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Figure 6.3.3 is a pictorial representation of this data. Note that nonsingularity at

Figure 6.3.3. A quasimap relative a point p P C is a quasimap
from a semistable curve C 1 whose stabilization collapses a chain
of rational curves to p.

p and the nodes implies f 1 takes the generic point of each component of C 1 to X.
Two quasimaps are isomorphic, if they fit into a diagram of the form

C 1
1

φ

!!

f1

""❄
❄

❄
❄

π1

##⑧⑧
⑧
⑧
⑧
⑧
⑧

C X

C 1
2

f2

$$
⑧

⑧
⑧

⑧
π2

%%❄❄❄❄❄❄❄❄

where φ is an isomorphism which preserves the marked point. Since

AutpC 1,π,pq “
`
Cˆ˘# of new components

a quasimap has a finite group of automorphism if and only if each component of
C 1 is either mapped nonconstantly to X or has at least one singular point.

6.3.4. A quasimap to X may be composed pointwise with the projection to the
affine quotient

X0 “ µ´1p0q{G “ Spec pG-invariantsq ,

which has to be constant since X0 is affine. This gives a map QMpXq Ñ X0, and
similarly for relative quasimaps.

By a general result of [20], the moduli space of both ordinary and relative
quasimaps is proper over X0. Our goal in this section is to get a feeling for how
this works and, in particular, to explain the logic behind the definition of a relative
quasimap.

6.3.5. The key issue here is that of completeness, which means that we should
be able to fill in central fibers for maps

g : Bˆ Ñ QMpXqrelative p ,

where Bˆ “ Bzt0u and B is a smooth affine curve with a point 0, under the
assumption that the corresponding map to X0 extends to B.

QUANTUM EQUIVARIANT K-THEORY OF NAKAJIMA QUIVER VARIETIES AND INTEGRABILITY 3

We are interested in the case of the following quiver:

vn�1 . . . v2 v1

w1

We denote by aj the coordinates of the torus acting on w1 and by si,k the coordinates
of the torus acting on vi. In this case we have (Let’s relabel w1 to wn�1and put it on
the left vertex ):

TX = T (T ⇤Rep(v,w))�
X

i2I
(1 + ~�1)End(Vi) =(4)

n�1X

i=2

viX

k=1

vi�1X

j=1

✓
si,k

si�1,j
� si�1,j~

si,k

◆
+

v1X

k=1

w1X

j=1

✓
s1,k

aj
+

aj~
s1,k

◆
� (1 + ~�1)

X

i2I

j,k=viX

j,k=1

si,j

si,k
(5)

To get Bethe equations we need to use the following formula:

ba
✓
si,k

@

@si,k
TX

◆
= zi,

where ba (
P

nixi) =
Q⇣

x
1/2
i � x

�1/2
i

⌘ni

. We get the following equations

vn�2Y

j=1

sn�1,k � sn�2,j

sn�1,k � ~sn�2,j
= zn�1

vn�1Y

j=1,j 6=k

sn�1,k � sn�1,j~
sn�1,k~� sn�1,j

, k = 1, . . . ,vn�1 ,

vi�1Y

j=1

si,k � si�1,j

si,k � ~si�1,j

vi+1Y

j=1

si+1,j � ~si,k
si+1,j � si,k

= zi

viY

j=1,j 6=k

si,k � si,j~
si,k~� si,j

, k = 1, . . . ,vi

w1Y

j=1

s1,k � aj

s1,k � ~aj

v2Y

j=1

s2,j � ~s1,k
s2,j � s1,k

= z1

v1Y

j=1,j 6=k

s1,k � s1,j~
s1,k~� s1,j

, k = 1, . . . ,v1 .(6)

These are Bethe ansatz equations for the periodic anisotropic gl(n) XXZ spin chain on
wn�1 sites with twist parameters z1, . . . , zn�1, impurities (shifts of spectral parameters)
a1, . . . , awn�1 , and quantum parameter ~.

3. XXZ/tRS Duality

In this section we discuss the duality between XXZ spin chain and trigonometric Ruijsenaars-
Schneider model which was first derived in physics literature [GK13,BKK15]. It was there
referred to as quantum/classical duality. Here we shall reviews the arguments as well as
prove main statements.

Based on new ideas, collaborations and discussions  
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Figure 2: The origami wolrdvolume X =
S
A

XA
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2. Gauge and string theory motivations

2.1. Generalized gauge theory. We study the moduli spaces MX,G of what might be
called supersymmetric gauge fields in the generalized gauge theories, whose space-time
X contains several, possibly intersecting, components: see Fig. 2. We call such X the
origami worldvolume. The gauge groups G|XA

= GA on di�erent components may be
di�erent. The intersections XA [XB lead to the bi-fundamental matter fields charged
under GA ⇥GB. The arrangement is motivated by the string theory considerations,
where the open string Hilbert space, in the presence of several D-branes, splits into
sectors labelled by the boundary conditions. It is well-known [34, 10] that some features
of the open string theory are captured by the noncommutative gauge theory. In fact, the
theories we shall study descend from the maximally supersymmetric Yang-Mills theory,
which is twisted and deformed. One can view the fields of this theory as describing the
deformations of the four dimensional stratified manifolds X = (XA,nA), i.e. singular, in
general, spaces, which can be represented as unions X = [AXA of manifolds with certain
conditions on closures and intersections, endowed with multiplicities, i.e. the strata
XA are allowed to have di�erent multiplicity nA. The local gauge group GA is simply
U(nA). The particular twist of the super-Yang-Mills theory we study corresponds to
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with CFT correlators (Mathematically: Relates structures arising on 
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• Canonical example: [Alday Gaiotto Tachikawa] 
Partition functions vs. CFT conformal blocks  
Symmetries of the instanton moduli spaces vs. 
Vertex operator algebras 
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Algebraic-geometric approach

One of our goals is to understand BPS/CFT geometrically

Namely we want describe instanton counting and vertex operator 
algebras in terms of quantum geometry (quantum cohomology 
or quantum K-theory) of some family of spaces

Mathematicians have now several proofs of AGT in limiting cases (no 
fundamental matter), but those proofs do not use the original class-S 
construction

Physics proof* by Kimura and Pestun uses direct localization computations 

[Schiffmann Vaserot] [Negut]

In other words we want VOAs to emerge from quantum geometry
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Vertex Algebras at the Corner [Gaiotto Rapcak]

The Magnificent Four [Nekrasov]

VOAs at junctions of supersymmetric intersections in N=4 SYM

D8 brane probed by D0 branes in B field

Quiver W-algebras [Kimura Pestun]
4,5,6d quiver gauge theories on R^4 x S in Omega background

U(1)4 ⇢ Spin(8)
q1, q2, q3, q4

+ additional nongeometric U(1) symmetry
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Gauge theories are known to have effective description when the  
rank of the gauge group becomes large

Similar ideas work in mathematics — stable limits

String theory enjoys large-n dualities

AdS/CFT,   Gopakumar-Vafa 

U(n) n ! 1

We shall see that BPS/CFT can be viewed as a 
large-n duality!
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N=2 gauge theories

Integrable many-body
systems

Representation theory 
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Large-n limits are manifest in each description!

n-particle Calogero model

ILW hydrodynamics
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Classical K-theory
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

Rep(v,w) — linear space of quiver reps

µ : T ⇤Rep(v,w) ! Lie(G)⇤

G =
Y

GL(Vi)

moment map

X = µ�1(0)//GNakajima quiver variety

Aut(X) =
Y

GL(Qij)⇥
Y

GL(Wi)⇥ C⇥
~Automorphism group

Maximal torus T = T(Aut(X))
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Tensorial polynomials of tautological bundles Vi, Wi and their 
duals generate classical T-equivariant K-theory ring of X



Quasimaps
Quasimap f : C �� ! X is described by collection of vector bundles
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as automorphisms of X, where Qij stands for the number of edges between vertices i and
j, C! scales cotangent directions with weight ! and therefore symplectic form with weight
!−1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2
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wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
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Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
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3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
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Evaluation map

evp(f) = f(p) 2 [µ�1(0)/G] � X

Stable if f(p) 2 X

for all but finitely many singular points

74 K-theoretic computations in enumerative geometry

Figure 6.3.3 is a pictorial representation of this data. Note that nonsingularity at

Figure 6.3.3. A quasimap relative a point p P C is a quasimap
from a semistable curve C 1 whose stabilization collapses a chain
of rational curves to p.

p and the nodes implies f 1 takes the generic point of each component of C 1 to X.
Two quasimaps are isomorphic, if they fit into a diagram of the form

C 1
1

φ

!!

f1

""❄
❄

❄
❄

π1

##⑧⑧
⑧
⑧
⑧
⑧
⑧

C X

C 1
2

f2

$$
⑧

⑧
⑧

⑧
π2

%%❄❄❄❄❄❄❄❄

where φ is an isomorphism which preserves the marked point. Since

AutpC 1,π,pq “
`
Cˆ˘# of new components

a quasimap has a finite group of automorphism if and only if each component of
C 1 is either mapped nonconstantly to X or has at least one singular point.

6.3.4. A quasimap to X may be composed pointwise with the projection to the
affine quotient

X0 “ µ´1p0q{G “ Spec pG-invariantsq ,

which has to be constant since X0 is affine. This gives a map QMpXq Ñ X0, and
similarly for relative quasimaps.

By a general result of [20], the moduli space of both ordinary and relative
quasimaps is proper over X0. Our goal in this section is to get a feeling for how
this works and, in particular, to explain the logic behind the definition of a relative
quasimap.

6.3.5. The key issue here is that of completeness, which means that we should
be able to fill in central fibers for maps

g : Bˆ Ñ QMpXqrelative p ,

where Bˆ “ Bzt0u and B is a smooth affine curve with a point 0, under the
assumption that the corresponding map to X0 extends to B.

Resolve to make proper ev map 
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will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

Degree (v1, . . . ,vn�1)



Vertex Function (g=0)
Spaces of quasimaps admit an action of an extra torus      which scales the 
base       keeping two fixed points

Cq

P1

Define vertex function with quantum (Novikov) parameters
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Proposition 2.6. The multiplicative identity of QKT(X) is given by 1̂(z) (i.e. the quan-

tum tautological class for insertion ⌧ = 1).

Proof. The diagrammatic proof given in [PSZ16] can be applied to any Nakajima quiver
variety. ⇤

2.5. Vertex functions. The spaces QMd
nonsing p2 and QMd

relative p2 admit an action of an

extra torus Cq which scales the original P1 keeping points p1 and p2 fixed. Set Tq = T⇥Cq

be the torus acting on these spaces.

Definition 2.7. The element

V
(⌧)(z) =

1X

d=~0

z
devp2,⇤

⇣
QMd

nonsing p2 ,
bOvir⌧(Vi|p1)

⌘
2 KTq(X)loc[[z]]

is called bare vertex with descendent ⌧ . In picture notation it will be denoted by

⌧

The space QMd
nonsing p2 is not proper (the condition of non-singularity at a point is an

open condition), but the set of Tq-fixed points is, hence the bare vertex is singular at q = 1.

Definition 2.8. The element

V̂
(⌧)(z) =

1X

d=~0

z
devp2,⇤

⇣
QMd

relative p2 ,
bOvir⌧(Vi|p1)

⌘
2 KTq(X)[[z]]

is called capped vertex with descendent ⌧ . In picture notation it will be represented by:

⌧

Note here, that the definition of the capped vertex and the definition of quantum tau-
tological classes are very similar with the main di↵erence being the spaces they live in.
By definition, the quantum tautological classes can be obtained by taking a limit of the
capped vertex: limq!1 V̂

(⌧)(z) = ⌧̂(z). The last limit exists as the coe�cients of V̂ (⌧)(z)
are Laurent polynomials in q, due to the properness of the evaluation map in the relative
case.

In fact, the following strong statement is known about capped vertex functions.

Theorem 2.9. Power series V̂
(⌧)(z) is a Taylor expansion of a rational function in quan-

tum parameters z.

Proof. There are two di↵erent proofs of this theorem: the first is based on large fram-
ing vanishing [Smi16], the second originates from integral representations of solutions of
quantum di↵erence equations [AO]. ⇤

As a corollary, quantum tautological classes ⌧̂(z) are rational functions of z.

[PK Pushkar Smirnov Zeitlin]
[Okounkov]
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The symmetrized virtual structure sheaf is defined by:

(6) Ôvir = Ovir ⌦ K 1/2
vir q

deg(P)/2
,

where Kvir = det�1
T
virQMd is the virtual canonical bundle and P is the polarization

bundle.
Since we will be using the symmetrized virtual structure sheaf we will need to adjust

the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = evp1,p2⇤(QM
d
relativep1,p2Ôvir) 2 K

⌦2
T (X)[[z]],(7)

so that the corresponding picture is : .

It plays an important role in the degeneration formula, see e.g. [Oko1512]. Namely, let a
smooth curve C" degenerate to a nodal curve:

C0 = C0,1 [p C0,2.

Here C0,1 and C0,2 are two di↵erent components that are glued to each other at point p.
The degeneration formula counts quasimaps from C" in terms of relative quasimaps from
C0,1 and C0,2, where the relative conditions are imposed at the gluing point p. The family
of spaces QM(C" ! X) is flat, which means that we can replace curve counts for any C"

by C0. In particular, we can replace counts of quasimaps from P1 by a degeneration of it,
for example by two copies of P1 glued at a point.

The gluing operator G 2 EndKT(X)[[z]] is the tool that allows us to replace quasimap
counts on C" by counts on C0,1 and C0,2, so that the following degeneration formula holds:

�(QM(C0 ! X), Ôvirz
d) =

⇣
G�1ev1,⇤(Ôvirz

d), ev2,⇤(Ôvirz
d)
⌘
.

The corresponding picture interpretation is as follows:

= = G�1

2.4. Quantum K-theory Ring. In this section we define multiplication and important
objects of the quantum K-theory ring of X.

As a vector space quantumK-theory ringQKT(X) is isomorphic toKT(X)⌦C[[z{i}]], i 2
I. We will often use the following notation: for a vector d = (di),

z
d =

Y

i2I
z
di
i .

1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).
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Proof. There are two di↵erent proofs of this theorem: the first is based on large fram-
ing vanishing [Smi16], the second originates from integral representations of solutions of
quantum di↵erence equations [AO]. ⇤

As a corollary, quantum tautological classes ⌧̂(z) are rational functions of z.

[PK Pushkar Smirnov Zeitlin]

Define quantum K-theory as a ring with multiplication
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Definition 2.2. An element of the quantum K-theory

(8) ⌧̂(z) =
1X

d=
�!
0

z
devp2,⇤

⇣
QMd

relative p2 ,
bOvir⌧(Vi|p1)

⌘
2 QKT(X)

is called quantum tautological class corresponding to ⌧ . In picture notation it will be rep-

resented by

⌧

These classes evaluated at 0 are equal to the classical tautological classes onX (⌧̂(0) = ⌧).
For any element F 2 KT(X) the following element

(9)
1X

d=
�!
0

z
devp1,p3⇤

⇣
QMd

p1,p2,p3 , ev
⇤
p2(G

�1
F)bOvir

⌘
2 KT(X)⌦2[[z]]

can be made into an operator from the second copy of KT(X) to the first copy by the
bilinear form (·, ·) defined above. We define the operator of quantum multiplication by F

to be this operator shifted by G�1, i.e

(10) F~ =
1X

d=
�!
0

z
devp1,p3⇤

⇣
QMd

p1,p2,p3 , ev
⇤
p2(G

�1
F)bOvir

⌘
G�1

Definition 2.3. The quantum equivariant K-theory ring of X is vector space QKT(X) =
KT(X)[[z]] endowed with multiplication (10).

This product enjoys properties similar to the product in quantum cohomology. The
proof of the following statement is analogous to the proof of the analogous fact for the
cotangent bundle to Grassmannian [PSZ16].

Theorem 2.4. The quantum K-theory ring QKT(X) is a commutative, associative and

unital algebra.

The operators of quantum multiplication by the quantum tautological bundles obey
the most natural properties. First, assuming Kirwan’s K-theoretic surjectivity conjecture,
we have the following result.

Proposition 2.5. Quantum tautological classes generate the quantum equivariant K-

theory over the quantum equivariant K-theory of a point QKT(·) = C[a±1
m ][[zi]] where am

for m = 1 · · · dimT are the equivariant parameters of T.

Proof. Since, assuming Kirwan’s K-theoretic surjectivity conjecture, classical K-theory is
generated by tautological classes, the quantum K-theory will be generated by quantum
tautological classes according to Nakayama’s Lemma. ⇤

Second, in contrast with quantum cohomology, the multiplicative identity of the quantum
K-theory ring does not always coincide with the multiplicative identity of classicalK-theory
(i.e. the structure sheaf OX):

BAXTER Q-OPERATOR FROM QUANTUM K-THEORY 5

and call the corresponding ring quantum K-theory of Nk,n. The word “deformation”
here means that for two K-theory classes A,B we have

A!B = A⊗B +
∞∑

d=1

A!dBzd,

so that if the deformation parameter is equal to zero z → 0 (this special case is usually
referred to as classical limit), the quantum product ! coincides with the classical
tensor product ⊗. The definition of the quantum product follows closely the definition
of the product in quantum cohomology: the classes A !d B ∈ KT(N(n)) (quantum
corrections) are given by certain degree d curve counting in Nk,n.

Next, for a tautological bundle τ ∈ KT(Nk,n) as above, we define a deformation
which will be referred to as quantum tautological bundle:

τ̂ (z) = τ +
∞∑

d>0

τdz
d ∈ KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multipli-
cation by quantum tautological bundles. The following Theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 1. The eigenvalues of operators of quantum multiplication by τ̂ (z) are given
by the values of the corresponding Laurent polynomials τ(s1, · · · , sk) evaluated at the
solutions of the following equations:

n∏
j=1

si − aj
!aj − si

= z !−n/2
k∏

j=1
j ̸=i

si!− sj
si − sj!

, i = 1 · · ·k.(4)

When z = 0 we return to the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (4) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[31], [7] for a more detailed outline.

Let us consider a system of n interacting magnetic dipoles (usually refered to as
spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⊗ C2 ⊗ · · ·⊗ C2.(5)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = −
n∑

i=1

σi
x ⊗ σi+1

x + σi
y ⊗ σi+1

y +∆ σi
z ⊗ σi+1

z ,(6)

where ∆ = !1/2 + !−1/2 is the parameter of anisotropy and σi
m are the standard Pauli

matrices acting in the i-th factor of (5). The periodic boundary conditions are imposed

[Okounkov]
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The symmetrized virtual structure sheaf is defined by:

(6) Ôvir = Ovir ⌦ K 1/2
vir q

deg(P)/2
,

where Kvir = det�1
T
virQMd is the virtual canonical bundle and P is the polarization

bundle.
Since we will be using the symmetrized virtual structure sheaf we will need to adjust

the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = evp1,p2⇤(QM
d
relativep1,p2Ôvir) 2 K

⌦2
T (X)[[z]],(7)

so that the corresponding picture is : .

It plays an important role in the degeneration formula, see e.g. [Oko1512]. Namely, let a
smooth curve C" degenerate to a nodal curve:

C0 = C0,1 [p C0,2.

Here C0,1 and C0,2 are two di↵erent components that are glued to each other at point p.
The degeneration formula counts quasimaps from C" in terms of relative quasimaps from
C0,1 and C0,2, where the relative conditions are imposed at the gluing point p. The family
of spaces QM(C" ! X) is flat, which means that we can replace curve counts for any C"

by C0. In particular, we can replace counts of quasimaps from P1 by a degeneration of it,
for example by two copies of P1 glued at a point.

The gluing operator G 2 EndKT(X)[[z]] is the tool that allows us to replace quasimap
counts on C" by counts on C0,1 and C0,2, so that the following degeneration formula holds:

�(QM(C0 ! X), Ôvirz
d) =

⇣
G�1ev1,⇤(Ôvirz

d), ev2,⇤(Ôvirz
d)
⌘
.

The corresponding picture interpretation is as follows:

= = G�1

2.4. Quantum K-theory Ring. In this section we define multiplication and important
objects of the quantum K-theory ring of X.

As a vector space quantumK-theory ringQKT(X) is isomorphic toKT(X)⌦C[[z{i}]], i 2
I. We will often use the following notation: for a vector d = (di),

z
d =

Y

i2I
z
di
i .

1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).
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As a vector space quantumK-theory ringQKT(X) is isomorphic toKT(X)⌦C[[z{i}]], i 2
I. We will often use the following notation: for a vector d = (di),

z
d =

Y

i2I
z
di
i .

1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).
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)
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

6 QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY

3. Vertex Functions

Recently we proved the following statement

Proposition 3.1 ([KPSZ1705]). Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi =
{xi,1, . . . xi,vi}) be a chain of subsets defining a torus fixed point p 2 X

T
. Then the coe�-

cient of the vertex function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1
di,j , N(d) = v0

idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1

di,j�di,k
,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

H =
n�2Y

i=1

viY

j=1

vi+1Y

k=1

{xi,j/xi+1,k}di,j�di+1,k
.

Here . . .
The same formula for the vertex can an be obtained using the following intergal repre-

sentation [AFO1701,AO1704]. It is very useful for a lot of applications, in particular for
computing the eigenvalues ⌧p(z).

Proposition 3.2. The bare vertex function is given by

(23) V
(⌧)
p (z) =

1

2⇡i↵p

Z

Cp

n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint⌧(s1, · · · , sk)
n�1Y

i=1

viY

j=1

dsi,j

si,j
,

where

Eint =
n�1Y

i=1

viY

j,k=1

'

⇣
si,j
si,k

⌘

'

⇣
q
~
si,j
si,k

⌘ ,

Gint =

wn�1Y

j=1

vn�1Y

k=1

'

⇣
q
~
sn�1,k

aj

⌘

'

⇣
sn�1,k

aj

⌘ ,

Hint =
n�2Y

i=1

vi+1Y

j=1

viY

k=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

↵p =
n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint

���
si,j=xi,j

,
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vertex functions.

Corollary 2.14. The following expression:
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gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
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3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
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Proof. In order to prove that one just has to use the same principle as in Theorem 2.6
and to prove this identity:

dY

k=1

T
q
ik
 = hE~

,K
(1)

i1
. . .K

(1)

id
�i(19)

namely, use the properties from Proposition 2.5 when moving q-shifted R-operators to the
left of twisted matrices Z(i). Then multiplying on the appropriate coe�cients as in Propo-
sition 2.4 we obtain the statement of the theorem. ⌅

Let us use now an important relation proven in [BLZZ]:

Proposition 2.8. The following combinatorial formula holds for the sums of products of

Hamiltonians:

X

1i1<···<ikN

Hi1 . . . Hik

Y

1↵<�k

C(ai↵/ai� ) =

 
~ 1

2 � ~� 1
2

2

!k X

1i1<···<ikN

�i1 . . .�ik ,(20)

where

C(x) =
x� x

�1

(x~ 1
2 � x�1~� 1

2 )(x~� 1
2 � x�1~ 1

2 )

and �im are eigenvalues of a certain operator which depend only on ~ and {zi}.

The tRS Hamiltonians are given by the following expression:

Ĥd =
X

I⇢{1,...,n},|I|=d

⇣ Y

i2I,j /2I

ai~
1
2 � aj~�

1
2

ai � aj

⌘Y

i2I
T
q
i(21)

In order to put these Hamiltonians in touch with Proposition 2.7, we prove the following
statement.

Proposition 2.9. The ordered expression for tRS Hamiltonians is given by the following

formula:

Ĥd =
X

1i1<···<idn

dY

k=1

Y

j 6=ik

aik~
1
2 � aj~�

1
2

aik � aj

Y

1m<nd

C(aim/ain)
dY

k=1

T
q
ik

(22)

Proof. ?????????????????? ⌅

Using this expression and then combining Proposition 2.8 with Proposition 2.7 we obtain
the main theorem.

Theorem 2.10. Function  , obtained as a weighted sum of coe�cients of the qKZ equation

is an eigenfunction of tRS Hamiltonians Hd.

X = T ⇤Fln                        Then K-theory vertex function satisfies equation of 
motion of trigonometric Ruijsenaars-Schneider model

ĤdV = ed(z1, . . . , zn�1)V

[PK Pushkar Smirnov Zeitlin]

2.1 3d N = 2⇤ Theory

As it was argued in [6] the space of supersymmetric vacua of the 3d N = 2⇤ T [U(n)] quiver

theory on R2 ⇥ S
1 describes the phase space of the n-particle trigonometric Ruijsenaars-

Schneider system. The T [U(n)] theory has gauge group G = ⇥n�1
s=1U(s), with an associated

. . .1 2 n � 1 n

Figure 1: The T [U(n)] quiver

N = 4 vector multiplet for each factor in G, and N = 4 hypermultiplets in the bifunda-

mental of U(s) ⇥ U(s + 1) with s = 1, . . . , n � 1, where the last group U(n) is intended as

a flavor group. This theory depends on two sets of (exponentiated) parameters: twisted

masses µa, a = 1, . . . , n for the U(n) flavor group and Fayet-Iliopoulos parameters ⌧i with

i = 1 . . . , n
6. In addition, we turn on the canonical N = 2⇤ deformation parameter t, which

corresponds to a twisted mass parameter for the adjoint N = 2 chiral multiplets contained

inside the N = 4 vector multiplets7.

Let us briefly review the connection between the T [U(n)] gauge theory and the trigono-

metric Ruijsenaars-Schneider system. One needs to analyze the supersymmetric vacua of

the T [U(n)] theory on its Coulomb branch. The theory on the Coulomb branch is described
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classical Hamiltonian equations of the trigonometric Ruijsenaars-Schneider model
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n,~⌧

= Sk(µ1, . . . , µn) , k = 1, . . . , n , (2.3)

where Sk are symmetric polynomials of degree k of its variables, for example Sk(µ1, . . . , µn) =

µ1 + · · · + µn, and the left hand side presents n integrals of motion of the trigonometric

Ruijsenaars-Schneider model. The first Hamiltonian reads
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Proof. In order to prove that one just has to use the same principle as in Theorem 2.6
and to prove this identity:
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k=1

T
q
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,K
(1)

i1
. . .K

(1)

id
�i(19)

namely, use the properties from Proposition 2.5 when moving q-shifted R-operators to the
left of twisted matrices Z(i). Then multiplying on the appropriate coe�cients as in Propo-
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2 � x�1~ 1

2 )
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2 � aj~�

1
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Proof. ?????????????????? ⌅
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X = T ⇤Fln                        Then K-theory vertex function satisfies equation of 
motion of trigonometric Ruijsenaars-Schneider model

ĤdV = ed(z1, . . . , zn�1)V

[PK Pushkar Smirnov Zeitlin]

3d Mirror version (a.k.a. bispectral dual)
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N = 4 vector multiplet for each factor in G, and N = 4 hypermultiplets in the bifunda-

mental of U(s) ⇥ U(s + 1) with s = 1, . . . , n � 1, where the last group U(n) is intended as

a flavor group. This theory depends on two sets of (exponentiated) parameters: twisted

masses µa, a = 1, . . . , n for the U(n) flavor group and Fayet-Iliopoulos parameters ⌧i with

i = 1 . . . , n
6. In addition, we turn on the canonical N = 2⇤ deformation parameter t, which

corresponds to a twisted mass parameter for the adjoint N = 2 chiral multiplets contained

inside the N = 4 vector multiplets7.

Let us briefly review the connection between the T [U(n)] gauge theory and the trigono-

metric Ruijsenaars-Schneider system. One needs to analyze the supersymmetric vacua of
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determining the supersymmetric vacua, i.e. the twisted chiral ring relations, reduce to

classical Hamiltonian equations of the trigonometric Ruijsenaars-Schneider model

D
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= Sk(µ1, . . . , µn) , k = 1, . . . , n , (2.3)

where Sk are symmetric polynomials of degree k of its variables, for example Sk(µ1, . . . , µn) =

µ1 + · · · + µn, and the left hand side presents n integrals of motion of the trigonometric

Ruijsenaars-Schneider model. The first Hamiltonian reads
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The bifundamental matter is also charged under the U(1)t symmetry, see [44] for details.
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Trigonometric Ruijsenaars-Schneider Hamiltonians form a maximal 
commuting subalgebra inside spherical double affine Hecke 
algebra for gl(n)

Spherical DAHA

Spherical gl(n) DAHA is a deformation quantization of the moduli 
space of flat GL(n;C) connections on a torus with one simple puncture

ABA�1B�1 = C

Mn = {A,B,C}/GL(n;C)

Ĥd are also known as Macdonald operators

{Ĥ1, . . . , Ĥn} ⇢ DAHA
Sn
q,~ (gln)

C = diag(~, . . . , ~, ~1�n)

An = \CJ [Mn]

=: An

[Oblomkov]

[Satoshi’s talk]
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Line Operators and Branes
R3 ⇥ S1             with gauge group U(n) and is described by VEVs of 
 line operators wrapping the circle. 

Mn

A and B are holonomies of electric and magnetic line operators

is the moduli space of vacua in N=2* gauge theory on  

I�

Bcc

q

O

B B

Figure 1. Reduction of the 4d N = 2⇤ theory on the cigar. The extra circle direction S
1 is not

shown.

In this description line operators which form DAHA are local operators on I
1
⌧ . Note

again, that the supersymmetry on the interior of the interval is twice larger, as is required
by the construction of DAHA from line operators in N = 2⇤ theory.

3.2.1 Vortex Counting and Macdonald Polynomials

Macdonald (tRS) operators appear naturally while studying representations of spherical
DAHA [14, 15]. The polynomial solutions of Macdonald operators are Macdonald polyno-
mials. However, there is a more generic class of solutions which are formal power series.
In physics context Macdonald polynomials appear in the study of superconformal index of
4d N = 2 gauge theories, whereas power series can be understood as expansions of holo-
morphic blocks of N = 2⇤ 3d theories. When the mass parameters are specified to certain
values the above series expansion truncates and we again recover Macdonald polynomials.
Let’s describe this in more detail.

The holomorphic block for T [U(2)] theory with FI parameter ⌧1/⌧2 and mass parame-
ters µ1, µ2, ⌘ on Cq ⇥ S

1 reads [16]

B(⌧1, ⌧2;µ1, µ2) =
✓1(⌘�1

⌧1, q)✓1(⌘ ⌧2, q)

✓1(µ1⌧1, q)✓1(µ2⌧2, q)
2�1

✓
⌘
2
, ⌘

2µ1

µ2
; q

µ1

µ2
; q; q⌘�2 ⌧1

⌧2

◆
, (3.8)

where 2�1 stands for q-hypergeometric function. It satisfies difference equations of trigono-
metric Ruijsenaars-Schneider system

T1B = (µ1 + µ2)B ,

T2B = µ1µ2B , (3.9)

where T1,2 are Ruijsenaars-Schneider Hamiltonians, they commute between each other. The
Hamiltonians can be understood as deformation quantization of MH .

3.2.2 Spherical DAHA as Deformation Quantization of MH

First we summarize the parameterization of MH along the lines of [17] and [18].
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slide along the remaining line, hence non-commutativity
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An = Hom(Bcc,Bcc)

H = Hom(Bcc,B)

algebra — open strings

representations

[Gukov-Witten]
[Nekrasov-Witten]

(Hilbert space of SUSY QM)
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2.1 3d N = 2⇤ Theory

As it was argued in [6] the space of supersymmetric vacua of the 3d N = 2⇤ T [U(n)] quiver

theory on R2 ⇥ S
1 describes the phase space of the n-particle trigonometric Ruijsenaars-

Schneider system. The T [U(n)] theory has gauge group G = ⇥n�1
s=1U(s), with an associated
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Figure 1: The T [U(n)] quiver

N = 4 vector multiplet for each factor in G, and N = 4 hypermultiplets in the bifunda-

mental of U(s) ⇥ U(s + 1) with s = 1, . . . , n � 1, where the last group U(n) is intended as

a flavor group. This theory depends on two sets of (exponentiated) parameters: twisted

masses µa, a = 1, . . . , n for the U(n) flavor group and Fayet-Iliopoulos parameters ⌧i with

i = 1 . . . , n
6. In addition, we turn on the canonical N = 2⇤ deformation parameter t, which

corresponds to a twisted mass parameter for the adjoint N = 2 chiral multiplets contained

inside the N = 4 vector multiplets7.

Let us briefly review the connection between the T [U(n)] gauge theory and the trigono-

metric Ruijsenaars-Schneider system. One needs to analyze the supersymmetric vacua of

the T [U(n)] theory on its Coulomb branch. The theory on the Coulomb branch is described

by twisted e↵ective superpotential
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µs, ⌧s, t, �

(s)
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⌘
, a = 1, . . . , s, s = 1, . . . , n � 1 , (2.1)

where �
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a are scalars in the vector multiplets of the Cartan subalgebra of G. It was shown

in [6] that equations
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determining the supersymmetric vacua, i.e. the twisted chiral ring relations, reduce to

classical Hamiltonian equations of the trigonometric Ruijsenaars-Schneider model

D
(k)
n,~⌧

= Sk(µ1, . . . , µn) , k = 1, . . . , n , (2.3)

where Sk are symmetric polynomials of degree k of its variables, for example Sk(µ1, . . . , µn) =

µ1 + · · · + µn, and the left hand side presents n integrals of motion of the trigonometric

Ruijsenaars-Schneider model. The first Hamiltonian reads

D
(1)
n (⌧i, p

i

⌧ ) =
nX

i=1

nY

j 6=i

t⌧i � ⌧j

⌧i � ⌧j
p
i

⌧ , (2.4)

6
Here we introduced an additional topological U(1) as in [6], so that the physical FI parameter at the

s-th gauge node is ⌧j+1/⌧j .
7
The bifundamental matter is also charged under the U(1)t symmetry, see [44] for details.
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N = 4 vector multiplet for each factor in G, and N = 4 hypermultiplets in the bifunda-

mental of U(s) ⇥ U(s + 1) with s = 1, . . . , n � 1, where the last group U(n) is intended as

a flavor group. This theory depends on two sets of (exponentiated) parameters: twisted

masses µa, a = 1, . . . , n for the U(n) flavor group and Fayet-Iliopoulos parameters ⌧i with

i = 1 . . . , n
6. In addition, we turn on the canonical N = 2⇤ deformation parameter t, which

corresponds to a twisted mass parameter for the adjoint N = 2 chiral multiplets contained

inside the N = 4 vector multiplets7.

Let us briefly review the connection between the T [U(n)] gauge theory and the trigono-

metric Ruijsenaars-Schneider system. One needs to analyze the supersymmetric vacua of

the T [U(n)] theory on its Coulomb branch. The theory on the Coulomb branch is described
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determining the supersymmetric vacua, i.e. the twisted chiral ring relations, reduce to

classical Hamiltonian equations of the trigonometric Ruijsenaars-Schneider model

D
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n,~⌧

= Sk(µ1, . . . , µn) , k = 1, . . . , n , (2.3)

where Sk are symmetric polynomials of degree k of its variables, for example Sk(µ1, . . . , µn) =

µ1 + · · · + µn, and the left hand side presents n integrals of motion of the trigonometric

Ruijsenaars-Schneider model. The first Hamiltonian reads
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⌧ ) =
nX

i=1

nY

j 6=i

t⌧i � ⌧j

⌧i � ⌧j
p
i

⌧ , (2.4)

6
Here we introduced an additional topological U(1) as in [6], so that the physical FI parameter at the
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7
The bifundamental matter is also charged under the U(1)t symmetry, see [44] for details.
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DAHA Reps

Specify equivariant parameters
q-hypergeometric series                Macdonald polynomials with

E.g. k=2, n=2 V (z; tq, q) = P(1,1)(z|q, t)
V (z; tq2, 1) = P(2,0)(z|q, t)

Ra = x+ a�1
k z

La = x+ akz

Raising and lowering operators of sl(2) DAHA

Figure 1. Submodule V`

where

An,m = 1 � q
�m+n

2 t
�1

, Bn,m =
⇣
1 � q

m�n

2

⌘
Sm(q, t) , (1.60)

an,m = 1 � q
n�m

2 , bn,m =
⇣
1 � q

m+n

2 t

⌘
Sm(q, t) , (1.61)

where

Sm(q, t) =
(1 � q

m)
�
1 � t

2
q
m�1

�

(1 � tqm�1) (1 � tqm)
. (1.62)

We can first consider a module generated by Z0 = 1. One can check that L0Z0 = 0,
so this is the lowest weight module, let’s call it V . One then can act with raising operators
and generate the entire simple module which will be isomorphic to the entire Hilbert space
(1.50) provided that none of r` in (1.56) vanishes.

However, when
q
`
t
2 = 1 , or q

`+1 = 1 (1.63)

the lowering operator acts trivially and we get a submodule V`+1 ⇢ V, see Fig. 1.
The module structure depends on the parity of the dimension of the module. Indeed,

from q
`
t
2 = 1 (neither q or t are roots of unity) we conclude that t = ±q

� `

2 . First let us
consider ` = 2k. Close examining of Macdonald polynomials (1.49) shows that there is a
pole in the constant term at t = q

�k. Thus the ‘+’ branch cannot be realized whereas
t = �q

�k is perfectly acceptable and provides 2k dimensional module V2k.
For odd ` the situation is a bit more interesting. Due to fractional power in the value

for t which ensures that L2k+1Z2k+1 = 0 both branches t = ±q
�k+ 1

2 can be implemented.
Therefore in this case we have a pair of modules V±

2k+1.
Note that the condition

q
`
t = 1 , (1.64)

which arises in the action of raising operators, cannot be realized as a shortening condition
for a module as it leads to poles in the coefficients of Macdonald polynomials (note that q

is not a root of unity).
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i = 1 . . . , n
6. In addition, we turn on the canonical N = 2⇤ deformation parameter t, which

corresponds to a twisted mass parameter for the adjoint N = 2 chiral multiplets contained
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where Sk are symmetric polynomials of degree k of its variables, for example Sk(µ1, . . . , µn) =

µ1 + · · · + µn, and the left hand side presents n integrals of motion of the trigonometric
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Fock Space
Change of variables

Macdonald polynomials depend only on k and the partition

where D(1,2)
q are tRS Hamiltonians, they commute between each other. For completeness,

let us mention that the operator (2.6) is the first of a set of n commuting operators, given
by

D(r)
n,~⌧

(q, t) = tr(r�1)/2
X

I⇢{1,2,...,n}
#I=r

Y

i2I
j /2I

t⌧i � ⌧j
⌧i � ⌧j

Y

i2I
Tq,i for r = 1, . . . , n (2.12)

In mathematical literature, the operator D(1)
n,~⌧

is known as the first Macdonald difference
operator; its eigenfunctions, known as Macdonald polynomials, are given by symmetric
polynomials in n variables ⌧l of total degree k 6 n, and are in one-to-one correspondence
with partitions � = (�1, . . . ,�n) of k of length n.

Now we can make the following observation8. For a given partition � we identify
parameters µa as follows

µa = q�atn�a , a = 1, . . . , n . (2.13)

Having done so we see that the series expansion of holomorphic block (2.9) truncates and
it turns into a Macdonald polynomial P�(~⌧ ; q, t) corresponding to the partition � as

D(1)
n,~⌧

(q, t)P�(~⌧ ; q, t) = E(�;n)
tRS

P�(~⌧ ; q, t) (2.14)

with an eigenvalue given by

E(�;n)
tRS

=
nX

j=1

q�j tn�j (2.15)

Thus for k = 2 we get

B(⌧1, ⌧2; t�1/2q, t1/2q) = P (⌧1, ⌧2; q, t) ,

B(⌧1, ⌧2; t�1/2, t�1/2q2) = P (⌧1, ⌧2|q, t) . (2.16)

In what follows it is instructive make the following change of variables

pm =
nX

l=1

⌧m
l

, (2.17)

For k = 2 we have two partitions and , corresponding to the Macdonald polynomials
in (2.16)

P =
1

2
(p21 � p2) , P =

1

2
(p21 � p2) +

1� qt

(1 + q)(1� t)
p2 . (2.18)

Most importantly, this expression in terms of power sum symmetric polynomials (2.17) is
the same for any n.

Below we list several examples for degree k = 2 Macdonald polynomials for n = 2 and
n = 3

8
See the end of Section 3 of [6].
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Starting with Fock vacuum |0i

Construct Hilbert space

in terms of the so-called reproduction kernel

Q
(q, t)(⌧, e⌧) =

Y

i,j>1

(t⌧ie⌧j ; q)1
(⌧ie⌧j ; q)1

, (a; q)1 =
Y

s>0

(1� aqs) . (3.8)

The statement holds in general: given two bases {u�}, {v�} of ⇤(q, t), they are dual under
(3.6) if and only if

P
�
u�(⌧)v�(e⌧) =

Q
(q, t)(⌧, e⌧); in this sense, the form of the inner product

is determined by the form of the kernel function. For our discussion, the most relevant basis
of symmetric functions is given by the Macdonald basis {P�(⌧ ; q, t)}, uniquely determined
by the following conditions

(1) P�(⌧ ; q, t) = m�(⌧) +
X

µ<�

u�µ(q, t)mµ(⌧) with u�µ(q, t) 2 Q(q, t) ,

(2) hP�(⌧ ; q, t), Pµ(⌧ ; q, t)iq,t = 0 for � 6= µ ,

(3.9)

where m�(⌧) are monomial symmetric functions and � > µ() |�| = |µ| with �1+. . .+�i >
µ1 + . . .+ µi for all i. From the functions P�(⌧ ; q, t) we recover the n-variables Macdonald
polynomials as P�(⌧1, . . . , ⌧n; q, t) = P�(⌧1, . . . , ⌧n, 0, 0, . . . ; q, t); these are eigenstates of the
Hamiltonians (2.6), (2.12) and satisfy (2.14).

3.1.1 Free Field Realization

We are now ready to discuss the collective coordinate (or free boson) realization of the tRS
Hamiltonian (2.6). The idea here is to introduce a (q, t)-deformed version of the Heisenberg
algebra H(q, t), with generators am (m 2 Z) and commutation relations

[am, an] = m
1� q|m|

1� t|m| �m+n,0 . (3.10)

A canonical basis in the Fock space of H(q, t) is given by the set of states a��|0i =

a��1 · · · a��l(�)
|0i depending on a partition �; a generic state will be a linear combina-

tion of the basis ones, with coefficients in Q(q, t). Let us notice that the bra-ket product
among basis states is such that

h0|0i = 1 , h0|a�a�µ|0i = ��,µz�(q, t) , (3.11)

and therefore coincides with the inner product (3.6). This is in agreement with the natural
isomorphism between this Fock space and ⇤(q, t), simply given by

a��|0i  ! p� (3.12)

for fixed partition �. Now, in order to reproduce the action of D(1)
n,~⌧

in terms of bosonic
operators, we follow [38] (see also [55–57]) and introduce the vertex operators
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a��|0i = a��1 · · · a��l |0ifor each partition

pm =
nX

l=1
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DAHA Action
Vertex functions or quantum classes for X are elements of quantum K-
theory of X. Equivalently we can view them as elements of equivariant 
K-theory of the space of quasimaps from P1 to X

6 QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY

3. Nakajima Varieties and Macdonald polynomials

Consider the space of quasimaps of complex projective space into the cotangent bundle
to complete n-flag. We construct the following space

(23) Hn = KT (P1 ! T
⇤Fn) ,

Here the maximal torus is T = T(U(n) ⇥ U(1)~ ⇥ U(1)q). This is an infinite-dimensional
vector space whose points are equivariant K-theoretic Givental J-functions (vertex func-
tions)

(24) J(z1, . . . , zn, a1, . . . , an, q, ~) ,
where z1, . . . , zn stand for first Chern classes of the base, a1, . . . , an are equivariant pa-
rameters for U(n) global symmetry, q is the shift parameter (equivalently the parameter
which act on P1 by C⇥), and finally, ~ acts with by C⇥ on the cotangent fibers. All the
arguments of the vertex function take values in C⇥.

It was shown in physics literature [BKK] that J obeys the following set of di↵erence
equations once it is corrected by the stable elliptic envelope

(25) HiZ = ei(a1, . . . , an)Z ,

where Hi are tRS (Macdonald) di↵erence operators and

(26) Z = Stab · J ,

where Stab is the stable envelope for T ⇤Fn. In other words, Z is a (formal) wavefunction
of the (complexified) integrable system.

At generic values of the equivariant parameters for U(n) global symmetry a1, . . . , an the
vertex function is a series of q-hypergeometric type with certain elliptic prefactors.

3.1. X = T
⇤P1

, (n = 2). The vertex function is given by the following series

(27) Z = Stab · 2�1

✓
~, ~a1

a2
; q

a1

a2
; q; q

z

~

◆
.

The hypergeometric function has the following expansion in Kähler parameter

(28) 2�1

✓
~, ~a1

a2
; q

a1

a2
; q; q

z

~

◆
=

1X

k=0

(~; q)k(~a1/a2; q)k
(q; q)k(qa1/a2; q)k

⇣
qz

~

⌘k
,

where (a; q)k =
Qk�1

l=0
(1� aq

l) is the k-th Pochhammer symbol, and in this case

(29) Stab =
✓1(~�1/2

z
�1/2

, q)✓1(~1/2 z�1/2
, q)

✓1(a1z�1/2, q)✓1(a2z�1/2, q)
.

From the above formulae we can derive the condition on equivariant parameters when the
q-hypergeometric series get truncated. For simplicity let us assume a2 = a

�1

1
= a

1/2. For
one such formal solution this condition reads

(30) a
2

` = q
�`~�1

, ` 2 Z+

V 2 with maximal torus
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Specification ak = q�ktn�k                                           restricts us to the Fock space 
representation of (q,t)-Heisenberg algebra which is DAHA module

[PK to appear]
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In other words, we can define the following action

gl(n) DAHA
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Specification ak = q�ktn�k                                           restricts us to the Fock space 
representation of (q,t)-Heisenberg algebra which is DAHA module

In other words, we can define the following action

gl(n) DAHA
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◆
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z
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, q)
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.

From the above formulae we can derive the condition on equivariant parameters when the
q-hypergeometric series get truncated. For simplicity let us assume a2 = a

�1

1
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1/2. For
one such formal solution this condition reads

(30) a
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[Schiffmann Vaserot]

C[p1, p2, . . . ]⌦ C[q, t]

[PK to appear]
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We are interested in the case of the following quiver:

vn�1 . . . v2 v1

w1

We denote by aj the coordinates of the torus acting on w1 and by si,k the coordinates
of the torus acting on vi. In this case we have (Let’s relabel w1 to wn�1and put it on
the left vertex ):

TX = T (T ⇤Rep(v,w))�
X

i2I
(1 + ~�1)End(Vi) =(4)

n�1X

i=2

viX

k=1

vi�1X

j=1

✓
si,k

si�1,j
� si�1,j~

si,k

◆
+

v1X

k=1

w1X

j=1

✓
s1,k

aj
+

aj~
s1,k

◆
� (1 + ~�1)

X

i2I

j,k=viX

j,k=1

si,j

si,k
(5)

To get Bethe equations we need to use the following formula:

ba
✓
si,k

@

@si,k
TX

◆
= zi,

where ba (
P

nixi) =
Q⇣

x
1/2
i � x

�1/2
i

⌘ni

. We get the following equations

vn�2Y

j=1

sn�1,k � sn�2,j

sn�1,k � ~sn�2,j
= zn�1

vn�1Y

j=1,j 6=k

sn�1,k � sn�1,j~
sn�1,k~� sn�1,j

, k = 1, . . . ,vn�1 ,

vi�1Y

j=1

si,k � si�1,j

si,k � ~si�1,j

vi+1Y

j=1

si+1,j � ~si,k
si+1,j � si,k

= zi

viY

j=1,j 6=k

si,k � si,j~
si,k~� si,j

, k = 1, . . . ,vi

w1Y

j=1

s1,k � aj

s1,k � ~aj

v2Y

j=1

s2,j � ~s1,k
s2,j � s1,k

= z1

v1Y

j=1,j 6=k

s1,k � s1,j~
s1,k~� s1,j

, k = 1, . . . ,v1 .(6)

These are Bethe ansatz equations for the periodic anisotropic gl(n) XXZ spin chain on
wn�1 sites with twist parameters z1, . . . , zn�1, impurities (shifts of spectral parameters)
a1, . . . , awn�1 , and quantum parameter ~.

3. XXZ/tRS Duality

In this section we discuss the duality between XXZ spin chain and trigonometric Ruijsenaars-
Schneider model which was first derived in physics literature [GK13,BKK15]. It was there
referred to as quantum/classical duality. Here we shall reviews the arguments as well as
prove main statements.

ZNek = bZNek|0i

[Kimura Pestun]

Cq1 ⇥ Cq2 ⇥ S1
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where
ti,0 = logq2 qi (3.26)

The elements of the Fock space chRepT[[t]] are formal t-series valued in the ring of T-
characters. The t-constants are lowest-weight states (vacua); they are annihilated by all
lowering operators ∂i,p. A state in the Fock space chRepT[[t]] can be obtained by an action
of an operator in the algebra H on the vacuum |1⟩

3.15. Free bosons and vertex operators. The state |ZT⟩ can be presented as

|ZT⟩ =
∑

X∈MT

≻
∏

x∈X

Si(x),x|1⟩ (3.27)

where
≻
∏

denotes the ≻-ordered product over x ∈ X of the vertex operators

Si,x =: exp
(

∑

p>0

si,−px
p + si,0 log x+ s̃i,0 +

∑

p>0

si,px
−p
)

: (3.28)

Here the free field modes or oscillators are

si,−p
p>0
= (1− qp1)ti,p, si,0 = ti,0, si,p

p>0
= −

1

p

1

1− q−p
2

c[p]ij ∂i,p (3.29)

with commutation relations

[si,p, sj,p′] = −δp+p′,0
1

p

1− qp1
1− q−p

2

c[p]ij , p > 0 (3.30)

The conjugate zero mode s̃i,0 satisfies

[s̃i,0, sj,p] = −βδ0,pc
[0]
ij (3.31)

The normal product notation : eA1eA2 :, where operators A1, A2 are linear in the free fields,
means that all operators (si,p)p≤0 are placed to the left of (si,p)p>0 and s̃i,p.

The relations (3.31) and (3.30), and the relation eA1eA2 = e[A1,A2]eA2eA1 for central [A1, A2],
imply that the operator-state representation of the partition function (3.27) is equivalent to
the quiver gauge theory definition (3.23) if gauge theory couplings κi and qi are evaluated
as

κi = −(c−ij)
[0]
ni, logq2 qi = β + ti,0 + (c−ij)

[logq2 ]nj − (c−ij)
[0] logq2((−1)njνj) (3.32)

where
(c−ij)

[logq2 ] = δij logq2 q
−1 −

∑

e:i→j

logq2(q
−1µe) (3.33)

3.16. Screening charges. The configuration sets X ∈ MT are described by the partitions,
which are explicitly collections of constrained sequences

(λi,α,1 ≥ λi,α,2 ≥ · · · ≥ 0 = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.34)

Let X0 be the ground configuration with all λi,α,∗ = 0.

Let ZX0 be the set of collections of arbitrary integer sequences terminating by zeroes

(λi,α,s1 ? λi,α,s2 ? . . . ? = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.35)
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wn�1 sites with twist parameters z1, . . . , zn�1, impurities (shifts of spectral parameters)
a1, . . . , awn�1 , and quantum parameter ~.

3. XXZ/tRS Duality

In this section we discuss the duality between XXZ spin chain and trigonometric Ruijsenaars-
Schneider model which was first derived in physics literature [GK13,BKK15]. It was there
referred to as quantum/classical duality. Here we shall reviews the arguments as well as
prove main statements.

Moduli space of vacua is the space of          periodic monopoles withAn�1

w1    Dirac singularities whose charges are given by the 
numbers of colors 

ZNek = bZNek|0i

[Kimura Pestun]
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where
ti,0 = logq2 qi (3.26)

The elements of the Fock space chRepT[[t]] are formal t-series valued in the ring of T-
characters. The t-constants are lowest-weight states (vacua); they are annihilated by all
lowering operators ∂i,p. A state in the Fock space chRepT[[t]] can be obtained by an action
of an operator in the algebra H on the vacuum |1⟩

3.15. Free bosons and vertex operators. The state |ZT⟩ can be presented as

|ZT⟩ =
∑

X∈MT

≻
∏

x∈X

Si(x),x|1⟩ (3.27)

where
≻
∏

denotes the ≻-ordered product over x ∈ X of the vertex operators

Si,x =: exp
(

∑

p>0

si,−px
p + si,0 log x+ s̃i,0 +

∑

p>0

si,px
−p
)

: (3.28)

Here the free field modes or oscillators are

si,−p
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= −

1
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1
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2

c[p]ij ∂i,p (3.29)

with commutation relations

[si,p, sj,p′] = −δp+p′,0
1

p
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2

c[p]ij , p > 0 (3.30)

The conjugate zero mode s̃i,0 satisfies

[s̃i,0, sj,p] = −βδ0,pc
[0]
ij (3.31)

The normal product notation : eA1eA2 :, where operators A1, A2 are linear in the free fields,
means that all operators (si,p)p≤0 are placed to the left of (si,p)p>0 and s̃i,p.

The relations (3.31) and (3.30), and the relation eA1eA2 = e[A1,A2]eA2eA1 for central [A1, A2],
imply that the operator-state representation of the partition function (3.27) is equivalent to
the quiver gauge theory definition (3.23) if gauge theory couplings κi and qi are evaluated
as

κi = −(c−ij)
[0]
ni, logq2 qi = β + ti,0 + (c−ij)

[logq2 ]nj − (c−ij)
[0] logq2((−1)njνj) (3.32)

where
(c−ij)

[logq2 ] = δij logq2 q
−1 −

∑

e:i→j

logq2(q
−1µe) (3.33)

3.16. Screening charges. The configuration sets X ∈ MT are described by the partitions,
which are explicitly collections of constrained sequences

(λi,α,1 ≥ λi,α,2 ≥ · · · ≥ 0 = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.34)

Let X0 be the ground configuration with all λi,α,∗ = 0.

Let ZX0 be the set of collections of arbitrary integer sequences terminating by zeroes

(λi,α,s1 ? λi,α,s2 ? . . . ? = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.35)

[Nekrasov Pestun Shatashvili]
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In this section we discuss the duality between XXZ spin chain and trigonometric Ruijsenaars-
Schneider model which was first derived in physics literature [GK13,BKK15]. It was there
referred to as quantum/classical duality. Here we shall reviews the arguments as well as
prove main statements.

Moduli space of vacua is the space of          periodic monopoles withAn�1

w1    Dirac singularities whose charges are given by the 
numbers of colors 

Quantization of this moduli space in carefully chosen complex 
structure gives qW(q1,q2) algebra modulo Virasoro constraints!

bC[Mmon] =
qWq1,q2

Vir(v1,...,vn�1)
Ti,�k| i = 0, k > vi

ZNek = bZNek|0i

[Kimura Pestun]
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where
ti,0 = logq2 qi (3.26)

The elements of the Fock space chRepT[[t]] are formal t-series valued in the ring of T-
characters. The t-constants are lowest-weight states (vacua); they are annihilated by all
lowering operators ∂i,p. A state in the Fock space chRepT[[t]] can be obtained by an action
of an operator in the algebra H on the vacuum |1⟩

3.15. Free bosons and vertex operators. The state |ZT⟩ can be presented as

|ZT⟩ =
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≻
∏

x∈X

Si(x),x|1⟩ (3.27)

where
≻
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denotes the ≻-ordered product over x ∈ X of the vertex operators

Si,x =: exp
(

∑
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si,−px
p + si,0 log x+ s̃i,0 +

∑
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si,px
−p
)

: (3.28)

Here the free field modes or oscillators are

si,−p
p>0
= (1− qp1)ti,p, si,0 = ti,0, si,p

p>0
= −

1
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2

c[p]ij ∂i,p (3.29)

with commutation relations

[si,p, sj,p′] = −δp+p′,0
1

p

1− qp1
1− q−p

2

c[p]ij , p > 0 (3.30)

The conjugate zero mode s̃i,0 satisfies

[s̃i,0, sj,p] = −βδ0,pc
[0]
ij (3.31)

The normal product notation : eA1eA2 :, where operators A1, A2 are linear in the free fields,
means that all operators (si,p)p≤0 are placed to the left of (si,p)p>0 and s̃i,p.

The relations (3.31) and (3.30), and the relation eA1eA2 = e[A1,A2]eA2eA1 for central [A1, A2],
imply that the operator-state representation of the partition function (3.27) is equivalent to
the quiver gauge theory definition (3.23) if gauge theory couplings κi and qi are evaluated
as

κi = −(c−ij)
[0]
ni, logq2 qi = β + ti,0 + (c−ij)

[logq2 ]nj − (c−ij)
[0] logq2((−1)njνj) (3.32)

where
(c−ij)

[logq2 ] = δij logq2 q
−1 −

∑

e:i→j

logq2(q
−1µe) (3.33)

3.16. Screening charges. The configuration sets X ∈ MT are described by the partitions,
which are explicitly collections of constrained sequences

(λi,α,1 ≥ λi,α,2 ≥ · · · ≥ 0 = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.34)

Let X0 be the ground configuration with all λi,α,∗ = 0.

Let ZX0 be the set of collections of arbitrary integer sequences terminating by zeroes

(λi,α,s1 ? λi,α,s2 ? . . . ? = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.35)

[Nekrasov Pestun Shatashvili]

Virasoro constrains can be removed by taking vi ! 1
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1. Gauge Origami Construction

Consider gauge origami setup by Nekrasov [Nek16] for Type IIA string theory onX⇥S1⇥
R. For our purposes it is enough to take X = C4 in the presence of Omega background
with parameters ✏1, . . . , ✏4 such that

P
a ✏a = 0. We shall study K-theoretic version of

instanton partition function for gauge theories living on D4 branes wrapping C2 ⇥ S1 for
some choice of C2 ⇢ C4.

We shall use gauge origami to study the connection between the results of our previ-
ous papers on quiver q-vertex operator algebras [KP15] and on integrable hydrodynamics
[KS15,KS16]. It will turn out that both constructions can be neatly embedded into a gauge
origami.

Let us start with an origami construction with n12 = n in the presence of Abelian Zn

orbifold along two 2-planes as follows

(1) � = diag(1 ! 1 !�1) ,

where !n = 1. The 12 plane supports N = 2⇤ theory with gauge group U(n) in the Omega
background with defect along the second plane1. Then we need to put some branes in 13
plane, say n13 = N . This configuration with one common complex line (C✏1 in this case)
is called folded instantons [Nek17].

Therefore we get the bAn�1 necklace quiver with U(N) gauge group at each node sup-
ported on C✏1 ⇥C✏3 and bA0 U(n) theory supported on C✏1 ⇥C✏2 whose adjoint hypermul-
tiplet has mass ✏3 in the presence of the monodromy defect along C✏1 .

Now the orbifolding introduces n parameters q1, . . . , qn such that their product is equal
to the instanton parameter of the undeformed N = 2⇤ theory q1 · · · · · qn = q. They will

1there is a little subtlety with the !�1 which we need to fix

1

✏1✏2 ✏3 ✏4
!n = 1
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with parameters ✏1, . . . , ✏4 such that

P
a ✏a = 0. We shall study K-theoretic version of

instanton partition function for gauge theories living on D4 branes wrapping C2 ⇥ S1 for
some choice of C2 ⇢ C4.

We shall use gauge origami to study the connection between the results of our previ-
ous papers on quiver q-vertex operator algebras [KP15] and on integrable hydrodynamics
[KS15,KS16]. It will turn out that both constructions can be neatly embedded into a gauge
origami.

Let us start with an origami construction with n12 = n in the presence of Abelian Zn

orbifold along two 2-planes as follows

(1) � = diag(1 ! 1 !�1) ,

where !n = 1. The 12 plane supports N = 2⇤ theory with gauge group U(n) in the Omega
background with defect along the second plane1. Then we need to put some branes in 13
plane, say n13 = N . This configuration with one common complex line (C✏1 in this case)
is called folded instantons [Nek17].

Therefore we get the bAn�1 necklace quiver with U(N) gauge group at each node sup-
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to the instanton parameter of the undeformed N = 2⇤ theory q1 · · · · · qn = q. They will

1there is a little subtlety with the !�1 which we need to fix
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qW-algebra as large-n limit
Origami partition function combines instanton and perturbative data
of both theories 

FROM QUIVER W-ALGEBRAS TO ILW VIA GAUGE ORIGAMI 3

Here T+ are ‘positive’ halves of the character (4). The first sum in the above formula has
contributions from the N = 2⇤ theory with the defect and from the necklace theory, whereas
the second double sum has mixes terms. The very last terms has instanton contributions
from both n12 and n13 branes.

Using (4) the instanton origami partition function reads

(6) Z� = Zpert ·
X

�

"
Y

!2�_

qk!!

#
"
h
�T̃�

�

i
,

where " translates pure characters into products.

2. Free Boson Realization

Here we review the construction of [KP15]. The building block for everything is the
universal bundle (sheaf) denoted by Y in our paper. The definition is

(7) Y = N � PK.

where P = (1� q1)(1� q2), and N and K are the bundles on the moduli space. Then, in
terms of ‘x-variable’ it is rewritten as

Y = (1� q1)
X

x2X
x ,

X = x↵,k , ↵ = 1, ..., n, k = 1, ...,1 ,(8)

where

(9) x↵,k = q
�↵,k

2
qk�1

1
⌫↵ .

This x-variable is to be identified as the Bethe root in the NS limit. Applying the Adams
operation to the Y -bundle, we have

(10) Y [p] = (1� qp
1
)
X

x2X
xp ,

In 4d N = 2 theory language, this is a chiral ring operator Y [p] ⇠ Tr�p.
At this moment, Y [p] is a p-th power sum polynomial of x-variables (more precisely,

symmetric function since we have infinitely many x-variables), and thus we can apply the
standard identification of the power sum with the free boson:

P
xp $ a�p (although we

have to impose some q-factor dependence).
We can think of the instanton part of Y-character:

(11) Yinst = (1� q1)
hX

x�
X

x̊
i

where x̊ is the x-variable corresponding to the empty configuration � = ?, which doesn’t
play any role in our formalism.

Then the partition function is given by applying the index to the corresponding character.
For example, the vector character is given by

(12) V = Y Y _/P = (1� q1)
�1(1� q2)

�1XX_ ,

Taking limits q ! 0 , ✏2 ! 0

we get 3d quiver defect gauge theory T*Fln
and finite linear 5d quiver on 

C✏1 ⇥ S1on

C✏1 ⇥ C✏3 ⇥ S1
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symmetric function since we have infinitely many x-variables), and thus we can apply the
standard identification of the power sum with the free boson:
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xp $ a�p (although we

have to impose some q-factor dependence).
We can think of the instanton part of Y-character:
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where x̊ is the x-variable corresponding to the empty configuration � = ?, which doesn’t
play any role in our formalism.

Then the partition function is given by applying the index to the corresponding character.
For example, the vector character is given by

(12) V = Y Y _/P = (1� q1)
�1(1� q2)

�1XX_ ,

Taking limits q ! 0 , ✏2 ! 0

we get 3d quiver defect gauge theory T*Fln
and finite linear 5d quiver on 

C✏1 ⇥ S1on

C✏1 ⇥ C✏3 ⇥ S1

ak = q�k
1 qn�k

3Locus                                truncates vortex functions to polynomials 
and simultaneously Higgses the 5d theory (truncates instanton series)

Fourier transform
2 2 2 n

[ai, aj ] =
1
j �i+j,0

1�q|j|1

1�q|j|2



Elliptic Deformation 
[PK Sciarappa]

If we don’t take the limit q ! 0                                              trigonometric integrable 
system is promoted to elliptic RS model

eRS Hamiltonian eigenvalues coincide with eigenvalues of the 
quantum multiplication operator in quantum K-theory ring of the 
instanton moduli space (Hilbert Scheme of points).

This connection can be translated in gauge theoretical terms. While the �ILW sys-
tem corresponds to the ADHM quiver on C ⇥ S1

� , the n-particle eRS system, as we have
mentioned earlier, has a gauge theory realization as a 5d N = 1⇤ U(n) theory in Omega
background (1.2) coupled to a 3d T [U(n)] defect on C✏1 ⇥ S1

� [6]. One may think of U(n)

global symmetry of the 3d theory as being gauged. The eigenfunctions and eigenvalues of
the eRS model correspond to the coupled 5d/3d instanton partition function Z inst

5d/3d and
to the vacuum expectation values of the Wilson loop in the fundamental representation of
U(n) hWU(n)

⇤ i respectively, in the so-called Nekrasov-Shatashvili limit [39] when ✏2 ! 0.
In this work we will show that in the n ! 1 limit the Wilson loop VEV hWU(n)

⇤ i coming
from this coupled 5d/3d theory reduces to the hTr�i observable of the twisted chiral ring
of the 3d ADHM quiver, thus providing a remarkable connection between these two very
different supersymmetric gauge theories.

Line operators Tk act on instanton/vortex partition functions Z of the 5d/3d theory
by quantum shifts of the 3d Fayet-Iliopoulos parameters3

TkZ =
D
WU(n)

k

E
Z , (1.3)

where k = 1, . . . , n is the rank of the antisymmetrization of the fundamental representation
of U(n). Thanks to integrability it will be sufficient to look at the fundamental representa-
tion. The partition functions are vectors in some (rather large) Hilbert space of states. In
order to take the large-n limit of (1.3), we need to understand separately large-n behavior
of Wilson operator VEVs hWU(n)

⇤ i and the states.
Let us start with the space of states. In the beginning we count (ramified) instantons

of the 5d U(n) theory. As we will shortly see, the presence of the U(1) factor in the gauge
group will play a crucial role in taking the limit. It will be demonstrated by an explicit
calculation in Sec. 4, as well as using string theory dualities in Sec. 5.4, that at large n

the 5d U(n) theory effectively transforms into a U(1) theory, therefore we expect that the
instanton calculus should be reinterpreted accordingly in terms of Abelian noncommutative
instantons. One of the noncommutativity parameters will be related to the adjoint mass
of the N = 1⇤ theory, while the other parameter will be the remaining Omega background
velocity ✏1. In five dimensions any instanton solution can wrap S1

� arbitrary many times, so
one needs to include the entire Kaluza-Klein tower of those solutions. Given a topological
sector k the moduli space of instantons is the Hilbert scheme of k points on C2 [40–42]. The
complete moduli space is therefore the union of those Hilbert schemes over all topological
sectors.

The localization formula for a fundamental Wilson loop in the five-dimensional theory
in (1.2) wrapping S1

� contains an equivariant character �~�
of the universal bundle over the

instanton moduli space, which accounts for the propagation of a heavy particle along the
circle. We expect the expression for character �~�

to remain finite after the transition and
to depend on the Abelian instanton data. We will be able to prove that as n ! 1 the
Wilson loop VEV, up to a certain normalization, becomes

D
WU(n)

⇤

E ���
�

⇠ E(�)
1 = 1� (1� q)(1� t�1)

X

s

�s
���
�

(1.4)

3
The details will follow in the next section.

– 4 –

sigmas are determined by Bethe Ansatz equations for ADHM quiver

Elliptic deformation — Quantization



What’s next?
Add more equivariant parameters 
From 4 to 5 to 6 dimensions
From cohomology to K-theory to elliptic cohomology
What is the maximal number of parameters? 5? 

Connection to Higgs branch approach by Beem and 
Rastelli 
The VOA is recovered by passing to cohomology of a BRST-like 
operators which respects Higgs branch 

Higher dimensional CFTs and Higher Spin Theories 
by Vasiliev
qW-algebra structure was recently found in HS theories

[Gopakumar Gaberdiel]


