This week: Counting, Combinatovics, Probability

Product rule: Suppose a counting task can be broken ito a sequence of counts. There are n_{1} ways to complete the first task, n_{2} ways to complete the second, So in total there are h_{1}, h_{2} ways.

Ex: 26 letters, fokeoued by integer ≤ 100. Hoer mung items can be labeled this ung

Answer: $26 \times 100=2600$
Ex:

Generalization: If task can be broken ito k tasks with $n_{1}, n_{2}, \ldots, n_{k}$ keys to complete eat of them then the total number of kans is $n_{1}, n_{2} \ldots \cdot n_{k}$
Ex: license plates

$$
\begin{aligned}
& \text { NLLL SN } \quad+10 \text { backgrounds } \\
& \text { AWS } \\
& \text { XIR } \\
& 26^{3} \cdot 10^{4} \cdot 10
\end{aligned}
$$

Ex: $\quad A=\left\{a_{1} \ldots a_{m}\right\}$
(later) $\quad B=\left\{b_{1} \ldots b_{n}\right\}$
How wong dittereent $1-1$ functions from A to B ?

$$
n \cdot(n-1) \ldots(n-m+1)
$$

Ex: S-finite set $P(s)$-power set $\quad|P(s)|=2^{|s|}$ Binary representation

$$
\begin{aligned}
& S=\left\{a_{1}, a_{2} \ldots a_{n}\right\} \\
& U=\left\{a_{1}, a_{2}\right\} \\
& V=\left\{a_{5}, a_{1}, a_{4}\right\} \\
& S \leftrightarrow 111 \ldots-1 \\
& V \leftrightarrow 1100 \ldots 0 \\
& V \leftrightarrow 00001010 \ldots 01 \\
& \left(\begin{array}{lll}
1010 & \leftrightarrow & 2^{3}+2^{1}=10 \\
1111 & \leftrightarrow & 2^{3}+2^{2}+2^{1}+2^{0}=13
\end{array}\right)
\end{aligned}
$$

Product of sets

$$
\begin{aligned}
& A_{1} \times A_{2} \times \ldots \times A_{n} \\
& \left|A_{1} \times \ldots \times A_{4}\right|=\left|A_{1}\right| \cdot\left|A_{2}\right| \ldots\left|A_{n}\right|
\end{aligned}
$$

Sum rale 1 Ex:

$$
50+25=75 \text { projects }
$$

If a counting task can be carpeted either by n_{1} wags or by u_{2} ways and wo ne of them are the same, then there are $n_{1}+n_{2}$ was to complete the task
Generalization to $n_{1}, n_{2}, \ldots n_{4}$ tasks which are independent yields $n_{1}+n_{2} T_{2}+n_{k}$ ways to complete the task.

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right|=\left|A_{1}\right|+\ldots \rightarrow\left|A_{k}\right| \quad \begin{aligned}
& \\
& \\
& A_{i} \cap A_{j}=\varnothing \quad i \neq j
\end{aligned}
$$

Ex: Passuard: 6-8 cheaters, both numbers, letters (Cover case)
Hove may pass wards?

$$
P=P_{\substack{ \\\lambda \\ \# w / \\ 6 c+r}}=P_{7}+P_{8}
$$

 oles nubs
（inchreich－erelnsier）

$$
\theta \mid D \eta S 6 \quad r_{7}, D_{p} \ldots
$$

Subtraction rule：If task 1 can le completed in n ，wags，task 2 in u_{2} rags then the toted umber of completing the tank is $n_{1}+n_{2}$ minus the number of common kans．

$$
\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|
$$

Ex：thaw man g bit string with of digits $A_{1} \cap A_{2}$ Which begin either of or end with OD？

むしひ い し し し

$A_{1} \cap A_{2} \quad i \underbrace{\Delta L L}_{25} \cup \cup V$

$$
\begin{aligned}
2^{7}+2^{6}-2^{5} & =128+64-32 \\
& =160
\end{aligned}
$$

D_{4}
GA
sit
4 people
on 4 chairs

$$
4 \cdot 3 \cdot 2 \cdot 1=4!=24
$$

$H=\frac{24}{4}=G$ dene to cycle symnatiog．
There are $\frac{n}{d}$ wags to complete th task with n wags such that for evan way there are d equivalent ways．

Tree diagrams Ex：Find a bit string without consequtive is

$$
\rightarrow 1010010
$$

$$
\int^{\text {start }}
$$

The pugernhole principle

If $k \in \mathbb{Z}_{1}$, there are $k+1$ objects planed in k boxes then at least che box contacts two or more objects
Prut: Assume False - each bax his at most one element. Then the total nunter of elements will he at most K, which is a contradiction.
$f: A \rightarrow B \rightarrow n \quad m>n \quad$ cannot be $1-1$ by pisesuntole principle

$$
m \begin{cases}0 & \square \\ 0 & \square \\ 0 & \square \\ 0 & n \\ 0 & \\ 0 & \\ \hline\end{cases}
$$

Generalized puganhade principle : If N objects are placed into k boxes then there is at least ane that contains $\left\lceil\frac{N}{K}\right\rceil$
Proof: Assure false. The total number ot objects is less than

$$
k\left(\left\lceil\frac{N}{k}\right\rceil-1\right)<k\left(\left(\frac{N}{k}+1\right)-1\right)=N
$$

which is a codradistivn (we lave N objects)
Ex: $\begin{array}{rl}N X X-N X X-X X X X & X \\ \underbrace{N X}_{\text {are cone }} & =0, \ldots, 9 \\ N & =1, \ldots 9\end{array}$ $25 \cdot 10^{6}$ phones. How way area codes do we need?

$$
\begin{array}{ll}
N X X-X X X X & 9 \cdot 10^{6} \\
\sum_{9} 10 & \text { Need at least }\left\lceil\frac{25}{9}\right\rceil=3 \text { arm coles } \\
300 \cdot 10^{\circ}
\end{array}
$$

Ex: Share that amoy $n+1$ positive integers not ceccecing $2 n$ there must le an integer that divides one of the other integers

$$
\begin{aligned}
& n=3: \quad 2,3,4,5 \\
& n=4: \quad 3,7,6,4,5
\end{aligned}
$$

Let $a_{1} \ldots a_{n+1}$-integers $\leq 2 n \quad a_{j}=2^{k_{i}} q_{j}, k_{j} \geqslant 0$, integers

$$
\begin{aligned}
& n=3,2 n=0 \\
& 1,3,5
\end{aligned}
$$ at coast two q 's are th save: $\quad q_{i}=q_{j}=q$ then $a_{i}=2^{k_{i}} \cdot q$

so if $k_{i} \leqslant k_{j} \Rightarrow a_{i}\left(a_{j}\right.$

$$
a_{j}=2^{k_{j}} \cdot q
$$

$$
\text { if } k_{i} \geq k_{i} \quad \Rightarrow \quad q_{j} \mid a_{i}
$$

Combimberics (6.3-6.6)
Pascal triangle

$$
\begin{aligned}
& (x+y)^{n}=\underbrace{(x+y)(x+y) \ldots(x+y)}_{n \text { times }} \simeq \sum_{k=0}^{n} c_{k} x^{n-k \cdot y^{k}} \\
& (x+y)^{2}=(x+y)(x+y)=1 \cdot x^{2}+2 x y+1 \cdot y^{2} \\
& (x+y)^{3}=(x+y)(x+y)(x+y)=1 \cdot x^{3}+3 x^{2} y+3 x y^{2}+1 \cdot y^{3}
\end{aligned}
$$

$O_{1} \quad O_{2} \quad O_{3}$ In hov may ugh be con draw 2 balls cent of 3 ?

0_{1}	0_{2}
0_{1}	0_{3}

$$
\begin{gathered}
\left.\mathrm{O}_{2} \mathrm{O}_{3}^{\prime}\right) \\
(x+y)^{n}=\underbrace{(x+y)(x+y)(x+y) \cdots(x+y)}_{n} \longleftarrow \underbrace{\left(x^{n-k} \cdot y^{k}\right.}
\end{gathered}
$$

dork $k y^{\prime} s$ and $(n-k) \quad x$'s
n choose k
deane the recurring

$$
(n-k) x^{\prime}
$$

$$
\prod_{i=1}^{n}\left(x_{i}+y_{i}\right)=\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{1}\right) \ldots\left(x_{n}+y_{n}\right)
$$

Leman: $\quad\binom{n}{n}=\frac{h!}{k!(n-k)!}$
Proof: substitution 0 , ives es yer,$\binom{n}{k}=\binom{n-1}{n-1}+\binom{n-1}{k}$

$\frac{\text { Distinguishable objects: Permutations }}{\text { Math } 55}>\binom{7}{3}$
21 students Math 55
4 seating on the frit vow. Q1 In hove hay rays we can do the?
4-permubcion
$21 \cdot 20 \cdot 19 \cdot 18^{t}$ - number of permutctios of 4 pecple out of 21.
Def: A permubetion is a set of distinat objects in ordered pertarm
r-pernutation is a permutation of r objecoss. Stiveny appranimation
$21 \cdot 20 \ldots \quad 2 \cdot 1=21!$
Ex, $\left.\begin{array}{ccc}\left\{\begin{array}{lll}a & b & c\end{array}\right. \\ c & a & b \\ b & c & a\end{array}\right]$ cydic
ba C
a <6
$c b a$

$$
a \underbrace{-b}_{c}
$$

$$
\begin{aligned}
n! & \sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \sim 8 \cdot 8^{21} \cdot 8^{22} \\
& \sim e^{n\left(0, n-\frac{1}{2}\right)}
\end{aligned}
$$

Q1 How many permutacimes coulain string ($A B C$)?

$$
X D E F G H
$$

G! - \# permotehions of six clevents $6!=720$
Idistinguishable objubs: Combinations

6 beads color 2 aut of 6

$$
\begin{array}{ll}
\frac{6 \times 5}{2!}=15 & \text { 2oul of } G \\
\frac{6 \times 5 \times 4}{3!} & \text { 3ad of } 6
\end{array}
$$

$$
\binom{6}{2}=\binom{6}{4}
$$

Ret: r-combination is a set of uncurdesed r elemenks
$\binom{n}{r}\left(C_{n}^{r}, C(n, r)\right)$ - \# or r-combinations out of elenadots

$$
\begin{aligned}
& P(n, r) \text { - } r \text { opermutation of } n \text { objects } \\
& P(n, r)=n \cdot(n-1) \ldots(n-r+1)=\frac{n!}{(n-r)!} \\
& 01=1 \\
& =\frac{n \cdot(n-1)(n-2) \cdot-(n-r+1)(n-r)(n-r-1)}{(n-r)(n-r-1)} \\
& \text { Ex: } \quad \begin{array}{c}
X \\
\text { (ABC)DEEGH }
\end{array}
\end{aligned}
$$

Thavem: $\quad\binom{n}{r}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!}=\frac{n!}{r!(n-r)!}$

$$
\begin{gathered}
P(n, r)=r!\binom{n}{r} \\
\cdot\binom{n}{r}=\binom{n}{n-r} \quad r \mapsto n-r \quad\binom{n}{r} \mapsto \frac{n!}{(n-r)!(\underbrace{n!}_{r-r+r)!}}
\end{gathered}
$$

Ex: Git strily of length n. How way sarings cartain exatly

$$
A:\binom{n}{r}
$$ r I's ?

Binarial therem:

$$
\cdot \sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Proots play in $x=y=1$

$$
\begin{array}{ll}
\sum_{k=0}^{n}(-1)^{n}\binom{n}{k}=0 & (1-1)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \\
\cdot \sum_{k=0}^{n} 2^{k}\binom{n}{k}=3^{n} & x=1, y=2
\end{array}
$$

Pascol is tricange coucsity)

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}
$$

Preot: RF-S: \# wass to dow k oul of $n+1$
S-set of $n+1$ clemuts $S^{\prime}=S-3 a s$

$$
\left(s^{\prime}\right)=n
$$

$$
\begin{aligned}
& \sum_{x \in \mathbb{Z}, \quad(x+y)^{n}}^{x, y \in \mathbb{R}}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \\
& \begin{array}{l}
\underbrace{\substack{x, y \in \mathbb{R} \\
(x+y)(x+y) \ldots(x+y)}}_{n \text { times }} \begin{array}{l}
k=0 \\
\left.l^{\prime \prime}+\begin{array}{l}
n \\
0
\end{array}\right) x^{n}+\binom{n}{1} x^{n-1} y+\left(\begin{array}{c}
n \\
2 \\
2
\end{array}\right) x^{n-2} y^{2} \cdots \cdots \\
n-1 \\
n \\
n
\end{array}) \times y^{n-1}+\left(\begin{array}{l}
n \\
n \\
n
\end{array}\right) y^{n}
\end{array}
\end{aligned}
$$

$\binom{n}{n-1}$ - \#verss to dare $k-1$ eleneats sim s^{\prime} (a is picked)
$\binom{n}{k}$ - \#kys to donew n elements from S^{\prime} (a is not picked)
Vander monde identity

$$
\left(R(S) \quad \sum_{k=0}^{r}\binom{n}{n-k}\binom{n}{k}\right.
$$

$$
\binom{n}{k}
$$

$$
\binom{n+1}{r+1}=\sum_{j=r}^{n}\binom{j}{r}=\binom{r}{r}+\binom{r+1}{r}+\binom{r+2}{r}+\ldots+\binom{n}{r}
$$

$n+1$
 wia arranjing $(r+1) s t$ demant.
Problem: 8 apples for 3 students
In hok uny ways can gon distrilube 8 appls amany 3 studeals? (ukng if sonceone ders not get on apple)

Ann	Bob+Claire
8	$1+0+0$

$$
\sum_{i=1}^{a} i=45=\frac{10 \cdot(10-1)}{2}
$$

$$
\begin{aligned}
& \binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k} \cdot\binom{n}{k}
\end{aligned}
$$

$$
\begin{aligned}
& r=3 \\
& \text { - }\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2} \quad \text { plug } m=n, \quad r=n
\end{aligned}
$$

(or ids
$\Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \sin \Delta \operatorname{sic} 10$

A
$B \quad\binom{8+2}{2}=\binom{10}{2}$

$$
\binom{8+2}{2}=\binom{10}{2}
$$

- Il aranges amay 3 kids

Hlue may kags to give 11 orayes to 3 u.ds such that eark hird should hove at last one?
$A=45$ (sel dore), give each hiy an orayge, thereare 8 lett.

$$
\begin{aligned}
& \operatorname{COM} M_{2}^{2} \overbrace{T_{1}}^{2} \overbrace{2}^{2}
\end{aligned}
$$

In hok may wals an you rearrange the letters in this vead?

$$
\frac{q!}{2!\cdot 2!\cdot 2!}
$$

Therem: If a sed of n objents contrins subsets of $n_{1}, n_{2} \ldots n_{k}$ indistingnishable oljents then the total number of ordesings is

$$
\frac{n!}{n \ln |n|}
$$

