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Outline

• Why to break the Lorentz invariance (LI)?

• History - UHECR, Cosmology

• Lifshitz solutions

• Null Energy Condition (NEC) and Causality

• NEC and higher derivative Gravity
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LI violation - Why?

• Does not have to be the fundamental 
principal of Nature

• LI is not well tested at high energies

• Is not excluded by some of cosmological 
observations

• In condensed matter systems it’s not there 
at all!
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History - UHECR
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LI violation (at high energies!)
[Coleman, Glashow 99]Avoiding GZK cutoff

Renormalizable and gauge- invariant perturbations to the standard-model 
Lagrangian that are rotationally invariant in a preferred frame, but not 
Lorentz invariant, lead to species-specific maximum attain- able 
velocities (MAV) for different particles.∗

p+ γ → ∆(1232) 4ω ≥ δ(E)E +
M2

∆ −M2
p

E
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Renormalizable and gauge- invariant perturbations to the standard-model 
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p+ γ → ∆(1232) 4ω ≥ δ(E)E +
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 threshold energy
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LI violation (at high energies!)
[Coleman, Glashow 99]Avoiding GZK cutoff

Renormalizable and gauge- invariant perturbations to the standard-model 
Lagrangian that are rotationally invariant in a preferred frame, but not 
Lorentz invariant, lead to species-specific maximum attain- able 
velocities (MAV) for different particles.∗

p+ γ → ∆(1232)

Threshold can be raised once LI is broken!

Later AGASA data were proved to be wrong 
(Pierre Auger experiment)
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LI is preserved in all tests so far...
but if it’s broken then what?

• LI at low energies, but LI at high energies 
Modifications of gravity at low distances, massive 
gravitons, etc. Different cosmological scenarios

• LI at all energies Good for ‘nonrelativistic’ systems, 
e.g. studied in condensed matter physics

ω2 = p2 +O

�
Λ2

p2

�
ω2 = f(p2)
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LI broken at high energies
Braneworlds (semi-

holographic)

Our universe sits at fixed z

Matter fields live in the bulk 
(no brane localized matter assumed)

S =

�
dtdx

+∞�

−∞

dz
√
g gAB∂Aφ∂Bφ

�
∂2
z + E2e2a(z) − p2e2b(z) +

a�� + 3b��

2
− (a� + 3b�)2

4

�
χ = 0

ds2 = e−2a(z)dt2 − e−2b(z)dx2 − dz2

equation of motion

[PK, Libanov]

reduces to Schroedinger equation
 with the potential V = −1

4

�
∂a

∂y

�2

+
9

4

�
∂b

∂y

�2

+ p2e2(b−a) − 1

2

�
∂2a

∂y2
+ 3

∂2b

∂y2

�

1−4 2
1.0

−3

3.0

y
53−1

2.5

1.5

4−5 0−2

2.0
a(z) = ξk|z|, b(z) = ζk|z|

For simplicity we choose
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Spectrum of fluctuations

2

z
210

6

4

−2
0

−1

ω

p

V (r)

r

Spectrum

Gravitational Potential

ds2 = dt2 − e−2k|z|dx2 − dz2 R1 × dSd+1

extremal example d=4 (Lifshitz z=0)

V (z) = p2e2k|z| +
9

4
k2 − 3kδ(z)

ξ = 0, ζ = 1

χ(z) = N K�
9
4−

E2

k2

�p
k
ek|z|

�
Solution

Matching bc at the origin p

k

Kν+1

� p
k

�

Kν

� p
k

� =
3

2
+ ν

Zero mode E2 = 3p2
�
1− p

k
+O(p2)

�

Higher modes E2
n =

9

4
k2 +

π2k2n2

4 log2 p
k
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ds2 =
L2

r2

�
− κ2dt2

r2(z−1)
+ dr2 + dx2

�

c(r) = c �(z−1)r−(z−1)

Theories with dynamical scaling

Lifshitz metric

what is the difference between z>1 and z<1 from the gravitational perspective?

L = (∂tφ)
2 − c2�2(z−1)φ(−∂2

x)
zφ

ω2 =
c2

�2
(�k)2z vph =

ω

k
= c(�k)z−1

Speed of light

Dispersion relation Phase velocity

Scaling dimensionsPhysical dimensions

t → λzt, x → λx

[φ] =
d− 1

2
, [ω] = 1, [k] = 1, [�] = 2(z − 1) [[φ]] =

d− z

2
, [[ω]] = z, [[k]] = 1, [[�]] = 0

Same dependence of r

c(r) =
κ

rz−1
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Lifshitz solution

T 0
0 = (1 + ω)ρu0u

0 − pd+1

T 1
1 = (1 + w)ρu1u

1 − p1

T d+1
d+1 = (1 + ω)ρud+1u

d+1 − pd+1

T 0
d+1 = (1 + ω)ρu0ud+1

Tµ
ν = (p+ ρ)uµuν − pδµν

Take perfect fluid in the bulk equation of state

p = wρ

introduce anisotropy equations of state

p = ωρ

p = ωρ

p = ωρ

p = wρ

ρ = −Λ− d(d− 1)

2L2
ζ2

w = −1 +
(ξ + (d− 2)ζ)(ξ − ζ)

L2ρ

ω = −1 +
(d− 2)ζ(ξ − ζ)

L2ρ

ds2 = L2

�
−dt2

r2ξ
+

dx2

r2ζ
+

dr2

r2

�
give the Lifshitz solution

S = −
�

1

e2
F(2) ∧ ∗F(2) + F(3) ∧ ∗F(3) − c

�
F(2) ∧B(2)

F(2) = A θr ∧ θt , F(3) = B θr ∧ θx ∧ θy

Λ = −z2 + z + 4

2L2

A2 =
2z(z − 1)

L2

B2 =
4(z − 1)

L2

[PK, Libanov]
[Kachru, Liu, Mulligan]

F(2) = dA(1), F(3) = dB(2)

d=3
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ds2 = du2 + e2A(u)(−e2B(u)dt2 + dx2) S = −
�

dd+2x
√
−g

�
∂MΦ ∂MΦ+m2Φ2

�

φ�� + ((d+ 1)A� +B�)φ� + e−2A−2Bω2φ− e−2Ak2φ−m2φ = 0

−ψ̈ + V (ρ)ψ = ω2ψ

V (ρ) =
d2 + 2dz + 4m2L2

4ρ2z2
+ k2

�ρz
L

� 2
z−2

    













Metric Bulk scalar action

Equation of motion

after some redefinitions reduces to Schoedinger equation

in the potential

ρmin =
L

z

�
(1− z)(d2 + 2dz + 4m2L2)

4z(kL)2

� z
2

bottom of the potential

In the holographic description the states created by a scalar operator
 correspond to classical normalizable solutions of a dual scalar field

Consider d+1 dimensional field theory with a D=d+2 gravity dual
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�ρz
L
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








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Metric Bulk scalar action

Equation of motion

after some redefinitions reduces to Schoedinger equation

in the potential

ρmin =
L

z

�
(1− z)(d2 + 2dz + 4m2L2)

4z(kL)2

� z
2

z>1   continuous
z<1       discrete

bottom of the potential

In the holographic description the states created by a scalar operator
 correspond to classical normalizable solutions of a dual scalar field

Consider d+1 dimensional field theory with a D=d+2 gravity dual
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WKB analysis

The condition

Find the value of the turning point in the limit ω → ∞

V (ρ0) = ω2 leads to

Thus the wavefront velocity is given by the local speed of light at the turning point.

Therefore plane wave states created by a scalar operator in the field theory have wavefront velocities 
that are equal to the local speed of light in the holographic dual.
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vwf � vph =
ω

k
� eB(ρ0)

WKB analysis

The condition

Find the value of the turning point in the limit ω → ∞

V (ρ0) = ω2 leads to

Thus the wavefront velocity is given by the local speed of light at the turning point.

Therefore plane wave states created by a scalar operator in the field theory have wavefront velocities 
that are equal to the local speed of light in the holographic dual.
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Growing vs. decreasing s.o.l.
z<1 z>1

ds2 =
L2

z2R2

�
−κ2dt2 + dR2 +R2−2/zdx2

�
ds2 =

L2

r2
�
dr2 + dx2 − r2−2zκ2dt2

�

Boundary goes along time direction
Conical singularity for z=2

Boundary is d-dimensional
Conical singularity for z=1/2

null geodesics orthogonal to boundarynull geodesics tangent to boundary

dt

dr
= −rz−1

κ
, t(r0) = 0 t(r) =

rz0 − rz

zκ

boundary singularity suggests UV completion

For our purpose it will be enough to introduce a cutoff, 
since the results we will obtain are independent on 

how the ultraviolet theory is defined
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Causality from shock waves
boundary

radiation

probe

shock wave

source in the field theory localized in time 
and in one of the spatial directions

[Hoffman,Maldacena]

dt

dr
=

Er2(z−1)

κ2
�

E2r2(z−1)

κ2 − P 2
,

dx

dr
=

P�
E2r2(z−1)

κ2 − P 2

Null geodesics

t � rz

zκ
→ ∞ , x � κP

(2− z)E
r2−z + x0

for z>1 z<1
�r0
�

�1−z
=

E

cP
right turning point

Calculate the time and position of the shockwave travelled back to the boundary

thus the shock wave travels faster than light signals at the boundary

vs > cvs > c

The shock wave will be a source of radiation of gravitational fields that will then propagate 
along the radial direction to the boundary, producing a front of radiation that can be interpreted 
as the front of the perturbation in the dual theory.
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Null Energy Condition
Tµνξ

µξν ≥ 0

Rt
t −Rx

x ≤ 0 , Rt
t −Ru

u ≤ 0

Rt
t = −B�� −DA�B� −B�2 −A�� − (D − 1)A�2

Rx
x = −A�B� −A�� − (D − 1)A�2

Ru
u = −B�� − (A� +B�)

2 − (D − 1)A�� − (D − 2)A�2

B�� +B�(B� + (D − 1)A�) ≥ 0

From Einstein equations NEC

Ricci tensor NEC I

Example - perfect fluid p = wρ NEC w > −1

Broken NEC is usually associated with superluminal propagation, causality violation, etc 

w = 1cosmological constant

ds2 = du2 + e2A(u)(−e2B(u)dt2 + dx2)

For Lifshitz z ≥ 1Bulk NEC
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Domain walls again - universality of NEC

• Bulk NEC

• Brane NEC

• Spatial brane curvature vanishes 

• Bulk LI is broken

TABξ
AξB ≥ 0, gABξ

AξB = 0

Let the following conditions be satisfied

Tb, µνξ
µξν ≥ 0, gb, µνξ

µξν = 0

Then a static smooth solution with symmetry

SO(d)× T
d × Z2 does not exist

[PK, Libanov]
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NEC and speed of light

For Lifshitz z ≥ 1 implies both bulk and boundary NEC

Generically NEC is necessary in order to have a consistent holographic description

let’s check our holographic construction: 1 Bulk NEC; 2 Boundary NEC 

ds2 = du2 + e2A(u)(−e2B(u)dt2 + dx2)

B�� +B�(B� + (D − 1)A�) ≥ 0NEC I

B� = Ce−(D−1)A−B

(eB)� = B�eB = Ce−(D−1)A

The derivative of the local speed of light is

define

C>0        speed of light is monotonically increasing

C<0        speed of light is monotonically increasing
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NEC and Higher Derivative Gravity
S =

�
dDx

√
g
�
R− 2Λ+ L2β1R

2 + L2β2RαβR
αβ + L2β3RαβγδR

αβγδ
�

Rµν − 1

2
gµνR+ Λgµν = L2ΘµνRepresent higher derivative stuff as ‘source’

Λ = − 1

L2

�
1 + 2(β1 − β3) + 2z +

�
1− 2z +

1

2
z4
�
(4β1 + 2β2 + 4β3) + (3z2 − 2z3)(β2 + 4β3)

�
Constraints on existence of Lifshitz solutions

2(2z2 + (D − 2)(2z +D − 1))β1 + 2(z2 +D − 2)β2 + 4(z2 − (D − 2)z + 1)β3 = 1
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Impose NEC on the rhs of the Einstein equations treating is as a ‘source’ to Einstein Gravity

β2 = 0

Solutions with z < 1 exist in the full region with fixed cosmological constant

violations of the NEC are possible in the full region !!
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2-point functions

ϕ�� − z + d− 1

r
ϕ� +

ω2

κ2
r2(z−1)ϕ− k2ϕ− m2

r2
ϕ = 0

Scalar EOM

































G2(ω,k) = − lim
�→0

√
−ggrrϕ�

ω,k(r)ϕω,k(r)
��
r=�

Correlator

m2L2 = ∆(∆− d− z)

G2(ω, k) �
�
4ω2

κ2
+ k4

��
log (iκω) + ψ

�
3

2
− iκk2

4ω

�
+ iΘ(Imω)π sech

�
κk2π

4ω

��

branch cut along the positive imaginary axis

z=2

Scaling dimension

ωn =
iκk2

4n+ 6
, n = 0, 1, 2, . . .

G2(ω, k) � k5/2
Γ
�

7
4 − ω2

2kκ2

�

Γ
�
− 3

4 − ω2

2kκ2

� ω2
n =

�
2n+

7

2

�
κ2k , n = 0, 1, 2, . . .

z=1/2

leads to superluminal propagation(vph)n =
ω

kn
=

c

ω�

�
2n+

7

2

�

phase velocity
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Further Constraints

z�Ttt� − d�Txx� = 0

Equation of state in scale invariant theory

�Ttt�+ �Txx� = �Ttt�
�
1− z

d

�
≥ 0

For the boundary theory which respects NEC

�Ttt� ≥ 0

Assuming

we get more constraints 1 ≤ z ≤ d

Bulk (holographic) NEC Boundary NEC
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Conclusions

• Geometries produced by matter that 
violates the NEC will produce superluminal 
propagation in the dual theory

• Further role of NEC in holography and RG 
dynamics of field theories (modifications of 
a-theorem?)
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