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Abrikosov-Nilsen-Olisen (ANO) strings 
appear as flux tubes inside condensate 
of Cooper pairs in superconductors of 
second kind when superconductivity 
starts to break down. They cary Abelian 
magnetic flux

Effective strings

In QCD there are flux tubes stretched 
between quarks



These strings are bosonic so complete UV description of quantum 
spectrum of their excitations only exists in D=26

In noncritical regime quantum corrections 
completely change the dynamics and the 
object may not look like a string anymore (it 
crumples) and states do not obey Regge law 
for small spins

Effective strings cont’d

QUESTION:

Can we find any example of a 4D field theory which supports thin

vortex strings?

Non-Abelian vortex in N = 2 QCD with U(2) gauge group and Nf = 4

flavors is critical.



These strings are bosonic so complete UV description of quantum 
spectrum of their excitations only exists in D=26

In noncritical regime quantum corrections 
completely change the dynamics and the 
object may not look like a string anymore (it 
crumples) and states do not obey Regge law 
for small spins

Effective strings cont’d

QUESTION:

Can we find any example of a 4D field theory which supports thin

vortex strings?

Non-Abelian vortex in N = 2 QCD with U(2) gauge group and Nf = 4

flavors is critical.

m-mass scale of bulk excitations

Most of solitonic strings are ”thick”.

Transverse size = 1
m
, where m is the typical mass of bulk excitations.

ANO string: Nambu-Goto action

SNG = T
∫
d2σ

{√
h+O

(
∂n

mn

)}

where T is string tension and

h = det(∂αx
µ ∂βxµ)

Polchinski-Strominger, 1991: Without higher derivative terms

the world sheet theory is not UV complete

At weak coupling

Higher derivative terms at weak coupling, g ≪ 1

O

(
∂n

mn

)

, m ∼ g
√
T

At J ∼ 1 ∂ →
√
T

Thus higher derivative terms

→
(
T

m2

)n

blow up at weak coupling!

Polyakov: string surface become ”crumpled”.

String grows short and thick.

higher derivative terms become large



Thus if we want to find a good candidate for a fundamental 
string among effective strings criticality must be obeyed

Effective String with SUSY

When supersymmetry is present on the worldsheet of an 
effective string one has more control over the quantum 
corrections

In this talk we shall discuss strings which are formed as 1/2 
BPS objects in four dimensional SQCD with 8 supercharges 
with gauge group U(N) and 2N (s)quarks 

Worldsheet will have (2,2) superconformal symmetry so we 
should aim for a 10D description, but how?



‘ANO’ String

3. Vortices

In this lecture, we’re going to discuss vortices. The motivation for studying vortices
should be obvious: they are one of the most ubiquitous objects in physics. On table-
tops, vortices appear as magnetic flux tubes in superconductors and fractionally charged

quasi-excitations in quantum Hall fluids. In the sky, vortices in the guise of cosmic
strings have been one one of the most enduring themes in cosmology research. With

new gravitational wave detectors coming on line, there is hope that we may be able
to see the distinctive signatures of these strings as the twist and whip. Finally, and
more formally, vortices play a crucial role in determining the phases of low-dimensional

quantum systems: from the phase-slip of superconducting wires, to the physics of
strings propagating on Calabi-Yau manifolds, the vortex is key.

As we shall see in detail below, in four dimensional theories vortices are string like

objects, carrying magnetic flux threaded through their core. They are the semi-classical
cousins of the more elusive QCD flux tubes. In what follows we will primarily be inter-
ested in the dynamics of infinitely long, parallel vortex strings and the long-wavelength

modes they support. There are a number of reviews on the dynamics of vortices in four
dimensions, mostly in the context of cosmic strings [142, 143, 144].

3.1 The Basics

In order for our theory to support vortices, we must add a further field to our La-
grangian. In fact we must make two deformations

• We increase the gauge group from SU(N) to U(N). We could have done this

before now, but as we have considered only fields in the adjoint representation
the central U(1) would have simply decoupled.

• We add matter in the fundamental representation of U(N). We’ll add Nf scalar
fields qi, i = 1 . . . , Nf .

The action that we’ll work with throughout this lecture is

S =

∫

d4x Tr

(

1

2e2
F µνFµν +

1

e2
(Dµφ)2

)

+

Nf
∑

i=1

|Dµqi|2

−
Nf
∑

i=1

q†iφ
2qi −

e2

4
Tr (

Nf
∑

i=1

qiq
†
i − v2 1N)2 (3.1)

The potential is of the type admitting a completion to N = 1 or N = 2 supersymmetry.
In this context, the final term is called the D-term. Note that everything in the bracket

– 70 –

U(N) gauge theory with N hypers

of the D-term is an N×N matrix. Note also that the couplings in front of the potential
are not arbitrary: they have been tuned to critical values.

We’ve included a new parameter, v2, in the potential. Obviously this will induce a
vev for q. In the context of supersymmetric gauge theories, this parameter is known as

a Fayet-Iliopoulos term.

We are interested in ground states of the theory with vanishing potential. For Nf <
N , one can’t set the D-term to zero since the first term is, at most, rank Nf , while the
v2 term is rank N . In the context of supersymmetric theories, this leads to spontaneous

supersymmetry breaking. In what follows we’ll only consider Nf ≥ N . In fact, for the
first half of this section we’ll restrict ourselves to the simplest case:

Nf = N (3.2)

With this choice, we can view q as an N ×N matrix qa
i, where a is the color index and

i the flavor index. Up to gauge transformations, there is a unique ground state of the
theory,

φ = 0 , qa
i = vδa

i (3.3)

Studying small fluctuations around this vacuum, we find that all gauge fields and scalars
are massive, and all have the same mass M2 = e2v2. The fact that all masses are equal

is a consequence of tuning the coefficients of the potential.

The theory has a U(N)G ×SU(N)F gauge and flavor symmetry. On the quark fields

q this acts as

q → UqV U ∈ U(N)G, V ∈ SU(N)F (3.4)

The vacuum expectation value (3.3) is preserved only for transformations of the form
U = V , meaning that we have the pattern of spontaneous symmetry breaking

U(N)G × SU(N)F → SU(N)diag (3.5)

This is known as the color-flavor-locked phase in the high-density QCD literature [145].

When N = 1, our theory is the well-studied abelian Higgs model, which has been
known for many years to support vortex strings [146, 147]. These vortex strings also
exist in the non-abelian theory and enjoy rather rich properties, as we shall now see.

Let’s choose the strings to lie in the x3 direction. To support such objects, the scalar
fields q must wind around S1

∞ at spatial infinity in the (x1, x2) plane, transverse to the
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3. Vortices

In this lecture, we’re going to discuss vortices. The motivation for studying vortices
should be obvious: they are one of the most ubiquitous objects in physics. On table-
tops, vortices appear as magnetic flux tubes in superconductors and fractionally charged

quasi-excitations in quantum Hall fluids. In the sky, vortices in the guise of cosmic
strings have been one one of the most enduring themes in cosmology research. With

new gravitational wave detectors coming on line, there is hope that we may be able
to see the distinctive signatures of these strings as the twist and whip. Finally, and
more formally, vortices play a crucial role in determining the phases of low-dimensional

quantum systems: from the phase-slip of superconducting wires, to the physics of
strings propagating on Calabi-Yau manifolds, the vortex is key.

As we shall see in detail below, in four dimensional theories vortices are string like

objects, carrying magnetic flux threaded through their core. They are the semi-classical
cousins of the more elusive QCD flux tubes. In what follows we will primarily be inter-
ested in the dynamics of infinitely long, parallel vortex strings and the long-wavelength

modes they support. There are a number of reviews on the dynamics of vortices in four
dimensions, mostly in the context of cosmic strings [142, 143, 144].

3.1 The Basics

In order for our theory to support vortices, we must add a further field to our La-
grangian. In fact we must make two deformations

• We increase the gauge group from SU(N) to U(N). We could have done this

before now, but as we have considered only fields in the adjoint representation
the central U(1) would have simply decoupled.

• We add matter in the fundamental representation of U(N). We’ll add Nf scalar
fields qi, i = 1 . . . , Nf .

The action that we’ll work with throughout this lecture is

S =

∫

d4x Tr

(

1

2e2
F µνFµν +

1

e2
(Dµφ)2

)

+

Nf
∑

i=1

|Dµqi|2

−
Nf
∑

i=1

q†iφ
2qi −

e2

4
Tr (

Nf
∑

i=1

qiq
†
i − v2 1N)2 (3.1)

The potential is of the type admitting a completion to N = 1 or N = 2 supersymmetry.
In this context, the final term is called the D-term. Note that everything in the bracket
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of the D-term is an N×N matrix. Note also that the couplings in front of the potential
are not arbitrary: they have been tuned to critical values.

We’ve included a new parameter, v2, in the potential. Obviously this will induce a
vev for q. In the context of supersymmetric gauge theories, this parameter is known as

a Fayet-Iliopoulos term.

We are interested in ground states of the theory with vanishing potential. For Nf <
N , one can’t set the D-term to zero since the first term is, at most, rank Nf , while the
v2 term is rank N . In the context of supersymmetric theories, this leads to spontaneous

supersymmetry breaking. In what follows we’ll only consider Nf ≥ N . In fact, for the
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i the flavor index. Up to gauge transformations, there is a unique ground state of the
theory,
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i (3.3)

Studying small fluctuations around this vacuum, we find that all gauge fields and scalars
are massive, and all have the same mass M2 = e2v2. The fact that all masses are equal

is a consequence of tuning the coefficients of the potential.

The theory has a U(N)G ×SU(N)F gauge and flavor symmetry. On the quark fields
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The vacuum expectation value (3.3) is preserved only for transformations of the form
U = V , meaning that we have the pattern of spontaneous symmetry breaking

U(N)G × SU(N)F → SU(N)diag (3.5)

This is known as the color-flavor-locked phase in the high-density QCD literature [145].

When N = 1, our theory is the well-studied abelian Higgs model, which has been
known for many years to support vortex strings [146, 147]. These vortex strings also
exist in the non-abelian theory and enjoy rather rich properties, as we shall now see.

Let’s choose the strings to lie in the x3 direction. To support such objects, the scalar
fields q must wind around S1

∞ at spatial infinity in the (x1, x2) plane, transverse to the
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string. As we’re used to by now, such winding is characterized by the homotopy group,
this time

Π1 (U(N) × SU(N)/SU(N)diag) ∼= Z (3.6)

Which means that we can expect vortex strings supported by a single winding number
k ∈ Z. To see that this winding of the scalar is associated with magnetic flux, we use

the same trick as for monopoles. Finiteness of the quark kinetic term requires that
Dq ∼ 1/r2 as r → ∞. But a winding around S1

∞ necessarily means that ∂q ∼ 1/r. To

cancel this, we must turn on A → i∂q q−1 asymptotically. The winding of the scalar at
infinity is determined by an integer k, defined by

2πk = Tr

∮

S1
∞

i∂θq q−1 = Tr

∮

S1
∞

Aθ = Tr

∫

dx1dx2 B3 (3.7)

This time however, in contrast to the case of magnetic monopoles, there is no long

range magnetic flux. Physically this is because the theory has a mass gap, ensuring
any excitations die exponentially. The result, as we shall, is that the magnetic flux is

confined in the center of the vortex string.

The Lagrangian of equation (3.1) is very spe- x3

phase of q

Figure 11:

cial, and far from the only theory admitting vor-
tex solutions. Indeed, the vortex zoo is well pop-

ulated with different objects, many exhibiting cu-
rious properties. Particularly interesting examples
include Alice strings [148, 149], and vortices in Chern-

Simons theories [150]. In this lecture we shall stick
with the vortices arising from (3.1) since, as we

shall see, they are closely related to the instantons
and monopoles described in the previous lectures.

To my knowledge, the properties of non-abelian vortices in this model were studied
only quite recently in [151] (a related model, sharing similar properties, appeared at
the same time [152]).

3.2 The Vortex Equations

To derive the vortex equations we once again perform the Bogomoln’yi completing the
square trick (due, once again, to Bogomoln’yi [14]). We look for static strings in the x3

direction, so make the ansatz ∂0 = ∂3 = 0 and A0 = A3 = 0. We also set φ = 0. In fact
φ will not play a role for the remainder of this lecture, although it will be resurrected
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We are interested in ground states of the theory with vanishing potential. For Nf <
N , one can’t set the D-term to zero since the first term is, at most, rank Nf , while the
v2 term is rank N . In the context of supersymmetric theories, this leads to spontaneous

supersymmetry breaking. In what follows we’ll only consider Nf ≥ N . In fact, for the
first half of this section we’ll restrict ourselves to the simplest case:

Nf = N (3.2)

With this choice, we can view q as an N ×N matrix qa
i, where a is the color index and

i the flavor index. Up to gauge transformations, there is a unique ground state of the
theory,

φ = 0 , qa
i = vδa

i (3.3)

Studying small fluctuations around this vacuum, we find that all gauge fields and scalars
are massive, and all have the same mass M2 = e2v2. The fact that all masses are equal

is a consequence of tuning the coefficients of the potential.

The theory has a U(N)G ×SU(N)F gauge and flavor symmetry. On the quark fields

q this acts as

q → UqV U ∈ U(N)G, V ∈ SU(N)F (3.4)

The vacuum expectation value (3.3) is preserved only for transformations of the form
U = V , meaning that we have the pattern of spontaneous symmetry breaking

U(N)G × SU(N)F → SU(N)diag (3.5)

This is known as the color-flavor-locked phase in the high-density QCD literature [145].

When N = 1, our theory is the well-studied abelian Higgs model, which has been
known for many years to support vortex strings [146, 147]. These vortex strings also
exist in the non-abelian theory and enjoy rather rich properties, as we shall now see.

Let’s choose the strings to lie in the x3 direction. To support such objects, the scalar
fields q must wind around S1

∞ at spatial infinity in the (x1, x2) plane, transverse to the
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Non-Abelian Vortices
ANO U(1) vortex has two collective coordinates-translations 
in x,y directions

U(N) vortex 
has more moduli
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Figure 12: A sketch of the vortex profile.

lecture, and embed the abelian vortex — let’s denote it q⋆ and A⋆
z — in the N × N

matrices of the non-abelian theory. We have

Az =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A⋆
z

0
. . .

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, q =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

q⋆

v
. . .

v

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3.11)

where the columns of the q matrix carry the color charge, while the rows carry the flavor

charge. We have chosen the embedding above to lie in the upper left-hand corner but
this isn’t unique. We can rotate into other embeddings by acting with the SU(N)diag

symmetry preserved in the vacuum. Dividing by the stabilizer, we find the internal
moduli space of the single non-abelian vortex to be

SU(N)diag/S[U(N − 1) × U(1)] ∼= CP
N−1 (3.12)

The appearance of CP
N−1 as the internal space of the vortex is interesting: it tells us

that the low-energy dynamics of a vortex string is the much studied quantum CP
N−1

sigma model. We’ll see the significance of this in the following lecture. For now, let’s
look more closely at the moduli of the vortices.

3.3 The Moduli Space

We’ve seen that a single vortex has 2N collective coordinates: 2 translations, and

2(N − 1) internal modes, dictating the orientation of the vortex in color and flavor
space. We denote the moduli space of charge k vortices in the U(N) gauge theory as
Vk,N . We’ve learnt above that

V1,N
∼= C × CP

N−1 (3.13)
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What about higher k? An index theorem [154, 151] tells us that the number of collective
coordinates is

dim(Vk,N) = 2kN (3.14)

Look familiar? Remember the result for k instantons in U(N) that we found in lecture
1: dim(Ik,N) = 4kN . We’ll see more of this similarity between instantons and vortices

in the following.

As for previous solitons, the counting (3.14) has a natural interpretation: k parallel
vortex strings may be placed at arbitrary position, each carrying 2(N −1) independent
orientational modes. Thinking physically in terms of forces between vortices, this is a

consequence of tuning the coefficient e2/4 in front of the D-term in (3.1) so that the
mass of the gauge bosons equals the mass of the q scalars. If this coupling is turned

up, the scalar mass increases and so mediates a force with shorter range than the gauge
bosons, causing the vortices to repel. (Recall the general rule: spin 0 particles give rise

to attractive forces; spin 1 repulsive). This is a type II non-abelian superconductor. If
the coupling decreases, the mass of the scalar decreases and the vortices attract. This
is a non-abelian type I superconductor. In the following, we keep with the critically

coupled case (3.1) for which the first order equations (3.10) yield solutions with vortices
at arbitrary position.

3.3.1 The Moduli Space Metric

There is again a natural metric on Vk,N arising from taking the overlap of zero modes.

These zero modes must solve the linearized vortex equations together with a suitable
background gauge fixing condition. The linearized vortex equations read

DzδAz̄ −Dz̄δAz =
ie2

4
(δq q† + q δq†) and Dzδq = iδAzq (3.15)

where q is to be viewed as an N × N matrix in these equations. The gauge fixing
condition is

DzδAz̄ + Dz̄δAz = −ie2

4
(δq q† − q δq†) (3.16)

which combines with the first equation in (3.15) to give

Dz̄δAz = −ie2

4
δq q† (3.17)

Then, from the index theorem, we know that there are 2kN zero modes (δαAz, δαq),

α, β = 1, . . . , 2kN solving these equations, providing a metric on Vk,N defined by

gαβ = Tr

∫

dx1dx2 1

e2
δαAaδβAz̄ +

1

2
δαqδβq† + h.c. (3.18)
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Figure 2: Various regimes for the monopoles and flux tubes in the simplest case of two flavors.

down to U(1)(N−1) by a VEV of the SU(N) adjoint scalar

⟨ak
l ⟩ = − 1√

2
δk
l Ml . (6.3)

Thus, there are ’t Hooft–Polyakov monopoles embedded in the broken gauge

SU(N). Classically, on the Coulomb branch the masses of (N − 1) elementary
monopoles are proportional to

|(MA − MA+1) |/g2
2

This is shown in the upper left corner of Fig. 2 for the case

N = 2 , ∆m ≡ M1 − M2 .

In the limit (MA − MA+1) → 0 the monopoles tend to become massless, for-

mally, in the classical approximation. Simultaneously their size become infinite
[28]. The mass and size are stabilized by confinement effects which are highly
quantum. The confinement of monopoles occurs in the Higgs phase, at ξ ̸= 0.

• Now we introduce the FI parameter ξ which triggers the squark condensation.
The theory is in the Higgs phase. We still keep N = 2 breaking parameters h

and µ’s vanishing,

µ1 = µ2 = 0, h = 0, ξ ̸= 0, M ̸= 0. (6.4)
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4d/2d Duality

Nf=N  color-flavor locked phase

local vortex
SU(N)

SU(N � 1)⇥ U(1)
= CPN�1

Duality between two strongly coupled theories

2d 4d

U(N)G ⇥ SU(N)F ! SU(N)⇥ U(1)



Nf=2N SQCD
Moduli space will still have the compact CP(N-1) part. But 
since it is not possible to Higgs all matter fields there will be 
noncompact moduli

Those ‘semilocal’ vortices are described by (2,2) sigma gauge 
linear sigma-model

baryon.

World sheet model.—The basic bulk theory which supports the string
under investigation is described in detail in [6]. Let us briefly review the
model emerging on its world sheet.

The translational moduli fields (they decouple from other moduli) in the
Polyakov formulation [7] are given by the action

S
0

=
T

2

Z

d2�
p
hh↵�@↵x

µ @�xµ + fermions , (1) {s0}

where �↵ (↵ = 1, 2) are the world-sheet coordinates, xµ (µ = 1, ..., 4) describe
theR

4

part of the string world sheet and h = det (h↵�) where h↵� is the world-
sheet metric which is understood as an independent variable. The parameter
T stands for the tension which will be discussed below.

In the bulk theory under consideration Nf = 2N = 4, implying that in
addition to four orientational zero modes of the vortex string nP (P = 1, 2),
there are four size moduli ⇢K (K = 1, 2) [8, 1, 4, 9, 10, 11].

The gauged formulation of the non-Abelian part is as follows [12]. One
introduces the U(1) charges ±1, namely +1 for n’s and �1 for ⇢’s,

S
1

=

Z

d2�
p
h
n

h↵�
⇣

r̃↵n̄P r� n
P +r↵⇢̄K r̃� ⇢

K
⌘

+
e2

2

�|nP |2 � |⇢K |2 � �
�

2

�

+ fermions , (2) {wcp}

where
r↵ = @↵ � iA↵ , r̃↵ = @↵ + iA↵ (3)

and A↵ is an auxiliary gauge field. The limit e2 ! 1 is implied. Equation
(2) represents the WCP (2, 2) model.3

In the semiclassical approximation the coupling constant � in (2) is re-
lated to the bulk SU(2) gauge coupling g2 via

� =
4⇡

g2
. (4) {betag}

3
Both the orientational and the size moduli have logarithmically divergent norms, see

e.g. [9]. After an appropriate infrared regularization, logarithmically divergent norms can

be absorbed into the definition of relevant two-dimensional fields [9]. In fact, the world-

sheet theory on the semilocal non-Abelian string is not exactly the WCP (N, ˜N) model

[11], there are minor di↵erences unimportant for our purposes. The actual theory is called

the zn model. We can ignore the above di↵erences.

3

Its target manifold is a degree-N bundle over CP(N-1)



Nf=2N SQCD
Moduli space will still have the compact CP(N-1) part. But 
since it is not possible to Higgs all matter fields there will be 
noncompact moduli

Those ‘semilocal’ vortices are described by (2,2) sigma gauge 
linear sigma-model

baryon.

World sheet model.—The basic bulk theory which supports the string
under investigation is described in detail in [6]. Let us briefly review the
model emerging on its world sheet.

The translational moduli fields (they decouple from other moduli) in the
Polyakov formulation [7] are given by the action

S
0

=
T

2

Z

d2�
p
hh↵�@↵x

µ @�xµ + fermions , (1) {s0}

where �↵ (↵ = 1, 2) are the world-sheet coordinates, xµ (µ = 1, ..., 4) describe
theR

4

part of the string world sheet and h = det (h↵�) where h↵� is the world-
sheet metric which is understood as an independent variable. The parameter
T stands for the tension which will be discussed below.

In the bulk theory under consideration Nf = 2N = 4, implying that in
addition to four orientational zero modes of the vortex string nP (P = 1, 2),
there are four size moduli ⇢K (K = 1, 2) [8, 1, 4, 9, 10, 11].

The gauged formulation of the non-Abelian part is as follows [12]. One
introduces the U(1) charges ±1, namely +1 for n’s and �1 for ⇢’s,

S
1

=

Z

d2�
p
h
n

h↵�
⇣

r̃↵n̄P r� n
P +r↵⇢̄K r̃� ⇢

K
⌘

+
e2

2

�|nP |2 � |⇢K |2 � �
�

2

�

+ fermions , (2) {wcp}

where
r↵ = @↵ � iA↵ , r̃↵ = @↵ + iA↵ (3)

and A↵ is an auxiliary gauge field. The limit e2 ! 1 is implied. Equation
(2) represents the WCP (2, 2) model.3

In the semiclassical approximation the coupling constant � in (2) is re-
lated to the bulk SU(2) gauge coupling g2 via

� =
4⇡

g2
. (4) {betag}

3
Both the orientational and the size moduli have logarithmically divergent norms, see

e.g. [9]. After an appropriate infrared regularization, logarithmically divergent norms can

be absorbed into the definition of relevant two-dimensional fields [9]. In fact, the world-

sheet theory on the semilocal non-Abelian string is not exactly the WCP (N, ˜N) model

[11], there are minor di↵erences unimportant for our purposes. The actual theory is called

the zn model. We can ignore the above di↵erences.

3

Its target manifold is a degree-N bundle over CP(N-1)

Symmetry

Note that the first (and the only) coe�cient of the beta functions is the same
for the bulk and world-sheet theories and equals to zero.

The total world-sheet action is

S = S
0

+ S
1

. (5) {5}

Bulk duality vs world sheet duality.—Since our vortex string is BPS sat-
urated, the tension T in Eq. (1) is given by the exact expression

T = 2⇡⇠ (6)

where ⇠ is the Fayet-Iliopoulos parameter of the bulk theory.
As we know [13, 14] the bulk theory at hand possesses a strong-weak

coupling duality 4

⌧ ! ⌧D = �1

⌧
, ⌧ = i

4⇡

g2
+

✓
4D

2⇡
. (7) {argy}

The bulk duality implies a similar 2D duality which manifests itself in the
world sheet theory as the interchange of the roles of the orientational and
size moduli,

nP $ ⇢K , or, equivalently, � ! �D = �� , (8) {swcd}

see Eq. (2). Equation (4) is valid only semiclassically and shows no sign of
the strong-weak coupling duality (8). An obvious generalization of (4) which
possess duality (8) under (7) is

� =
4⇡

g2
� g2

4⇡
. (9) {betagexact}

If g2 ! 16⇡2/g2 then, obviously, � ! �� as required by (8). The 4D selfdual
point g2 = 4⇡ is mapped onto �⇤ = 0. The selfdual point � = 0 is a critical
point at which the target space WCP (2, 2), which is the resolved conifold,
becomes a singular conifold. It was conjectured in [5] that the non-Abelian
vortex string become infinitely thin at this point and can be described by
the string action (5).

4
Argyres et al. proved this duality for ⇠ = 0. It should allow one to study the bulk

theory at strong coupling in terms of weakly coupled dual theory at ⇠ 6= 0 too.
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Criticality
2d sigma model is conformal. The dimension of the full target 
space is 2(2N-1)+D

For N=2 and D=4 we get 10 dimensional target space

Checking Virasoro central charge cVir =
3

2
(D + 2ĉ0 � 10)

ĉ0 = 2N � 1 , D = 4Here cVir = 0 for N=2



Criticality
2d sigma model is conformal. The dimension of the full target 
space is 2(2N-1)+D

For N=2 and D=4 we get 10 dimensional target space

Checking Virasoro central charge cVir =
3

2
(D + 2ĉ0 � 10)

ĉ0 = 2N � 1 , D = 4Here cVir = 0 for N=2

The two conditions from Polchinski-Strominger are satisfied

The resulting target space is R4 ⇥ Y

Y - resolved conifold with �



Type IIA on conifold
We obtained critical superstring in ten dimensions. Which type 
is it IIA or IIB?



Type IIA on conifold
We obtained critical superstring in ten dimensions. Which type 
is it IIA or IIB?

Our starting point — 4d SCQD is a vector-like theory which 
preserves parity. Therefore the string has to by of Type IIA

We can now unload the machinery of string compactifications 
on CY threefolds to study the effective 4d theory (a different 4d 
theory). We shall study how the 4d spectrum depends on �



Compactification
Parameter beta describes deformations of Kahler structure of 
the CY which are enumerated by cohomology h1,1

For conifold h1,1 = 1

So if normalizable there should be a single vectormultiplet 
coming from such reduction

Since it lies in the same supergravity multiplet with graviton, 
existence of such state would imply presence of massless 
gravitons which is problematic [Winberg-Witten]

Fortunately this mode is non-normalizable



Deformed Conifold
Something interesting happens at beta=0. The conifold 
develops a singularity and we cannot use SUGRA

However, we can deform further past the singularity into a 
different topology — deformed conifold

Also, a U(1) phase can be gauged away. We can construct the U(1) gauge-
invariant “mesonic” variables

wPK = nP⇢K . (20) {w}

In terms of these variables the condition (19) can be written as detwPK = 0,
or

4

X

↵=1

w2

↵ = 0, (21) {coni}

where wPK = �PK
↵ w↵, and �-matrices are (1,�i⌧a), a = 1, 2, 3. Equation

(21) define the conifold – a cone with the section S
2

⇥ S
3

. It has the Kähler
Ricci-flat metric and represents a non-compact Calabi-Yau manifold [24, 12,
21].

At � = 0 the conifold develops a conical singularity, so both S
2

and S
3

shrink to zero. The conifold singularity can be smoothed in two di↵erent
ways: by a deformation of the Kähler form or by a deformation complex
structure. The first option is called the resolved conifold and amounts to
introducing the non-zero � in (19). This resolution preserves the Kähler
structure and Ricci-flatness of the metric. If we put ⇢K = 0 in (2) we get the
CP (1) model with the S

2

target space (with the radius
p
�). The explicit

metric for the resolved conifold can be found in [24, 25, 26]. The resolved
conifold has no normalizable zero modes. In particular, we will demonstrate
in [20] that the 4D scalar � associated with deformation of the Kähler form
is not normalizable.

If � = 0 another option exists, namely a deformation of the complex
structure [27]. It preserves the Kähler structure and Ricci-flatness of the
conifold and is usually referred to as the deformed conifold. It is defined by
deformation of Eq. (21), namely

4

X

↵=1

w2

↵ = b , (22) {deformedconi}

where b is a complex number. Now the S
3

can not shrink to zero, its minimal
size is determined by b. The explicit metric on the deformed conifold is
written down in [24, 28, 29]. The parameter b becomes a 4D complex scalar
field. The e↵ective action for this field is

S(b) = T

Z

d4xhb|@µb|2, (23) {Sb}

9

What about its baryonic charge? Since

w↵ =
1

2
Tr

⇥

(�̄↵)KP nP⇢K
⇤

(6.2)

we see that the b state transforms as

(1, 1, 2), (6.3)

where we used (2.5) and (5.12). In particular it has baryon charge QB(b) = 2.
Since the worldsheet and the bulk global symmetries are isomorphic we

are lead to the conclusion that the massless b hypermultiplet is a monopole-
monopole baryon with the quantum numbers (6.3) under symmetry (2.20).

We have observed that at infinite coupling of the two dimensional theory
(� = 0) a new ‘exotic’ Higgs branch opens up, which is parameterized by
the VEV of the hypermultiplet of the e↵ective string compactification. This
branch emanates only from that locus and does not exist at nonzero �. Being
massless this state is marginally stable at � = 0 and can decay into pair of
massless bi-fundamental quarks in the singlet channel with the same baryon
charge QB = 2, see (2.10). The b hypermultiplet does not exist at non-zero
�. One way to interpret this fact in terms of bulk SQCD is as follows. The
b hypermultiplet may have a “wall of marginal stability” in the complex �
plane – a closed loop shrunk to a single point � = 0. Outside this point
the b hypermultiplet does not exist as a stable state, while at this point it is
marginally stable.

This interpretation is supported by logarithmic divergence of the norm
of the b state kinetic term (5.25), which in turn suggests that the b state is
only marginally stable. Detailed studies of how this can happen and how
the b hypermultiplet interacts with massless bi-fundamental quarks is left for
future work.

7 Conclusions

In this paper we studied the massless spectrum produced by closed non-
Abelian vortex string in N = 2 QCD with U(2) gauge group and Nf = 4
flavors of quark multiplets. We interpreted 4D closed string states as a
hadrons of the bulk QCD. Most of the string states turns out to be non-
dynamical due to non-compactness of the six dimensional internal Calabi-Yau
space Y

6

. In particular, we showed the absence of 4D graviton and unwanted

29
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develops a singularity and we cannot use SUGRA
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where wPK = �PK
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(21) define the conifold – a cone with the section S
2

⇥ S
3

. It has the Kähler
Ricci-flat metric and represents a non-compact Calabi-Yau manifold [24, 12,
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and S
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target space (with the radius
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�). The explicit

metric for the resolved conifold can be found in [24, 25, 26]. The resolved
conifold has no normalizable zero modes. In particular, we will demonstrate
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where b is a complex number. Now the S
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can not shrink to zero, its minimal
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written down in [24, 28, 29]. The parameter b becomes a 4D complex scalar
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we see that the b state transforms as
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where we used (2.5) and (5.12). In particular it has baryon charge QB(b) = 2.
Since the worldsheet and the bulk global symmetries are isomorphic we

are lead to the conclusion that the massless b hypermultiplet is a monopole-
monopole baryon with the quantum numbers (6.3) under symmetry (2.20).

We have observed that at infinite coupling of the two dimensional theory
(� = 0) a new ‘exotic’ Higgs branch opens up, which is parameterized by
the VEV of the hypermultiplet of the e↵ective string compactification. This
branch emanates only from that locus and does not exist at nonzero �. Being
massless this state is marginally stable at � = 0 and can decay into pair of
massless bi-fundamental quarks in the singlet channel with the same baryon
charge QB = 2, see (2.10). The b hypermultiplet does not exist at non-zero
�. One way to interpret this fact in terms of bulk SQCD is as follows. The
b hypermultiplet may have a “wall of marginal stability” in the complex �
plane – a closed loop shrunk to a single point � = 0. Outside this point
the b hypermultiplet does not exist as a stable state, while at this point it is
marginally stable.

This interpretation is supported by logarithmic divergence of the norm
of the b state kinetic term (5.25), which in turn suggests that the b state is
only marginally stable. Detailed studies of how this can happen and how
the b hypermultiplet interacts with massless bi-fundamental quarks is left for
future work.

7 Conclusions

In this paper we studied the massless spectrum produced by closed non-
Abelian vortex string in N = 2 QCD with U(2) gauge group and Nf = 4
flavors of quark multiplets. We interpreted 4D closed string states as a
hadrons of the bulk QCD. Most of the string states turns out to be non-
dynamical due to non-compactness of the six dimensional internal Calabi-Yau
space Y
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. In particular, we showed the absence of 4D graviton and unwanted
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Physics of b-mode
B-mode is related to the deformations of complex structure of 
the conifold described by Dolbeault cohomology H2,1

For conifold h2,1 = 1
so there should be a one-(complex)dimensional branch 
parameterized by a VEV of some hypermultiplet



Physics of b-mode

Global symmetry 

are junctions of two distinct elementary non-Abelian strings [30, 3, 4]. As a
result in the bulk theory we have monopole-antimonopole mesons in which
monopole and antimonopole are connected by two confining strings. For
the U(2) gauge group we have also “baryons” consisting of two monopoles,
rather than of monopole-antimonope pair. The monopoles acquire quantum
numbers with respect to the global group SU(2) ⇥ SU(2) ⇥ U(1). Indeed,
in the world sheet model on the vortex-string confined monopole are seen as
kinks interpolating between two di↵erent vacua [30, 3, 4]. These kinks are de-
scribed at strong coupling by the nP and ⇢K fields [31, 32] (for WCP (N, Ñ)
models see [33]) and therefore transform in the fundamental representations
of SU(2)⇥ SU(2) for WCP (2, 2).

As a result, the monopole-antimonopole mesons and baryons can be ei-
ther singlets or triplets of both SU(2) global groups, as well as in the bi-
fundamental representations. With respect to baryonic U(1)B symmetry
which we define as a U(1) factor in the global SU(2) ⇥ SU(2) ⇥ U(1), the
mesons have charges QB(meson) = 0, 1 while the baryons can have charges

QB(baryon) = 0, 1, 2 . (26) {Bbaryons}

All the above non-perturbative stringy states are heavy, with mass of the
order of

p
⇠, and can decay into screened quarks, which are lighter, and,

eventually, into massless bi-fundamental screened quarks.
Now we return from weak to strong coupling and go to the self-dual

point � = 0. We will argue that the b state of the string associated with the
deformation of the complex structure of the conifold can be interpreted as a
baryon constructed from two monopoles. To this end note that the complex
parameter b (promoted to a 4D scalar field) is singlet with respect to two
SU(2) factors of the global world-sheet group while its baryonic charge is
QB = 2 [20].

Since the world sheet and the bulk global groups are identical we can
conclude that our massless b hypermultiplet is a monopole-monopole baryon.

Being massless it is marginally stable at � = 0 and can decay into pair of
massless bi-fundamental quarks in the singlet channel with the same baryon
charge QB = 2. The b hypermultiplet does not exist at non-zero �.
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icz for helpful comments.
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of the b state kinetic term (5.25), which in turn suggests that the b state is
only marginally stable. Detailed studies of how this can happen and how
the b hypermultiplet interacts with massless bi-fundamental quarks is left for
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flavors of quark multiplets. We interpreted 4D closed string states as a
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Since b-state transforms as (1,1,2)

a b

Figure 1: a. Monopole-antimonopole stringy meson. b. Monopole-monopole
stringy baryon. Open and closed circles denote the monopole and antimonopole,
respectively.

and therefore transform in the fundamental representations 10 of non-Abelian
factors in (2.2).

As a result monopole-antimonopole mesons and baryons in our case can
be singlets or triplets of both SU(2) global groups in (2.2), as well as in the
bi-fundamental representations. With respect to baryonic U(1)B symmetry
in (2.2) the mesons at hand have charges QB(meson) = 0, 1 while baryons
can have charges

QB(baryon) = 0, 1, 2 , (6.1)

see (2.21). All these non-perturbative stringy states are heavy, with mass
of the order of

p
⇠, and therefore can decay into screened quarks which are

lighter and, eventually, into massless bi-fundamental screened quarks (2.5).

6.2 Monopole-monopole baryon

Now we pass to the self-dual point � = 0 in strong coupling region. We will
show that the b state of the string associated with the deformation of the
complex structure of the deformed conifold can be interpreted as a baryon
constructed from two monopoles, see Fig. 1b. From Eq. (5.12) we see that
the complex parameter b (which is promoted to a 4D scalar field) is singlet
with respect to two SU(2) factors of the global world-sheet group (2.20).

10Strictly speaking to make both bulk monopoles and world-sheet kinks well defined as
localized objects we should introduce a infrared regularization, say, a small quark mass
term. When we take the limit of the zero quark masses, the kinks become massless and
smeared all over the closed string. However their global quantum numbers stay intact.
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Recap
4d SQCD —> 2d sigma model —> Type IIA superstring 

—> effective 4d theory

� = 0

b Mon/Mon Baryon 
= 

n-rho Kink 
= 

Hyper 


