Lorentz Invariance Violation and Extra Dimensions

Peter Koroteev

University of Minnesota

In collaboration with M. Libanov, I. Gordeli
0712.11360901 .43470904 .0509 , work in progress

MG12, July 16th 2009

Outline

Extra Dimensions as Alternative to Compactification Motivation
 Braneworlds with broken LI

Spectra of Perturbations
Localization and Delocalization
Special Cases

Why to Break Lorentz Invariance?

- Does not have to be something fundamental (strings, branes, etc)

Why to Break Lorentz Invariance?

- Does not have to be something fundamental (strings, branes, etc)
- Experimentally not well tested at high energies

Why to Break Lorentz Invariance?

- Does not have to be something fundamental (strings, branes, etc)
- Experimentally not well tested at high energies
- Diversifies inflation scenarios [Rubakov et al]

Why to Break Lorentz Invariance?

- Does not have to be something fundamental (strings, branes, etc)
- Experimentally not well tested at high energies
- Diversifies inflation scenarios [Rubakov et al]
- Gives more freedom in models with extra dimensions

Why to Break Lorentz Invariance?

- Does not have to be something fundamental (strings, branes, etc)
- Experimentally not well tested at high energies
- Diversifies inflation scenarios [Rubakov et al]
- Gives more freedom in models with extra dimensions
- Nice IR behavior of field theories

$$
\int d t d^{d} x \sqrt{g}\left(\left(\partial_{0} \phi\right)^{2}-(\Delta \phi)^{2}-\epsilon\left(\partial_{i} \phi\right)^{2}\right)
$$

Why to Break Lorentz Invariance?

- Does not have to be something fundamental (strings, branes, etc)
- Experimentally not well tested at high energies
- Diversifies inflation scenarios [Rubakov et al]
- Gives more freedom in models with extra dimensions
- Nice IR behavior of field theories

$$
\int d t d^{d} \times \sqrt{g}\left(\left(\partial_{0} \phi\right)^{2}-(\Delta \phi)^{2}-\epsilon\left(\partial_{i} \phi\right)^{2}\right)
$$

becomes Lorentz invariant in IR

Lorentz Invariant case

\mathbb{Z}_{2} symmetric $A d S_{5}$ orbifold with brane of constant tension

Example of Macroscopic Solution

Metric [PK Libanov]

$$
d s^{2}=e^{-2 k \xi|z|} d t^{2}-e^{-2 k \zeta|z|} d \mathbf{x}^{2}-d z^{2}
$$

Example of Macroscopic Solution

Metric [PK Libanov]

$$
d s^{2}=e^{-2 k \xi|z|} d t^{2}-e^{-2 k \zeta|z|} d \mathbf{x}^{2}-d z^{2}
$$

Matter - ideal relativistic fluid

$$
T_{B}^{A}=u^{A} u_{B}(p+\rho)-p \delta_{B}^{A}+\Lambda, \quad u_{A} u^{A}=1
$$

Example of Macroscopic Solution

Metric [PK Libanov]

$$
d s^{2}=e^{-2 k \xi|z|} d t^{2}-e^{-2 k \zeta|z|} d \mathbf{x}^{2}-d z^{2}
$$

Matter - ideal relativistic fluid

$$
T_{B}^{A}=u^{A} u_{B}(p+\rho)-p \delta_{B}^{A}+\Lambda, \quad u_{A} u^{A}=1
$$

equation of state $p=w \rho, p_{5}=\omega \rho$. NEC $w>-1, \omega>-1$

Example of Macroscopic Solution

Metric [PK Libanov]

$$
d s^{2}=e^{-2 k \xi|z|} d t^{2}-e^{-2 k \zeta|z|} d \mathbf{x}^{2}-d z^{2}
$$

Matter - ideal relativistic fluid

$$
T_{B}^{A}=u^{A} u_{B}(p+\rho)-p \delta_{B}^{A}+\Lambda, \quad u_{A} u^{A}=1
$$

equation of state $p=w \rho, p_{5}=\omega \rho$. NEC $w>-1, \omega>-1$

$$
\begin{aligned}
\rho & =-\Lambda+6 k^{2} \zeta^{2} \\
w & =-1+\frac{3 \zeta^{2}-2 \zeta \xi-\xi^{2}}{\rho} \\
\omega & =-1+\frac{3 \zeta(\zeta-\xi)}{\rho}
\end{aligned}
$$

Example of Macroscopic Solution

Metric [PK Libanov]

$$
d s^{2}=e^{-2 k \xi|z|} d t^{2}-e^{-2 k \zeta|z|} d \mathbf{x}^{2}-d z^{2}
$$

Matter - ideal relativistic fluid

$$
T_{B}^{A}=u^{A} u_{B}(p+\rho)-p \delta_{B}^{A}+\Lambda, \quad u_{A} u^{A}=1
$$

equation of state $p=w \rho, p_{5}=\omega \rho$. NEC $w>-1, \omega>-1$

$$
\begin{aligned}
\rho & =-\Lambda+6 k^{2} \zeta^{2} \\
w & =-1+\frac{3 \zeta^{2}-2 \zeta \xi-\xi^{2}}{\rho} \\
\omega & =-1+\frac{3 \zeta(\zeta-\xi)}{\rho}
\end{aligned}
$$

But brane NEC implies $\zeta-\xi<0$

Microscopic Solution

$2+1$ Lifshitz model [Kachru Liu Mulligan]

$$
S=-\int \frac{1}{e^{2}} F_{(2)} \wedge * F_{(2)}+F_{(3)} \wedge * F_{(3)}-c \int F_{(2)} \wedge B_{(2)}
$$

Microscopic Solution

$2+1$ Lifshitz model [Kachru Liu Mulligan]

$$
\begin{gathered}
S=-\int \frac{1}{e^{2}} F_{(2)} \wedge * F_{(2)}+F_{(3)} \wedge * F_{(3)}-c \int F_{(2)} \wedge B_{(2)} \\
F_{(2)}=A \theta_{r} \wedge \theta_{t}, \quad F_{(3)}=B \theta_{r} \wedge \theta_{x} \wedge \theta_{y}
\end{gathered}
$$

Microscopic Solution

$2+1$ Lifshitz model [Kachru Liu Mulligan]

$$
\begin{gathered}
S=-\int \frac{1}{e^{2}} F_{(2)} \wedge * F_{(2)}+F_{(3)} \wedge * F_{(3)}-c \int F_{(2)} \wedge B_{(2)}, \\
F_{(2)}=A \theta_{r} \wedge \theta_{t}, \quad F_{(3)}=B \theta_{r} \wedge \theta_{x} \wedge \theta_{y},
\end{gathered}
$$

Solution of Einstein equations $Z=\zeta / \xi$

$$
\begin{aligned}
\Lambda & =-\frac{Z^{2}+Z+4}{2 L^{2}} \\
A^{2} & =\frac{2 Z(Z-1)}{L^{2}} \\
B^{2} & =\frac{4(Z-1)}{L^{2}}
\end{aligned}
$$

To avoid tachyonic solutions $Z>1$

Correspondence

[PK Gordeli]

	KL	KLM
Cosmological constant	$\Lambda=-\rho-3 k^{2}$	$\Lambda=-L^{-2}\left(Z^{2}+Z+4\right)$
First component	w	$-1+\frac{A^{2}+B^{2}}{2\left(-\Lambda-3 L^{-2}\right)}$
Second component	ω	$-1+\frac{B^{2}}{2\left(-\Lambda-3 L^{-2}\right)}$
LIV parameter	$w-\omega$	A
Anisotropy	$p_{1}-p_{4}$	Energy flux A^{2} w.r.t z direction
Constraints	Reality of Fluxes	Null energy condition

Correspondence

[PK Gordeli]

	KL	KLM
Cosmological constant	$\Lambda=-\rho-3 k^{2}$	$\Lambda=-L^{-2}\left(Z^{2}+Z+4\right)$
First component	w	$-1+\frac{A^{2}+B^{2}}{2\left(-\Lambda-3 L^{-2}\right)}$
Second component	ω	$-1+\frac{B^{2}}{2\left(-\Lambda-3 L^{-2}\right)}$
LIV parameter	$w-\omega$	A
Anisotropy	$p_{1}-p_{4}$	Energy flux A^{2} w.r.t z direction
Constraints	Reality of Fluxes	Null energy condition

!! Recall that in these examples bulk NEC is inconsistent with brane NEC !!

Does it mean anything?

Does it mean anything?

YES - one can proof NO-GO theorem

Does it mean anything?

YES - one can proof NO-GO theorem
Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$

Does it mean anything?

YES - one can proof NO-GO theorem
Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$

Does it mean anything?

YES - one can proof NO-GO theorem
Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $\quad T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$
3. $\rho_{b}+\sigma \geq 0$

Does it mean anything?

YES - one can proof NO-GO theorem
Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $\quad T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$
3. $\rho_{b}+\sigma \geq 0$
4. Spatial brane curvature vanishes $k=0$

Does it mean anything?

YES - one can proof NO-GO theorem
Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $\quad T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$
3. $\rho_{b}+\sigma \geq 0$
4. Spatial brane curvature vanishes $k=0$
5. LI is broken $a(z) \neq b(z)$

Does it mean anything?

YES - one can proof NO-GO theorem
Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $\quad T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$
3. $\rho_{b}+\sigma \geq 0$
4. Spatial brane curvature vanishes $k=0$
5. LI is broken $a(z) \neq b(z)$

Then a static solution with symmetry $S O(3) \times T^{3} \times \mathbb{Z}_{2}$ DOES NOT exist [PK, Libanov]

Does it mean anything?

YES - one can proof NO-GO theorem
Let the following conditions be satisfied

1. 5d NEC $\quad T_{A B} \xi^{A} \xi^{B} \geq 0, \quad g_{A B} \xi^{A} \xi^{B}=0$
2. brane NEC $T_{b, \mu \nu} \xi^{\mu} \xi^{\nu} \geq 0, \quad g_{b, \mu \nu} \xi^{\mu} \xi^{\nu}=0$
3. $\rho_{b}+\sigma \geq 0$
4. Spatial brane curvature vanishes $k=0$
5. LI is broken $a(z) \neq b(z)$

Then a static solution with symmetry $S O(3) \times T^{3} \times \mathbb{Z}_{2}$ DOES NOT exist [PK, Libanov]
The statement does not depend on the volume $\int_{-\infty}^{+\infty} \sqrt{g} d z$ of the extra dimension

All conditions are important!

All conditions are important!

- In LI case everything is fine, e.g.

$$
a^{\prime \prime}=b^{\prime \prime}=\left\{\begin{aligned}
\left(z-z_{0}\right)^{2}, & 0 \leq z<z_{0} \\
0, & z \geq z_{0}
\end{aligned}\right.
$$

All conditions are important!

- In LI case everything is fine, e.g.

$$
a^{\prime \prime}=b^{\prime \prime}=\left\{\begin{aligned}
\left(z-z_{0}\right)^{2}, & 0 \leq z<z_{0} \\
0, & z \geq z_{0}
\end{aligned}\right.
$$

But still bulk matter needs to be localized near brane

All conditions are important!

- In LI case everything is fine, e.g.

$$
a^{\prime \prime}=b^{\prime \prime}=\left\{\begin{aligned}
\left(z-z_{0}\right)^{2}, & 0 \leq z<z_{0} \\
0, & z \geq z_{0}
\end{aligned}\right.
$$

But still bulk matter needs to be localized near brane

- $k \neq 0$ entails

$$
\begin{aligned}
& w(z)=-\frac{\left(\xi^{2}+2 \xi \zeta+3 \zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{6 \zeta^{2} e^{-2 \zeta k z}-12 \kappa^{2} / k^{2}} \\
& \omega(z)=-\frac{\left(\xi \zeta+\zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{2 \zeta^{2} e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}
\end{aligned}
$$

All conditions are important!

- In LI case everything is fine, e.g.

$$
a^{\prime \prime}=b^{\prime \prime}=\left\{\begin{aligned}
\left(z-z_{0}\right)^{2}, & 0 \leq z<z_{0} \\
0, & z \geq z_{0}
\end{aligned}\right.
$$

But still bulk matter needs to be localized near brane

- $k \neq 0$ entails

$$
\begin{aligned}
& w(z)=-\frac{\left(\xi^{2}+2 \xi \zeta+3 \zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{6 \zeta^{2} e^{-2 \zeta k z}-12 \kappa^{2} / k^{2}} \\
& \omega(z)=-\frac{\left(\xi \zeta+\zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{2 \zeta^{2} e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}
\end{aligned}
$$

But one needs to have $\kappa / k \sim 1$

All conditions are important!

- In LI case everything is fine, e.g.

$$
a^{\prime \prime}=b^{\prime \prime}=\left\{\begin{aligned}
\left(z-z_{0}\right)^{2}, & 0 \leq z<z_{0} \\
0, & z \geq z_{0}
\end{aligned}\right.
$$

But still bulk matter needs to be localized near brane

- $k \neq 0$ entails

$$
\begin{aligned}
& w(z)=-\frac{\left(\xi^{2}+2 \xi \zeta+3 \zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{6 \zeta^{2} e^{-2 \zeta k z}-12 \kappa^{2} / k^{2}} \\
& \omega(z)=-\frac{\left(\xi \zeta+\zeta^{2}\right) e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}{2 \zeta^{2} e^{-2 \zeta k z}-4 \kappa^{2} / k^{2}}
\end{aligned}
$$

But one needs to have $\kappa / k \sim 1$ which makes the model useless phenomenologically

Outlook so far

- Coordinate independent description of spaces with broken Lorentz Invariance (canonical formulation)

Outlook so far

- Coordinate independent description of spaces with broken Lorentz Invariance (canonical formulation)
- We considered only static backgrounds. What would happen in time dependent case? Ways to evade the theorem?

Outlook so far

- Coordinate independent description of spaces with broken Lorentz Invariance (canonical formulation)
- We considered only static backgrounds. What would happen in time dependent case? Ways to evade the theorem?
- Transition from one "AdS" to another via domain wall can be made possible

Outlook so far

- Coordinate independent description of spaces with broken Lorentz Invariance (canonical formulation)
- We considered only static backgrounds. What would happen in time dependent case? Ways to evade the theorem?
- Transition from one "AdS" to another via domain wall can be made possible
- Obtain these solutions from String Theory

Outlook so far

- Coordinate independent description of spaces with broken Lorentz Invariance (canonical formulation)
- We considered only static backgrounds. What would happen in time dependent case? Ways to evade the theorem?
- Transition from one "AdS" to another via domain wall can be made possible
- Obtain these solutions from String Theory
- So what is the dynamics in these backgrounds?

Spectra of Perturbations

Localization vs Delocalization

Metric

$$
d s^{2}=e^{-2 a(z)} d t^{2}-e^{-2 b(z)} d x^{2}-d z^{2}
$$

Localization vs Delocalization

Metric

$$
d s^{2}=e^{-2 a(z)} d t^{2}-e^{-2 b(z)} d \mathbf{x}^{2}-d z^{2}
$$

Geodesic equation

$$
\ddot{x}^{A}+\Gamma_{B C}^{A} \dot{x}^{B} \dot{x}^{C}=0
$$

Localization vs Delocalization

Metric

$$
d s^{2}=e^{-2 a(z)} d t^{2}-e^{-2 b(z)} d \mathbf{x}^{2}-d z^{2}
$$

Geodesic equation

$$
\ddot{x}^{A}+\Gamma_{B C}^{A} \dot{x}^{B} \dot{x}^{C}=0
$$

for fifth component

$$
\ddot{z}=a^{\prime} \mathrm{e}^{-2 a}\left(\dot{x}^{0}\right)^{2}-b^{\prime} \mathrm{e}^{-2 b}(\dot{\mathbf{x}})^{2}
$$

Localization vs Delocalization

Metric

$$
d s^{2}=e^{-2 a(z)} d t^{2}-e^{-2 b(z)} d \mathbf{x}^{2}-d z^{2}
$$

Geodesic equation

$$
\ddot{x}^{A}+\Gamma_{B C}^{A} \dot{x}^{B} \dot{x}^{C}=0
$$

for fifth component

$$
\ddot{z}=a^{\prime} \mathrm{e}^{-2 a}\left(\dot{x}^{0}\right)^{2}-b^{\prime} \mathrm{e}^{-2 b}(\dot{\mathbf{x}})^{2}
$$

After integration

$$
\dot{z}^{2}=\alpha^{2} \mathrm{e}^{2 a}-\left(\beta^{i}\right)^{2} \mathrm{e}^{2 b}
$$

Localization vs Delocalization

Metric

$$
d s^{2}=e^{-2 a(z)} d t^{2}-e^{-2 b(z)} d \mathbf{x}^{2}-d z^{2}
$$

Geodesic equation

$$
\ddot{x}^{A}+\Gamma_{B C}^{A} \dot{x}^{B} \dot{x}^{C}=0
$$

for fifth component

$$
\ddot{z}=a^{\prime} \mathrm{e}^{-2 a}\left(\dot{x}^{0}\right)^{2}-b^{\prime} \mathrm{e}^{-2 b}(\dot{\mathbf{x}})^{2}
$$

After integration

$$
\dot{z}^{2}=\alpha^{2} \mathrm{e}^{2 a}-\left(\beta^{i}\right)^{2} \mathrm{e}^{2 b}
$$

Which means $a^{\prime}<b^{\prime}$ - localization and $a^{\prime}>b^{\prime}$ - delocalization

Localization for Scalars

Scalar 5D field

$$
S=\int d t d \mathbf{x} \int_{-\infty}^{+\infty} d z \sqrt{g} g^{A B} \partial_{A} \phi \partial_{B} \phi
$$

Localization for Scalars

Scalar 5D field

$$
S=\int d t d \mathbf{x} \int_{-\infty}^{+\infty} d z \sqrt{g} g^{A B} \partial_{A} \phi \partial_{B} \phi
$$

EOM

$$
\left[-\partial_{z}^{2}+\left(a^{\prime}+3 b^{\prime}\right) \partial_{z}+\mathrm{e}^{2 a(z)} \partial_{t}^{2}-\mathrm{e}^{2 b(z)} \partial_{i}^{2}\right] \phi=0
$$

Localization for Scalars

Scalar 5D field

$$
S=\int d t d \mathbf{x} \int_{-\infty}^{+\infty} d z \sqrt{g} g^{A B} \partial_{A} \phi \partial_{B} \phi
$$

EOM

$$
\left[-\partial_{z}^{2}+\left(a^{\prime}+3 b^{\prime}\right) \partial_{z}+\mathrm{e}^{2 a(z)} \partial_{t}^{2}-\mathrm{e}^{2 b(z)} \partial_{i}^{2}\right] \phi=0
$$

Fourier transform, redefinition of ϕ, and reparametrization of z yield Schrödinger equation

$$
\chi^{\prime \prime}+\left(E^{2}-V\right) \chi=0
$$

Localization for Scalars

Scalar 5D field

$$
S=\int d t d \mathbf{x} \int_{-\infty}^{+\infty} d z \sqrt{g} g^{A B} \partial_{A} \phi \partial_{B} \phi
$$

EOM

$$
\left[-\partial_{z}^{2}+\left(a^{\prime}+3 b^{\prime}\right) \partial_{z}+\mathrm{e}^{2 a(z)} \partial_{t}^{2}-\mathrm{e}^{2 b(z)} \partial_{i}^{2}\right] \phi=0
$$

Fourier transform, redefinition of ϕ, and reparametrization of z yield Schrödinger equation

$$
\chi^{\prime \prime}+\left(E^{2}-V\right) \chi=0
$$

potential

$$
V=-\frac{1}{4} a^{\prime 2}+\frac{9}{4} b^{\prime 2}+p^{2} \mathrm{e}^{2(b-a)}-\frac{1}{2}\left(a^{\prime \prime}+3 b^{\prime \prime}\right)
$$

(De)localization - Features

- The behavior at infinity which is controlled by the Lorentz invariance violation (the sign of $b-a$). The potential V can increase/decrease as $y \rightarrow \infty$.

(De)localization - Features

- The behavior at infinity which is controlled by the Lorentz invariance violation (the sign of $b-a$). The potential V can increase/decrease as $y \rightarrow \infty$.
- The sign of the delta-function term. The potential may have either delta-well or delta-peak depending on this sign.

(De)localization - Features

- If the momenta-dependent term increases as $y \rightarrow \infty$, then one has a discrete spectrum as in the box-type potential. The potential might have local minima and maxima but the behavior of this potential at infinity qualitatively defines the character of the spectrum. On the contrary, if the potential decays at infinity, then we have continuous spectrum of plane waves propagating along y-direction. Some combination of these two scenarios is possible when $V \rightarrow V_{\infty}=$ const as $z \rightarrow \infty$. Then those modes with $E^{2}<V_{\infty}$ belong to discrete spectrum and modes with $E^{2}>V_{\infty}$ contribute to continuous spectrum.

(De)localization - Features

- If the momenta-dependent term increases as $y \rightarrow \infty$, then one has a discrete spectrum as in the box-type potential. The potential might have local minima and maxima but the behavior of this potential at infinity qualitatively defines the character of the spectrum. On the contrary, if the potential decays at infinity, then we have continuous spectrum of plane waves propagating along y-direction. Some combination of these two scenarios is possible when $V \rightarrow V_{\infty}=$ const as $z \rightarrow \infty$. Then those modes with $E^{2}<V_{\infty}$ belong to discrete spectrum and modes with $E^{2}>V_{\infty}$ contribute to continuous spectrum.
- The sign of delta-function term affects zero mode existence. In a delta-well there might be a zero-mode and none in a delta-peak.

Linear Parameterization

$$
a(z)=\xi k|z|, \quad b(z)=\zeta k|z|
$$

Linear Parameterization

$a(z)=\xi k|z|, b(z)=\zeta k|z|$
Potential

$$
V_{p}(y)=p^{2}(1+\xi k|y|)^{2(1-\zeta / \xi)}+\frac{9 \zeta^{2} k^{2}}{4(1+\xi k|y|)^{2}}-3 \zeta k \delta(y)
$$

Potentials

Space of Metrics

$$
V_{p}(y)=p^{2}(1+\xi k|y|)^{2(1-\zeta / \xi)}+\frac{9 \zeta^{2} k^{2}}{4(1+\xi k|y|)^{2}}-3 \zeta k \delta(y)
$$

The Model A

Metric

$$
d s^{2}=d t^{2}-\mathrm{e}^{-2 k|z|} d \mathrm{x}^{2}-d z^{2}
$$

The Model A

Metric

$$
d s^{2}=d t^{2}-\mathrm{e}^{-2 k|z|} d \mathrm{x}^{2}-d z^{2}
$$

The potential

$$
V(z)=p^{2} \mathrm{e}^{2 k|z|}+\frac{9}{4} k^{2}-3 k \delta(z)
$$

The Model A

Metric

$$
d s^{2}=d t^{2}-\mathrm{e}^{-2 k|z|} d \mathrm{x}^{2}-d z^{2}
$$

The potential

$$
V(z)=p^{2} \mathrm{e}^{2 k|z|}+\frac{9}{4} k^{2}-3 k \delta(z)
$$

Generic solution

$$
\chi(z)=N \mathrm{~K}_{\nu}\left(\frac{p}{k} \mathrm{e}^{k|z|}\right)
$$

The Model A

Metric

$$
d s^{2}=d t^{2}-\mathrm{e}^{-2 k|z|} d \mathrm{x}^{2}-d z^{2}
$$

The potential

$$
V(z)=p^{2} \mathrm{e}^{2 k|z|}+\frac{9}{4} k^{2}-3 k \delta(z)
$$

Generic solution

$$
\chi(z)=N \mathrm{~K}_{\nu}\left(\frac{p}{k} \mathrm{e}^{k|z|}\right)
$$

Matching

$$
\frac{p}{k} \frac{\mathrm{~K}_{\nu+1}\left(\frac{p}{k}\right)}{\mathrm{K}_{\nu}\left(\frac{p}{k}\right)}=\frac{3}{2}+\nu
$$

Spectrum of Model A

Dispersion Relations

Dispersion Relations

- Zero mode at small momenta

$$
E^{2}=3 p^{2}\left(1-\frac{p}{k}+\mathcal{O}\left(p^{2}\right)\right)
$$

Dispersion Relations

- Zero mode at small momenta

$$
E^{2}=3 p^{2}\left(1-\frac{p}{k}+\mathcal{O}\left(p^{2}\right)\right)
$$

- higher modes at low momenta

$$
E_{n}^{2}=\frac{9}{4} k^{2}+\frac{\pi^{2} k^{2} n^{2}}{4 \log ^{2} \frac{p}{k}}
$$

Dispersion Relations

- Zero mode at small momenta

$$
E^{2}=3 p^{2}\left(1-\frac{p}{k}+\mathcal{O}\left(p^{2}\right)\right)
$$

- higher modes at low momenta

$$
E_{n}^{2}=\frac{9}{4} k^{2}+\frac{\pi^{2} k^{2} n^{2}}{4 \log ^{2} \frac{p}{k}}
$$

- large momenta - everything $E=p+\ldots$

Static Potential

Brane-to-Bulk Propagator

$$
\left[-\partial_{z}^{2}-E^{2}+p^{2} e^{2 k|z|}+\frac{9}{4} k^{2}-3 k \delta(z)\right] \Delta_{p}(E, p, z)=\delta(z)
$$

Static Potential

Brane-to-Bulk Propagator

$$
\left[-\partial_{z}^{2}-E^{2}+p^{2} e^{2 k|z|}+\frac{9}{4} k^{2}-3 k \delta(z)\right] \Delta_{p}(E, p, z)=\delta(z)
$$

Put $E=0$ to find the Green function. On the brane $z=0$

$$
G_{p}(0, p, 0)=\frac{k}{2 p^{2}}+\frac{1}{2 p}
$$

Static Potential

Brane-to-Bulk Propagator

$$
\left[-\partial_{z}^{2}-E^{2}+p^{2} e^{2 k|z|}+\frac{9}{4} k^{2}-3 k \delta(z)\right] \Delta_{p}(E, p, z)=\delta(z)
$$

Put $E=0$ to find the Green function. On the brane $z=0$

$$
G_{p}(0, p, 0)=\frac{k}{2 p^{2}}+\frac{1}{2 p}
$$

Brane static potential

$$
G(r)=\frac{k}{4 \pi r}\left(1+\frac{2}{\pi k r}\right)
$$

Fermions

Fermions

Action

$$
S=\int d t d \mathbf{x} \int_{-\infty}^{+\infty} d z \sqrt{g}\left(i \bar{\Psi} \nwarrow \Psi+m_{\psi} \bar{\Psi} \Psi\right)
$$

Fermions

Action

$$
S=\int d t d \mathbf{x} \int_{-\infty}^{+\infty} d z \sqrt{g}\left(i \bar{\Psi} \not \subset \Psi+m_{\psi} \bar{\Psi} \Psi\right)
$$

Dirac equation

$$
i \Gamma^{A} \nabla_{A} \Psi(x, z)+m_{\psi} \Psi(x, z)=0, \quad m_{\psi}=m \operatorname{sign}(z)
$$

Fermions

Action

$$
S=\int d t d \mathbf{x} \int_{-\infty}^{+\infty} d z \sqrt{g}\left(i \bar{\Psi} \nwarrow \Psi+m_{\psi} \bar{\Psi} \Psi\right)
$$

Dirac equation

$$
i \Gamma^{A} \nabla_{A} \Psi(x, z)+m_{\psi} \Psi(x, z)=0, \quad m_{\psi}=m \operatorname{sign}(z)
$$

In rescaled variables

$$
\left(E \gamma^{0}-\mathrm{e}^{k|z|} \gamma^{i} p_{i}-\gamma^{5} \partial_{z}\right) \psi-m_{\psi} \psi=0
$$

Fermions

Action

$$
S=\int d t d \mathbf{x} \int_{-\infty}^{+\infty} d z \sqrt{g}\left(i \bar{\Psi} \not \subset \Psi+m_{\psi} \bar{\Psi} \Psi\right)
$$

Dirac equation

$$
i \Gamma^{A} \nabla_{A} \Psi(x, z)+m_{\psi} \Psi(x, z)=0, \quad m_{\psi}=m \operatorname{sign}(z)
$$

In rescaled variables

$$
\left(E \gamma^{0}-\mathrm{e}^{k|z|} \gamma^{i} p_{i}-\gamma^{5} \partial_{z}\right) \psi-m_{\psi} \psi=0
$$

Using special rep os γ-matrices

$$
\begin{aligned}
& E \chi-i p \sigma_{3} \phi \mathrm{e}^{k|z|}+\sigma_{1} \phi^{\prime}-m_{\psi} \phi=0 \\
& E \phi+i p \sigma_{3} \chi \mathrm{e}^{k|z|}-\sigma_{1} \chi^{\prime}-m_{\psi} \chi=0
\end{aligned}
$$

Dispersion Relations

- At $m>k / 2$ the dispersion relation is

$$
E \simeq\left(\frac{2 m}{2 m-k}\right) p
$$

Dispersion Relations

- At $m>k / 2$ the dispersion relation is

$$
E \simeq\left(\frac{2 m}{2 m-k}\right) p
$$

- At $m=k / 2$

$$
E \simeq-p \log \frac{p \mathrm{e}^{\gamma_{E}}}{2 k}
$$

Dispersion Relations

- At $m>k / 2$ the dispersion relation is

$$
E \simeq\left(\frac{2 m}{2 m-k}\right) p
$$

- At $m=k / 2$

$$
E \simeq-p \log \frac{p \mathrm{e}^{\gamma_{E}}}{2 k}
$$

- At $0<m<k / 2$

$$
E \simeq 2 m \frac{\Gamma\left(\frac{1}{2}-\frac{m}{k}\right)}{\Gamma\left(\frac{1}{2}+\frac{m}{k}\right)}\left(\frac{p}{2 k}\right)^{\frac{2 m}{k}}
$$

Higher modes

Higher modes at low momenta

$$
E_{n}=m \sqrt{1+\left(\frac{\pi n k}{k-2 \Psi\left(\frac{1}{2}\right) m+2 m \log \frac{p}{2 k}}\right)^{2}}
$$

The case $m=0$ is very neat

$$
E_{n}=-\frac{\pi k(2 n+1)}{4 \log \frac{p}{2 k}}+\mathcal{O}(p), \quad n \in \mathbb{N}
$$

All modes at high momenta

$$
E=p+\mathcal{O}\left(p^{1 / 3}\right)
$$

Chirality

Left and Right fermions $\psi_{L, R}=\frac{1}{2}\left(1 \mp \gamma_{5}\right) \psi$

$$
\psi_{L, R}^{>}=\left(\frac{\xi_{+}\left(t \mathrm{e}^{k|z|}\right)}{\xi_{+}(t)} \pm \gamma \frac{\xi_{-}\left(t \mathrm{e}^{k|z|}\right)}{\xi_{-}(t)}\right) \frac{1}{2} \sum_{\alpha} C_{\alpha}\left(U_{\alpha,+} \pm U_{\alpha,-}\right)
$$

Chirality

Left and Right fermions $\psi_{L, R}=\frac{1}{2}\left(1 \mp \gamma_{5}\right) \psi$

$$
\psi_{L, R}^{>}=\left(\frac{\xi_{+}\left(t \mathrm{e}^{k|z|}\right)}{\xi_{+}(t)} \pm \gamma \frac{\xi_{-}\left(t \mathrm{e}^{k|z|}\right)}{\xi_{-}(t)}\right) \frac{1}{2} \sum_{\alpha} C_{\alpha}\left(U_{\alpha,+} \pm U_{\alpha,-}\right)
$$

Both left-handed and right-handed components do not vanish as functions of z.

Chirality

Left and Right fermions $\psi_{L, R}=\frac{1}{2}\left(1 \mp \gamma_{5}\right) \psi$

$$
\psi_{L, R}^{>}=\left(\frac{\xi_{+}\left(t \mathrm{e}^{k|z|}\right)}{\xi_{+}(t)} \pm \gamma \frac{\xi_{-}\left(t \mathrm{e}^{k|z|}\right)}{\xi_{-}(t)}\right) \frac{1}{2} \sum_{\alpha} C_{\alpha}\left(U_{\alpha,+} \pm U_{\alpha,-}\right)
$$

Both left-handed and right-handed components do not vanish as functions of z. E.g. zero mode contains both left-handed and right-handed spinors, but right-handed spinor vanishes on the brane $z=0$.

Chirality

Left and Right fermions $\psi_{L, R}=\frac{1}{2}\left(1 \mp \gamma_{5}\right) \psi$

$$
\psi_{L, R}^{>}=\left(\frac{\xi_{+}\left(t \mathrm{e}^{k|z|}\right)}{\xi_{+}(t)} \pm \gamma \frac{\xi_{-}\left(t \mathrm{e}^{k|z|}\right)}{\xi_{-}(t)}\right) \frac{1}{2} \sum_{\alpha} C_{\alpha}\left(U_{\alpha,+} \pm U_{\alpha,-}\right)
$$

Both left-handed and right-handed components do not vanish as functions of z. E.g. zero mode contains both left-handed and right-handed spinors, but right-handed spinor vanishes on the brane $z=0$.
For higher modes: if $\gamma=1$ only left-handed spinors are localized if $\gamma=-1$ only right-handed spinors are localized on the brane

Chirality

Left and Right fermions $\psi_{L, R}=\frac{1}{2}\left(1 \mp \gamma_{5}\right) \psi$

$$
\psi_{L, R}^{>}=\left(\frac{\xi_{+}\left(t \mathrm{e}^{k|z|}\right)}{\xi_{+}(t)} \pm \gamma \frac{\xi_{-}\left(t \mathrm{e}^{k|z|}\right)}{\xi_{-}(t)}\right) \frac{1}{2} \sum_{\alpha} C_{\alpha}\left(U_{\alpha,+} \pm U_{\alpha,-}\right)
$$

Both left-handed and right-handed components do not vanish as functions of z. E.g. zero mode contains both left-handed and right-handed spinors, but right-handed spinor vanishes on the brane $z=0$.
For higher modes: if $\gamma=1$ only left-handed spinors are localized if $\gamma=-1$ only right-handed spinors are localized on the brane Depending on α the modes have different helicities

Outlook

- Study other models with broken LI

Outlook

- Study other models with broken LI
- Holography

Outlook

- Study other models with broken LI
- Holography
- Gravity and Cosmology

Outlook

- Study other models with broken LI
- Holography
- Gravity and Cosmology
- Low dimensional SUSY

