Quantum Geometry Instantons & Elliptic Algebras

Peter Koroteev

Talk at workshop `SCFTs in 6 and Lower Dimensions' TSIMF, Sanya, China January 18th 2018

Based on new ideas, collaborations and discussions with

Aganagic Okounkov Zeitlin Smirnov Pushkar Givental

Costello, Gaiotto, Soibelman, Gukov, Nawata

Algebras from String/M-theory

- In this talk we shall discuss **algebraic structures** which arise from CFTs. Often such algebras arise as quantizations of some moduli spaces.
- Example moduli spaces of SUSY vacua of gauge theories with 8 supercharges. Their quantization leads to vertex operator algebras which appear in 2d CFT (Virasoro, W-algebras, etc). This is a modern way to formulate the **BPS/CFT** correspondence:

Algebras from String/M-theory

- In this talk we shall discuss **algebraic structures** which arise from CFTs. Often such algebras arise as quantizations of some moduli spaces.
- Example moduli spaces of SUSY vacua of gauge theories with 8 supercharges. Their quantization leads to vertex operator algebras which appear in 2d CFT (Virasoro, W-algebras, etc). This is a modern way to formulate the **BPS/CFT** correspondence:
- Connects BPS observables of N=2 supersymmetric gauge theories with CFT correlators (*Mathematically*: Relates structures arising on moduli spaces of sheaves (instantons) with vertex operator algebras)
- Canonical example: [Alday Gaiotto Tachikawa] *Partition functions* vs. CFT conformal blocks *Symmetries of the instanton moduli spaces* vs. Vertex operator algebras

Class-S theories are constructed in M-theory with M5 branes [Gaiotto] wrapping $\mathcal{M}_4 \times \mathcal{C}$

Twisted compactification of the theory on M5 branes — (2,0) 6d theory on C leads to $\mathcal{N}=2$ theory on \mathcal{M}_4

Class-S theories are constructed in M-theory with M5 branes [Gaiotto] [Gaiotto] Twisted compactification of the theory on M5 branes — (2,0) 6d

theory on $\,\mathcal{C}$ leads to $\mathcal{N}=\!\!2$ theory on \mathcal{M}_4

Liouville CFT on a torus with one puncture thin neck with sewing parameter $q = e^{2\pi i \tau}$

with adj hyper of mass \pmb{m} gauge coupling $~\tau$

AGT: $\mathcal{Z}_{Nek} = \mathcal{F}_{CFT}$

Algebraic-geometric approach

Mathematicians have now several **proofs** of AGT in limiting cases (no fundamental matter), but those proofs do not use the original class-S construction [Schiffmann Vaserot] [Negut]

Physics **proof*** by Kimura and Pestun uses direct localization computations

Algebraic-geometric approach

- Mathematicians have now several **proofs** of AGT in limiting cases (no fundamental matter), but those proofs do not use the original class-S construction [Schiffmann Vaserot] [Negut]
- Physics **proof*** by Kimura and Pestun uses direct localization computations
- One of our goals is to understand BPS/CFT geometrically
- Namely we want describe instanton counting and vertex operator algebras in terms of **quantum geometry** (quantum cohomology or quantum K-theory) of some family of spaces
- In other words we want VOAs to **emerge** from quantum geometry

Recent Developments

Vertex Algebras at the Corner [Gaiotto Rapcak] VOAs at junctions of supersymmetric intersections in N=4 SYM

Quiver W-algebras [Kimura Pestun] 4,5,6d quiver gauge theories on R⁴ × S in Omega background

The Magnificent Four [Nekrasov]

D8 brane probed by D0 branes in B field $U(1)^4 \subset \text{Spin}(8) + \text{additional nongeometric U(1) symmetry}$ q_1, q_2, q_3, q_4

Large-n Limit

String theory enjoys **large-n** dualities AdS/CFT, Gopakumar-Vafa

Gauge theories are known to have effective description when the rank of the gauge group becomes large U(n) $n \to \infty$

Similar ideas work in mathematics — stable limits

Large-n Limit

String theory enjoys **large-n** dualities AdS/CFT, Gopakumar-Vafa

Gauge theories are known to have effective description when the rank of the gauge group becomes large U(n) $n \to \infty$

Similar ideas work in mathematics — stable limits

We shall see that BPS/CFT can be viewed as a large-n duality!

Large-n limits are manifest in each description!

Classical K-theory

Rep(v,w) — linear space of quiver reps

 $\mu: T^*\operatorname{Rep}(\mathbf{v}, \mathbf{w}) \to \operatorname{Lie}(G)^*$ moment map

Nakajima quiver variety $X = \mu^{-1}(0) / G$ $G = \prod GL(V_i)$

Automorphism group Maximal torus

 $\operatorname{Aut}(X) = \prod GL(Q_{ij}) \times \prod GL(W_i) \times \mathbb{C}_{\hbar}^{\times}$ $T = \mathbb{T}(\operatorname{Aut}(X))$

Classical K-theory

Rep(**v**,**w**) — linear space of quiver reps

 $\mu: T^*\operatorname{Rep}(\mathbf{v}, \mathbf{w}) \to \operatorname{Lie}(G)^*$ moment map

Nakajima quiver variety $X = \mu^{-1}(0) / G$ $G = \prod GL(V_i)$

Automorphism group $\operatorname{Aut}(X) = \prod GL(Q_{ij}) \times \prod GL(W_i) \times \mathbb{C}_{\hbar}^{\times}$ Maximal torus $T = \mathbb{T}(\operatorname{Aut}(X))$

Tensorial polynomials of tautological bundles V_i, W_i and their duals generate *classical T-equivariant K-theory* ring of X

Quasimaps

Quasimap $f : \mathcal{C} - - \rightarrow X$ is described by collection of vector bundles \mathscr{V}_i on \mathcal{C} of ranks \mathbf{v}_i with section $f \in H^0(\mathfrak{C}, \mathscr{M} \oplus \mathscr{M}^* \otimes \hbar)$ satisfying $\mu = 0$ where $\mathscr{M} = \sum_{i \in I} Hom(\mathscr{W}_i, \mathscr{V}_i) \oplus \sum_{i,j \in I} Q_{ij} \otimes Hom(\mathscr{V}_i, \mathscr{V}_j)$ Degree $(\mathbf{v}_1, \dots, \mathbf{v}_{n-1})$

 \mathbf{v}_1

 \mathbf{V}_2

 \mathbf{V}_{n-1}

Quasimaps

Quasimap $f: \mathcal{C} - - \rightarrow X$ is described by collection of vector bundles \mathscr{V}_i on \mathcal{C} of ranks \mathbf{v}_i with section $f \in H^0(\mathfrak{C}, \mathscr{M} \oplus \mathscr{M}^* \otimes \hbar)$ satisfying $\mu = 0$ where $\mathscr{M} = \sum_{i \in I} Hom(\mathscr{W}_i, \mathscr{V}_i) \oplus \sum_{i,j \in I} Q_{ij} \otimes Hom(\mathscr{V}_i, \mathscr{V}_j)$ Degree $(\mathbf{v}_1, \dots, \mathbf{v}_{n-1})$

Evaluation map

 $\operatorname{ev}_p(f) = f(p) \in [\mu^{-1}(0)/G] \supset X$

Stable if $f(p) \in X$

for all but finitely many singular points

Resolve to make proper ev map

 \mathbf{V}_1

 \mathbf{V}_2

 \mathbf{V}_{n-1}

Vertex Function (g=0)

Spaces of quasimaps admit an action of an extra torus \mathbb{C}_q which scales the base \mathbb{P}^1 keeping two fixed points

Define **vertex function** with quantum (Novikov) parameters $z^{\mathbf{d}} = \prod_{i \in I} z_i^{d_i}$

$$V^{(\tau)}(z) = \sum_{\mathbf{d}=\vec{0}}^{\infty} z^{\mathbf{d}} \operatorname{ev}_{p_{2},*} \left(\mathcal{QM}_{\operatorname{nonsing} p_{2}}^{\mathbf{d}}, \widehat{\mathcal{O}}_{\operatorname{vir}} \tau(\mathscr{V}_{i}|_{p_{1}}) \right) \in K_{\mathsf{T}_{q}}(X)_{loc}[[z]]$$
[Okounkov]
[Okounkov]

Vertex Function (g=0)

Spaces of quasimaps admit an action of an extra torus \mathbb{C}_q which scales the base \mathbb{P}^1 keeping two fixed points

Define **vertex function** with quantum (Novikov) parameters $z^{\mathbf{d}} = \prod_{i \in I} z_i^{d_i}$

$$V^{(\tau)}(z) = \sum_{\mathbf{d}=\vec{0}}^{\infty} z^{\mathbf{d}} \operatorname{ev}_{p_{2},*} \left(\mathcal{QM}_{\operatorname{nonsing} p_{2}}^{\mathbf{d}}, \widehat{\mathcal{O}}_{\operatorname{vir}} \tau(\mathscr{V}_{i}|_{p_{1}}) \right) \in K_{\mathsf{T}_{q}}(X)_{loc}[[z]]$$
[Okounkov]
[Okounkov]
[PK Pushkar Smirnov Zeitlin]

Define **quantum K-theory** as a ring with multiplication $A \circledast B = A \otimes B + \sum_{d=1}^{\infty} A \circledast_d B z^d$ $\mathfrak{F} \circledast = \sum_{\mathbf{d}=\overrightarrow{0}}^{\infty} z^{\mathbf{d}} \mathrm{ev}_{p_1,p_3*} \left(\mathsf{QM}_{p_1,p_2,p_3}^{\mathbf{d}}, \mathrm{ev}_{p_2}^* (\mathbf{G}^{-1} \mathfrak{F}) \widehat{\mathbf{0}}_{\mathrm{vir}} \right) \mathbf{G}^{-1} \qquad (\overbrace{\mathbf{G}^{-1} \mathfrak{F}}^{-1} \mathbf{G}^{-1}) \mathbf{G}^{-1}$

$$\mathcal{C}_0 = \mathcal{C}_{0,1} \cup_p \mathcal{C}_{0,2} \qquad = \qquad \mathbf{\mathcal{L}} = -\mathbf{\mathcal{L}} \mathbf{\mathcal{G}}^{-1} \mathbf{\mathcal{L}}$$

Vertex Functions

 \mathbf{v}_2 \cdots \mathbf{v}_{n-1}

 \mathbf{V}_1

After classifying fixed points of space of nonsingular quasimaps we can compute the vertex

$$V_{p}^{(\tau)}(z) = \sum_{d_{i,j} \in C} z^{\mathbf{d}} q^{N(\mathbf{d})/2} EHG \quad \tau(x_{i,j}q^{-d_{i,j}}) \qquad \mathbf{w}_{n-1}$$
$$E = \prod^{n-1} \prod^{\mathbf{v}_{i}} \{x_{i,j}/x_{i,k}\}_{d_{i,j}-d_{i,k}}^{-1} \qquad x_{i,j} \in \{a_{1}, \dots, a_{\mathbf{w}_{n}}\}$$

 $i=1 \ j,k=1$

Vertex Functions

After classifying fixed points of space of nonsingular quasimaps we can compute the vertex

$$V_p^{(\tau)}(z) = \sum_{d_{i,j} \in C} z^{\mathbf{d}} q^{N(\mathbf{d})/2} EHG \quad \tau(x_{i,j}q^{-d_{i,j}}) \qquad \mathbf{w}_{n-1}$$

$$E = \prod_{i=1}^{n} \prod_{j,k=1}^{n} \{x_{i,j}/x_{i,k}\}_{d_{i,j}-d_{i,k}}^{-1} \qquad x_{i,j} \in \{a_1, \dots, a_{\mathbf{w}_n}\}$$

 $q = e^{\epsilon_1}$

Vertex

Vortex

 $\mathcal{N}=2^*$ quiver gauge theory on $X_3=\mathbb{C}_{\epsilon_1}\times S^1_\gamma$

Lagrangian depends on twisted masses a_1, a_2 FI parameter z and U(I) R-symmetry fugacity $\log \hbar$

Difference Equations [PK Pushkar Smirnov Zeitlin]

Let $X = T^* \mathbb{F} l_n$ Then K-theory vertex function satisfies equation of motion of trigonometric Ruijsenaars-Schneider model

$$\hat{H}_{d}V = e_{d}(z_{1}, \dots, z_{n-1})V$$
$$\hat{H}_{d} = \sum_{I \subset \{1,\dots,n\}, |I|=d} \left(\prod_{i \in I, j \notin I} \frac{a_{i}\hbar^{\frac{1}{2}} - a_{j}\hbar^{-\frac{1}{2}}}{a_{i} - a_{j}}\right) \prod_{i \in I} T_{i}^{q}$$

Difference Equations [PK Pushkar Smirnov Zeitlin] Ring relations (n-1)2 1 n $QK_T(T^*\mathbb{F}l_n) = \frac{\mathbb{C}[z_i^{\pm 1}, a_i^{\pm 1}, \hbar, q]}{\mathcal{I}_{\mathsf{t}\mathsf{R}\mathsf{S}}}$

Let $X = T^* \mathbb{F} l_n$ Then K-theory vertex function satisfies equation of motion of trigonometric Ruijsenaars-Schneider model

 $a_1, \ldots a_n$

$$\hat{H}_{d}V = e_{d}(z_{1}, \dots, z_{n-1})V$$
$$\hat{H}_{d} = \sum_{I \subset \{1,\dots,n\}, |I|=d} \left(\prod_{i \in I, j \notin I} \frac{a_{i}\hbar^{\frac{1}{2}} - a_{j}\hbar^{-\frac{1}{2}}}{a_{i} - a_{j}}\right) \prod_{i \in I} T_{i}^{q}$$

3d Mirror version (a.k.a. bispectral dual)

 z_{n-1}

 z_2

 z_1

$$\hat{H}_{d}^{!}V = e_{d}(a_{1}, \dots, a_{n-1})V$$
$$\hat{H}_{d}^{!}(a_{i}, \hbar, T_{a}^{q}) = \hat{H}_{d}(z_{i}/z_{i+1}, \hbar^{-1}, T_{z}^{q})$$

Spherical DAHA [Satoshi's talk]

Trigonometric Ruijsenaars-Schneider Hamiltonians form a maximal commuting subalgebra inside **spherical double affine Hecke** algebra for gl(n) $\{\hat{H}_1, \ldots, \hat{H}_n\} \subset \text{DAHA}_{q,\hbar}^{\mathfrak{S}_n}(\mathfrak{gl}_n) =: \mathcal{A}_n$

 \hat{H}_d are also known as Macdonald operators

Spherical DAHA [Satoshi's talk]

Trigonometric Ruijsenaars-Schneider Hamiltonians form a maximal commuting subalgebra inside **spherical double affine Hecke** algebra for gl(n) $\{\hat{H}_1, \ldots, \hat{H}_n\} \subset \text{DAHA}_{q,\hbar}^{\mathfrak{S}_n}(\mathfrak{gl}_n) =: \mathcal{A}_n$

 \hat{H}_d are also known as Macdonald operators

[Oblomkov]

Spherical gl(n) DAHA is a **deformation quantization** of the moduli space of flat GL(n;C) connections on a torus with one simple puncture

Line Operators and Branes

 \mathcal{M}_n is the moduli space of vacua in $\mathcal{N}=2^*$ gauge theory on $\mathbb{R}^3 \times S^1$ with gauge group U(n) and is described by VEVs of line operators wrapping the circle.

A and B are holonomies of electric and magnetic line operators

Line Operators and Branes

 \mathcal{M}_n is the moduli space of vacua in $\mathcal{N}=2^*$ gauge theory on $\mathbb{R}^3 \times S^1$ with gauge group U(n) and is described by VEVs of line operators wrapping the circle.

A and B are holonomies of electric and magnetic line operators

Omega background along real 2-plane $\mathbb{R}_q^2 \times \mathbb{R} \times S^1$ Line operators are forced to stay at the tip of the cigar and slide along the remaining line, hence **non-commutativity**

Line Operators and Branes

 \mathcal{M}_n is the moduli space of vacua in $\mathcal{N}=2^*$ gauge theory on $\mathbb{R}^3 \times S^1$ with gauge group U(n) and is described by VEVs of line operators wrapping the circle.

A and B are holonomies of electric and magnetic line operators

Omega background along real 2-plane $\mathbb{R}_q^2 \times \mathbb{R} \times S^1$ Line operators are forced to stay at the tip of the cigar and slide along the remaining line, hence **non-commutativity**

 $\begin{array}{l} algebra & - ofen \ strings \\ \mathcal{A}_n &= \operatorname{Hom}(\mathcal{B}_{cc}, \mathcal{B}_{cc}) \\ representations \\ (Hilbert \ space \ of \ SUSY \ QM) \\ \mathcal{H} &= \operatorname{Hom}(\mathcal{B}_{cc}, \mathcal{B}) \end{array} \begin{array}{l} [\operatorname{Gukov-Witten}] \\ [\operatorname{Nekrasov-Witten}] \\ [\operatorname{Nekrasov-Wit$

DAHA Reps

Start with a vertex function for T^*F_n

Specify equivariant parameters $a_k = q^{\lambda_k} \hbar^{n-k}$

q-hypergeometric series ——— Macdonald polynomials with $\hbar=t$

DAHA Reps

Start with a vertex function for T*Fn $1 - 2 - \cdots - n - 1 - n$ Specify equivariant parameters $a_k = q^{\lambda_k} \hbar^{n-k}$ q-hypergeometric series $a_k = t$

E.g. k=2, n=2

$$V(z;tq,q) = P_{(1,1)}(z|q,t)$$
$$V(z;tq^2,1) = P_{(2,0)}(z|q,t)$$

DAHA Reps

Start with a vertex function for T*Fn12...n $\sum_{z_1} \sum_{z_2} \sum_{z_2} \sum_{z_{n-1}} \sum_{z_{n-1}}$

)—2 $V(z;tq^2,1) = P_{(2,0)}(z|q,t)$

Raising and lowering operators of sl(2) DAHA

Change of variables

$$p_m = \sum_{l=1}^n z_l^m$$

Macdonald polynomials depend only on k and the partition

$$P_{\Box} = \frac{1}{2}(p_1^2 - p_2), \qquad P_{\Box} = \frac{1}{2}(p_1^2 - p_2) + \frac{1 - qt}{(1 + q)(1 - t)}p_2$$

Change of variables $p_m = \sum_{l=1}^n z_l^m$

Macdonald polynomials depend only on k and the partition

$$P_{\Box} = \frac{1}{2}(p_1^2 - p_2), \qquad P_{\Box} = \frac{1}{2}(p_1^2 - p_2) + \frac{1 - qt}{(1 + q)(1 - t)}p_2$$

Starting with Fock vacuum $|0\rangle$

Construct Hilbert space $a_{-\lambda}|0\rangle \leftrightarrow p_{\lambda}$

for each partition
$$a_{-\lambda}|0\rangle = a_{-\lambda_1} \cdots a_{-\lambda_l}|0\rangle$$

Commutators $[a_m, a_n] = m \frac{1 - q^{|m|}}{1 - t^{|m|}} \delta_{m+n,0}$

[PK to appear]

Vertex functions or quantum classes for X are elements of quantum Ktheory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from P1 to X

 $V \in K_T(\mathbb{P}^1 \to T^*\mathbb{F}_n)$ with maximal torus $T = \mathbb{T}(U(n) \times U(1)_\hbar \times U(1)_q)$.

Specification $a_k = q^{\lambda_k} t^{n-k}$ restricts us to the Fock space representation of (q,t)-Heisenberg algebra which is DAHA module

[PK to appear]

Vertex functions or quantum classes for X are elements of quantum Ktheory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from P1 to X

 $V \in K_T(\mathbb{P}^1 \to T^*\mathbb{F}_n)$ with maximal torus $T = \mathbb{T}(U(n) \times U(1)_\hbar \times U(1)_q)$.

Specification $a_k = q^{\lambda_k} t^{n-k}$ restricts us to the Fock space representation of (q,t)-Heisenberg algebra which is DAHA module

In other words, we can define the following action

gl(n) DAHA

$$\int \int K_T(\mathbb{P}^1 \to T^*\mathbb{F}_n) \Big|_{a_k = q^{\lambda_k} t^{n-k}}$$

not more than n columns

[PK to appear]

Vertex functions or quantum classes for X are elements of quantum Ktheory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from P1 to X

 $V \in K_T(\mathbb{P}^1 \to T^*\mathbb{F}_n)$ with maximal torus $T = \mathbb{T}(U(n) \times U(1)_\hbar \times U(1)_q)$.

Specification $a_k = q^{\lambda_k} t^{n-k}$ restricts us to the Fock space representation of (q,t)-Heisenberg algebra which is DAHA module

In other words, we can define the following action

 λ

$$\begin{split} & \bigoplus_{\substack{k \in q^{\lambda_k} t^{n-k}}} n \to \infty \\ & K_T(\mathbb{P}^1 \to T^* \mathbb{F}_n) \Big|_{a_k = q^{\lambda_k} t^{n-k}} \xrightarrow{n \to \infty} & K_{q,t} \left(\bigoplus_i \mathcal{M}_{i,1}^{\text{inst}} \right) \\ & \text{not more than n columns} & \mathbb{C}[p_1, p_2, \dots] \otimes \mathbb{C}[q, t] \end{split}$$

[PK to appear]

Vertex functions or quantum classes for X are elements of quantum Ktheory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from P1 to X

 $V \in K_T(\mathbb{P}^1 \to T^*\mathbb{F}_n)$ with maximal torus $T = \mathbb{T}(U(n) \times U(1)_\hbar \times U(1)_q)$.

Specification $a_k = q^{\lambda_k} t^{n-k}$ restricts us to the Fock space representation of (q,t)-Heisenberg algebra which is DAHA module

In other words, we can define the following action

[PK to appear]

Vertex functions or quantum classes for X are elements of quantum Ktheory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from P1 to X

 $V \in K_T(\mathbb{P}^1 \to T^*\mathbb{F}_n)$ with maximal torus $T = \mathbb{T}(U(n) \times U(1)_\hbar \times U(1)_q)$.

Specification $a_k = q^{\lambda_k} t^{n-k}$ restricts us to the Fock space representation of (q,t)-Heisenberg algebra which is DAHA module

In other words, we can define the following action

 λ

Quiver qW-algebra

Construction of qW algebra from free-boson representation of [Kimura Pestun] extended Nekrasov partition function

$$\mathcal{Z}_{\text{Nek}} = \widehat{\mathcal{Z}}_{\text{Nek}} |0\rangle \qquad [s_{i,p}, s_{j,p'}] = -\delta_{p+p',0} \frac{1}{p} \frac{1-q_1^p}{1-q_2^{-p}} c_{ij}^{[p]} \qquad \mathbf{w}_1$$

Start with quiver gauge
theory on $\mathbb{C}_{q_1} \times \mathbb{C}_{q_2} \times S^1$ $\mathbf{v}_{n-1} \cdots \mathbf{v}_2 \mathbf{v}_1$

 \mathbf{V}_1

theory on $\mathbb{C}_{q_1} \times \mathbb{C}_{q_2} \times S^1$

Quiver qW-algebra

Construction of qW algebra from free-boson representation of [Kimura Pestun] [Kimura Pestun]

$$\mathcal{Z}_{\text{Nek}} = \widehat{\mathcal{Z}}_{\text{Nek}} |0\rangle \qquad [s_{i,p}, s_{j,p'}] = -\delta_{p+p',0} \frac{1}{p} \frac{1-q_1^p}{1-q_2^{-p}} c_{ij}^{[p]} \qquad \mathbf{w}_1$$

Start with quiver gauge theory on $\mathbb{C}_{q_1} \times \mathbb{C}_{q_2} \times S^1$ $\mathbf{v}_{n-1} \cdots \mathbf{v}_2 \mathbf{v}_1$

Moduli space of vacua is the space of A_{n-1} periodic monopoles with w_1 Dirac singularities whose charges are given by the numbers of colors [Nekrasov Pestun Shatashvili]

Quiver qW-algebra

Construction of qW algebra from free-boson representation of [Kimura Pestun] [Kimura Pestun]

$$\mathcal{Z}_{\text{Nek}} = \widehat{\mathcal{Z}}_{\text{Nek}} |0\rangle \qquad [s_{i,p}, s_{j,p'}] = -\delta_{p+p',0} \frac{1}{p} \frac{1-q_1^p}{1-q_2^{-p}} c_{ij}^{[p]} \qquad \mathbf{w}_1$$

Start with quiver gauge
theory on $\mathbb{C}_{q_1} \times \mathbb{C}_{q_2} \times S^1$ $\mathbf{v}_{n-1} \cdots \mathbf{v}_2 \mathbf{v}_1$

Moduli space of vacua is the space of A_{n-1} periodic monopoles with w_1 Dirac singularities whose charges are given by the numbers of colors [Nekrasov Pestun Shatashvili]

Quantization of this moduli space in carefully chosen complex structure gives qW(q1,q2) algebra modulo Virasoro constraints!

$$\widehat{\mathbb{C}}[\mathcal{M}_{\text{mon}}] = \frac{qW_{q_1,q_2}}{\operatorname{Vir}(\mathbf{v}_1,\dots,\mathbf{v}_{n-1})} \qquad T_{i,-k}|\psi\rangle = 0, \quad k > \mathbf{v}_i$$

Virasoro constrains can be removed by taking $\mathbf{v}_i o \infty$

Gauge Origami

[Nekrasov]

Type IIB on Calabi-Yau 4 $\mathcal{X}_4 \times \Sigma$

singular hypersurface $Z_2 \subset \mathcal{X}_4$

For example, when $1 \le a, b \le 3$

 $\mathcal{X}_4 = \mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times \mathbb{C}_{\epsilon_3} \times \mathbb{C}_{\epsilon_4}$

 $\sum_{a} \epsilon_a = 0$

Gauge Origami

[Nekrasov]

Type IIB on Calabi-Yau 4 $\mathcal{X}_4 \times \Sigma$ singular hypersurface $Z_2 \subset \mathcal{X}_4$

For example, when $1 \leq a, b \leq 3$

 $\mathcal{X}_4 = \mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times \mathbb{C}_{\epsilon_3} \times \mathbb{C}_{\epsilon_4}$

Wrap D3 branes on 2-planes in Z_2 pointlike on Σ

 $\sum_{a} \epsilon_a = 0$

Take $n_{12}=n$, $n_{13}=2$

In the presence of $\Gamma = \text{diag}(1 \ \omega \ 1 \ \omega^{-1})$ Abelian orbifold

 $\epsilon_1 \epsilon_2 \epsilon_3 \epsilon_4$

 $\omega^n = 1$

Together with necklace quiver with n U(2) gauge groups on $\mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_3}$

Together with necklace quiver with n U(2) gauge groups on $\mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_3}$ z_{n-1} (2)

qW-algebra as large-n limit

Origami partition function combines instanton and perturbative data of both theories

$$\mathcal{Z}^{\Gamma} = \mathcal{Z}^{\text{pert}} \cdot \sum_{\lambda} \left[\prod_{\omega \in \Gamma^{\vee}} \mathfrak{q}_{\omega}^{k_{\omega}} \right] \varepsilon \left[-\tilde{T}_{\lambda}^{\Gamma} \right]$$

Taking limits $\mathfrak{q} \to 0$, $\epsilon_2 \to 0$ we get 3d quiver defect gauge theory T*Fln on $\mathbb{C}_{\epsilon_1} \times S^1$ and finite linear 5d quiver on $\mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_3} \times S^1$

qW-algebra as large-n limit

Origami partition function combines instanton and perturbative data of both theories

$$\mathcal{Z}^{\Gamma} = \mathcal{Z}^{\text{pert}} \cdot \sum_{\lambda} \left[\prod_{\omega \in \Gamma^{\vee}} \mathfrak{q}_{\omega}^{k_{\omega}} \right] \varepsilon \left[-\tilde{T}_{\lambda}^{\Gamma} \right]$$

Taking limits $\mathfrak{q} \to 0$, $\epsilon_2 \to 0$ we get 3d quiver defect gauge theory T*Fln on $\mathbb{C}_{\epsilon_1} \times S^1$ and finite linear 5d quiver on $\mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_3} \times S^1$

Locus $a_k = q_1^{\lambda_k} q_3^{n-k}$ truncates vortex functions to polynomials and simultaneously Higgses the 5d theory (truncates instanton series)

Elliptic Deformation [PK Sciarappa]

If we don't take the limit $q \rightarrow 0$ trigonometric integrable system is promoted to elliptic RS model

eRS Hamiltonian eigenvalues coincide with eigenvalues of the **quantum multiplication** operator in **quantum K-theory** ring of the instanton moduli space (Hilbert Scheme of points).

$$\left\langle W_{\Box}^{U(n)} \right\rangle \Big|_{\lambda} \sim \left| \mathcal{E}_{1}^{(\lambda)} \right|_{\lambda} = 1 - (1 - q)(1 - t^{-1}) \sum_{s} \sigma_{s} \Big|_{\lambda}$$

sigmas are determined by Bethe Ansatz equations for ADHM quiver

What's next?

Add more equivariant parameters

From 4 to 5 to 6 dimensions From cohomology to K-theory to elliptic cohomology What is the maximal number of parameters? 5?

Connection to Higgs branch approach by Beem and Rastelli

The VOA is recovered by passing to cohomology of a BRST-like operators which respects Higgs branch

Higher dimensional CFTs and Higher Spin Theories by Vasiliev qW-algebra structure was recently found in HS theories