string three punctured sphere 111

The index:
IN+4
(q; )V (p; p)VH! N+1 dyj N+2 H I ((pq)2(N+2)(uv) —N-1 Zti_lal)
%(xia y]9 Z) — N+2)! CJ; 27tzy >
| . Hl?g]r(yl/y])

N+2 N+1

[1IIr (P TIUN )T (pg) T o2V H1 )T (pg) Trow? N+ 7 1)
i=1 j=1

(I) Construct index #(x, y, 2)

_ 2 | e 2
S - (:9"(p:p)" #N“ dt! P Kyt K@) T

S 12m'tl-1 2rit? [1,, Tl hT (e

k -3k
(IT) Compute the residue: Resz_%* Resy_w* f (xl-, Y, Z) ~ @)(Cy 2 J %(xi)

We can choose any component of <2N + A-onyamz @ Lipveynes @ 1<wuN+1)2N+4> to give a vev to.

N+1y—2N—4 -1

g ¢ =(q p)%(wuN+1)2N+4

For concreteness let us choose: y* = (qp)%(wu



The Ay AAO

\
N+1
PV - Ty = | ) AT + WO (x) | ()
[#£m J

B ) = f(x, » ¢ %, %, > gx,,)

SISt et = Al Sasd ANr @i 2
0 ((qp)2u 2N 4V (N+1)(2N+4)Xl l)gp((qp)zw 4N 81/t N(2N+4)Xm)

AV (x) = = —— X
2N+4 s N+1 (gp((qp)%w4N+8uN(2N+4)xi—l)ep(( qp)%u(N+2)(2N+4)xi)
H 0,((gp)yzu™" v wx 1aj 5 H =
j=1 -y Op(2)0p(T)
2N+4 0,(q7" (Vu—l)(N+1)(2N+4)) N ((gpytw N NN

W(y*,z*)(x_) = I (u_(N+1)(2N+5)V_N_1w_2q_1a-) B
i H p & gp( PqPwAN+8 2(N+D(2N+4)) ,1} (gp(q p)—%u—(N+2)(2N+4)q—1 xi_l)

J=1

dz
N+1 Qp((qp) > u2N+4v(N+1)(2N+4)xm)

2

=il

ol & AL
ep((qp)2W4N+8MN(2N+4)Xi I)Hp((qp)2u(N+2)(2N+4)xi) 2N+4 e
- <[] s [T ,(@prtu v "tw 2,0
0,(@pIut ey 0,(q-120)0,(2)




Properties of the Ay AAOs

+ This operator is an Ay generalization of the BC, van Diejen AAO
+ The AAO depends on 2N + 6 parameters

* One can repeat the exercise with any component of the moment map,
the result is a set of similarly looking but different operators

« All these operators are commuting and % (x;, y;, ) is expected to be a

Kernel function:

Proof?



Part IV: Comments



Generalizations to Cy and (A" and more

+ In a similar manner one can define C, and (Al)N generalisations
* (We have not computed the operators yet.)

« In fact the (A;)" has a further generalization to (4;,_;)* X (A,,_)"
* This corresponds to non-minimal (Dy, 3, Dy, 3) conformal matter

* In turn this generalized to G = ADE conformal matter with

G6d=GXG
O O

* Omne can construct Kernel functions mixing the various types of parameters



Example of a mixed Kernel functions

A joint Kernel function for Ay and Cy AAOs

Kim, SR, Vafa, Zafrir 18

USp(2N)

N N+l e N+1 2N+6 L N 2N+6 Ll o s o
Hey) = TTTITc =" [[ LT T1 reaprzzapH [ TT 11 Tearze = 'sH ([ [ Tetapr = 2757

i=1 j=1 j=1 I=1 j=1 =1 i



Integrable models vs 6d SCFT's

Nazzal, SR 18

“Simplest 6d = SU ( 3) SO ( 8) F4

SCHTs”

Integrable
Gl A/RS BC,vD A,

SR 19, Ruijsenaars 20

General6d SCFT — ?

ADE (2,0) = ADERS

(Incarnation of BPS/CFT,AGT)

Nekrasov and Nekrasov, Shatashvili

rank n E — string — BC,vD
(Pasquetti, SR, Sacchi, Zafrir 19, (Rains 18))

\4
o~ minimal A .matter ~ AL, "RS" Nzl Nedelin SR —wip N

Gaiotto, SR 14; Maruyoshi, Yagi 16 non —minimal D, ~c.matter — A} X A},_ ~vD-
SR, Sabag 18; Bourton, Pini, Pomoni 20




Outlook

* Proving the conjectures
* What is the integrable model corresponding to a general 6d SCFT?
* To a given SCFT can associate different models, how many?

* Can we map the classification of 6d SCFTs and/or 5d gauge theories
with 6d UV completion to ““classification” of elliptic integrable
models?

Thank You!!



