2) Theorem \(T \) of \(\{ v_i \} \) - derived from...

3) Take \(X = \{ v_i \} \) - calculate order...

\[V_1 = \text{order of } \{ v_i \} \]
1) **Definition of a group variety**

2) **Equation of variety**

3) **Tangential plane at a point**

4) **Ideal of the variety**
3. Take \(Y = \frac{1}{V^*} \), \(V_i \) - underlined body on \(V \), \(\mathcal{O} \).

\[Y_i = \mu ^{\mathcal{O}} (V_i) \otimes \mu ^{\mathcal{O}} (V_i)^* \]

\[T_{\mathcal{O}} = \rho (X, V_i) \to \text{ModGr}_{\mathcal{O}}(\mathbb{P}^n) \]

Theorem 2: \(T_{\mathcal{O}} (V_i) = \rho (X, V_i) \)

Theorem 2: \(T_{\mathcal{O}} (V_i) = \rho (X, V_i) \)

\[\text{Hom} (\mathcal{O}, \mathcal{O}) = \bigoplus_{i=1}^{r} \mathcal{O}^* \]

\[\text{Hom} (\mathcal{O}, \mathcal{O}) = \bigoplus_{i=1}^{r} \mathcal{O}^* \]

Theorem 3:

1. For any \(k \)-dimensional variety \(X \) of \(\mathbb{P}^n \),

\[V_i = \mu ^{\mathcal{O}} (V_i) \otimes \mu ^{\mathcal{O}} (V_i)^* \]

2. \(\mathbf{P} \times \mathbf{P} \to \mathbf{P} \)

Theorem 4:

1. For any \(k \)-dimensional variety \(X \) of \(\mathbb{P}^n \),

\[V_i = \mu ^{\mathcal{O}} (V_i) \otimes \mu ^{\mathcal{O}} (V_i)^* \]

2. \(\mathbf{P} \times \mathbf{P} \to \mathbf{P} \)

Theorem 5:

1. For any \(k \)-dimensional variety \(X \) of \(\mathbb{P}^n \),

\[V_i = \mu ^{\mathcal{O}} (V_i) \otimes \mu ^{\mathcal{O}} (V_i)^* \]

2. \(\mathbf{P} \times \mathbf{P} \to \mathbf{P} \)
4) Let \(l \) be a linear space, \(A \) an algebra with a unit, \(\varphi: A \to l \), \(\varphi(1) = e \), \(e \) the unit of \(l \).

Main Theorem: \(k \leq \dim(l) \Rightarrow \exists \lambda \in l \) such that \(E \varphi = \lambda \) for any \(E \in \mathcal{L}(A) \).

Proof: Assume \(\dim(l) < \infty \) and \(\varphi(1) = e \). Let \(\lambda = 0 \) in \(l \).

Step 1: Assume \(\dim(l) < \infty \). Let \(\lambda \in l \) be arbitrary.

Step 2: Define \(E \varphi = \lambda \) for any \(E \in \mathcal{L}(A) \).

Step 3: Verify that \(\varphi(1) = e \) is satisfied.

Step 4: Conclude that \(\lambda \) is an eigenvalue of \(\varphi \).

Step 5: Show that the corresponding eigenspace is non-trivial.

Step 6: Use the properties of \(\mathcal{L}(A) \) and \(\varphi \) to complete the proof.