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Plan of the talk:

e Macdonald-Ruijsenaars operators and many-body systems

e Commuting spin XYZ Macdonald-Ruijsenaars operators and R-matrix identities
e Classical analogues — relativistic interacting tops

e Polychronakos freezing trick and elliptic integrable long-range spin chains



Elliptic Macdonald-Ruijsenaars operators
For i =1,..., N denote by p; the shift operator acting on function f(z1,...,2n) as follows:

(plf)(ZhZQ,ZN):EEXp (77782>f(21,72N):f(21,,21777,,ZN) (1)

The Kronecker elliptic function on elliptic curve C/T", I' = Z & Z7 with moduli 7 (Im(7) > 0):

¥ (0)(x +5)
o(x,y) = —F————=, and denote ¢(z) = ¢(h,z 2
@) = 5 () = 6(h, 2) 2
S.N.M. Ruijsenaars proved (1987 Comm. Math. Phys.) commutativity for the following set of
operators:
Dk:ZH(b(ZJ_ZZ)Hp“ k:1,7N, (3)
|I|=k i€l il
J¢l
where the sum is taken over all subsets I of {1,..., N} of size k. In the trigonometric limit the

operators Dy turn into the Macdonald operators:

D,iw‘wd k(k N) Z Htm_l_;f]H zaxi’ k=1,...,N 4)

|I|= szI il

with ¢t = exp(—2mh), zr = exp(2mizi) and ¢ = exp(—n).



Many-body systems:
The first Macdonald operator

N N
2j — 2k 0. 2mag 2 h
D1:E || LTI GFi%5 =2 =P g =elC.
2j — 2
j=1 \kiksj 7 k

is the (first) Hamiltonian of the trigonometric Ruijsenaars-Schneider model. In the classical
elliptic case it is the elliptic Ruijsenaars-Schneider model

N N

HRS:Z H 19((]j_.q1c_77) 6'uj/c.

= iz V@ —a)

In the non-relativistic limit we come to the Calogero-Moser-Sutherland model

N 02

HCM:Z Yio 22@ __q]

=1 i>7

At classical level our results are related to spin Ruijsenaars-Schneider model introduced by
Krichever and Zabrodin. We will come to its anisotropic version.



Commutativity of elliptic Macdonald-Ruijsenaars operators

Following Ruijsenaars introduce notations. Let I, J be disjoint subsets of {1,..., N}. Denote
(1J) =[] oz - 2) (5)
iel
JEJ
and
pr=[[p, pi=e " (6)
iel

where p; are shift operators. Then the operators Dj take the following form:

Dy= > (I°1)p, k=1,...,N, (7)
I:|I|=k
where ¢ means the complement of a set I in {1,..., N}, and || is the number of elements in 1.
We also use the notations I and I_ to highlight the shifts of all z;, ¢ € I by £n respectively:
(I+,J) = (7 'IpT ", J). (8)

I+ means that the arguments z; with ¢ € I are shifted as z; — 7.



The commutativity

Dy, D)) =0  Vk,i=1,...,N 9)
holds if and only if
S DI- I — (1,1, 1)) =0 Vke{l,...,N} VN. (10)
|I|=k

It was argued that the identities considered as a functional equations for the function ¢ are
reduced to a single equation, which provides (among meromorphic functions on elliptic curve)
solution given by the elliptic Kronecker function only (up to some normalization factors).
Trigonometric and rational solutions are obtained by degeneration

¢ (z,u) = 7 cot(mz) + mcot(mu) , ¢ (z,u) = 1/2 + 1/u. (11)

Our plan is to construct spin generalization of Dj, and prove their commutativity in a similar way
- through some set of identities.



Spin XYZ elliptic Macdonald-Ruijsenaars operators. Main idea goes back to results by Uglov and
Cherednik. It was formulated clearly in recant paper by Lamers, Pasquier and Serban. Our goal is
to use representation of symmetric group through R-matrices.

By definition, any quantum R-matrix satisfies the quantum Yang-Baxter equation (QYB):

R?z(u)R?s (u+ ’U)RSLS(U) = R§3 (U)Ribs(u + U)R?Q (u) (12)

or
R} (w)Riy (u+v) Ry (v) = R}y, (v) Rl (u + v) R} (u) (13)

for any distinct integers 1 < i, 5,k < N. Here R};(u) € End(H), H = (CM)®N. Also,
[RZ (u), Rzz(v)] =0 for any distinct integers 1<14,7,k,l <N (14)

We deal with the elliptic GL; Baxter-Belavin R-matrix normalized in a way that the unitarity
property is as follows:

R (2) Ry (—2) = 1d 6(h, 2)6(h, —z) = 1d (p(h) — p(2)), (15)

where Id = 1,,~ is the identity matrix in End(#). In what follows we also use R-matrices R};(2),
which are related to RJ;(z) through

R};(2) = o(h, 2)Rij(2) - (16)

Then
Rly(2)Rly(—2) = 1d. (17)



In M = 2 it is the Baxter’s 8-vertex R-matrix. It has the form

1
Riy(z) = 5 (tpoo 00 ® 00 + o101 ® 01 + Y1102 @ 02 + P10 03 ® 03) ) (18)
h 1 & s T h s 1+7 &
S000:¢(Z7§)’ @10:¢(Z,§—|—§), $o1 = ¢€ ¢(Z7§+§)7 Y11 =€ ¢(Z7 2 +§)
In 4 x 4 form it is as follows:
woo + Y10 0 0 o1 — P11
0 P00 — Y10  Po1 + P11 0

R _ 1 19
12(2) = 3 0 wo1 + Y11 Yoo — P10 0 (19)

©Yo1 — P11 0 0 woo + ¥10

Our construction is valid for GLjs Baxter-Belavin R-matrix and its trigonometric and rational
degenerations. The simplest one is the Yang’s rational R-matrix
Id P12 — zId + hPlZ

R?Q(Z) ==+ —, R,}Q(Z) =

20
h z h+z (20)

In this case we will obtain Hamiltonians for the rational (isotropic) spin Ruijsenaars model.
Possible degenerations of elliptic case include 11-vertex rational R-matrix, 7-vertex trigonometric
R-matrix and their higher rank versions.



Spin operators. Consider symmetric group Sy generated by relations:

0i 10041 = 040104, (21)
00 = 0;0; forj#i+1 (22)

and
(0:)? =1. (23)

Obviously, it has representation o; = s; 41, where s; 41, ¢ = 1,..., N — 1 are permutations of
variables z1, ..., zn:

Si,i+1f(21, ceey Ry Ri41, ...7ZN) = f(zl, ceey Bi41,y Ry ..‘,ZN) . (24)

Here f is any function (for which the action of Dy, operators is well-defined). Denote by s., the
permutation operator representing w € Sy. For example, for the cycle (12...7) we have

S(12...5) = 812823 « -+ 8j—1,5 - (25)

For i1 < iz < -+ < ix denote by {i1,42,...,ix} € Sy the (shortest) permutation i, — m for all
1 <m < k. It can be presented as a product of cycles:

{iryin, o yin} = (v yin) (k= 1, inet) oo (2, i2) (1, .. 1) (26)



The Macdonald-Ruijsenaars operators are symmetric with respect to the action of permutation
group. Therefore, each of these operators can be represented as a sum over certain permutations
acting on some ”first” term:

1
Dy = Z Sfiqin,..., ik}(18710)p10 S{i1,inyenip} s (27)

i1 <ig<---<ip

where we denote by Iy = {1,2,...,k} the subset in k elements and its complement

I§ ={k+1,...N}. The sum is over all (ordered) k-element subsets of {1,..., N}.

Another well known representation of the (braid) relations is given by

o; = Rf,i_,_l(zi — zit1)Pii+1 € End(H), H = (CM)®N7 where P;; are permutation matrix-valued
operators. In this case (21)-(22) are equivalent to the Yang-Baxter equations. If the R-matrix
entering representation is unitary, then the involution property holds as well.

Consider representation given by the composition of the previously discussed:

i = Riit1(zi — zi41) Piit18i,i+1 - (28)
Then

0(12...5) = 012023 ...0j5—-1,5 = R12(Z1 - 22)R13(Z1 - 23) cee R1j(z1 - Zj)P(lz...j)S(lz...j) =
(29)

= Pua..jsaz..jRi(z; — 21)Rja(z — 22) ... Ry j-1(z5 — zj-1) .



Introduce the operators Dj, (matrix generalization of the scalar operators acting in End(#)):

_ —1 c
D= Y. 0iin iy T6:10) Pro Ofiy g iy - (30)
i1 <ig<---<ip
After some transformations the dependence on permutations s;; and P;; are cancelled out:
N
Dy = > [T G —2) 6(z — 2) -+ bz — 2,) | %
1<i1<...<ip <N j=1
GAIL 1
— — .
i1—1 in—1 ip—1
X H Ry i, H Rjyiy - - H Rjpip | % (31)
ji=1 jo =1 g =1
J2 #i1 Je#i1-ie—1
- —
ig—1 ig—1—1 i1—1
XPiy * Pig * Piy, X H Riyjy, H Riy_1jp_y --- H Riyjy |
k=1 Jk—1=1 ji=1
Je#i1-ig—1 Jk—1#i1-ig_2

where k = 1,...,N and R;; = R};(z: — z;). In the scalar case (M = 1) R;; = 1 and (31) coincides

with the Macdonald-Ruijsenaars operators.



Introduce new short notations (useful for the proof of commutativity). For any pair I, J of
disjoint subsets in {1,..., N} define the product

Rri,g= H Rij (z: — z5) (32)

i€l jedi<j

where the ordering of R-matrices is as follows:

— — —
Riyg = [[ R (20— 2i) [ Rizso (12 = 22) -+ [ Rinin (i — 230) - (33)
i€l i€l in€l
11<J1 i2<J2 i <Jk
A_> H
N N
and arrows mean the ordering [[ Rij = Ri1Riz2...Rin and [[ Rij = RinRi,n—1...Ra
j=1 Jj=1
Here J = {j1,j2,...,jr} and the elements j. are in increasing order j1 < j2 < --- < jr. Let also
I = {i1,42,...,4} and 41 < i2 < --- < 4;. In what follows we assume that the above ordering of

indices in I and J is fixed. By moving R-matrices the definition (33) is equivalently rewritten as

— - —
Rig= [[Rus i —21) [I Racvir Gaoy —zi0) - [] R (2 —230) - (39)
J1ed Ji—1€J J1ed
Ji> Ji—1>1-1 J1>i1



Similarly, define the product
Rrs= I Rulz-2), (35)

i€l jedi>]
with the following ordering:
— ey —
7e,I,J = H Ri 5 (zi, — 25,) H Rii i1 (®iy — 2524) - - H Riy gy (7 — 251) - (36)

aied Ji—1€J J1€J
J1<iy J1—1<t;—1 J1<1

Again, we may rewrite it equivalently as

, — — —
Rig= H Riy g1 (20 — 231) H Riy o (2ip — 2) - - H Riy i, (Zin — Z5) - (37)
i1€1 ig€l ip€l
i1>J1 i2>J2 k>Jk

The product of R} ; and Ry, provides R-matrix analogue for the notation (I, J) used in the
scalar case.



It can be verified that
) P — —
RiyRig = [[ R (2 — 20) [ [ Rizsio (202 — 232) - [ [ Rinin (20 — 20 (38)
1€l igel in€l
and
) — —_— —
RiyRiy = HRizij(ziL = 2j;) H Ri_y iy (zaoy — 250) - HRi17j1(2i1 = 2j)- (39)
aned Ji—1€J Ji1€J

Up till now we did not use the Yang-Baxter equation. Let us formulate it for the above products
since it plays a key role in deriving and proving R-matrix identities.

Let R(u) be an R-matrix satisfying the quantum Yang-Baxter equation and Ra,5 and Ry 5 are
the corresponding products of R-matrices defined by (33) and (36) respectively. For any disjoint
subsets A, B,C of {1,2,..., N} the following identities hold true:

Rec,auBRB,A = Rpuc,aRe, B, (40)

RA sRAuB,c = Re,cRA BUC - (41)



Notice that we did not use the unitarity property in the above definitions and properties. For a
unitary R-matrix satisfying (15) we have (in addition to all the above mentioned statements):

RI,JR(I,I =1d H ¢(h7 Zi — ZJ)¢(h7 Zj — Zl) (42)
i€l jes
i<j

and
RigRor=1d [ o(h 2 —2)é(h, 2z — ). (43)
ie_I,>j_eJ
1>]

All the same notations are used for the normalized unitary R-matrix R"(u). In this case we have

ﬁj,Jﬁ,i]J = ﬁ&}]ﬁj,J =1d. (44)



In the above given notations our difference operators take the form:

Di=» (I°1)-Ries-pr-Rige,
|I|=k

where R-matrices are those with bars (R;; Rj; = 1d).
Example. N = 2:

D1 = ¢(z2 — 21)p1 + ¢(21 — 22) Rl (21 — 22) p2 Ry (22 — 21)

and DQ = p1p2.
Example. N = 3:

D1 = ¢(z2 — 21)d(z3 — z1)p1+
+¢(21 — 22)B(23 — 22) Ry (21 — 22) p2 Rhy (22 — 21) +

+¢(21 — z3)d(22 — 23) Rb3 (22 — 23) Ri3 (21 — 23) pslRy (23 — 21) Ria (23 — 22)

Dy = ¢(z3 — z1)P(23 — z2)p1p2+
+¢(22 — 21)P(22 — 23) Rbs (22 — 23) p1p3Rhs (23 — 22) +

+¢(21 — 22)B(21 — 23) Rl (21 — 22) Ri5 (21 — 23) p2ps Rl (23 — 21) Ry (22 — 21)
and Dg = p1p2p3.

(46)



Example. N = 4:
D1 = ¢(z21)P(231)p(2a1)p1+¢(212)d(232) P(2a2) R12pa Ra1+
+¢(213)¢(223)$(243) Ros Ri3ps Rs1 Raa +¢(214) (224) d(234) Rsa Roa RuapaRay Raz Ras
Dy = $(231)¢(232)P(2a1)P(242)p1p2 + (221)P(223) d(241) (243) Rosp1ps Raa +
+¢(221)p(224) $(231) P (234) R3a Roaprpa Raz Ras +
+¢(212)$(213) ¢(242) $(243) R12 Ri3paps Rs1 Ror +
+¢(212)$(214) d(232)$(234) R12 Raa Riapapa Ras Ras Ror +

+¢(Z13)¢(2’14)¢(2’23)¢(224)R23R13R24R14P3P4R41R42R31R32 s
Ds = ¢(2a1)P(242)P(243)p1p2ps + ¢(231)P(232) P (234) Rsap1pzpa Ras+

+¢(221)P(223) P(224) Ras Raap1 p3pa Ras Rao+

+¢(Z12)¢(Z13)¢(Z14)R12R13R14p2p3p4R41R31Rzl
and Dy = p1p2pspa.



Identities

The operators D), commute with each other iff the following set of identities holds for any
k=1,2,...m and any m < N:

3 (RIC,I Ry e Ri_ge Ryeq—Rige Rye 1 Rie - R’,,,u) =0. (47)
IT=k

It is important that R-matrices here are without bars (not R. That is in M = 1 case these are the
Ruijsenaars identities.
Example. k=1 N = 3:

(Zl )R?S(Zl - 23)R§1(Z3 — 21— "7)R]211( 22— 21— 1)
—Ri5( )Rz (
+Rys (22 — 23)332(23 — 22 —)Ri2(21 — 22 — ) R31 (22 — 21
— Ry (21 — 22)Rby (22 — 21 — ) Rh3 (22 — 23 — ) Rby(
+R33(22 — 23 — ) Ris(21 — 23 — n)R31 (23 — 21) Ria (23 — 22

—333(22 - 23)R¥3(z1 - ZS)R§1(Z3 —Z1 — 77)R§2(Z3 — %2 = 77) =



Example. k=1 N = 4:

21 — 22 — n)ng(zl — 23 — )RT4(Z1 — 24 — 77)321(24 - Zl)R§1 (23 — ZI)R}zll(Z? -z

— Ry (21 — 22) Rl 23)Riy(21 — 24) Ry (24 — 210 — )RSy (23 — 21 — 77)331(22 —z1—7

+ R (23 — 2a) R (22 — 2a) Ria(21 — 2a) Rl1 (24 — 21 — ) Rlis (24 — 22 — ) Rlia(2a — 23 — 1
—R34 23 — k4 — 77)R£L4(Z2 — 24 — U)Rh(zl — 24 — n)Rfﬁ (2’4 - 21)R22 (24 - 22)RZ3(24 — z3

=0

)Ris(z1
+Ris(z1 — 22)331(22 — 21 — ) R3s(22 — 23 — ) R34 (22 — 21 — 1) Ria(24 — 22) Ria (23 — 22
—R23 Zzo — 23)R§4(22 — Z4)R42(Z4 — zo — )R32(2’3 — zo — )Ru(zl — 2o — n)R§1(22 21
+R33(22 — 23)Ri3(21 — 23) i1 (23 — 21 — 1) Ria(23 — 22 — n) Ria(23 — 24 — n)Rilz (24 — 2
—R34 z3 — 24)R23(24 — 23— )R23(22 — 23 — n)R13(zl — 23 — )R31(z3 — 21)R§2(23 — 22
)

Ri5( )
( )
( )
( )
( )
( )
( )
( )



Example. k=2 N = 5:

Rog Roy Ros Ry3 Ry Rys Rs1 Rai Ra1 Rs2 Raz Ry — Rog Roa Ros Riz Ria Rus Ry Ryy Ry Ry Ryp Ry
+Ros Ry Ryy Rys Rip Ryy Rig Rs1 Ra1 Ro1 Rs3 Ras — RaaRas Ri2 RiaRus Ryy Ryy Ry Ryg Ry3 Roz Rso
+R3aRoa R Rz Rys Ry Rz Ry5 Rs1R31 Ro1 Rsa — Ras Ri2 RisRis Ry Ryy Ry Ry Ry Ry Rao Raus
+RasRasRos Ry Ry Ry, R Ri3 R, Ra1 R31 Ro1 — RiaRisR14 Ry Ry Ry Ry R3s Rys Rs2 Rs3 Rsa
+R12R13R31 Roy Ray Ryg Roy R Rs2 Rag Rs3 Ras — R3aRss Roa Ros Ryy Ryp Rz Ry Ry Rz Ra1 Roa
+Ri2RsaR1a Ry Rz Ry Rys Ry3 Ros Rso R Rsa — Ras Roz Ros Ry Ry Ry Rip Ry Ry Rai Rag Roa
+Ri12R45 R3s Ris Ry Rs Ry Ry Roz Ry Ra2 Rz — RasRoa Ryp Ryp Rip Ry Ry Ry Rs1 Rs3 Rsa Rax
+RasRizRoa R1a Ry Ryp Ry Ry Rys Rays Rs3 Rsa — Ras Rys Ry Ry Rog Rz Ry Ry Ra1 Ra2 R31 Rz
+R23 RisRas Ros Ris Ry Ry Ry Ry Ryp Ry Ras — Raa Rz Roz Ri3 Ryg Ros Ry 5 Rs1 Rs2 Rsa R31 R

+R3aRoa R1aRas Ros Rus Ryy Ry Ry Ryy Ry Ry — Ry Roy Ry Ry Rog Ry 5 Rs1 Rs2 Rsz Ra1 Rao Rz =

=0

Here R;;(2) = R (z—mn).
The proof of R-matrix identities is given in our first paper.



What kind of spin many-body systems appeared?
Classical integrability: Lax matrices L(z) - N x N matrix (function of z):

L(z) = [L(2), M(2)] — equations of motion Vz

Then tr L¥(z) — (generating functions in z of) conservation laws.
For the Calogero-Moser model we have the Krichever’s Lax pair with spectral parameter:

LM = pidij 4+ v(1 = 8:)b(2, qij) -

Mi(;M =vd; b +v(1 —0i5)¢ (2, qi5), di = Z@(sz) ,

ki
P1 vo(z,q1 — q2) vo(z,q1 —qs) ... vé(z,q1 —qn)
vo(z,q2 — q1) P2 vp(z,q2 —q3) ... vo(z,q2 —aqn)

LCM (Z) _

Vaﬁ(z,q.zv —q1) V¢(z7q;v —q2) Vaﬁ(z,q;v -q) .- p.N



The Kronecker function is the Green function for the operator 0 with the above given boundary
conditions:

Op(z,u) = 6°(2, 2).

Similarly, the Lax matrix on elliptic curve is a section L(z) € I'(EndV') of some holomorphic vector
bundle V. It has simple pole at z = 0, and it is fixed by its residue and boundary conditions:

OL(z) = 86°(2,2), R_egL(z) =9,

L(z+1)=gqL(z)gi ", L(z+7)=g-L(2)g: .

This viewpoint provides Hitchin type approach to many-body systems and their generalizations.
It was developed by Gorsky-Nekrasov and Levin-Olshanetsky.

Geometrical interpretation also shows how these models could be extended and classified.



Classification of holomorphic bundles over elliptic curve is due to Atiyah.
deg(V) = 0: g1 = 1w, g- = diag(e 2™, ..., " 2™N)
In this case the integrable system is the spin Calogero-Moser model

The residue matrix S is an element of Lie coalgebra, and when the Casimir functions are fixed it
reduces to a coadjoint orbit. The Poisson structure is given by the Poisson-Lie brackets:

{Sij, Sk} = —Sudk; + Sk;jdu and canonical {p;,q;} = di;.
H™" = ; 5 ; SijSjip(ai — ¢j) -

In the case of orbit of minimal dimension S;; = a;b; the model turns into the spinless CM.
In quantum case the potential contains spin exchange operator

N h282 N M
HSPJDIZT%—ZPU@(%—%% P2 = Z Er @ B

i=1 >3 k,l=1

Permutation operator Pi2(u® v) = v ® u.



deg=1: g1 = Q, g-r = A (Heisenberg group: exp(%)QA = AQ)

27
@ = O exp (Wk) v Aie =0, 4120 modn: QY =AY =1n.

Integrable systems are tops like models. Dynamical variables: S =Y S;; F;; € Mat(M)
Euler-Arnold equations:

S=1[8,J(9)],  J(S) = JijuSuEi

J — inverse inertia tensor. The equations comes from the Hamiltonian H = 1 tr(SJ(S)) and the
linear Poisson brackets {Si;, Sk} = 8:15k; — 0k, Su -
Using special matrix basis

T, = exp (Oé1o¢2%> QUA™,  a=(a,a2) € Zn X Zn, To=To,0 = 1n,

we come to the Sklyanin’s type Lax matrix:

a1 + a7

L(z) =) SaTapalz), ¢a= oxp(2mz 2 )$(2,wa) s wa = ~

N



deg = M, rk = NM: g.c.d.(rk,deg)=M: Intermediate case: interacting tops
It can be viewed as anisotropic version of the spin Calogero model: N interacting GLas tops, i.e.
Sij — SY ¢ Matys and

N

i1 1 i1 ) J
tops Zpi‘f'szpS 5 Z S 78]]7qi_qj)'
4,J: 1#]
tops __ 11 Qi JJ Qit
e =3 {jzs S p(ua) QNZZ%,ﬂs § sl + 22
i=1 i=1 a#0 i#j o,B
N =1 case is the single Euler-Arnold top
M =1 case is the (spin) Calogero-Moser model
LY L£%(2) ... L™M(2)
01 99 oM in one column

: : . : of size N x N
LMYy LM2(z) ... LMM(2)



Relativistic interacting tops.

Z Eij ® L7 (2) € Mat(NM,C), L"(z) € Mat(N,C).

i,7=1
a1 + a1

L:Zj ZT Sa (POL(Z wa+q1] +77) qij = 4i — 45, Wao = N ’

o

By introducing

TS = ) TaS (Brwa +a+m) — Biwa +a)) . Ealw) = (2)/9(a)
equations of motion take the form

M M
Sii :Sijjn(sjj) . Jn(sii)sij + Z Sk g ak; (Skj) _ Z J"?,q'ik(sik)skj'

kikj kiki
Gi= e (87) = = i tr (877 (841) — e (578
N N k:kAi ’

For M =1 case these are equations of motion introduced by Krichever and Zabrodin.
For N =1 one obtains relativistic top described by the classical Sklyanin algebra.



Long-range spin chains
The Hamiltonian of the Haldane-Shastry spin chain

ms _ 1 1Py
= 2 27; sin?(m(z; — ;) (50)

describes pairwise interaction of N spins being attached to equidistant points on a circle:

zr =k/N, k=1,..,N. Here P;; are the permutation operators (or spin exchange operators),
which act on the Hilbert space H = (CM)®N by permuting i-th and j-th tensor components. For
sus case M = 2 and

3
Z (D50 o) =1,® .10 00 ® 12... ® 1 € Matyn , (51)

a=0

oq is on the i—th place

Integrable isotropic long-range gl,, spin chains on NN sites of the Haldane-Shastry type are defined
by Hamiltonians of the form:

N

HOX = 237 Py U — @) € End(H), (52)
i#j

where U(z) is a certain function, g € C is a constant parameter and z1, ..., zn is a special set of

points.



Quantum spin Calogero-Moser-Sutherland models are defined by the Hamiltonian of the form:

N N

HEPmOM — % > ol + % D (W1 = hPy) Uz — z;),  Id=1yn, (53)
k=1 i#]

where 7 is the Planck constant and A is a coupling constant

The procedure relating Calogero-Moser-Sutherland models and Haldane-Shastry chains is called

the Polychronakos freezing trick. Loosely speaking, it states that one should remove the terms

with differential operators from the spin Calogero-Moser Hamiltonians and fix the positions of

particles as equilibrium positions of the underlying spinless classical model.

2

CM 1 N v N

where v, are momenta (with the canonical Poisson brackets {v;, z;} = d;;) and v is the classical
coupling constant. The set zx = 2 = k/N, k = 1...N solves the system of equations

=Zr =V ZU —Zj = , ’L:].,,N (55)
JijFi

for U(z) = 1/sin?(rx) and U(z) = p(z).



Anisotropic models
A general form for anisotropic gl,, model is as follows:

N M
anis g 7
H™ =2% " > eljec)Uacalwi — ;) € End(H), (56)

1#7 a,b,c,d=1

where e( ) is the standard matrix basis matrix eqp € Matys in the i-th tensor component of H.
This Hamlltoman becomes isotropic in the case Uap,ca(Ti — ) = daadve U(xi — x5).
Anisotropic spin Calogero-Moser Hamiltonian is of the form:

N

anis Id g

T SR o) z e Uaneal = ). (57
i#7 a,b,c,d=

k=1 1

Example: XXZ gl

xz g N cos(m(zi — ;) (o} (3) (J) + U( U(J)) + Jgi)Uéj)
HY2 = 2% . (58)
sin? (r(z; — 2,)

2
7]



g-deformed models

The g-deformed Haldane-Shastry model was introduced by D. Uglov. His construction was
revisited and clarified by Lamers, Pasquier and Serban.

The Hamiltonian is as follows:

HY® = 2m(1 — ¢ YiYr X
! =92 (tyr — i) (tys — yx)

k<i

<R (Bt ) s () e, (S8 )R ()
1—1,7 i k+1,% i ? i,k+1 Ykt 1 1,1—1 Yi1

where y; = exp (%]) and

0 0 0 0
0 1 —vi o
Cz=1| Vi t 0
0 0 0 0

In the limit ¢ — 1 it reproduces the Haldane-Shastry model.



Recall anisotropic spin Macdonald-Ruijsenaars operators:

Dy = > [T Gi—20) ¢z = =) - d(z

1<iy <...<ix <N i=1

b -
i1—1 ig—1 i —1
X | | Rji 4, H Rj,iy H Ry, | %
Jj1=1 j2 =1 Ik =
Ja#i1 I Fi1 i —1
ip—1 ig—1—1
XPiy *Pip ** Piy X H Ri i H Riy 1y
o dgp=1 Jg—1=1
71t —1 Je—17#%1-ig_2

- Zik) X
(59)
—
i1—1
H Riljl s
Jji1=1

where k =1,...,N, R;; = Rfj(zi —zj) and p;, i = 1,..., N are the shift operators.



Namely, consider expansion of Dy, in variable n (near n = 0):

Dy =D +77D +7]D + O(n )

Since DI = Dy,

o =10 3" ot

|[I|=k €I
J¢l

2j — zi) 7Ide ,

where Id is the identity matrix in End(#H). For the set of DE] one gets

N N

0
—Dgl] = Idz H o(zj — Zz)a“r
i=1j=1 °
G
N N -1 B B 5 - B
+ d(z5 — 2i) Ri—1i...Rpy1,iRes <8z~ Ri,k) Rijy1...
i=1j k=1 v

k=1,..,N.



Therefore, ~
Dl =1dD — iy, k=1,..,N, (63)

where Hy € End(H) are some matrix-valued functions, which contain R-matrix derivatives but do
not contain differential operators.
Let us now restrict the latter equality to the point 2y = zx = k/N and denote

H; = H; . (64)

Zp=T)
It can be proved that these are commutative Hamiltonians
[H;,H;]=0, 4,j=1,.,N—1. (65)

It is proved in our second paper.



Using short notation

_ 9 -
h - 2 ph
~ _ Flj(z) - az‘?”(z)_ (66)
Rij = Rij(wi —a;),  Fy=Fjy(zi— ;).
we have
= Z Ri—1i...Res1,iRe i Fy pRijr1 .. Riio1. (67)
k<i
The second Hamiltonian is of the form:
o 1
H; = Rt RiximBRim P iRinit1 -« Ronom—1+
P sl
i<m<l
+Rm—1,m .- RimRi—1,1 ... Rm1Rm—1, ... Riy1,1Ri 1%
o ~ ~ ~ ~ - (68)
XFriRiiq1 ... Rim—1Rimy1 ... Rig—1Rma ... Rmom—1) +
—R_ i Rms1.Rm i FimRimar . Rig—1.
-l-”nzl: v (@ — 1) 1—1,1 +1,1 RPN I,m+1 I,i—1

i<m<l



Example: Hamiltonians for N = 3

H,

H

Risy(x1 — 22) FJ) (22 — 1) + Rbs(w2 — m3) Fia (w3 — 22)+
(69)
+RS3 (w2 — x3) Rig(v1 — 23) Ffy (w3 — 21) Ry (w3 — 2)

1 _ _ _ _
— (Rgs(fﬂz — a3) Fiy (23 — x2) + Rlia(x1 — 22) F3y (22 — 21)+
p(h) — o(3)

(70)
+Ry(x1 — z2) Rls(x1 — x3) Fly (v3 — 1) RSy (22 — xl)) )



Underlying identities. For x; = % the following relation holds:

> I —=)

|I|=k i€I
ler j¢I

Denote by

and

f(z) =g(z) — g(~z) = Er(h+z) + Er(h — x) — 2E1 (7).

The following identities hold

g(x) = E1(h+ ) — Er(z),

>

| I|=k
mel

= > ] ¢tas — =)

|I'|=k i€’
mel’ j¢1/

Zflm:O7

l#m

foriim=1...

[To@@ —2i) > fim | =0.

iel
J¢l

lel
l#m

(75)

The identities lead to equilibrium positions (equal velocities and vanishing accelerations) in all

flows.



In the non-relativistic limit (R;; = Id + hFs; + ...)

N
Ho = Zaﬂj(ﬂﬁl — :rj) . (76)

i>j

N
Hay= D [Fij(wi — x5) + Pug(xr — 25), O (wr — w3)] (77)
i<j<k
and

[7‘[2, 7‘[3] =0. (78)

This model was previously introduced in our joint papers with I. Sechin through R-matrix valued
Lax pairs. It is anisotropic version of the Inozemtsev (long-range) chain.

This model can be also viewed as a result of the freezing trick being applied to the model of
interacting tops. Commutativity was verified by numerical calculations only. Now all higher
Hamiltonians can be derived and their commutativity is proved.



Thank you!



