Quantum Geometry Instantons \& Elliptic Algebras

Peter Koroteev

Talk at workshop 'SCFTs in 6 and Lower Dimensions' TSIMF, Sanya, China January 18th 2018

Based on new ideas, collaborations and discussions with

Aganagic Okounkov
Zeitlin
Smirnov Pushkar Givental

Nekrasov
Pestun
Kimura
Sciarappa

Nekrasov

Costello, Gaiotto, Soibelman, Gukov, Nawata

Algebras from String/M-theory

 In this talk we shall discuss algebraic structures which arise from CFTs. Often such algebras arise as quantizations of some moduli spaces.Example - moduli spaces of SUSY vacua of gauge theories with 8 supercharges. Their quantization leads to vertex operator algebras which appear in 2d CFT (Virasoro, W-algebras, etc). This is a modern way to formulate the BPS/CFT correspondence:

Algebras from String/M-theory

 In this talk we shall discuss algebraic structures which arise from CFTs. Often such algebras arise as quantizations of some moduli spaces.Example - moduli spaces of SUSY vacua of gauge theories with 8 supercharges. Their quantization leads to vertex operator algebras which appear in 2d CFT (Virasoro, W-algebras, etc). This is a modern way to formulate the BPS/CFT correspondence:

- Connects BPS observables of $\mathfrak{N}=2$ supersymmetric gauge theories with CFT correlators (Mathematically: Relates structures arising on moduli spaces of sheaves (instantons) with vertex operator algebras)
- Canonical example: [Alday Gaiotto Tachikawa] Partition functions vs. CFT conformal blocks Symmetries of the instanton moduli spaces vs. Vertex operator algebras

AGT

Class-S theories are constructed in M-theory with M5 branes

 wrapping $\mathcal{M}_{4} \times \mathcal{C}$Twisted compactification of the theory on M5 branes - $(2,0) 6 \mathrm{~d}$ theory on \mathcal{C} leads to $\mathcal{N}=2$ theory on \mathcal{M}_{4}

AGT

Class -S theories are constructed in M-theory with M5 branes

 wrapping $\mathcal{M}_{4} \times \mathcal{C}$[Gaiotto]
Twisted compactification of the theory on M5 branes - $(2,0) 6 \mathrm{~d}$ theory on \mathcal{C} leads to $\mathcal{N}=2$ theory on \mathcal{M}_{4}
$\mathfrak{N}=2^{*} \operatorname{SU}(2) 4 d$ gauge theory on $\mathbb{R}_{q_{1}}^{2} \times \mathbb{R}_{q_{2}}^{2}$

with adj hyper of mass \boldsymbol{m} gauge coupling τ

Liouville CFT on a torus with one puncture thin neck with sewing parameter $q=e^{2 \pi i \tau}$

$\mathrm{AGT}: \mathcal{Z}_{\mathrm{Nek}}=\mathcal{F}_{\mathrm{CFT}}$

Algebraic-geometric approach

Mathematicians have now several proofs of AGT in limiting cases (no fundamental matter), but those proofs do not use the original class-S construction
[Schiffmann Vaserot] [Negut]
Physics proof* by Kimura and Pestun uses direct localization computations

Algebraic-geometric approach

Mathematicians have now several proofs of AGT in limiting cases (no fundamental matter), but those proofs do not use the original class-S construction
[Schiffmann Vaserot] [Negut]
Physics proof* by Kimura and Pestun uses direct localization computations

One of our goals is to understand BPS/CFT geometrically
Namely we want describe instanton counting and vertex operator algebras in terms of quantum geometry (quantum cohomology or quantum K-theory) of some family of spaces

In other words we wantVOAs to emerge from quantum geometry

Recent Developments

Vertex Algebras at the Corner [Gaiotto Rapcak]

VOAs at junctions of supersymmetric intersections in $N=4$ SYM

Quiver W-algebras [Kimura Pestun]

$4,5,6$ d quiver gauge theories on $R^{\wedge} 4 \times S$ in Omega background

The Magnificent Four [Nekrasov]
D8 brane probed by D0 branes in B field
$U(1)^{4} \subset \operatorname{Spin}(8) \quad+$ additional nongeometric $U(I)$ symmetry $q_{1}, q_{2}, q_{3}, q_{4}$

Large-n Limit

String theory enjoys large-n dualities

AdS/CFT, Gopakumar-Vafa

Gauge theories are known to have effective description when the rank of the gauge group becomes large $U(n) \quad n \rightarrow \infty$

Similar ideas work in mathematics - stable limits

Large-n Limit

String theory enjoys large-n dualities

AdS/CFT, Gopakumar-Vafa

Gauge theories are known to have effective description when the rank of the gauge group becomes large $U(n) \quad n \rightarrow \infty$

Similar ideas work in mathematics - stable limits

We shall see that BPS/CFT can be viewed as a large-n duality!

[Schiffmann Vaserot][Negut]

[Schiffmann Vaserot][Negut]

[Schiffmann Vaserot][Negut]
Large-n limits are manifest in each description!

Classical K-theory

Rep (\mathbf{v}, \mathbf{w}) - linear space of quiver reps
$\mu: T^{*} \operatorname{Rep}(\mathbf{v}, \mathbf{w}) \rightarrow \operatorname{Lie}(G)^{*} \quad$ moment map

Nakajima quiver variety

$$
X=\mu^{-1}(0) / / G
$$

$$
G=\prod G L\left(V_{i}\right)
$$

Automorphism group

$$
\operatorname{Aut}(X)=\prod G L\left(Q_{i j}\right) \times \prod G L\left(W_{i}\right) \times \mathbb{C}_{\hbar}^{\times}
$$

Maximal torus

$$
T=\mathbb{T}(\operatorname{Aut}(X))
$$

Classical K-theory

$\operatorname{Rep}(\mathbf{v}, \mathbf{w})$ - linear space of quiver reps
$\mu: T^{*} \operatorname{Rep}(\mathbf{v}, \mathbf{w}) \rightarrow \operatorname{Lie}(G)^{*} \quad$ moment map

Nakajima quiver variety

$$
X=\mu^{-1}(0) / / G
$$

$$
G=\prod G L\left(V_{i}\right)
$$

Automorphism group

$$
\operatorname{Aut}(X)=\prod G L\left(Q_{i j}\right) \times \prod G L\left(W_{i}\right) \times \mathbb{C}_{\hbar}^{\times}
$$

Maximal torus

$$
T=\mathbb{T}(\operatorname{Aut}(X))
$$

Tensorial polynomials of tautological bundles $\mathrm{V}_{\mathrm{i}}, \mathrm{W} \mathrm{W}$ and their duals generate classical T-equivariant K-theory ring of X

Quasimaps

Quasimap $f: \mathcal{C}--\rightarrow X$ is described by collection of vector bundles \mathscr{V}_{i} on \mathcal{C} of ranks \mathbf{v}_{i} with section $f \in H^{0}\left(\mathrm{e}, \mathscr{M} \oplus \mathscr{M}^{*} \otimes \hbar\right)$ satisfying $\mu=0$ where $\mathscr{M}=\sum_{i \in I} \operatorname{Hom}\left(\mathscr{H}_{i}, \mathscr{Y}_{i}\right) \oplus \sum_{i, j \in I} Q_{i j} \otimes \operatorname{Hom}\left(\mathscr{Y}_{i}, \mathscr{Y}_{j}\right)$
Degree $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}\right)$

Quasimaps

Quasimap $f: \mathcal{C}--\longrightarrow X$ is described by collection of vector bundles \mathscr{V}_{i} on \mathcal{C} of ranks \mathbf{v}_{i} with section $f \in H^{0}\left(\mathcal{e}, \mathscr{M} \oplus \mathscr{M}^{*} \otimes \hbar\right)$ satisfying $\mu=0$ where $\mathscr{M}=\sum_{i \in I} \operatorname{Hom}\left(\mathscr{H}_{i}, \mathscr{Y}_{i}\right) \oplus \sum_{i, j \in I} Q_{i j} \otimes \operatorname{Hom}\left(\mathscr{Y}_{i}, \mathscr{Y}_{j}\right)$
Degree $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}\right)$

Evaluation map
$\operatorname{ev}_{p}(f)=f(p) \in\left[\mu^{-1}(0) / G\right] \supset X$

Stable if $f(p) \in X$
for all but finitely many singular points
Resolve to make proper ev map

Vertex Function (g=0)

Spaces of quasimaps admit an action of an extra torus \mathbb{C}_{q} which scales the base \mathbb{P}^{1} keeping two fixed points

Define vertex function with quantum (Novikov) parameters $z^{\mathrm{d}}=\prod_{i \in I}^{z_{i}^{d_{i}}}$

$$
V^{(\tau)}(z)=\sum_{\mathrm{d}=\overrightarrow{0}}^{\infty} z^{\mathrm{d}} \mathrm{ev}_{p_{2}, *}\left(Q M_{\text {nonsing } p_{2}}^{\mathrm{d}}, \widehat{\mathcal{O}}_{\text {vir }} \tau\left(\left.\mathscr{V}_{i}\right|_{p_{1}}\right)\right) \in K_{T_{q}}(X)_{l o c}[[z]]
$$

[Okounkov]
[PK Pushkar Smirnov Zeitlin]

Vertex Function $(g=0)$

Spaces of quasimaps admit an action of an extra torus \mathbb{C}_{q} which scales the base \mathbb{P}^{1} keeping two fixed points

Define vertex function with quantum (Novikov) parameters $z^{\mathrm{d}}=\prod_{i \in I} z_{i}^{d_{i}}$

$$
V^{(\tau)}(z)=\sum_{\mathrm{d}=\overrightarrow{0}}^{\infty} z^{\mathrm{d}} \mathrm{ev}_{p_{2}, *}\left(Q M_{\text {nonsing } p_{2}}^{\mathrm{d}}, \widehat{\mathcal{O}}_{\text {vir }} \tau\left(\mathscr{V}_{i_{p_{1}}}\right)\right) \in K_{\mathrm{T}_{q}}(X)_{l o c}[[z]]
$$

[Okounkov] [PK Pushkar Smirnov Zeitlin]

Define quantum K-theory as a ring with multiplication

$$
\begin{array}{r}
A \circledast B=A \otimes B+\sum_{d=1}^{\infty} A \circledast \circledast_{d} B z^{d} \\
\mathcal{F} \circledast=\sum_{\mathrm{d}=\overrightarrow{0}}^{\infty} z^{\mathrm{d}} \mathrm{ev}_{p_{1}, p_{3} *}\left(\mathrm{QM}_{p_{1}, p_{2}, p_{3}}^{\mathrm{d}}, \mathrm{ev}_{p_{2}}^{*}\left(\mathbf{G}^{-1} \mathcal{F}\right) \widehat{\mathcal{O}}_{\mathrm{vir}}\right) \mathbf{G}^{-1} \underset{\mathbf{G}^{-1} \mathcal{F}}{\stackrel{)}{(})} \mathrm{G}^{-1}
\end{array}
$$

gluing

$$
\mathfrak{C}_{0}=\mathfrak{C}_{0,1} \cup_{p} \mathfrak{C}_{0,2} \quad \longrightarrow=\boldsymbol{X}=\longrightarrow \mathbf{G}^{-1}(
$$

Vertex Functions

After classifying fixed points of space of nonsingular quasimaps we can compute the vertex

$$
\begin{aligned}
& V_{p}^{(\tau)}(z)=\sum_{d_{i, j} \in C} z^{\mathbf{d}} q^{N(\mathbf{d}) / 2} E H G \quad \tau\left(x_{i, j} q^{-d_{i, j}}\right) \\
& E=\prod_{i=1}^{n-1} \prod_{j, k=1}^{\mathbf{v}_{i}}\left\{x_{i, j} / x_{i, k}\right\}_{d_{i, j}-d_{i, k}}^{-1} \quad x_{i, j} \in\left\{a_{1}, \ldots a_{\mathbf{w}_{n}}\right\}
\end{aligned}
$$

Vertex Functions

After classifying fixed points of space of nonsingular quasimaps we can compute the vertex

$$
\begin{aligned}
& V_{p}^{(\tau)}(z)=\sum_{d_{i, j} \in C} z^{\mathbf{d}} q^{N(\mathbf{d}) / 2} E H G \quad \tau\left(x_{i, j} q^{-d_{i, j}}\right) \\
& E=\prod_{i=1}^{n-1} \prod_{j, k=1}^{\mathbf{v}_{i}}\left\{x_{i, j} / x_{i, k}\right\}_{d_{i, j}-d_{i, k}}^{-1} \quad x_{i, j} \in\left\{a_{1}, \ldots a_{\mathbf{w}_{n}}\right\}
\end{aligned}
$$

Vertex

$$
V={ }_{2} \phi_{1}\left(\hbar, \hbar \frac{a_{1}}{a_{2}}, q \frac{a_{1}}{a_{2}} ; q ; z\right)
$$

Vortex

$\mathcal{N}=2^{*}$ quiver gauge theory on $X_{3}=\mathbb{C}_{\epsilon_{1}} \times S_{\gamma}^{1}$
Lagrangian depends on twisted masses a_{1}, a_{2}
Fl parameter z and $U(I)$ R-symmetry fugacity $\log \hbar$
$\left(\bigcap_{\epsilon_{1}}\right.$
$q=e^{\epsilon_{1}}$

Difference Equations

[PK Pushkar Smirnov Zeitlin]

Ring relations

$$
Q K_{T}\left(T^{*} \mathbb{F} l_{n}\right)=\frac{\mathbb{C}\left[z_{i}^{ \pm 1}, a_{i}^{ \pm 1}, \hbar, q\right]}{\mathcal{I}_{\mathrm{tRS}}}
$$

Let $X=T^{*} \mathbb{F} l_{n}$ Then K-theory vertex function satisfies equation of motion of trigonometric Ruijsenaars-Schneider model

$$
\begin{aligned}
& \hat{H}_{d} V=e_{d}\left(z_{1}, \ldots, z_{n-1}\right) V \\
& \hat{H}_{d}=\sum_{I \subset\{1, \ldots n\}, I \mid=d}\left(\prod_{i \in I, j \notin I} \frac{a_{i} \frac{h^{\frac{1}{2}}-a_{j} \hbar^{-\frac{1}{2}}}{a_{i}-a_{j}}}{}\right) \prod_{i \in I} T_{i}^{q}
\end{aligned}
$$

Difference Equations

[PK Pushkar Smirnov Zeitlin]

Ring relations

$$
Q K_{T}\left(T^{*} \mathbb{F} l_{n}\right)=\frac{\mathbb{C}\left[z_{i}^{ \pm 1}, a_{i}^{ \pm 1}, \hbar, q\right]}{\mathcal{I}_{\mathrm{tRS}}}
$$

Let $X=T^{*} \mathbb{F} l_{n}$ Then K-theory vertex function satisfies equation of motion of trigonometric Ruijsenaars-Schneider model

$$
\begin{aligned}
& \hat{H}_{d} V=e_{d}\left(z_{1}, \ldots, z_{n-1}\right) V \\
& \hat{H}_{d}=\sum_{I \subset\{1, \ldots n\},|I|=d}\left(\prod_{i \in I, j \notin I} \frac{\left.a_{i} \frac{h^{\frac{1}{2}}-a_{j} \hbar^{-\frac{1}{2}}}{a_{i}-a_{j}}\right) \prod_{i \in I} T_{i}^{q}}{}\right.
\end{aligned}
$$

3d Mirror version (a.k.a. bispectral dual)

$$
\begin{aligned}
& \hat{H}_{d}^{!} V=e_{d}\left(a_{1}, \ldots, a_{n-1}\right) V \\
& \hat{H}_{d}^{!}\left(a_{i}, \hbar, T_{a}^{q}\right)=\hat{H}_{d}\left(z_{i} / z_{i+1}, \hbar^{-1}, T_{z}^{q}\right)
\end{aligned}
$$

Spherical DAHA

Trigonometric Ruijsenaars-Schneider Hamiltonians form a maximal commuting subalgebra inside spherical double affine Hecke algebra for gl(n)

$$
\left\{\hat{H}_{1}, \ldots, \hat{H}_{n}\right\} \subset \mathrm{DAHA}_{q, \hbar}^{\mathfrak{S}_{n}}\left(\mathfrak{g l}_{n}\right)=: \mathcal{A}_{n}
$$

\hat{H}_{d} are also known as Macdonald operators

Spherical DAHA

[Satoshi's talk]

Trigonometric Ruijsenaars-Schneider Hamiltonians form a maximal commuting subalgebra inside spherical double affine Hecke algebra for $\boldsymbol{g l}(\mathbf{n}) \quad\left\{\hat{H}_{1}, \ldots, \hat{H}_{n}\right\} \subset \mathrm{DAHA}_{q, \hbar}^{\mathfrak{S}_{n}}\left(\mathfrak{g l}_{n}\right)=: \mathcal{A}_{n}$
\hat{H}_{d} are also known as Macdonald operators
[Oblomkov] Spherical $\mathrm{gl}(\mathrm{n})$ DAHA is a deformation quantization of the moduli space of flat $G L(n ; C)$ connections on a torus with one simple puncture

$$
\begin{gathered}
\mathcal{M}_{n}=\{A, B, C\} / G L(n ; \mathbb{C}) \\
A B A^{-1} B^{-1}=C \\
C=\operatorname{diag}\left(\hbar, \ldots, \hbar, \hbar^{1-n}\right) \\
\mathcal{A}_{n}=\widehat{\mathbb{C}_{J}\left[\mathcal{M}_{n}\right]}
\end{gathered}
$$

Line Operators and Branes

\mathcal{M}_{n} is the moduli space of vacua in $\mathfrak{N}=2^{*}$ gauge theory on $\mathbb{R}^{3} \times S^{1}$ with gauge group $U(\mathrm{n})$ and is described by VEVs of line operators wrapping the circle.
A and B are holonomies of electric and magnetic line operators

Line Operators and Branes

\mathcal{M}_{n} is the moduli space of vacua in $\mathfrak{N}=2^{*}$ gauge theory on $\mathbb{R}^{3} \times S^{1}$ with gauge group $U(\mathrm{n})$ and is described by VEVs of line operators wrapping the circle.
A and B are holonomies of electric and magnetic line operators
Omega background along real 2-plane $\mathbb{R}_{q}^{2} \times \mathbb{R} \times S^{1}$
Line operators are forced to stay at the tip of the cigar and slide along the remaining line, hence non-commutativity

Line Operators and Branes

\mathcal{M}_{n} is the moduli space of vacua in $\mathfrak{N}=2^{*}$ gauge theory on $\mathbb{R}^{3} \times S^{1}$ with gauge group $\mathrm{U}(\mathrm{n})$ and is described by VEVs of line operators wrapping the circle.
A and B are holonomies of electric and magnetic line operators
Omega background along real 2-plane $\mathbb{R}_{q}^{2} \times \mathbb{R} \times S^{1}$ Line operators are forced to stay at the tip of the cigar and slide along the remaining line, hence non-commutativity
[Gukov-Witten]

$$
\begin{aligned}
& \text { algebra - open strings } \\
& \mathcal{A}_{n}=\operatorname{Hom}\left(\mathcal{B}_{c c}, \mathcal{B}_{c c}\right) \\
& \text { representations } \\
& \text { (Hilbert space of SUSY QM) } \\
& \mathcal{H}=\operatorname{Hom}\left(\mathcal{B}_{c c}, \mathcal{B}\right)
\end{aligned}
$$

DAHA Reps

Start with a vertex function for $\mathrm{T}^{*} \mathrm{Fn}$

Specify equivariant parameters $a_{k}=q^{\lambda_{k}} \hbar^{n-k}$
q -hypergeometric series \longrightarrow Macdonald polynomials with $\hbar=t$

DAHA Reps

Start with a vertex function for T*Fn

Specify equivariant parameters $a_{k}=q^{\lambda_{k}} \hbar^{n-k}$ q -hypergeometric series \longrightarrow Macdonald polynomials with $\hbar=t$

E.g. $\mathrm{k}=2, \mathrm{n}=2$	$V(z ; t q, q)=P_{(1,1)}(z \mid q, t)$
$(1)-2$	$V\left(z ; t q^{2}, 1\right)=P_{(2,0)}(z \mid q, t)$

DAHA Reps

Start with a vertex function for T^{*} Fn

Specify equivariant parameters $a_{k}=q^{\lambda_{k}} \hbar^{n-k}$ q -hypergeometric series \longrightarrow Macdonald polynomials with $\hbar=t$
E.g. k=2, $\mathrm{n}=2 \quad V(z ; t q, q)=P_{(1,1)}(z \mid q, t)$
(1) $2 \quad V\left(z ; t q^{2}, 1\right)=P_{(2,0)}(z \mid q, t)$

Raising and lowering operators of sl(2) DAHA

$$
\begin{aligned}
& R_{a}=x+a_{k}^{-1} z \\
& L_{a}=x+a_{k} z \\
& R_{a} \mathcal{Z}_{a}=r_{a} \mathcal{Z}_{a+1} \\
& L_{a} \mathcal{Z}_{a}=l_{a} \mathcal{Z}_{a-1}
\end{aligned}
$$

Fock Space

Change of variables $\quad p_{m}=\sum_{l=1}^{n} z_{l}^{m}$
Macdonald polynomials depend only on k and the partition

$$
P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right), \quad P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right)+\frac{1-q t}{(1+q)(1-t)} p_{2}
$$

Fock Space

Change of variables $\quad p_{m}=\sum_{l=1}^{n} z_{l}^{m}$
Macdonald polynomials depend only on k and the partition

$$
P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right), \quad P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right)+\frac{1-q t}{(1+q)(1-t)} p_{2}
$$

Starting with Fock vacuum
Construct Hilbert space $\quad a_{-\lambda}|0\rangle \longleftrightarrow p_{\lambda}$
for each partition $\quad a_{-\lambda}|0\rangle=a_{-\lambda_{1}} \cdots a_{-\lambda_{l}}|0\rangle$
Commutators $\quad\left[a_{m}, a_{n}\right]=m \frac{1-q^{|m|}}{1-t^{|m|}} \delta_{m+n, 0}$

DAHA Action

[PK to appear]
Vertex functions or quantum classes for X are elements of quantum K theory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from PI to X
$V \in K_{T}\left(\mathbb{P}^{1} \rightarrow T^{*} \mathbb{F}_{n}\right)$ with maximal torus $T=\mathbb{T}\left(U(n) \times U(1)_{\hbar} \times U(1)_{q}\right)$.
Specification $a_{k}=q^{\lambda_{k}} t^{n-k}$ restricts us to the Fock space representation of (q,t)-Heisenberg algebra which is DAHA module

DAHA Action

Vertex functions or quantum classes for X are elements of quantum Ktheory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from PI to X
$V \in K_{T}\left(\mathbb{P}^{1} \rightarrow T^{*} \mathbb{F}_{n}\right)$ with maximal torus $T=\mathbb{T}\left(U(n) \times U(1)_{\hbar} \times U(1)_{q}\right)$.

Specification $a_{k}=q^{\lambda_{k}} t^{n-k}$ restricts us to the Fock space representation of (q,t)-Heisenberg algebra which is DAHA module

In other words, we can define the following action
$g l(n)$ DAHA

$$
a_{k}=q^{\lambda_{k}} t^{n-k}
$$

λ not more than n columns

DAHA Action

Vertex functions or quantum classes for X are elements of quantum K theory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from PI to X
$V \in K_{T}\left(\mathbb{P}^{1} \rightarrow T^{*} \mathbb{F}_{n}\right)$ with maximal torus $T=\mathbb{T}\left(U(n) \times U(1)_{\hbar} \times U(1)_{q}\right)$.

Specification $a_{k}=q^{\lambda_{k}} t^{n-k}$ restricts us to the Fock space representation of (q,t)-Heisenberg algebra which is DAHA module

In other words, we can define the following action

$\mathrm{gl}(\mathrm{n}) \mathrm{DAHA}$

$$
\left.\begin{array}{ll}
\quad n \rightarrow \infty \\
\left.K_{T}\left(\mathbb{P}^{1} \rightarrow T^{*} \mathbb{F}_{n}\right)\right|_{a_{k}=q^{\lambda_{k}}{ }^{n-k}} & K_{q, t}\left(\oplus_{i} \mathcal{M}_{i, 1}^{\text {inst }}\right) \\
\lambda \text { not more than n columns }
\end{array}\right) \mathbb{C}\left[p_{1}, p_{2}, \ldots\right] \otimes \mathbb{C}[q,
$$

DAHA Action

Vertex functions or quantum classes for X are elements of quantum K theory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from PI to X
$V \in K_{T}\left(\mathbb{P}^{1} \rightarrow T^{*} \mathbb{F}_{n}\right)$ with maximal torus $T=\mathbb{T}\left(U(n) \times U(1)_{\hbar} \times U(1)_{q}\right)$.

Specification $a_{k}=q^{\lambda_{k}} t^{n-k}$ restricts us to the Fock space representation of (q,t)-Heisenberg algebra which is DAHA module

In other words, we can define the following action

$\mathrm{gl}(\mathrm{n}) \mathrm{DAHA}$

$a_{k}=q^{\lambda_{k}} t^{n-k}$
λ not more than n columns

$$
\mathbb{C}\left[p_{1}, p_{2}, \ldots\right] \otimes \mathbb{C}[q, t]
$$

DAHA Action

Vertex functions or quantum classes for X are elements of quantum Ktheory of X. Equivalently we can view them as elements of equivariant K-theory of the space of quasimaps from PI to X
$V \in K_{T}\left(\mathbb{P}^{1} \rightarrow T^{*} \mathbb{F}_{n}\right)$ with maximal torus $T=\mathbb{T}\left(U(n) \times U(1)_{\hbar} \times U(1)_{q}\right)$.

Specification $a_{k}=q^{\lambda_{k}} t^{n-k}$ restricts us to the Fock space representation of (q,t)-Heisenberg algebra which is DAHA module

In other words, we can define the following action

Quiver qW-algebra

Construction of qW algebra from free-boson representation of extended Nekrasov partition function
[Kimura Pestun]

$$
\mathcal{Z}_{\mathrm{Nek}}=\widehat{\mathcal{Z}}_{\mathrm{Nek}}|0\rangle \quad\left[s_{i, p}, s_{\left.j, p^{\prime}\right]}\right]=-\delta_{p+p^{\prime}, 0} \frac{1}{p} \frac{1-q_{1}^{p}}{1-q_{2}^{-p}} c_{i j}^{[p]}
$$

Start with quiver gauge theory on $\mathbb{C}_{q_{1}} \times \mathbb{C}_{q_{2}} \times S^{1}$

Quiver qW-algebra

Construction of qW algebra from free-boson representation of extended Nekrasov partition function
[Kimura Pestun]

$$
\mathcal{Z}_{\mathrm{Nek}}=\widehat{\mathcal{Z}}_{\mathrm{Nek}}|0\rangle \quad\left[s_{i, p}, s_{j, p^{\prime}}\right]=-\delta_{p+p^{\prime}, 0} \frac{1}{p} \frac{1-q_{1}^{p}}{1-q_{2}^{-p}} c_{i j}^{[p]}
$$

Start with quiver gauge theory on $\mathbb{C}_{q_{1}} \times \mathbb{C}_{q_{2}} \times S^{1}$

Moduli space of vacua is the space of A_{n-1} periodic monopoles with \mathbf{w}_{1} Dirac singularities whose charges are given by the numbers of colors
[Nekrasov Pestun Shatashvili]

Quiver qW-algebra

Construction of $q W$ algebra from free-boson representation of extended Nekrasov partition function
[Kimura Pestun]

$$
\mathcal{Z}_{\mathrm{Nek}}=\widehat{\mathcal{Z}}_{\mathrm{Nek}}|0\rangle \quad\left[s_{i, p}, s_{j, p^{\prime}}\right]=-\delta_{p+p^{\prime}, 0} \frac{1}{p} \frac{1-q_{1}^{p}}{1-q_{2}^{-p}} c_{i j}^{[p]}
$$

Start with quiver gauge theory on $\mathbb{C}_{q_{1}} \times \mathbb{C}_{q_{2}} \times S^{1}$

Moduli space of vacua is the space of A_{n-1} periodic monopoles with \mathbf{w}_{1} Dirac singularities whose charges are given by the numbers of colors
[Nekrasov Pestun Shatashvili]
Quantization of this moduli space in carefully chosen complex structure gives $q W(\mathrm{ql}, \mathrm{q} 2)$ algebra modulo Virasoro constraints!

$$
\widehat{\mathbb{C}}\left[\mathcal{M}_{\text {mon }}\right]=\frac{q W_{q_{1}, q_{2}}}{\operatorname{Vir}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}\right)} \quad T_{i,-k}|\psi\rangle=0, \quad k>\mathbf{v}_{i}
$$

Virasoro constrains can be removed by taking $\quad \mathbf{v}_{i} \rightarrow \infty$

Gauge Origami

[Nekrasov]
Type IIB on Calabi-Yau $4 \quad \mathcal{X}_{4} \times \Sigma$
singular hypersurface $Z_{2} \subset \mathcal{X}_{4}$

Local model: $\cup_{a<b} \mathbb{C}_{a b}^{2} \subset \mathbb{C}^{4}$
For example, when $1 \leq a, b \leq 3$

$\mathcal{X}_{4}=\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{2}} \times \mathbb{C}_{\epsilon_{3}} \times \mathbb{C}_{\epsilon_{4}} \quad \sum_{a} \epsilon_{a}=0$

Gauge Origami

Type IIB on Calabi-Yau $4 \quad \mathcal{X}_{4} \times \Sigma$ singular hypersurface $Z_{2} \subset \mathcal{X}_{4}$

For example, when $1 \leq a, b \leq 3$

$$
\mathcal{X}_{4}=\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{2}} \times \mathbb{C}_{\epsilon_{3}} \times \mathbb{C}_{\epsilon_{4}} \quad \sum_{a} \epsilon_{a}=0
$$

Folded Instantons

$$
\begin{array}{llr}
\text { Take } n_{12}=n, n_{13}=2 & \text { In the presence of } & \Gamma=\operatorname{diag}\left(1 \omega 1 \omega^{-1}\right) \\
\text { Abelian orbifold } & \epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4}
\end{array} \quad \omega^{n}=1
$$

Folded Instantons

Take $n_{12}=n, n_{13}=2$
In the presence of Abelian orbifold
$\omega^{n}=1$

Produces $U(\mathrm{n}) \mathfrak{N}=1^{*}$ theory on $\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{2}}$ with maximal monodromy defect along $\mathbb{C}_{\epsilon_{1}}$ and adjoint mass ϵ_{3}

Folded Instantons

Take $n_{12}=n, n_{13}=2$

In the presence of Abelian orbifold
$\Gamma=\operatorname{diag}\left(1 \omega 1 \omega^{-1}\right)$ $\epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4}$

Produces $U(n) \mathbb{N}=1^{*}$ theory on $\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{2}}$ with maximal monodromy defect along $\mathbb{C}_{\epsilon_{1}}$ and adjoint mass ϵ_{3}

Together with necklace quiver with $n U(2)$ gauge groups on $\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{3}}$

Folded Instantons

Take $n_{12}=n, n_{13}=2 \quad$ In the presence of $\quad \Gamma=\operatorname{diag}\left(1 \omega 1 \omega^{-1}\right)$
Abelian orbifold

$$
\omega^{n}=1
$$

Produces $U(n) \mathbb{N}=1^{*}$ theory on $\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{2}}$ with maximal monodromy defect along $\mathbb{C}_{\epsilon_{1}}$ and adjoint mass ϵ_{3}

Together with necklace quiver with $n U(2)$ gauge groups on $\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{3}}$

Gauge coupling constants

qW-algebra as large-n limit

Origami partition function combines instanton and perturbative data of both theories

$$
z^{\Gamma}=z^{\text {pert }} \cdot \sum_{\lambda}\left[\prod_{\omega \in \Gamma^{V}} \mathfrak{q}_{\omega}^{k_{\omega}}\right] \varepsilon\left[-\tilde{T}_{\lambda}^{\Gamma}\right]
$$

Taking limits $\mathfrak{q} \rightarrow 0, \quad \epsilon_{2} \rightarrow 0$
we get 3d quiver defect gauge theory $\mathrm{T}^{*} \mathrm{Fln}$ on $\mathbb{C}_{\epsilon_{1}} \times S^{1}$ and finite linear 5d quiver on $\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{3}} \times S^{1}$

qW-algebra as large-n limit

Origami partition function combines instanton and perturbative data of both theories

$$
z^{\Gamma}=z^{\text {pert }} \cdot \sum_{\lambda}\left[\prod_{\omega \in \Gamma^{V}} \mathfrak{q}_{\omega}^{k_{\omega}}\right] \varepsilon\left[-\tilde{T}_{\lambda}^{\Gamma}\right]
$$

Taking limits $\mathfrak{q} \rightarrow 0, \quad \epsilon_{2} \rightarrow 0$
we get 3 d quiver defect gauge theory $\mathrm{T}^{*} \mathrm{FIn}$ on $\mathbb{C}_{\epsilon_{1}} \times S^{1}$ and finite linear sd quiver on $\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{3}} \times S^{1}$
Locus $a_{k}=q_{1}^{\lambda_{k}} q_{3}^{n-k}$ truncates vortex functions to polynomials and simultaneously Higgses the 5d theory (truncates instanton series)

Fourier transform

$$
\left[a_{i}, a_{j}\right]=\frac{1}{j} \delta_{i+j, 0} \frac{1-q_{1}^{|j|}}{1-q_{2}^{|j|}}
$$

Elliptic Deformation

[PK Sciarappa]
If we don't take the limit $\mathfrak{q} \rightarrow 0$ trigonometric integrable system is promoted to elliptic RS model
eRS Hamiltonian eigenvalues coincide with eigenvalues of the quantum multiplication operator in quantum K-theory ring of the instanton moduli space (Hilbert Scheme of points).

$$
\left.\left\langle W_{\square}^{U(n)}\right\rangle\right|_{\lambda} \sim \mathcal{E}_{1}^{(\lambda)}=1-\left.(1-q)\left(1-t^{-1}\right) \sum_{s} \sigma_{s}\right|_{\lambda}
$$

sigmas are determined by Bethe Ansatz equations for ADHM quiver

> Ellíptic deformation - Quantization

What's next?

Add more equivariant parameters
From 4 to 5 to 6 dimensions
From cohomology to K-theory to elliptic cohomology What is the maximal number of parameters? 5?

Connection to Higgs branch approach by Beem and Rastelli
TheVOA is recovered by passing to cohomology of a BRST-like operators which respects Higgs branch

Higher dimensional CFTs and Higher Spin Theories by Vasiliev
[Gopakumar Gaberdiel]
qW-algebra structure was recently found in HS theories

