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I Lifshitz holography. First tests and observations

I Lifshitz from String Theory

I Wilson loops in Lifshitz backgrounds (see also Sasha’s talk)
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Why to Break the Lorentz Invariance?

I Does not have to be something fundamental (strings, branes,
CMT)

I Experimentally not well tested at high energies (e.g. UHECR)

I Diversifies inflation scenarios [Rubakov et al]

I Conformal behavior of field theories with anisotropic scaling in
IR
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Lifshitz field theory

Consider Lifshitz field theory

S =

∫
dtddx

(
−(∂tφ)2 + b2(z−1)(∂zxφ)2

)

Physical dimensions [φ] = (d − 1)/2, [ω] = 1, [k] = 1, [b] = −1
Scaling dimensions [[φ]] = (d − z)/2, [[ω]] = z , [[k]] = 1, [[b]] = 0
Dispersion relation ω2 = b2(z−1)k2z

Speed of light c = ω/k
Leads to c = (bk)z−1
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Gravity description

Metric

ds2 = L2

(
−dt2

r2z
+

dx2

r2
+

dr2

r2

)

Scaling properties

t → λz t , x→ λx , r → λr

Speed of light
c2 = r2−2z

Identify the RG scale
bk ∼ 1/r ,

Hence the speed of light c = (bk)z−1 = r1−z tends to zero in the
IR if z > 1.
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Macroscopic Solution
Metric

ds2 = L2

(
−dt2

r2ξ
+

dx2

r2ζ
+

dr2

r2

)

Matter

T 0
0 = (1 + ω)ρu0u0 − pd + 1 ,

T 1
1 = · · · = T d

d = (1 + w)ρu1u1 − p1 ,

T d+1
d+1 = (1 + ω)ρud+1ud+1 − pd+1 ,

Completed by equations of state
p1 = · · · = pd = wρ , pd+1 = ωρ. Solution [PK Libanov 2007]

ρ = −Λ− 1
2(d − 1)(d − 2)k2ζ2 ,

w = −1 + k2 (ξ + (d − 2)ζ)(ξ − ζ)

ρ
,

ω = −1 + k2 (d − 2)ζ(ξ − ζ)

ρ
.

NEC ω > −1 and w > −1 iff ξ > ζ.
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Microscopic Solution

2+1 Lifshitz model [Kachru Liu Mulligan 2008]

S = −
∫

1

e2
F(2) ∧ ∗F(2) + F(3) ∧ ∗F(3) − c

∫
F(2) ∧ B(2) ,

F(2) = A θr ∧ θt , F(3) = B θr ∧ θx ∧ θy ,

Solution of Einstein equations 2ξζ = (cL)2, Z = ζ/ξ

Λ = −Z 2 + Z + 4

2L2

A2 =
2Z (Z − 1)

L2

B2 =
4(Z − 1)

L2

To avoid tachyonic solutions Z > 1
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Correspondence

[PK Gordeli]

KL KLM

Cosmological constant Λ = −ρ− 3k2 Λ = −L−2(Z 2 + Z + 4)

First component w −1 +
A2 + B2

2(−Λ− 3L−2)

Second component ω −1 +
B2

2(−Λ− 3L−2)
LIV parameter w − ω A

Anisotropy p1 − p4 Energy flux A2

w.r.t z direction

Constraints Reality of Fluxes Null energy condition

(For those who like RS-type models) !! In these examples bulk
NEC is inconsistent with brane NEC !!
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Does it mean anything for braneworlds?

YES — one can proof NO-GO theorem. Let the following
conditions be satisfied

1. 5d NEC TABξ
AξB ≥ 0, gABξ

AξB = 0

2. brane NEC Tb, µνξ
µξν ≥ 0, gb, µνξ

µξν = 0

3. ρb + σ ≥ 0

4. Spatial brane curvature vanishes k = 0

5. Bulk LI is brokenf

Then a static solution with symmetry SO(3)× T 3 × Z2 DOES
NOT exist [PK, Libanov] The statement does not depend on the
volume

∫ +∞
−∞
√

g dz of the extra dimension
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All conditions are important!

I In LI case everything is fine, e.g.

g ′′00 = g ′′11 =

{
(z − z0)2, 0 ≤ z < z0,

0, z ≥ z0.

But still bulk matter needs to be localized near brane

I k 6= 0 entails

w(z) = −(ξ2 + 2ξζ + 3ζ2)e−2ζkz − 4κ2/k2

6ζ2e−2ζkz − 12κ2/k2

ω(z) = −(ξζ + ζ2)e−2ζkz − 4κ2/k2

2ζ2e−2ζkz − 4κ2/k2

But one needs to have κ/k ∼ 1 which makes the model
useless phenomenologically
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Holography. First Test
Boundary correlators are given by the renormalized bulk action for
specified boundary conditions for the bulk field.

Consider scalar
field in the bulk [KLM]

S =

∫
d4x
√

g∂Aφ∂
Aφ .

Euler-Lagrange equations read

φ′′ − ξ − 2ζ − 1

r
φ′ + (E 2r2(ξ−1) − p2r2(ζ−1))φ = 0 .

Near the boundary u = 0 a solution

φ(t, x, u) = r∆+φ+(t, x) + r∆−φ−(t, x) ,

where ∆± are solutions of

∆(∆− ξ − 2ζ) = 0 .
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Known Solutions
Green functions can be explicitly calculated in the following cases
(ξ, ζ): AdS model (1, 1) , Lifshitz model (2, 1) , Dubovsky model
(AdS2 ×R2) (1, 0) , Mirror Lifshitz model (1, 2) , KL model (mirror
Dubovsky model) (0, 1).

Dubovskiy

Mirror Lifshitz

AdS

Lifshitz

KL

anti-AdS

anti-KL

anti-Dubovskiy

M
ir
ro

r 
li
n
e

M
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r 
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n
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ζ

ξ



Prescription

I Calculate the Green function in the momentum space
G (E ,p, u)

I The boundary correlator in the momentum space can be
derived from the bulk action

〈O(E ,p)O(−E ,−p)〉 = G (−E ,−p, u)
√

gguu∂uG (E ,p, u)
∣∣+∞
ε

.

I Fourier transform back into the position space. The correlator
should behave as 1/|x − y |2∆, where ∆ is the scaling
dimension of the local operator O.
[KLM 2008] checked it for generic critical exponents, let’s see
what happens in degenerate cases.
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The Green function

G (E ,p, u) =
u

ε

Kν(|p|u)

Kν(|p|ε)
,

where ν =
√

1− E 2. Near the boundary u = 0 the Green function
can be expanded

G (E , p, u) =
(u

ε

)1−ν (
1 +

(
|p|u

2

)2ν Γ (−ν)

Γ (ν)
+ . . .

)
.

The boundary correlator in the momentum space is given by

〈O(E ,p)O(−E ,−p)〉 = G (−E ,−p, u)
√

gguu∂uG (E ,p, u)
∣∣+∞
ε

.

〈O(E ,p)O(−E ,−p)〉 = 21−2νε2ν−2
Γ (−ν)

Γ (ν)
|p|2ν .

Performing Fourier transformation in spatial directions

1

(2π)3/2

∫
eipx〈O(E ,p)O(0, 0)〉d3p ∼ 1

|x|2∆
,

which properly reproduces the scaling behavior of O.
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Holography. Degenerate cases
However, there is a special configuration of scaling parameters for
which the above constraint needs to be modified. Indeed, if
ξ = 0, ζ = 1 or ξ = 1, ζ = 0 the equation on ∆ will have the
following form

∆(∆− 2) = E 2 , or ∆(∆− 1) = −p2 .

Solutions of these equations are

∆± = 1±
√

1− E 2 ,

for the AdS2 × R2 model and

∆± = 1
2 ±

1
2

√
1 + 4p2 ,

for the Dubovsky model. We see here that scaling dimension
becomes energy(momenta)-dependent. One can now observe that
in the above two critical cases scaling dimensions have similar form
to those in Lifshitz theory [KLM] but in the massive case. It
appears that an energy scale gets generated when we go from
noncritical cases to critical cases.



Holographic flow

In the AdS-like geometries there is a natural notion of RG flow
from the UV region to the IR region (flow into a horizon)

Also and AdS with radius R1 may flow into another AdS of radius
R2 < R1

Where does the Lifshitz background flow?
If flows into an AdS [Kachru, Liu, Mulligan].
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Asymptotic IR behavior

In deep IR dual theory flows into conformal regime. One can also
think of the following gravitational interpretation of this
phenomena. It appears that many solutions in backgrounds of
Lifshitz-type have matter distributions which are localized near the
UV boundary. In these solutions the invariant energy density√

−g(r)ρ(r)→ 0 as r → +∞

vanishes as we approach the IR boundary leaving only cosmological
constant Λ. Asymptotic behavior of the solution with negative Λ
as a source at r →∞ is of AdS type.



Holographic flow

Backreaction on the metric

ds2 = L2

(
−f 2(r)

dt2

r2z
+ g2(r)

dx2

r2
+

dr2

r2

)

Derive the functions f , g from Einstein equations. For nonzero z
there two fixed points: UV fixed point–Lifshitz, IR fixed point –
AdS space.
Fixed points are attractive.
A bit more tricky for AdS2 × R2 Lifshitz (z →∞). Currently
unknown where does it flow
A deformation of the flow can also be done (Einstein-Proca theory)
[Cheng, Hartnoll, Keeler].
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Lifshitz from String Theory

Top-down approach
Naive way to proceed – try to construct a type IIA (IIB) solution
by deforming existing ones (It works for Schrödinger backgrounds)
fails – NO GO theorems. However, one may construct “spatial”
Lifshitz [Takayanagi]

Three different constructions [Hartnoll, Polchinski, Silverstein,
Tong]

I from Landscape dual pairs
compactifications of F theory on an elliptic fibration over a
six-manifold of the form Y5 × S1

I from brane polarization

I Baryon-induced
Lifshitz in the IR, AdS4 in the UV, Fermi sea in between.

All constructions are nonSUSY
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Wilson loops

A new parameter z has appeared – interesting to study dependence
of nonlocal observables

S =

∫ √
det
α,β

∂αXA∂βXBgABdσdτ,
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Wilson loops

For the surfaces we consider here the embedding function has the
following form

XA =
(
τ σ r(τ, σ)

)
,

where worldsheet coordinates τ, σ are trivially mapped onto (t, x)
plane at some constant value of r , e.g. onto the UV boundary.
The action reads

S =

∫
dσdτ

√
r2ξ+2ζ + r2(ξ−1)r ′2 + r2(ζ−1)ṙ2 .

This action remains the same if we interchange

ξ ←→ ζ, t ←→ x

simultaneously. However, a different functional can be obtained if
only one of the above transformations is performed. We shall refer
to either of those transformations as mirror transformations and
shall use them to obtain mirror solutions.



Rectangular Wilson loops

SUV
reg (ξ, ζ) =

4T

Rξ/ζ

π
ξ+ζ
2ζ

2ξ + 2ζ

Γ
(
− ξ

2ξ+2ζ

)
Γ
(

ζ
2ξ+2ζ

)
 Γ

(
ξ+2ζ
2ξ+2ζ

)
ζΓ
(

ζ
2ξ+2ζ

)


ξ
ζ

Dubovskiy

Lifshitz

AdS

Mirror Lifshitz

KL

anti-AdS

anti-KL

anti-Dubovskiy

UV - IR transition

M
ir
ro

r 
li
n
e

UV - IR transition

M
ir
ro

r 
li
n
e





A note

Two critical exponents ξ and ζ. Absorb on of the exponents by
redefining w = r ζ . The metric will be modified as follows

ds2 = L2

(
− dt2

w2ξ/ζ
+

dx2

w2
+

1

ζ2
dw2

w2

)
.

We now need to rescale

L→ ζL t → ζ−1t , x→ ζ−1x ,

and the metric takes the standard Lifshitz form

ds2 = L2

(
− dt2

w2z
+

dx2

w2
+

dw2

w2

)
,

where z = ξ/ζ.



Conclusions

I Further (supersymmetric) embedding of Lifshitz into string
theory

I Construction of holography dual gauge theories

I What properties does a theory (either gauge or string side)
have to have in order to have a holography dual description?

I CMT applications
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