Holography and Lorentz Invariance Violation

Peter Koroteev

University of Minnesota

In collaboration with M. Libanov, I. Gordeli, A. Zayakin, C. Hoyos
0712.11360904 .05090909 .2551 work in progress

GLSPOCK, March 21st 2010

Plan

- Lifshitz field theory and Lifshitz geometry (see also Sumit's talk)

Plan

- Lifshitz field theory and Lifshitz geometry (see also Sumit's talk)
- Lifshitz holography. First tests and observations

Plan

- Lifshitz field theory and Lifshitz geometry (see also Sumit's talk)
- Lifshitz holography. First tests and observations
- Lifshitz from String Theory

Plan

- Lifshitz field theory and Lifshitz geometry (see also Sumit's talk)
- Lifshitz holography. First tests and observations
- Lifshitz from String Theory
- Wilson loops in Lifshitz backgrounds (see also Sasha's talk)

Why to Break the Lorentz Invariance?

- Does not have to be something fundamental (strings, branes, CMT)

Why to Break the Lorentz Invariance?

- Does not have to be something fundamental (strings, branes, CMT)
- Experimentally not well tested at high energies (e.g. UHECR)

Why to Break the Lorentz Invariance?

- Does not have to be something fundamental (strings, branes, CMT)
- Experimentally not well tested at high energies (e.g. UHECR)
- Diversifies inflation scenarios [Rubakov et al]

Why to Break the Lorentz Invariance?

- Does not have to be something fundamental (strings, branes, CMT)
- Experimentally not well tested at high energies (e.g. UHECR)
- Diversifies inflation scenarios [Rubakov et al]
- Conformal behavior of field theories with anisotropic scaling in IR

Lifshitz field theory

Consider Lifshitz field theory

$$
S=\int d t d^{d} \mathbf{x}\left(-\left(\partial_{t} \phi\right)^{2}+b^{2(z-1)}\left(\partial_{x}^{z} \phi\right)^{2}\right)
$$

Lifshitz field theory

Consider Lifshitz field theory

$$
S=\int d t d^{d} \mathbf{x}\left(-\left(\partial_{t} \phi\right)^{2}+b^{2(z-1)}\left(\partial_{x}^{z} \phi\right)^{2}\right)
$$

Physical dimensions $[\phi]=(d-1) / 2,[\omega]=1,[\mathbf{k}]=1,[b]=-1$

Lifshitz field theory

Consider Lifshitz field theory

$$
S=\int d t d^{d} \mathbf{x}\left(-\left(\partial_{t} \phi\right)^{2}+b^{2(z-1)}\left(\partial_{x}^{z} \phi\right)^{2}\right)
$$

Physical dimensions $[\phi]=(d-1) / 2,[\omega]=1,[\mathbf{k}]=1,[b]=-1$ Scaling dimensions $[[\phi]]=(d-z) / 2,[[\omega]]=z,[[\mathbf{k}]]=1,[[b]]=0$

Lifshitz field theory

Consider Lifshitz field theory

$$
S=\int d t d^{d} \mathbf{x}\left(-\left(\partial_{t} \phi\right)^{2}+b^{2(z-1)}\left(\partial_{x}^{z} \phi\right)^{2}\right)
$$

Physical dimensions $[\phi]=(d-1) / 2,[\omega]=1,[\mathbf{k}]=1,[b]=-1$ Scaling dimensions $[[\phi]]=(d-z) / 2,[[\omega]]=z,[[\mathbf{k}]]=1,[[b]]=0$ Dispersion relation $\omega^{2}=b^{2(z-1)} k^{2 z}$

Lifshitz field theory

Consider Lifshitz field theory

$$
S=\int d t d^{d} \mathbf{x}\left(-\left(\partial_{t} \phi\right)^{2}+b^{2(z-1)}\left(\partial_{x}^{z} \phi\right)^{2}\right)
$$

Physical dimensions $[\phi]=(d-1) / 2,[\omega]=1,[\mathbf{k}]=1,[b]=-1$
Scaling dimensions $[[\phi]]=(d-z) / 2,[[\omega]]=z,[[\mathbf{k}]]=1,[[b]]=0$
Dispersion relation $\omega^{2}=b^{2(z-1)} k^{2 z}$
Speed of light $c=\omega / k$

Lifshitz field theory

Consider Lifshitz field theory

$$
S=\int d t d^{d} \mathbf{x}\left(-\left(\partial_{t} \phi\right)^{2}+b^{2(z-1)}\left(\partial_{x}^{z} \phi\right)^{2}\right)
$$

Physical dimensions $[\phi]=(d-1) / 2,[\omega]=1,[\mathbf{k}]=1,[b]=-1$
Scaling dimensions $[[\phi]]=(d-z) / 2,[[\omega]]=z,[[\mathbf{k}]]=1,[[b]]=0$
Dispersion relation $\omega^{2}=b^{2(z-1)} k^{2 z}$
Speed of light $c=\omega / k$
Leads to $c=(b k)^{z-1}$

Gravity description

Metric

$$
d s^{2}=L^{2}\left(-\frac{d t^{2}}{r^{2 z}}+\frac{d \mathbf{x}^{2}}{r^{2}}+\frac{d r^{2}}{r^{2}}\right)
$$

Gravity description

Metric

$$
d s^{2}=L^{2}\left(-\frac{d t^{2}}{r^{2 z}}+\frac{d \mathbf{x}^{2}}{r^{2}}+\frac{d r^{2}}{r^{2}}\right)
$$

Scaling properties

$$
t \rightarrow \lambda^{z} t, \quad \mathbf{x} \rightarrow \lambda \mathbf{x}, \quad r \rightarrow \lambda r
$$

Gravity description

Metric

$$
d s^{2}=L^{2}\left(-\frac{d t^{2}}{r^{2 z}}+\frac{d \mathbf{x}^{2}}{r^{2}}+\frac{d r^{2}}{r^{2}}\right)
$$

Scaling properties

$$
t \rightarrow \lambda^{z} t, \quad \mathbf{x} \rightarrow \lambda \mathbf{x}, \quad r \rightarrow \lambda r
$$

Speed of light

$$
c^{2}=r^{2-2 z}
$$

Gravity description

Metric

$$
d s^{2}=L^{2}\left(-\frac{d t^{2}}{r^{2 z}}+\frac{d \mathbf{x}^{2}}{r^{2}}+\frac{d r^{2}}{r^{2}}\right)
$$

Scaling properties

$$
t \rightarrow \lambda^{z} t, \quad \mathbf{x} \rightarrow \lambda \mathbf{x}, \quad r \rightarrow \lambda r
$$

Speed of light

$$
c^{2}=r^{2-2 z}
$$

Identify the RG scale

$$
b k \sim 1 / r,
$$

Hence the speed of light $c=(b k)^{z-1}=r^{1-z}$ tends to zero in the IR if $z>1$.

Macroscopic Solution

Metric

$$
d s^{2}=L^{2}\left(-\frac{d t^{2}}{r^{2 \xi}}+\frac{d \mathbf{x}^{2}}{r^{2 \zeta}}+\frac{d r^{2}}{r^{2}}\right)
$$

Macroscopic Solution

Metric

$$
d s^{2}=L^{2}\left(-\frac{d t^{2}}{r^{2 \xi}}+\frac{d \mathbf{x}^{2}}{r^{2 \zeta}}+\frac{d r^{2}}{r^{2}}\right)
$$

Matter

$$
\begin{aligned}
T_{0}^{0} & =(1+\omega) \rho u_{0} u^{0}-p_{d}+1 \\
T_{1}^{1}=\cdots=T_{d}^{d} & =(1+w) \rho u_{1} u^{1}-p_{1} \\
T_{d+1}^{d+1} & =(1+\omega) \rho u_{d+1} u^{d+1}-p_{d+1}
\end{aligned}
$$

Completed by equations of state

$$
p_{1}=\cdots=p_{d}=w \rho, \quad p_{d+1}=\omega \rho .
$$

Macroscopic Solution

Metric

$$
d s^{2}=L^{2}\left(-\frac{d t^{2}}{r^{2 \xi}}+\frac{d \mathbf{x}^{2}}{r^{2 \zeta}}+\frac{d r^{2}}{r^{2}}\right)
$$

Matter

$$
\begin{aligned}
T_{0}^{0} & =(1+\omega) \rho u_{0} u^{0}-p_{d}+1 \\
T_{1}^{1}=\cdots=T_{d}^{d} & =(1+w) \rho u_{1} u^{1}-p_{1} \\
T_{d+1}^{d+1} & =(1+\omega) \rho u_{d+1} u^{d+1}-p_{d+1}
\end{aligned}
$$

Completed by equations of state

$$
p_{1}=\cdots=p_{d}=w \rho, \quad p_{d+1}=\omega \rho . \text { Solution [PK Libanov 2007] }
$$

$$
\begin{aligned}
\rho & =-\Lambda-\frac{1}{2}(d-1)(d-2) k^{2} \zeta^{2} \\
w & =-1+k^{2} \frac{(\xi+(d-2) \zeta)(\xi-\zeta)}{\rho} \\
\omega & =-1+k^{2} \frac{(d-2) \zeta(\xi-\zeta)}{\rho}
\end{aligned}
$$

Macroscopic Solution

Metric

$$
d s^{2}=L^{2}\left(-\frac{d t^{2}}{r^{2 \xi}}+\frac{d \mathbf{x}^{2}}{r^{2 \zeta}}+\frac{d r^{2}}{r^{2}}\right)
$$

Matter

$$
\begin{aligned}
T_{0}^{0} & =(1+\omega) \rho u_{0} u^{0}-p_{d}+1 \\
T_{1}^{1}=\cdots=T_{d}^{d} & =(1+w) \rho u_{1} u^{1}-p_{1} \\
T_{d+1}^{d+1} & =(1+\omega) \rho u_{d+1} u^{d+1}-p_{d+1}
\end{aligned}
$$

Completed by equations of state
$p_{1}=\cdots=p_{d}=w \rho, \quad p_{d+1}=\omega \rho$. Solution [PK Libanov 2007]

$$
\begin{aligned}
\rho & =-\Lambda-\frac{1}{2}(d-1)(d-2) k^{2} \zeta^{2} \\
w & =-1+k^{2} \frac{(\xi+(d-2) \zeta)(\xi-\zeta)}{\rho} \\
\omega & =-1+k^{2} \frac{(d-2) \zeta(\xi-\zeta)}{\rho}
\end{aligned}
$$

NEC $\omega>-1$ and $w>-1$ iff $\xi>\zeta$.

Microscopic Solution

2+1 Lifshitz model [Kachru Liu Mulligan 2008]

$$
S=-\int \frac{1}{e^{2}} F_{(2)} \wedge * F_{(2)}+F_{(3)} \wedge * F_{(3)}-c \int F_{(2)} \wedge B_{(2)}
$$

Microscopic Solution

2+1 Lifshitz model [Kachru Liu Mulligan 2008]

$$
\begin{gathered}
S=-\int \frac{1}{e^{2}} F_{(2)} \wedge * F_{(2)}+F_{(3)} \wedge * F_{(3)}-c \int F_{(2)} \wedge B_{(2)} \\
F_{(2)}=A \theta_{r} \wedge \theta_{t}, \quad F_{(3)}=B \theta_{r} \wedge \theta_{x} \wedge \theta_{y}
\end{gathered}
$$

Microscopic Solution

2+1 Lifshitz model [Kachru Liu Mulligan 2008]

$$
\begin{gathered}
S=-\int \frac{1}{e^{2}} F_{(2)} \wedge * F_{(2)}+F_{(3)} \wedge * F_{(3)}-c \int F_{(2)} \wedge B_{(2)}, \\
F_{(2)}=A \theta_{r} \wedge \theta_{t}, \quad F_{(3)}=B \theta_{r} \wedge \theta_{x} \wedge \theta_{y},
\end{gathered}
$$

Solution of Einstein equations $2 \xi \zeta=(c L)^{2}, \quad Z=\zeta / \xi$

$$
\begin{aligned}
\Lambda & =-\frac{Z^{2}+Z+4}{2 L^{2}} \\
A^{2} & =\frac{2 Z(Z-1)}{L^{2}} \\
B^{2} & =\frac{4(Z-1)}{L^{2}}
\end{aligned}
$$

To avoid tachyonic solutions $Z>1$

Correspondence

[PK Gordeli]

	KL	KLM
Cosmological constant	$\Lambda=-\rho-3 k^{2}$	$\Lambda=-L^{-2}\left(Z^{2}+Z+4\right)$
First component	w	$-1+\frac{A^{2}+B^{2}}{2\left(-\Lambda-3 L^{-2}\right)}$
Second component	ω	$-1+\frac{B^{2}}{2\left(-\Lambda-3 L^{-2}\right)}$
LIV parameter	$w-\omega$	A
Anisotropy	$p_{1}-p_{4}$	Energy flux A^{2} w.r.t z direction
Constraints	Reality of Fluxes	Null energy condition

Correspondence

[PK Gordeli]

	KL	KLM
Cosmological constant	$\Lambda=-\rho-3 k^{2}$	$\Lambda=-L^{-2}\left(Z^{2}+Z+4\right)$
First component	w	$-1+\frac{A^{2}+B^{2}}{2\left(-\Lambda-3 L^{-2}\right)}$
Second component	ω	$-1+\frac{B^{2}}{2\left(-\Lambda-3 L^{-2}\right)}$
LIV parameter	$w-\omega$	A
Anisotropy	$p_{1}-p_{4}$	Energy flux A^{2} w.r.t z direction
Constraints	Reality of Fluxes	Null energy condition

(For those who like RS-type models) !! In these examples bulk NEC is inconsistent with brane NEC !!

Does it mean anything for braneworlds?

Does it mean anything for braneworlds?

YES - one can proof NO-GO theorem.

Does it mean anything for braneworlds?

YES - one can proof NO-GO theorem. Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$

Does it mean anything for braneworlds?

YES - one can proof NO-GO theorem. Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $\quad T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$

Does it mean anything for braneworlds?

YES - one can proof NO-GO theorem. Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $\quad T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$
3. $\rho_{b}+\sigma \geq 0$

Does it mean anything for braneworlds?

YES - one can proof NO-GO theorem. Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $\quad T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$
3. $\rho_{b}+\sigma \geq 0$
4. Spatial brane curvature vanishes $k=0$

Does it mean anything for braneworlds?

YES - one can proof NO-GO theorem. Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $\quad T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$
3. $\rho_{b}+\sigma \geq 0$
4. Spatial brane curvature vanishes $k=0$
5. Bulk LI is brokenf

Does it mean anything for braneworlds?

YES - one can proof NO-GO theorem. Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $\quad T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$
3. $\rho_{b}+\sigma \geq 0$
4. Spatial brane curvature vanishes $k=0$
5. Bulk LI is brokenf

Then a static solution with symmetry $S O(3) \times T^{3} \times \mathbb{Z}_{2}$ DOES NOT exist [PK, Libanov]

Does it mean anything for braneworlds?

YES - one can proof NO-GO theorem. Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $\quad T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$
3. $\rho_{b}+\sigma \geq 0$
4. Spatial brane curvature vanishes $k=0$
5. Bulk LI is brokenf

Then a static solution with symmetry $S O(3) \times T^{3} \times \mathbb{Z}_{2}$ DOES NOT exist [PK, Libanov] The statement does not depend on the volume $\int_{-\infty}^{+\infty} \sqrt{g} d z$ of the extra dimension

All conditions are important!

All conditions are important!

- In LI case everything is fine, e.g.

$$
g_{00}^{\prime \prime}=g_{11}^{\prime \prime}=\left\{\begin{aligned}
\left(z-z_{0}\right)^{2}, & 0 \leq z<z_{0} \\
0, & z \geq z_{0}
\end{aligned}\right.
$$

All conditions are important!

- In LI case everything is fine, e.g.

$$
g_{00}^{\prime \prime}=g_{11}^{\prime \prime}=\left\{\begin{aligned}
\left(z-z_{0}\right)^{2}, & 0 \leq z<z_{0} \\
0, & z \geq z_{0}
\end{aligned}\right.
$$

But still bulk matter needs to be localized near brane

All conditions are important!

- In LI case everything is fine, e.g.

$$
g_{00}^{\prime \prime}=g_{11}^{\prime \prime}=\left\{\begin{aligned}
\left(z-z_{0}\right)^{2}, & 0 \leq z<z_{0} \\
0, & z \geq z_{0}
\end{aligned}\right.
$$

But still bulk matter needs to be localized near brane

- $k \neq 0$ entails

$$
\begin{aligned}
& w(z)=-\frac{\left(\xi^{2}+2 \xi \zeta+3 \zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{6 \zeta^{2} e^{-2 \zeta k z}-12 \kappa^{2} / k^{2}} \\
& \omega(z)=-\frac{\left(\xi \zeta+\zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{2 \zeta^{2} e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}
\end{aligned}
$$

All conditions are important!

- In LI case everything is fine, e.g.

$$
g_{00}^{\prime \prime}=g_{11}^{\prime \prime}=\left\{\begin{aligned}
\left(z-z_{0}\right)^{2}, & 0 \leq z<z_{0} \\
0, & z \geq z_{0}
\end{aligned}\right.
$$

But still bulk matter needs to be localized near brane

- $k \neq 0$ entails

$$
\begin{aligned}
& w(z)=-\frac{\left(\xi^{2}+2 \xi \zeta+3 \zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{6 \zeta^{2} e^{-2 \zeta k z}-12 \kappa^{2} / k^{2}} \\
& \omega(z)=-\frac{\left(\xi \zeta+\zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{2 \zeta^{2} e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}
\end{aligned}
$$

But one needs to have $\kappa / k \sim 1$

All conditions are important!

- In LI case everything is fine, e.g.

$$
g_{00}^{\prime \prime}=g_{11}^{\prime \prime}=\left\{\begin{aligned}
\left(z-z_{0}\right)^{2}, & 0 \leq z<z_{0} \\
0, & z \geq z_{0}
\end{aligned}\right.
$$

But still bulk matter needs to be localized near brane

- $k \neq 0$ entails

$$
\begin{aligned}
& w(z)=-\frac{\left(\xi^{2}+2 \xi \zeta+3 \zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{6 \zeta^{2} e^{-2 \zeta k z}-12 \kappa^{2} / k^{2}} \\
& \omega(z)=-\frac{\left(\xi \zeta+\zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{2 \zeta^{2} e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}
\end{aligned}
$$

But one needs to have $\kappa / k \sim 1$ which makes the model useless phenomenologically

Holography. First Test

Boundary correlators are given by the renormalized bulk action for specified boundary conditions for the bulk field.

Holography. First Test

Boundary correlators are given by the renormalized bulk action for specified boundary conditions for the bulk field. Consider scalar field in the bulk [KLM]

$$
S=\int d^{4} x \sqrt{g} \partial_{A} \phi \partial^{A} \phi
$$

Holography. First Test

Boundary correlators are given by the renormalized bulk action for specified boundary conditions for the bulk field. Consider scalar field in the bulk [KLM]

$$
S=\int d^{4} x \sqrt{g} \partial_{A} \phi \partial^{A} \phi
$$

Euler-Lagrange equations read

$$
\phi^{\prime \prime}-\frac{\xi-2 \zeta-1}{r} \phi^{\prime}+\left(E^{2} r^{2(\xi-1)}-\mathbf{p}^{2} r^{2(\zeta-1)}\right) \phi=0 .
$$

Holography. First Test

Boundary correlators are given by the renormalized bulk action for specified boundary conditions for the bulk field. Consider scalar field in the bulk [KLM]

$$
S=\int d^{4} x \sqrt{g} \partial_{A} \phi \partial^{A} \phi
$$

Euler-Lagrange equations read

$$
\phi^{\prime \prime}-\frac{\xi-2 \zeta-1}{r} \phi^{\prime}+\left(E^{2} r^{2(\xi-1)}-\mathbf{p}^{2} r^{2(\zeta-1)}\right) \phi=0 .
$$

Near the boundary $u=0$ a solution

$$
\phi(t, \mathbf{x}, u)=r^{\Delta_{+}} \phi_{+}(t, \mathbf{x})+r^{\Delta_{-}} \phi_{-}(t, \mathbf{x}),
$$

where $\Delta_{ \pm}$are solutions of

$$
\Delta(\Delta-\xi-2 \zeta)=0
$$

Known Solutions

Green functions can be explicitly calculated in the following cases (ξ, ζ) : AdS model $(1,1)$, Lifshitz model $(2,1)$, Dubovsky model $\left(A d S_{2} \times \mathbb{R}^{2}\right)(1,0)$, Mirror Lifshitz model $(1,2), K L$ model (mirror Dubovsky model) $(0,1)$.

Prescription

- Calculate the Green function in the momentum space $G(E, \mathbf{p}, u)$

Prescription

- Calculate the Green function in the momentum space $G(E, \mathbf{p}, u)$
- The boundary correlator in the momentum space can be derived from the bulk action

$$
\langle\mathcal{O}(E, \mathbf{p}) \mathcal{O}(-E,-\mathbf{p})\rangle=\left.G(-E,-\mathbf{p}, u) \sqrt{g} g^{u u} \partial_{u} G(E, \mathbf{p}, u)\right|_{\epsilon} ^{+\infty}
$$

Prescription

- Calculate the Green function in the momentum space $G(E, \mathbf{p}, u)$
- The boundary correlator in the momentum space can be derived from the bulk action

$$
\langle\mathcal{O}(E, \mathbf{p}) \mathcal{O}(-E,-\mathbf{p})\rangle=\left.G(-E,-\mathbf{p}, u) \sqrt{g} g^{u u} \partial_{u} G(E, \mathbf{p}, u)\right|_{\epsilon} ^{+\infty}
$$

- Fourier transform back into the position space. The correlator should behave as $1 /|x-y|^{2 \Delta}$, where Δ is the scaling dimension of the local operator \mathcal{O}.

Prescription

- Calculate the Green function in the momentum space $G(E, \mathbf{p}, u)$
- The boundary correlator in the momentum space can be derived from the bulk action

$$
\langle\mathcal{O}(E, \mathbf{p}) \mathcal{O}(-E,-\mathbf{p})\rangle=\left.G(-E,-\mathbf{p}, u) \sqrt{g} g^{u u} \partial_{u} G(E, \mathbf{p}, u)\right|_{\epsilon} ^{+\infty}
$$

- Fourier transform back into the position space. The correlator should behave as $1 /|x-y|^{2 \Delta}$, where Δ is the scaling dimension of the local operator \mathcal{O}. [KLM 2008] checked it for generic critical exponents, let's see what happens in degenerate cases.

The Green function

$$
G(E, \mathbf{p}, u)=\frac{u}{\epsilon} \frac{\mathrm{~K}_{\nu}(|\mathbf{p}| u)}{\mathrm{K}_{\nu}(|\mathbf{p}| \epsilon)}
$$

where $\nu=\sqrt{1-E^{2}}$. Near the boundary $u=0$ the Green function can be expanded

$$
G(E, p, u)=\left(\frac{u}{\epsilon}\right)^{1-\nu}\left(1+\left(\frac{|\mathbf{p}| u}{2}\right)^{2 \nu} \frac{\Gamma(-\nu)}{\Gamma(\nu)}+\ldots\right)
$$

The boundary correlator in the momentum space is given by

$$
\langle\mathcal{O}(E, \mathbf{p}) \mathcal{O}(-E,-\mathbf{p})\rangle=\left.G(-E,-\mathbf{p}, u) \sqrt{g} g^{u u} \partial_{u} G(E, \mathbf{p}, u)\right|_{\epsilon} ^{+\infty}
$$

The Green function

$$
G(E, \mathbf{p}, u)=\frac{u}{\epsilon} \frac{\mathrm{~K}_{\nu}(|\mathbf{p}| u)}{\mathrm{K}_{\nu}(|\mathbf{p}| \epsilon)}
$$

where $\nu=\sqrt{1-E^{2}}$. Near the boundary $u=0$ the Green function can be expanded

$$
G(E, p, u)=\left(\frac{u}{\epsilon}\right)^{1-\nu}\left(1+\left(\frac{|\mathbf{p}| u}{2}\right)^{2 \nu} \frac{\Gamma(-\nu)}{\Gamma(\nu)}+\ldots\right)
$$

The boundary correlator in the momentum space is given by

$$
\begin{gathered}
\langle\mathcal{O}(E, \mathbf{p}) \mathcal{O}(-E,-\mathbf{p})\rangle=\left.G(-E,-\mathbf{p}, u) \sqrt{g} g^{u u} \partial_{u} G(E, \mathbf{p}, u)\right|_{\epsilon} ^{+\infty} \\
\langle\mathcal{O}(E, \mathbf{p}) \mathcal{O}(-E,-\mathbf{p})\rangle=2^{1-2 \nu} \epsilon^{2 \nu-2} \frac{\Gamma(-\nu)}{\Gamma(\nu)}|\mathbf{p}|^{2 \nu}
\end{gathered}
$$

Performing Fourier transformation in spatial directions

$$
\frac{1}{(2 \pi)^{3 / 2}} \int \mathrm{e}^{i \mathbf{p} \mathbf{x}}\langle\mathcal{O}(E, \mathbf{p}) \mathcal{O}(0, \mathbf{0})\rangle d^{3} p \sim \frac{1}{|\mathbf{x}|^{2 \Delta}}
$$

which properly reproduces the scaling behavior of \mathcal{O}.

Holography. Degenerate cases

However, there is a special configuration of scaling parameters for which the above constraint needs to be modified. Indeed, if $\xi=0, \zeta=1$ or $\xi=1, \zeta=0$ the equation on Δ will have the following form

$$
\Delta(\Delta-2)=E^{2}, \quad \text { or } \quad \Delta(\Delta-1)=-p^{2} .
$$

Solutions of these equations are

$$
\Delta_{ \pm}=1 \pm \sqrt{1-E^{2}}
$$

for the $A d S_{2} \times \mathbb{R}^{2}$ model and

$$
\Delta_{ \pm}=\frac{1}{2} \pm \frac{1}{2} \sqrt{1+4 p^{2}},
$$

for the Dubovsky model. We see here that scaling dimension becomes energy(momenta)-dependent. One can now observe that in the above two critical cases scaling dimensions have similar form to those in Lifshitz theory [KLM] but in the massive case. It appears that an energy scale gets generated when we go from noncritical cases to critical cases.

Holographic flow

In the AdS-like geometries there is a natural notion of RG flow from the UV region to the IR region (flow into a horizon)

Holographic flow

In the AdS-like geometries there is a natural notion of RG flow from the UV region to the IR region (flow into a horizon) Also and AdS with radius R_{1} may flow into another AdS of radius $R_{2}<R_{1}$

Holographic flow

In the AdS-like geometries there is a natural notion of RG flow from the UV region to the IR region (flow into a horizon) Also and AdS with radius R_{1} may flow into another AdS of radius $R_{2}<R_{1}$
Where does the Lifshitz background flow?

Holographic flow

In the AdS-like geometries there is a natural notion of RG flow from the UV region to the IR region (flow into a horizon) Also and AdS with radius R_{1} may flow into another AdS of radius $R_{2}<R_{1}$
Where does the Lifshitz background flow?
If flows into an AdS [Kachru, Liu, Mulligan].

Asymptotic IR behavior

In deep IR dual theory flows into conformal regime. One can also think of the following gravitational interpretation of this phenomena. It appears that many solutions in backgrounds of Lifshitz-type have matter distributions which are localized near the UV boundary. In these solutions the invariant energy density

$$
\sqrt{-g(r)} \rho(r) \rightarrow 0 \quad \text { as } \quad r \rightarrow+\infty
$$

vanishes as we approach the IR boundary leaving only cosmological constant Λ. Asymptotic behavior of the solution with negative Λ as a source at $r \rightarrow \infty$ is of AdS type.

Holographic flow

Backreaction on the metric

$$
d s^{2}=L^{2}\left(-f^{2}(r) \frac{d t^{2}}{r^{2 z}}+g^{2}(r) \frac{d \mathbf{x}^{2}}{r^{2}}+\frac{d r^{2}}{r^{2}}\right)
$$

Holographic flow

Backreaction on the metric

$$
d s^{2}=L^{2}\left(-f^{2}(r) \frac{d t^{2}}{r^{2 z}}+g^{2}(r) \frac{d \mathbf{x}^{2}}{r^{2}}+\frac{d r^{2}}{r^{2}}\right)
$$

Derive the functions f, g from Einstein equations. For nonzero z there two fixed points: UV fixed point-Lifshitz, IR fixed point AdS space.

Holographic flow

Backreaction on the metric

$$
d s^{2}=L^{2}\left(-f^{2}(r) \frac{d t^{2}}{r^{2 z}}+g^{2}(r) \frac{d \mathbf{x}^{2}}{r^{2}}+\frac{d r^{2}}{r^{2}}\right)
$$

Derive the functions f, g from Einstein equations. For nonzero z there two fixed points: UV fixed point-Lifshitz, IR fixed point AdS space.
Fixed points are attractive.

Holographic flow

Backreaction on the metric

$$
d s^{2}=L^{2}\left(-f^{2}(r) \frac{d t^{2}}{r^{2 z}}+g^{2}(r) \frac{d \mathbf{x}^{2}}{r^{2}}+\frac{d r^{2}}{r^{2}}\right)
$$

Derive the functions f, g from Einstein equations. For nonzero z there two fixed points: UV fixed point-Lifshitz, IR fixed point AdS space.
Fixed points are attractive.
A bit more tricky for $A d S_{2} \times \mathbb{R}^{2}$ Lifshitz $(z \rightarrow \infty)$. Currently unknown where does it flow

Holographic flow

Backreaction on the metric

$$
d s^{2}=L^{2}\left(-f^{2}(r) \frac{d t^{2}}{r^{2 z}}+g^{2}(r) \frac{d \mathbf{x}^{2}}{r^{2}}+\frac{d r^{2}}{r^{2}}\right)
$$

Derive the functions f, g from Einstein equations. For nonzero z there two fixed points: UV fixed point-Lifshitz, IR fixed point AdS space.
Fixed points are attractive.
A bit more tricky for $A d S_{2} \times \mathbb{R}^{2}$ Lifshitz $(z \rightarrow \infty)$. Currently unknown where does it flow
A deformation of the flow can also be done (Einstein-Proca theory) [Cheng, Hartnoll, Keeler].

Lifshitz from String Theory

Top-down approach
Naive way to proceed - try to construct a type IIA (IIB) solution by deforming existing ones (It works for Schrödinger backgrounds) fails - NO GO theorems. However, one may construct "spatial" Lifshitz [Takayanagi]

Lifshitz from String Theory

Top-down approach
Naive way to proceed - try to construct a type IIA (IIB) solution by deforming existing ones (It works for Schrödinger backgrounds)
fails - NO GO theorems. However, one may construct "spatial"
Lifshitz [Takayanagi]
Three different constructions [Hartnoll, Polchinski, Silverstein, Tong]

- from Landscape dual pairs compactifications of F theory on an elliptic fibration over a six-manifold of the form $Y_{5} \times S^{1}$
- from brane polarization
- Baryon-induced Lifshitz in the IR, $A d S_{4}$ in the UV, Fermi sea in between.
All constructions are nonSUSY

Wilson loops

A new parameter z has appeared - interesting to study dependence of nonlocal observables

Wilson loops

A new parameter z has appeared - interesting to study dependence of nonlocal observables

$$
S=\int \sqrt{\operatorname{det}_{\alpha, \beta} \partial_{\alpha} X^{A} \partial_{\beta} X^{B} g_{A B}} d \sigma d \tau
$$

Wilson loops

For the surfaces we consider here the embedding function has the following form

$$
X^{A}=\left(\begin{array}{lll}
\tau & \sigma & r(\tau, \sigma)
\end{array}\right)
$$

where worldsheet coordinates τ, σ are trivially mapped onto (t, x) plane at some constant value of r, e.g. onto the UV boundary. The action reads

$$
S=\int d \sigma d \tau \sqrt{r^{2 \xi+2 \zeta}+r^{2(\xi-1) r^{\prime 2}+r^{2(\zeta-1) \dot{r}^{2}}} ~}
$$

This action remains the same if we interchange

$$
\xi \longleftrightarrow \zeta, \quad t \longleftrightarrow x
$$

simultaneously. However, a different functional can be obtained if only one of the above transformations is performed. We shall refer to either of those transformations as mirror transformations and shall use them to obtain mirror solutions.

Rectangular Wilson loops

$$
S_{\mathrm{reg}}^{\mathrm{UV}}(\xi, \zeta)=\frac{4 T}{R \xi / \zeta} \frac{\pi^{\frac{\xi+\zeta}{2 \zeta}}}{2 \xi+2 \zeta} \frac{\Gamma\left(-\frac{\xi}{2 \xi+2 \zeta}\right)}{\Gamma\left(\frac{\zeta}{2 \xi+2 \zeta}\right)}\left[\frac{\Gamma\left(\frac{\xi+2 \zeta}{2 \xi+2 \zeta}\right)}{\zeta \Gamma\left(\frac{\zeta}{2 \xi+2 \zeta}\right)}\right]^{\frac{\xi}{\zeta}}
$$

A note

Two critical exponents ξ and ζ. Absorb on of the exponents by redefining $w=r^{\zeta}$. The metric will be modified as follows

$$
d s^{2}=L^{2}\left(-\frac{d t^{2}}{w^{2 \xi / \zeta}}+\frac{d \mathbf{x}^{2}}{w^{2}}+\frac{1}{\zeta^{2}} \frac{d w^{2}}{w^{2}}\right)
$$

We now need to rescale

$$
L \rightarrow \zeta L \quad t \rightarrow \zeta^{-1} t, \quad \mathbf{x} \rightarrow \zeta^{-1} \mathbf{x}
$$

and the metric takes the standard Lifshitz form

$$
d s^{2}=L^{2}\left(-\frac{d t^{2}}{w^{2 z}}+\frac{d \mathbf{x}^{2}}{w^{2}}+\frac{d w^{2}}{w^{2}}\right)
$$

where $z=\xi / \zeta$.

Conclusions

- Further (supersymmetric) embedding of Lifshitz into string theory
- Construction of holography dual gauge theories
- What properties does a theory (either gauge or string side) have to have in order to have a holography dual description?
- CMT applications

