Non-Abelian Vortices

 and
4d/2d Correspondence

Peter Koroteev

University of Minnesota

In collaboration with A. Monin, M. Shifman, W.Vinci, A. Yung, A.Gorsky

Outline

- 4d/2d w/ 8 supercharges: what and why?
\star Vortices in field theory vs. type IIA string theory
$\star(2,2)$ GLSM, NLSM
\star The Dictionary of 4d/2d
* Aspects of perturbation theory
- Less Supersymmetry (4 supercharges)
\star Heterotic deformation and Large-N solution - beyond BPS sector
\star NSVZ in $(0,2)$ theories
\star Omega background (bonus)

4d/2d

‘ANO’ String

$U(N)$ gauge theory with fundamental matter $q \rightarrow U q V \quad U \in U(N)_{G}, \quad V \in S U(N)_{F}$

Induces nontrivial topology on moduli space

$$
\Pi_{1}\left(U(N) \times S U(N) / S U(N)_{\text {diag }}\right) \cong \mathbf{Z}
$$

To find a string need

$$
q_{N} \sim q \mathrm{e}^{i k \theta}
$$

winding at infinity

$$
\begin{aligned}
& S=\int d^{4} x \operatorname{Tr}\left(\frac{1}{2 e^{2}} F^{\mu \nu} F_{\mu \nu}+\frac{1}{e^{2}}\left(\mathcal{D}_{\mu} \phi\right)^{2}\right)+\sum_{i=1}^{N_{f}}\left|\mathcal{D}_{\mu} q_{i}\right|^{2} \\
& -\sum_{i=1}^{N_{f}} q_{i}^{\dagger} \phi^{2} q_{i}-\frac{e^{2}}{4} \operatorname{Tr}\left(\sum_{i=1}^{N_{f}} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)^{2} \\
& N_{f}=N_{c} \\
& \text { Vacuum } \\
& \phi=0 \quad, \quad q_{i}^{a}=v \delta^{a}{ }_{i} \\
& \text { breaks symmetry } \\
& \text { (color-flavor locking) } \\
& U(N)_{G} \times S U(N)_{F} \rightarrow S U(N)_{\text {diag }}
\end{aligned}
$$

BPS equations for vortex

$$
\begin{aligned}
T_{\text {vortex }}= & \int d x^{1} d x^{2} \operatorname{Tr}\left(\frac{1}{e^{2}} B_{3}^{2}+\frac{e^{2}}{4}\left(\sum_{i=1}^{N} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)^{2}\right)+\sum_{i=1}^{N}\left|\mathcal{D}_{1} q_{i}\right|^{2}+\left|\mathcal{D}_{2} q_{i}\right|^{2} \\
= & \int d x^{1} d x^{2} \frac{1}{e^{2}} \operatorname{Tr}\left(B_{3} \mp \frac{e^{2}}{2}\left(\sum_{i=1}^{N} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)\right)^{2}+\sum_{i=1}^{N}\left|\mathcal{D}_{1} q_{i} \mp i \mathcal{D}_{2} q_{i}\right|^{2} \\
& \mp v^{2} \int d x^{1} d x^{2} \operatorname{Tr} B_{3} \geq \mp v^{2} \int d^{2} x \operatorname{Tr} B_{3}=2 \pi v^{2}|k|
\end{aligned}
$$

gives $\quad B_{3}=\frac{e^{2}}{2}\left(\sum_{i} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)$

Vortices

Simple vortex $w / N=I, k=I$ (ANO) has two collective coordinates-translations in x, y directions
$U(N)$ vortex
has more moduli

$$
A_{z}=\left(\begin{array}{llll}
A_{z}^{\star} & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right) \quad, \quad q=\left(\begin{array}{llll}
q^{\star} & & & \\
& v & & \\
& & \ddots & \\
& & & v
\end{array}\right)
$$

Moduli space

$$
(\mathrm{k}=\mathrm{l})
$$

$S U(N)_{\text {dias }} / S[U(N-1) \times U(1)] \cong \mathbb{C P}^{N-1}$

$$
\mathcal{V}_{1, N} \cong \mathbf{C} \times \mathbb{C P}^{N-1}
$$

For higher $\mathrm{k} \quad \operatorname{dim}\left(\mathcal{V}_{k, N}\right)=2 k N$
Again:
$T \geq 2 \pi v^{2}|k| \quad$ bound saturates for BPS states

Hanany-Witten construst

[Hanany Tong]

2d FI parameter $\quad r=\frac{\Delta x^{6}}{2 \pi g_{s} l_{s}}=\frac{4 \pi}{e^{2}}$

Higgs branch root

Color-flavor locked phase of SQCD

$$
\begin{gathered}
\sigma=X^{4}+i X^{5} \quad, \quad Z=X^{1}+i X^{2} \\
V=\frac{1}{g^{2}} \operatorname{Tr}\left|\left[\sigma, \sigma^{\dagger}\right]\right|^{2}+\operatorname{Tr}|[\sigma, Z]|^{2}+\operatorname{Tr}\left|\left[\sigma, Z^{\dagger}\right]\right|^{2}+\sum_{a=1}^{N} \psi_{a}^{\dagger} \sigma^{\dagger} \sigma \psi_{a} \\
+\frac{g^{2}}{2} \operatorname{Tr}\left(\sum_{a} \psi_{a} \psi_{a}^{\dagger}+\left[Z, Z^{\dagger}\right]-r 1_{k}\right)^{2}
\end{gathered}
$$

4d / 2d duality

$$
\begin{array}{ll|l}
\mathcal{N}=2 & S U(N) \quad \text { SQCD } & (2,2) \\
U(1) & \text { GLSM }
\end{array}
$$

e
$N_{f}=N+\tilde{N}$ fund hypers w/ masses

$$
\begin{aligned}
& m_{1}, \ldots, m_{N} \quad \mu_{1}, \ldots, \mu_{\tilde{N}} \\
& \tau=\frac{4 \pi i}{g^{2}}+\frac{\theta}{2 \pi}
\end{aligned}
$$

N chiral $+1 \quad \tilde{N}$ chiral -I w/ twisted masses

$$
\begin{aligned}
& m_{1}, \ldots, m_{N} \quad \mu_{1}, \ldots, \mu_{\tilde{N}} \\
& \tau=i r+\frac{\theta}{2 \pi}
\end{aligned}
$$

vortex moduli space

BPS dyons

 (Seiberg-Witten)kinks interpolating between different vacua

BPS spectra (as functions of masses, Lambda) are the same Goal: understand it from field theory constructions

$U\left(N_{c}\right) \mathcal{N}=2 d=4$ SQCD w/ N_{f} quarks

$$
\begin{aligned}
& \left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\beta}}^{J}\right\}=2 \delta^{I J} P_{\alpha \dot{\beta}}+2 \delta^{I J} Z_{\alpha \dot{\beta}} \\
& \left\{Q_{\alpha}^{I}, Q_{\beta}^{J}\right\}=2 Z_{\alpha \beta}^{I J}
\end{aligned}
$$

monopoles domain walls
$\mathcal{L}=\operatorname{Im}\left[\tau \int d^{4} \theta \operatorname{Tr}\left(Q^{i \dagger} e^{V} Q_{i}+\tilde{Q}^{i \dagger} e^{V} \tilde{Q}_{i}+\Phi^{\dagger} e^{V} \Phi\right)\right]$

$$
+\operatorname{Im}\left[\tau \int d^{2} \theta\left(\operatorname{Tr} W^{\alpha 2}+m_{j}^{i} \tilde{Q}_{i} Q^{j}+Q_{i} \Phi \tilde{Q}^{i}\right)\right]
$$

bosonic part
Fl term

$\left.\left.Q^{2}\right|^{2}+\frac{g^{2}}{4}(Q \bar{Q}-\triangle \xi)^{2}+|\Phi Q+Q M|^{2}\right\}$
BPS conditions

$$
\begin{aligned}
B_{3}-g^{2}\left(Q \bar{Q}-\xi^{2}\right) & =0 \\
\nabla_{3} Q & =0
\end{aligned}
$$

String tension

$$
T=\xi \int d^{2} x \operatorname{Tr} F_{12}=2 \pi \xi n
$$

Non-Abelian String

$$
\begin{aligned}
& \varphi=U\left(\begin{array}{cccc}
\phi_{2}(r) & 0 & \ldots & 0 \\
\cdots & \cdots & \ldots & \cdots \\
0 & \ldots & \phi_{2}(r) & 0 \\
0 & 0 & \cdots & \phi_{1}(r)
\end{array}\right) U^{-1}, \quad \begin{array}{c}
\text { Take Abelifman Yung] } \\
\text { Make global rotationg solution }
\end{array} \\
& A_{i}^{S U(N)}=\frac{1}{N} U\left(\begin{array}{cccc}
1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & -(N-1)
\end{array}\right) U^{-1}\left(\partial_{i} \alpha\right) f_{N A}(r) \\
& \text { Matrix U parameterizes } \\
& A_{i}^{U(1)}=-\frac{1}{N}\left(\partial_{i} \alpha\right) f(r), \\
& A_{0}^{U(1)}=A_{0}^{\text {SU(N) }}=0, \text { orientational modes }
\end{aligned}
$$

Gauge group is broken to \mathbb{Z}_{N}
All bulk degrees of freedom massive $\quad M^{2}=e^{2} v^{2}$
Theory is fully Higgsed

Vortex moduli space

$\mathrm{Nf}=\mathrm{Nc}$ color-flavor locked phase single SUSY vacuum
$\mathrm{Nf}=\mathrm{Nc}$ local vortex

$$
\begin{gathered}
\frac{S U(N)}{S U(N-1) \times U(1)}=\mathbb{C P}^{N-1} \\
\pi_{2}\left(\mathcal{M}_{\text {vac }}\right)=\pi_{2}\left(\frac{S U(N+\tilde{N})}{S U(N) \times S U(\tilde{N}) \times U(1)}\right)=\mathbb{Z}
\end{gathered}
$$

$\mathrm{Nf}>\mathrm{Nc}$ semilocal (+size moduli)
Duality between two strongly coupled theories

Monopoles in Higgs Phase
 [Shifman,Yung] [Tong]

Add masses. New vacuum $\quad \phi=\operatorname{diag}\left(m_{i}\right) \quad, \quad q_{i}^{a}=v \delta^{a}{ }_{i} \quad, \quad \tilde{q}^{a}{ }_{i}=0$
Pattern of symmetry breaking depends on the relationship between the differences of masses and FI parameter

$$
\begin{aligned}
& \text { ev>> } \gg m \quad \stackrel{\mathrm{~L}_{\text {mon }}}{ } \\
& U(N)_{G} \times S U(N)_{F} \xrightarrow{v} S U(N)_{\text {diag }} \xrightarrow{m} U(1)_{\text {diag }}^{N-1}
\end{aligned}
$$

$$
e v \ll \Delta m
$$

$$
U(N)_{G} \times S U(N)_{F} \xrightarrow{m} U(1)_{G}^{N} \times U(1)_{F}^{N-1} \xrightarrow{v} U(1)_{\text {diag }}^{N-1}
$$

Confined monopoles

$\xi=e^{2} v^{2}$

The 't Hooft-Polyakov monopole

$$
\Lambda_{C P(1)} \ll|\Delta m| \ll \xi^{1 / 2}
$$

Confined monopole, quasiclassical regime

$$
\frac{(\Delta m)^{2}}{\xi} \text { becomes 2d FI term } r
$$

BPS dyons in 4d N=2

$$
\begin{aligned}
& Z=\sum_{a=1}^{N_{c}} \phi_{a}\left(j_{a}+\tau h_{a}\right)+\sum_{i=1}^{N_{f}} m_{i} s_{i} \\
& Z=\sum_{i=1}^{N_{c}} m_{i}\left(S_{i}+\tau h_{i}\right)
\end{aligned}
$$

At baryonic root of Higgs branch

$$
F(t, u)=\left(t-\prod_{i=1}^{N_{c}}\left(u-m_{i}\right)\right)\left(u-\Lambda^{N_{c}}\right)
$$

$$
Z=\sum_{i=1}^{N_{c}}\left(m_{i} S_{i}+m_{D i} h_{i}\right) \quad \text { All quantum corrections in } \mathrm{mD}
$$

$$
m_{D l}-m_{D k}=\frac{1}{2 \pi} N_{c}\left(e_{l}-e_{k}\right)+\frac{1}{2 \pi} \sum_{i=1}^{N_{c}} m_{i} \log \left(\frac{e_{l}-m_{i}}{e_{k}-m_{i}}\right)
$$

$(2,2)$ 2d GLSM

Consider $\mathrm{U}(\mathrm{I})$ gauge theory

$$
\mathcal{L}_{\text {vortex }}=\frac{1}{2 g^{2}}\left(F_{01}^{2}+|\partial \sigma|^{2}\right)+\sum_{i=1}^{N_{c}}\left(\left|\mathcal{D} \psi_{i}\right|^{2}+\left|\sigma-m_{i}\right|^{2}\left|\psi_{i}\right|^{2}\right)+\frac{g^{2}}{2}\left(\sum_{i=1}^{N_{c}}\left|\psi_{i}\right|^{2}-r\right)^{2}
$$

Vacuum $i: \quad \sigma=m_{i} \quad, \quad\left|\psi_{j}\right|^{2}=r \delta_{i j}$
for vortex embedded into i's $U(I)$ subgroup
FI term runs

$$
r(\mu)=r_{0}-\frac{N_{c}}{2 \pi} \log \left(\frac{M_{U V}}{\mu}\right) \leadsto \Lambda=\mu \exp \left(-\frac{2 \pi r(\mu)}{N_{c}}\right)
$$

Effective twisted superpotential
$\mathcal{W}(\Sigma)=\frac{i}{2} \tau \Sigma-\frac{1}{4 \pi} \sum_{i=1}^{N_{c}}\left(\Sigma-m_{i}\right) \log \left(\frac{2}{\mu}\left(\Sigma-m_{i}\right)\right) \Rightarrow \exp \frac{\partial \mathcal{W}}{\partial \sigma}=1$
Central charge $\quad Z=-i \sum_{i=1}^{N_{c}}\left(m_{i} S_{i}+m_{D i} T_{i}\right)$

$$
m_{D i}=-2 i \mathcal{W}\left(e_{i}\right)=\frac{1}{2 \pi i} N_{c} e_{i}+\frac{1}{2 \pi i} \sum_{j=1}^{N_{c}} m_{j} \log \left(\frac{e_{i}-m_{j}}{\Lambda}\right)
$$

Hanany-Tong model as $U(I)$ GLSM

$$
\mathcal{L}=\int d^{4} \theta\left[\sum_{i=1}^{N_{c}} \Phi_{i}^{\dagger} \mathrm{e}^{\mathcal{\nu}} \Phi_{i}+\sum_{i=1}^{\tilde{N}} \widetilde{\Phi}_{i}^{\dagger} \mathrm{e}^{-\mathcal{V}} \widetilde{\Phi}_{i}-r \mathcal{V}+\frac{1}{2 e^{2}} \Sigma^{\dagger} \Sigma\right]
$$

$$
V=\theta^{+} \bar{\theta}^{+}\left(A_{0}+A_{3}\right)+\theta^{-} \bar{\theta}^{-}\left(A_{0}-A_{3}\right)-\theta^{-} \bar{\theta}^{+} \sigma-\theta^{-} \bar{\theta}^{+} \bar{\sigma}+\bar{\theta}^{2} \theta \lambda+\theta^{2} \bar{\theta} \bar{\lambda}+\bar{\theta} \theta \bar{\theta} \theta D
$$

One loop twisted effective superpotential is exact in $(2,2)$

$$
\begin{aligned}
\widetilde{W}_{\text {eff }} & =-\frac{1}{2 \pi} \sum_{i=1}^{N}\left(\sqrt{2} \sigma+m_{i}\right)\left(\log \frac{\sqrt{2} \sigma+m_{i}}{\Lambda}-1\right)+ \\
& +\frac{1}{2 \pi} \sum_{j=1}^{\tilde{N}}\left(\sqrt{2} \sigma+\widetilde{m}_{j}\right)\left(\log \frac{\sqrt{2} \sigma+\widetilde{m}_{j}}{\Lambda}-1\right) .
\end{aligned}
$$

gives vacua of the theory and its BPS spectrum !!
[PK Monin Vinci]
$\mathrm{N}=5 \mathrm{Nf}=8$

Derivation of 2d theory from 4d theory

From GLSM

$\mathcal{L}=\int d^{4} \theta\left(\left(\left|X_{1}\right|^{2}+\left|X_{2}\right|^{2}\right) e^{V}-r V+\frac{1}{e^{2}}|\Sigma|^{2}\right)$
Take limit $\quad e \rightarrow \infty$ solve for \vee
Kahler potential $\quad K=r \log \left(1+|X|^{2}\right) \quad X=X_{2} / X_{1}$

For HT model

$\mathcal{L}_{\mathrm{HT}}=\int d^{4} \theta\left(\left|\mathcal{N}_{i}\right|^{2} \mathrm{e}^{V}+\left|\mathcal{Z}_{j}\right|^{2} \mathrm{e}^{-V}-r V\right)$

$$
\downarrow_{\mathbb{C P}^{N-1}}^{\mathcal{O}(-1)^{\tilde{N}}}
$$

Kahler potential $\quad K_{\mathrm{HT}}=\sqrt{r^{2}+4 r|\zeta|^{2}}-r \log \left(r+\sqrt{r^{2}+4 r|\zeta|^{2}}\right)+r \log \left(1+\left|\Phi_{i}\right|^{2}\right)$

$$
|\zeta|^{2} \equiv\left|\mathfrak{z}_{j}\right|^{2}\left(1+\left|\Phi_{i}\right|^{2}\right) \quad \mathfrak{z}_{\mathfrak{j}}=r^{-1 / 2} \mathcal{N}_{N} \mathcal{Z}_{j}, \quad j=1, \ldots, \widetilde{N}
$$

Let's see what is the metric on the vortex sigma model

From 4d theory

$$
\begin{array}{rlr}
S & =\int d^{4} x \operatorname{Tr}\left\{\frac{1}{g^{2}}\left(F_{12}+\frac{g^{2}}{2}(Q \bar{Q}-\xi)\right)^{2}+\quad\right. \text { String tension } \\
& +\left|\nabla_{1} Q+i \nabla_{2} Q\right|^{2}+|\Phi Q+Q M|^{2}+\xi F_{12}+\quad T=\xi \int d^{2} x \operatorname{Tr} F_{12}=2 \pi \xi n \\
& \left.+\frac{1}{g^{2}}\left(F_{i k}\right)^{2}+\left(\nabla_{k} Q\right)^{*}\left(\nabla_{k} Q\right)+\frac{1}{g^{2}}\left(F_{k l}\right)^{2}\right\}
\end{array}
$$

Ansatz

$$
Q_{0}=\left(\begin{array}{ccc|c}
\phi_{1}(r) & 0 & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & \phi_{2}(r) & \phi_{3}(r)
\end{array}\right) \quad A_{0, i}=\epsilon_{i j} \frac{x_{j}}{r^{2}} f(r)\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1
\end{array}\right)
$$

After making color-flavor rotation

$$
\begin{aligned}
Q & =\left(\phi_{1}(r)-n n^{*}\left(\phi_{1}(r)-\phi_{2}(r)\right) \mid n \phi_{3}(r)\right) \\
A_{i} & =n n^{*} \epsilon_{i j} \frac{x_{j}}{r^{2}} f(r)
\end{aligned}
$$

Bogomol'ny equations

$$
\begin{aligned}
& \nabla_{1} Q+i \nabla_{2} Q=0, \\
& F_{12}+\frac{g^{2}}{2}(Q \bar{Q}-\xi)=0 .
\end{aligned}
$$

Setting

$$
\phi_{1}(r)=\sqrt{\xi}, \quad \phi_{3}=\frac{\rho}{r} \phi_{2}=
$$

can solve the rest of equations analytically provided that

$$
\frac{1}{g \sqrt{\xi}|\rho|} \ll 1
$$

e.g. gauge field

$$
\begin{aligned}
A_{k}= & -i\left(\partial_{k} n n^{*}-n \partial_{k} n^{*}-2 n n^{*}\left(n^{*} \partial_{k} n\right)\right) \omega(r) \\
& -i n n^{*}\left(\rho^{*} \partial_{k} \rho-\rho \partial_{k} \rho^{*}+2|\rho|^{2}\left(n^{*} \partial_{k} n\right)\right) \gamma(r)
\end{aligned}
$$

determine $\quad \gamma(r)$ and $\omega(r)$
after some work [Shifman Vinci Yung] we get...

Effective action on semilocal vortex

Radial integral diverges due to power like behavior

$$
\begin{aligned}
\mathcal{L}_{\text {eff }} & =\pi \xi\left(\ln \frac{L^{2}}{|\rho|^{2}}\right)\left|\partial_{k}(\rho n)\right|^{2}-\pi \xi\left|\partial_{k} \rho+\rho\left(n^{*} \partial_{k} n\right)\right|^{2} \\
& +\frac{2 \pi}{g^{2}}\left[\partial_{k} n^{*} \partial_{k} n+\left(\partial_{k} n^{*} n\right)^{2}\right] .
\end{aligned}
$$

already includes subleading corrections

In addition we have size moduli
for large L can insert Log under derivative

$$
z=\rho\left[2 \pi \xi \ln \frac{L}{|\rho|}\right]^{1 / 2}
$$

Arrive to a new model (ZN) with Kahler potential

$$
K_{z n}=r|\zeta|^{2}+r \log \left(1+\left|\Phi_{i}\right|^{2}\right) \quad|\zeta|^{2} \equiv\left|\mathfrak{z}_{j}\right|^{2}\left(1+\left|\Phi_{i}\right|^{2}\right)
$$

for one extra flavor reduces

$$
\begin{aligned}
\Phi_{i} & =\frac{\mathcal{N}_{i}}{\mathcal{N}_{N}}, \quad i=1, \ldots, N-1 \\
\mathfrak{z}_{j} & =r^{-1 / 2} \mathcal{N}_{N} \mathcal{Z}_{j}, \quad j=1, \ldots, \tilde{N}
\end{aligned}
$$

ZN model vs HT model

$$
\begin{aligned}
& K_{\mathrm{HT}}=\underbrace{\sqrt{r^{2}+4 r|\zeta|^{2}}-r \log \left(r+\sqrt{r^{2}+4 r|\zeta|^{2}}\right)+r \log \left(1+\left|\Phi_{i}\right|^{2}\right)}_{\underbrace{\zeta \rightarrow 0}} \\
& \quad K_{z n}=r|\zeta|^{2}+r \log \left(1+\left|\Phi_{i}\right|^{2}\right) \\
& K_{\mathrm{HT}}=K_{z n}+\mathcal{O}\left(|\zeta|^{2}\right)
\end{aligned}
$$

IR physics of ZN and HT models is the same BPS spectra are the same, but otherwise different

Perturbation theory

Perturbation theory

Gel-Mann-Low function

$$
R_{i \bar{\jmath}}^{(1)}=R_{i \bar{\jmath}},
$$

$\beta_{i \bar{\jmath}}=a^{(1)} R_{i \bar{\jmath}}^{(1)}+\frac{1}{2 r} a^{(2)} R_{i \bar{\jmath}}^{(2)}+\ldots$

$$
R_{i \bar{\jmath}}^{(2)}=R_{i \bar{k} l \bar{m}} R_{\bar{\jmath}}^{\bar{k}} l \bar{m}
$$

Kaehler metric $g_{i \bar{\jmath}}=\partial_{i} \bar{\partial}_{\bar{\jmath}} K\left(z_{i}, \bar{z}_{i}\right)$

Ricci tensor $\quad R_{i \bar{\jmath}}=-\partial_{i} \bar{\partial}_{\bar{\jmath}} \log \operatorname{det}\left(g_{i \bar{\jmath}}\right)$
for Hanany-Tong model $N=2, N f=3$

$$
-\log \operatorname{det}\left(g_{i \bar{\jmath}}^{(\mathrm{HT})}\right)=\log \left(1+\left|\Phi_{i}\right|^{2}\right)-\log \left(1+\frac{r}{\sqrt{r^{2}+4 r|\zeta|^{2}}}\right)
$$

Fl term renormalization (GLSM)

$$
\begin{aligned}
& r_{\mathrm{ren}}(\mu)=r_{0}-\frac{N-\tilde{N}}{2 \pi} \log \frac{M}{\mu} . \quad r_{\mathrm{ren}}=0 \Longrightarrow r_{0}=\frac{N-\tilde{N}}{2 \pi} \log \frac{M}{\Lambda} \\
& \left.c_{1}\left(M_{\mathrm{HT}}\right)\right|_{\mathbb{C P}^{N-1}}=(N-\widetilde{N})\left[\omega_{\mathbb{C P}^{N-1}}\right]
\end{aligned}
$$

Kaehler class is renormalized only at one loop, hence the result above should be the full answer for the coupling renormalization

If so what does the extra term in the last formula on the previous slide mean?

To understand why we need to compare renormalization schemes used in both calculations

GLSM vs NLSM

$\int d^{2} x \int d^{4} \theta\left(|\Phi|^{2} e^{V}-r V+\frac{1}{e^{2}}|\Sigma|^{2}\right)$
V-massive vector field $\mathrm{w} /$ propagator

$$
\frac{1}{\frac{p^{2}}{e^{2}}-M^{2}} \stackrel{p \ll e}{\rightleftharpoons} \frac{1}{-M^{2}}
$$

Integrating out V
$-\log \operatorname{det}\left(g_{i \bar{\jmath}}\right)=(N-\tilde{N}) \log \left(1+\left|\Phi_{i}\right|^{2}\right)-(N-1)|\zeta|^{2}+\mathcal{O}\left(|\zeta|^{4}\right)$.
Dimensional regularization (GLSM perturbation theory) mixes up UV and IR divergencies. Need to single out the UV piece out, IR contribution is not seen in the GLSM limit

Less SUSY I Heterotic deformation

$(0,2)$ Theory

In 4d introduce masses breaks $\mathcal{N}=2$ to $\mathcal{N}=1$
obtain heterotic sigma model
$\mathcal{L}=\int d^{4} \theta\left(\Phi_{i}^{\dagger} e^{V} \Phi^{i}-r V-\mathcal{B} V\right)$

On the flux tube
$(2,2) \longmapsto(0,2)$
Note: cannot be $(1,1)$ since then it's automatically $(2,2)$

B-right handed superfield
can be treated as model w/ field dependent FI term
$K=(r+\mathcal{B}) \log \left(1+\left|\phi^{i}\right|^{2}\right)$

CP(N-I) model

$$
\begin{aligned}
\mathcal{L}_{\mathbb{C P}^{N}}= & \int d^{2} \theta\left[\frac{1}{2} \varepsilon_{\beta \alpha}\left(\mathcal{D}_{\alpha}+i \mathcal{A}_{\alpha}\right) \mathcal{N}_{i}^{\dagger}\left(\mathcal{D}_{\beta}-i \mathcal{A}_{\beta}\right) \mathcal{N}_{i}+i \mathcal{S}\left(\mathcal{N}_{i}^{\dagger} \mathcal{N}_{i}-r_{0}\right)\right. \\
& \left.+\frac{1}{4} \varepsilon_{\beta \alpha} \mathcal{D}_{\alpha} \mathcal{B}^{\dagger} \mathcal{D}_{\beta} \mathcal{B}+\left(i \omega \mathcal{B}\left(\mathcal{S}-\frac{i}{2} \overline{\mathcal{D}} \gamma^{5} \mathcal{A}\right)+\text { H.c. }\right)\right]
\end{aligned}
$$

Isovector $\quad \mathcal{N}^{i}=n^{i}+\bar{\theta} \xi^{i}+\frac{1}{2} \bar{\theta} \theta F^{i}$,
$\begin{array}{ll}\text { Spinor } & \mathcal{A}_{\alpha}=-i\left(\gamma^{\mu} \theta\right)_{\alpha} A_{\mu}+\sqrt{2}\left(\gamma^{5} \theta\right)_{\alpha} \sigma \\ \text { constraint } & \mathcal{S}=\sqrt{2} \sigma_{1}+\sqrt{2} \bar{\theta} u+\frac{1}{2} \bar{\theta} \theta D\end{array}$

$$
\text { complex fields } \quad \sigma=\sigma_{1}+i \sigma_{2}, \quad \lambda_{\alpha}=u_{\alpha}+i v_{\alpha}
$$

if negatively charged fields are included

$$
\begin{aligned}
\mathcal{L}_{\mathbb{C P}^{N}}^{\mathrm{w}} & =\left|\nabla_{\mu} n_{i}\right|^{2}+\left|\nabla_{\mu} \rho_{i}\right|^{2}+i \bar{\xi}_{L}^{i} \nabla_{R} \xi_{L}^{i}+i \bar{\xi}_{R}^{i} \nabla_{L} \xi_{R}^{i}+i \bar{\eta}_{L}^{i} \nabla_{R} \eta_{L}^{i}+i \bar{\eta}_{R}^{i} \nabla_{L} \eta_{R}^{i} \\
& -2|\sigma|^{2}\left|n_{i}\right|^{2}-2|\sigma|^{2}\left|\rho_{i}\right|^{2}-D\left(\left|n_{i}\right|^{2}-\left|\rho_{i}\right|^{2}-r_{0}\right)-4|\omega|^{2}|\sigma|^{2} \\
& +\left[i \sqrt{2} \bar{n}_{i}\left(\lambda_{L} \xi_{R}^{i}-\lambda_{R} \xi_{L}^{i}\right)-i \sqrt{2} \sigma \bar{\xi}_{R}^{i} \xi_{L}^{i}+\text { H.c. }\right] \\
& +\left[-i \sqrt{2} \bar{\rho}_{i}\left(\bar{\lambda}_{L} \eta_{R}^{i}-\bar{\lambda}_{R} \eta_{L}^{i}\right)+i \sqrt{2} \bar{\sigma} \bar{\eta}_{R}^{i} \eta_{L}^{i}+\text { H.c. }\right] \\
& +\frac{i}{2} \bar{\zeta}_{R} \partial_{L} \zeta_{R}-\left[i \sqrt{2} \omega \lambda_{L} \zeta_{R}+\text { H.c. }\right]
\end{aligned}
$$

$(0,2)$ deformation of $\mathrm{H} \mathrm{T}_{\text {prknainver }}$

$\int d^{4} \theta\left[\sum_{i=1}^{N_{c}} \Phi_{i}^{\dagger} e^{V} \Phi_{i}+\sum_{i=1}^{N_{c}-N_{f}} \tilde{\Phi}_{i}^{\dagger} e^{-V} \tilde{\Phi}_{i}-(r+\mathcal{B}) V+\frac{1}{2 e^{2}} \Sigma^{\dagger} \Sigma\right]$
$\Phi^{i}=n^{i}+\bar{\theta} \xi^{i}+\theta \bar{\xi}^{i}+\bar{\theta} \theta F^{i}, \quad i=1, \ldots, N_{c}$
$\widetilde{\Phi}^{j}=\rho^{j}+\bar{\theta} \eta^{j}+\theta \bar{\eta}^{j}+\bar{\theta} \theta \tilde{F}^{j}, \quad j=1, \ldots, \tilde{N}$
$\Sigma=\sigma+i \theta^{+} \bar{\lambda}_{+}-i \bar{\theta}^{-} \lambda_{-}+\theta^{+} \bar{\theta}^{-}\left(D-i F_{01}\right)$
$\mathcal{B}=\omega\left(\bar{\theta} \zeta_{R}+\bar{\theta} \theta \overline{\mathcal{F}} \mathcal{F}\right)$
deformation adds
$\mathcal{L}^{h e t}=\mathcal{L}+\bar{\zeta}_{R} \partial_{L} \zeta_{R}-|\omega|^{2}|\sigma|^{2}-\left[i \omega \lambda_{L} \zeta_{R}+\right.$ H.c. $]$

Not enough SUSY

non-pert. corrections out of control Have to dwell on large-N approach

Large- N solution of $(0,2)$

$$
\begin{aligned}
V_{1-\text { loop }}= & \frac{1}{4 \pi} \sum_{i=1}^{N-1}\left(-\left(D+\left|\sigma-m_{i}\right|^{2}\right) \log \frac{\left|\sigma-m_{i}\right|^{2}+D}{\Lambda^{2}}+\left|\sigma-m_{i}\right|^{2} \log \frac{\left|\sigma-m_{i}\right|^{2}}{\Lambda^{2}}\right) \\
& -\frac{1}{4 \pi} \sum_{j=1}^{\tilde{N}-1}\left(-\left(D-\left|\sigma-\mu_{j}\right|^{2}\right) \log \frac{\left|\sigma-\mu_{j}\right|^{2}-D}{\Lambda^{2}}-\left|\sigma-\mu_{j}\right|^{2} \log \frac{\left|\sigma-\mu_{j}\right|^{2}}{\Lambda^{2}}\right) \\
& +\frac{N-\tilde{N}}{4 \pi} D . \\
V_{\text {eff }}= & V_{1-\text { loop }}+\left(\left|\sigma-m_{0}\right|^{2}+D\right)\left|n_{0}\right|^{2}+\left(\left|\sigma-\mu_{0}\right|^{2}-D\right)\left|\rho_{0}\right|^{2}+\frac{u N}{4 \pi}|\sigma|^{2}
\end{aligned}
$$

for zero masses

Symmetric masses

$$
\begin{aligned}
m_{k} & =m e^{2 \pi i \frac{k}{N}}, \quad k=0, \ldots, N-1 \\
\mu_{l} & =\mu e^{2 \pi i \frac{l}{\tilde{N}}}, \quad l=0, \ldots, \tilde{N}-1
\end{aligned}
$$

Vacuum equations

$$
\begin{aligned}
& \left(\left|\sigma-m_{0}\right|^{2}+D\right) n_{0}=0, \quad\left(\left|\sigma-\mu_{0}\right|^{2}-D\right) \rho_{0}=0, \\
& \frac{1}{4 \pi} \sum_{i=1}^{N-1} \log \frac{\left|\sigma-m_{i}\right|^{2}+D}{\Lambda^{2}}-\frac{1}{4 \pi} \sum_{j=1}^{\tilde{N}-1} \log \frac{\left|\sigma-\mu_{j}\right|^{2}-D}{\Lambda^{2}}=\left|n_{0}\right|^{2}-\left|\rho_{0}\right|^{2}, \\
& \frac{1}{4 \pi} \sum_{i=1}^{N-1}\left(\sigma-m_{i}\right) \log \frac{\left|\sigma-m_{i}\right|^{2}+D}{\left|\sigma-m_{i}\right|^{2}}+\frac{1}{4 \pi} \sum_{j=1}^{\tilde{N}-1}\left(\sigma-\mu_{j}\right) \log \frac{\left|\sigma-\mu_{j}\right|^{2}-D}{\left|\sigma-\mu_{j}\right|^{2}}= \\
& =\left(\sigma-m_{0}\right)\left|n_{0}\right|^{2}+\left(\sigma-\mu_{0}\right)\left|\rho_{0}\right|^{2}+\frac{u N}{4 \pi} \sigma .
\end{aligned}
$$

Solution of $(2,2)$ model

Phase transitions - artifact of large-N
$\left(\left|\sigma-m_{0}\right|^{2}+D\right) n_{0}=0, \quad\left(\left|\sigma-\mu_{0}\right|^{2}-D\right) \rho_{0}=0$
Higgs in $n(H n)$
$\rho_{0}=0 \quad D=-|\sigma-m|^{2}$

$$
r= \begin{cases}\frac{N-\tilde{N}}{2 \pi} \log \frac{m}{\Lambda}, & \mu<m \\ \frac{N}{2 \pi} \log \frac{m}{\Lambda}-\frac{\tilde{N}}{2 \pi} \log \frac{\mu}{\Lambda}, & \mu>m .\end{cases}
$$

Higgs in rho $\left(\mathrm{H}_{\rho}\right)$

$$
n_{0}=0 \quad D=|\sigma-\mu|^{2}
$$

$$
r= \begin{cases}\frac{N-\tilde{N}}{2 \pi} \log \frac{\mu}{\Lambda}, & \mu>m \\ \frac{N}{2 \pi} \log \frac{m}{\Lambda}-\frac{\tilde{N}}{2 \pi} \log \frac{\mu}{\Lambda}, & \mu<m\end{cases}
$$

Coulomb (C)

$$
n_{0}=\rho_{0}=0
$$

renormalized Fl term vanishes in C phase in $(2,2)$ from exact superpotential
$\prod\left(\sigma-m_{i}\right)$
$\frac{i}{\prod_{i}\left(\sigma-\mu_{j}\right)}=\Lambda^{N-\tilde{N}} \quad \sigma=0 \quad$ is one of the solutions...

$\mathrm{N}=15 \mathrm{Nf}=18$

$\mathrm{Nf}=5 \mathrm{C} \mu$ phase

Spectrum

$\mathcal{L}=-\frac{1}{4 e_{\gamma}^{2}} F_{\mu \nu}^{2}+\frac{1}{e_{\sigma 1}^{2}}\left(\partial_{\mu} \mathfrak{R e} \sigma\right)^{2}+\frac{1}{e_{\sigma 2}^{2}}\left(\partial_{\mu} \mathfrak{I m} \sigma\right)^{2}+i \mathfrak{I m}(\bar{b} \delta \sigma) \epsilon_{\mu \nu} F^{\mu \nu}-V_{\text {eff }}(\sigma)+$ Fermions
Anomaly

$b=\frac{N}{4 \pi}\left(\frac{1}{N} \sum_{i=1}^{N-1} \frac{1}{\bar{\sigma}_{0}-\bar{m}_{i}}-\alpha \frac{1}{\tilde{N}} \sum_{i=1}^{\tilde{N}-1} \frac{1}{\bar{\sigma}_{0}-\bar{\mu}_{i}}\right)$

$$
m_{\gamma}=e_{\sigma 2} e_{\gamma}|b|
$$

Photon becomes massless in Cs phase!! Confinement!
Note that Lambda vacua disappear at large deformations Need to sit in zero-vacua
e.g. in Cm phase

$$
m_{\gamma}=\sqrt{6} \Lambda\left(\frac{\Lambda}{m}\right)^{1 / \alpha}\left(\left(\frac{m}{\Lambda}\right)^{2 / \alpha}-\left(\frac{\mu}{\Lambda}\right)^{2} e^{u / \alpha}\right) \mathrm{e}^{-\frac{\mu}{2 \alpha}}
$$

Massless goldstino in fermionic sector

NSVZ in $(0,2)$ sigma model

\mathbb{P}^{N} sigma models exhibit instanton solutions
[Cui Shifman]
Let us now remove half of the fermions
An instanton has four bosonic zero modes but only two fermionic ones

$$
A_{\text {inst }}=\frac{y}{z-z_{0}}, \quad A_{\text {inst }}^{\dagger}=\frac{\bar{y}\left(1+4 i \theta^{\dagger} \beta^{\dagger}\right)}{\bar{z}_{\mathrm{ch}}-\bar{z}_{0}-4 i \theta^{\dagger} \alpha}
$$

One loop corrections in the instanton background do not cancel completely

$$
d \mu=\left(\frac{M^{2}}{g^{2}}\right)^{n_{b}}\left(\frac{g^{2}}{M}\right)^{n_{f}} \underbrace{(M)^{-1}}_{\text {One loop modification }} e^{-\frac{4 \pi}{g^{2}}} d \log (y) d \log (\bar{y}) d z_{0} d \bar{z}_{0} d \alpha d \beta^{\dagger}
$$

Exact beta function

$$
\beta\left(g^{2}\right)=-\frac{g^{4}}{2 \pi} \frac{1}{1-\frac{g^{2}}{4 \pi}}
$$

What does it mean for $4 \mathrm{~d} / 2 \mathrm{~d}$?

Less SUSY II
 Omega background

Omega background

Rotational symmetry broken to maximal torus

$$
S O(4) \rightarrow S O(2) \times S O(2)
$$

6d Metric

$$
G_{A B} d x^{A} d x^{B}=A d z d \bar{z}+\left(d x^{m}+\Omega^{m} d z+\bar{\Omega}^{m} d \bar{z}\right)^{2}
$$

We will be interested in Nekrasov-Shatashvili limit

$$
\begin{equation*}
\Omega^{m}=\left(-i \epsilon x^{2}, i \epsilon x^{1}, 0,0\right) \tag{2}
\end{equation*}
$$

4d/2d in Omega background

N=2 SQCD in Omega background in NS limit with $\mathrm{Nf}=2 \mathrm{Nc}$

$$
\vec{a}=\vec{m}_{F}-\vec{n} \epsilon \quad \vec{n}=\left(n_{1}, \ldots, n_{L}\right) \in \mathbb{Z}^{L}
$$

on-shell
$(2,2)$ GLSM w/ gauge group $U(K)$ massive adjoint and twisted masses

$$
\begin{array}{cc}
\vec{M}_{F}=\vec{m}_{F}-\frac{3}{2} \vec{\epsilon}, & \vec{M}_{A F}=\vec{m}_{A F}+\frac{1}{2} \vec{\epsilon} . \\
M_{a d j}=\epsilon & K=\sum_{i=1}^{N} n_{i}-N
\end{array}
$$

Vortices in Omega background $\mathfrak{c r k}$ Gorsky chen in progress

SUSY transform pure SYM

$$
\begin{aligned}
\delta \Lambda_{\alpha}^{I}= & \zeta_{\beta}^{I}\left(\left(\sigma^{m n}\right){ }_{\alpha}^{\beta} F_{m n}+i[\phi, \bar{\phi}] \delta_{\alpha}^{\beta}+\nabla_{m}\left(\bar{\Omega}^{m} \phi-\Omega^{m} \bar{\phi}\right) \delta_{\alpha}^{\beta}\right) \\
& +\bar{\zeta}_{\dot{\beta}}^{I}\left(\sigma^{m}\right){ }_{\alpha}^{\dot{\beta}}\left(\nabla_{m} \phi-F_{m n} \Omega^{n}\right)
\end{aligned}
$$

String central charge $\zeta_{3}=\frac{1}{2} \partial_{m}\left(\left(\phi^{a} \bar{\Omega}^{m}-\bar{\phi}^{a} \Omega^{m}\right) B_{3}^{a}\right) \sigma_{\alpha \dot{\alpha}}^{3} I^{I J}=\frac{i}{2} B_{3}^{a} \partial_{\varphi}\left(\phi^{a} \bar{\epsilon}-\bar{\phi}^{a} \epsilon\right) \sigma_{\alpha \dot{\alpha}}^{3} \delta^{I J}$ current
yields for a string of tension ~ epsilon

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2}\left|B_{z}^{a}+\phi \tau^{a} \bar{\phi}-i \nabla_{m}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right|^{2}+\frac{1}{2}\left|\mathcal{D}_{1} \phi^{a}+i \mathcal{D}_{2} \phi^{a}-\left(\Omega_{2}-i \Omega_{1}\right) B_{z}^{a}\right|^{2} \\
& +\partial_{m}\left(B_{z}^{a}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right) \geq \partial_{m}\left(B_{z}^{a}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right) .
\end{aligned}
$$

Symmetry breaking pattern

$$
S U(2)_{c} \times S U(2)_{R} \times S U(2)_{\mathcal{R}} \rightarrow U(1)_{c} \times S U(2)_{R+\mathcal{R}}
$$

Searching for the field theoretical explanation of the new duality

Conclusions and open questions

- Study BPS (and beyond) spectrum of SQCD can effectively be done using 2 d NLSM (and GLSM)
- Rich variety of phases in $(0,2)$ model at strong coupling
- Other heterotic deformations

$$
\bar{D} \Phi_{+} \sim \bar{D} \Phi_{-}
$$

- Generalization of the $4 \mathrm{~d} / 2 \mathrm{~d}$ duality to theories in Omega background
- Connections to integrable systems in 2d...
- Relationship w/ another 4d/2d duality [Vafa et al]
- Holography for Non-Abelian vortices

