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Why to Break Lorentz Invariance?

I Does not have to be something fundamental (strings, branes,
etc)

I Experimentally not well tested at high energies

I Diversifies inflation scenarios [Rubakov et al]

I Gives more freedom in models with extra dimensions

I Nice IR behavior of field theories∫
dtddx

√
g
(
(∂0φ)2 − (∆φ)2 − ε(∂iφ)2

)
becomes Lorentz invariant in IR
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Lorentz Invariant case

Z2 symmetric AdS5 orbifold with brane of constant tension

Λ = −σ
2

6
M3, k =

σ

6
[Randall Sundrum]



Example of Macroscopic Solution

Metric [PK Libanov]

ds2 = e−2kξ|z|dt2 − e−2kζ|z|dx2 − dz2

Matter – ideal relativistic fluid

TA
B = uAuB(p + ρ)− pδAB + Λ, uAuA = 1

equation of state p = wρ, p5 = ωρ. NEC w > −1, ω > −1

ρ = −Λ+ 6k2ζ2

w = −1 +
3ζ2 − 2ζξ − ξ2

ρ

ω = −1 +
3ζ(ζ − ξ)

ρ

But brane NEC implies ζ − ξ < 0
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Microscopic Solution

2+1 Lifshitz model [Kachru Liu Mulligan]

S = −
∫

1

e2
F(2) ∧ ∗F(2) + F(3) ∧ ∗F(3) − c

∫
F(2) ∧ B(2) ,

F(2) = A θr ∧ θt , F(3) = B θr ∧ θx ∧ θy ,

Solution of Einstein equations Z = ζ/ξ

Λ = −Z 2 + Z + 4

2L2

A2 =
2Z (Z − 1)

L2

B2 =
4(Z − 1)

L2

To avoid tachyonic solutions Z > 1
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Correspondence

[PK Gordeli]

KL KLM

Cosmological constant Λ = −ρ− 3k2 Λ = −L−2(Z 2 + Z + 4)

First component w −1 +
A2 + B2

2(−Λ− 3L−2)

Second component ω −1 +
B2

2(−Λ− 3L−2)
LIV parameter w − ω A

Anisotropy p1 − p4 Energy flux A2

w.r.t z direction

Constraints Reality of Fluxes Null energy condition

!! Recall that in these examples bulk NEC is inconsistent with
brane NEC !!
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Does it mean anything?

YES — one can proof NO-GO theorem
Let the following conditions be satisfied

1. 5d NEC TABξ
AξB ≥ 0, gABξ

AξB = 0

2. brane NEC Tb, µνξ
µξν ≥ 0, gb, µνξ

µξν = 0

3. ρb + σ ≥ 0

4. Spatial brane curvature vanishes k = 0

5. LI is broken a(z) 6= b(z)

Then a static solution with symmetry SO(3)× T 3 × Z2 DOES
NOT exist [PK, Libanov]
The statement does not depend on the volume

∫ +∞
−∞
√

g dz of the
extra dimension
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All conditions are important!

I In LI case everything is fine, e.g.

a′′ = b′′ =

{
(z − z0)2, 0 ≤ z < z0,

0, z ≥ z0.

But still bulk matter needs to be localized near brane

I k 6= 0 entails

w(z) = −(ξ2 + 2ξζ + 3ζ2)e−2ζkz − 4κ2/k2

6ζ2e−2ζkz − 12κ2/k2

ω(z) = −(ξζ + ζ2)e−2ζkz − 4κ2/k2

2ζ2e−2ζkz − 4κ2/k2

But one needs to have κ/k ∼ 1 which makes the model
useless phenomenologically
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Outlook so far

I Coordinate independent description of spaces with broken
Lorentz Invariance (canonical formulation)

I We considered only static backgrounds. What would happen
in time dependent case? Ways to evade the theorem?

I Transition from one “AdS” to another via domain wall can be
made possible

I Obtain these solutions from String Theory

I So what is the dynamics in these backgrounds?
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Spectra of Perturbations



Localization vs Delocalization

Metric
ds2 = e−2a(z)dt2 − e−2b(z)dx2 − dz2

Geodesic equation
ẍA + ΓA

BC ẋB ẋC = 0

for fifth component

z̈ = a′e−2a
(
ẋ0
)2 − b′e−2b (ẋ)2

After integration

ż2 = α2e2a −
(
βi
)2

e2b

Which means a′ < b′ – localization and a′ > b′ – delocalization
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ẋ0
)2 − b′e−2b (ẋ)2
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Localization for Scalars
Scalar 5D field

S =

∫
dtdx

+∞∫
−∞

dz
√

g gAB∂Aφ∂Bφ

EOM [
−∂2

z + (a′ + 3b′)∂z + e2a(z)∂2
t − e2b(z)∂2

i

]
φ = 0

Fourier transform, redefinition of φ, and reparametrization of z
yield Schrödinger equation

χ′′ + (E 2 − V )χ = 0

potential

V = −1

4
a′2 +

9

4
b′2 + p2e2(b−a) − 1

2
(a′′ + 3b′′)
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(De)localization – Features

I The behavior at infinity which is controlled by the Lorentz
invariance violation (the sign of b − a). The potential V can
increase/decrease as y →∞.

I The sign of the delta-function term. The potential may have
either delta-well or delta-peak depending on this sign.
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(De)localization – Features

I If the momenta-dependent term increases as y →∞, then
one has a discrete spectrum as in the box-type potential. The
potential might have local minima and maxima but the
behavior of this potential at infinity qualitatively defines the
character of the spectrum. On the contrary, if the potential
decays at infinity, then we have continuous spectrum of plane
waves propagating along y -direction. Some combination of
these two scenarios is possible when V → V∞ = const as
z →∞. Then those modes with E 2 < V∞ belong to discrete
spectrum and modes with E 2 > V∞ contribute to continuous
spectrum.

I The sign of delta-function term affects zero mode existence.
In a delta-well there might be a zero-mode and none in a
delta-peak.
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spectrum.

I The sign of delta-function term affects zero mode existence.
In a delta-well there might be a zero-mode and none in a
delta-peak.



Linear Parameterization
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The Model A

Metric
ds2 = dt2 − e−2k|z|dx2 − dz2

The potential

V (z) = p2e2k|z| +
9

4
k2 − 3kδ(z)

Generic solution
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Spectrum of Model A



Dispersion Relations

I Zero mode at small momenta

E 2 = 3p2
(

1− p

k
+O(p2)

)

I higher modes at low momenta

E 2
n =

9

4
k2 +

π2k2n2

4 log2 p
k

I large momenta – everything E = p + . . .
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Static Potential

Brane-to-Bulk Propagator[
−∂2

z − E 2 + p2e2k|z| +
9

4
k2 − 3kδ(z)

]
∆p(E , p, z) = δ(z)

Put E = 0 to find the Green function. On the brane z = 0

Gp(0, p, 0) =
k

2p2
+

1

2p

Brane static potential

G (r) =
k

4πr

(
1 +

2

πkr

)
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Fermions

Action

S =

∫
dtdx

+∞∫
−∞

dz
√

g
(
i Ψ̄∇/ Ψ + mψΨ̄Ψ

)
Dirac equation

iΓA∇AΨ(x , z) + mψΨ(x , z) = 0, mψ = m sign(z)

In rescaled variables(
Eγ0 − ek|z|γ ipi − γ5∂z

)
ψ −mψψ = 0

Using special rep os γ-matrices

Eχ− ipσ3φek|z| + σ1φ
′ −mψφ = 0

Eφ+ ipσ3χek|z| − σ1χ
′ −mψχ = 0
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Dispersion Relations

I At m > k/2 the dispersion relation is

E '
(

2m

2m − k

)
p

I At m = k/2

E ' −p log
p eγE

2k

I At 0 < m < k/2

E ' 2m
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2 −

m
k
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Higher modes

Higher modes at low momenta

En = m

√√√√1 +

(
πnk

k − 2Ψ
(

1
2

)
m + 2m log p

2k

)2

The case m = 0 is very neat

En = −πk(2n + 1)

4 log p
2k

+O(p), n ∈ N

All modes at high momenta

E = p +O(p1/3)



Chirality

Left and Right fermions ψL,R = 1
2(1∓ γ5)ψ

ψ>L,R =

(
ξ+(tek|z|)

ξ+(t)
± γ ξ−(tek|z|)

ξ−(t)

)
1

2

∑
α

Cα(Uα,+ ± Uα,−)

Both left-handed and right-handed components do not vanish as
functions of z . E.g. zero mode contains both left-handed and
right-handed spinors, but right-handed spinor vanishes on the
brane z = 0.
For higher modes: if γ = 1 only left-handed spinors are localized if
γ = −1 only right-handed spinors are localized on the brane
Depending on α the modes have different helicities
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