4d/2d Correspondence with Eight and Four Supercharges

Peter Koroteev

University of Minnesota

\& KITP, Santa Barbara

with Bulycheva, Chen, Gorsky, Monin, Shifman, Yung, Vinci

How rich are $\mathrm{N}=2$ gauge theories in 4d?

Dynamics of low energy effective theories is quite well understood [Seiberg Witten ...]
However dynamics of non-BPS sector seems to be complicated
Still a full partition function of $\mathrm{N}=2 \mathrm{~d}=4$ theory can be computed by localization [Nekrasov]
Recently a solid connection to non-SUSY CFTs was outlined [Alday, Gaiotto, Tachikawa]
and connection to relatively simple 2d sigma models [Dorey, Hollowod, Lee] [Shifman, Yung] [Gaiotto, Moore, Neitzke]... This talk: last two points

Outline

- $4 \mathrm{~d} / 2 \mathrm{~d}$ w/ 8 supercharges: what and why?
\star Vortices in field theory vs. type IIA string theory
$\star(2,2)$ GLSM, NLSM
* The Dictionary of 4d/2d
- AGT duality vs 4d/2d correspondence
^ Omega Background
* Liouville at large central charge
\star 4d/2d duality in NS limit and duality
- Less Supersymmetry (4 supercharges)
\star Heterotic deformation and Large-N solution

4d/2d

4d / 2d duality

$$
\begin{array}{ll|l}
\mathcal{N}=2 & S U(N) \quad \text { SQCD } & (2,2) \\
U(1) & \text { GLSM }
\end{array}
$$

e
$N_{f}=N+\tilde{N}$ fund hypers w/ masses

$$
\begin{aligned}
& m_{1}, \ldots, m_{N} \quad \mu_{1}, \ldots, \mu_{\tilde{N}} \\
& \tau=\frac{4 \pi i}{g^{2}}+\frac{\theta}{2 \pi}
\end{aligned}
$$

N chiral $+1 \quad \tilde{N}$ chiral -I w/ twisted masses

$$
\begin{aligned}
& m_{1}, \ldots, m_{N} \quad \mu_{1}, \ldots, \mu_{\tilde{N}} \\
& \tau=i r+\frac{\theta}{2 \pi}
\end{aligned}
$$

vortex moduli space

BPS dyons

 (Seiberg-Witten)kinks interpolating between different vacua

BPS spectra (as functions of masses, Lambda) are the same Goal: understand it from field theory constructions

$U\left(N_{c}\right) \mathcal{N}=2 d=4 \quad$ SQCD w/ N_{f} quarks

$$
\begin{aligned}
& \left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\beta}}^{J}\right\}=2 \delta^{I J} P_{\alpha \dot{\beta}}+2 \delta^{I J} Z_{\alpha \dot{\beta}} \\
& \left\{Q_{\alpha}^{I}, Q_{\beta}^{J}\right\}=2 Z_{\alpha \beta}^{J} \text { monopoles domain walls }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}= & \operatorname{Im}\left[\tau \int d^{4} \theta \operatorname{Tr}\left(Q^{i \dagger} e^{V} Q_{i}+\tilde{Q}^{i \dagger} e^{V} \tilde{Q}_{i}+\Phi^{\dagger} e^{V} \Phi\right)\right] \\
& +\operatorname{Im}\left[\tau \int d^{2} \theta\left(\operatorname{Tr} W^{\alpha 2}+m_{j}^{i} \tilde{Q}_{i} Q^{j}+Q_{i} \Phi \tilde{Q}^{i}\right)\right]
\end{aligned}
$$

bosonic part
Fl term
$S=\int d^{4} x \operatorname{Tr}\left\{\frac{1}{2 g^{2}} F_{\mu \nu}^{2}+\frac{1}{g^{2}}\left|D_{\mu} \Phi\right|^{2}+\left|\nabla_{\mu} Q\right|^{2}+\frac{g^{2}}{4}(Q \bar{Q}-\bar{\xi})^{2}+|\Phi Q+Q M|^{2}\right\}$

Coulomb vs Higgs branches

Hanany-Witten construction

[Hanany Tong]

SQCD $\quad N_{f}=2 N_{c}$
Higgs branch root
Color-flavor locked phase of SQCD

$$
\begin{aligned}
& \text { 2d FI parameter } r=\frac{\Delta x^{6}}{2 \pi g_{s} l_{s}}=\frac{4 \pi}{e^{2}} \\
& \sigma=X^{4}+i X^{5} \quad, \quad Z=X^{1}+i X^{2}
\end{aligned} \quad V_{2 d}(\sigma, Z)
$$

Understanding 2d theory: ‘ANO’ String

 $U(N)$ gauge theory with fundamental matter $q \rightarrow U q V \quad U \in U(N)_{G}, \quad V \in S U(N)_{F}$$$
\begin{aligned}
S=\int d^{4} x \operatorname{Tr} & \left(\frac{1}{2 e^{2}} F^{\mu \nu} F_{\mu \nu}+\frac{1}{e^{2}}\left(\mathcal{D}_{\mu} \phi\right)^{2}\right)+\sum_{i=1}^{N_{f}}\left|\mathcal{D}_{\mu} q_{i}\right|^{2} \\
& -\sum_{i=1}^{N_{f}} q_{i}^{\dagger} \phi^{2} q_{i}-\frac{e^{2}}{4} \operatorname{Tr}\left(\sum_{i=1}^{N_{f}} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)^{2}
\end{aligned}
$$

$$
N_{f}=N_{c}
$$

Vacuum
$\phi=0 \quad, \quad q_{i}^{a}=v \delta^{a}{ }_{i}$
breaks symmetry
(color-flavor locking)

$$
U(N)_{G} \times S U(N)_{F} \rightarrow S U(N)_{\text {diag }}
$$

Induces nontrivial topology on moduli space

To find a string need

$$
\Pi_{1}\left(U(N) \times S U(N) / S U(N)_{\text {diag }}\right) \cong \mathbf{Z}
$$ winding at infinity

$$
2 \pi k=\operatorname{Tr} \oint_{\mathbf{S}_{\infty}^{1}} i \partial_{\theta} q q^{-1}=\operatorname{Tr} \oint_{\mathbf{S}_{\infty}^{1}} A_{\theta}=\operatorname{Tr} \int d x^{1} d x^{2} B_{3}
$$

BPS equations for vortex

$$
\begin{aligned}
T_{\text {vortex }}= & \int d x^{1} d x^{2} \operatorname{Tr}\left(\frac{1}{e^{2}} B_{3}^{2}+\frac{e^{2}}{4}\left(\sum_{i=1}^{N} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)^{2}\right)+\sum_{i=1}^{N}\left|\mathcal{D}_{1} q_{i}\right|^{2}+\left|\mathcal{D}_{2} q_{i}\right|^{2} \\
= & \int d x^{1} d x^{2} \frac{1}{e^{2}} \operatorname{Tr}\left(B_{3} \mp \frac{e^{2}}{2}\left(\sum_{i=1}^{N} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)\right)^{2}+\sum_{i=1}^{N}\left|\mathcal{D}_{1} q_{i} \mp i \mathcal{D}_{2} q_{i}\right|^{2} \\
& \mp v^{2} \int d x^{1} d x^{2} \operatorname{Tr} B_{3} \geq \mp v^{2} \int d^{2} x \operatorname{Tr} B_{3}=2 \pi v^{2}|k|
\end{aligned}
$$

gives $\quad B_{3}=\frac{e^{2}}{2}\left(\sum_{i} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)$

Vortices

Simple vortex $w / N=I, k=I$ (ANO) has two collective coordinates-translations in x, y directions
$U(N)$ vortex
has more moduli

$$
A_{z}=\left(\begin{array}{llll}
A_{z}^{\star} & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right) \quad, \quad q=\left(\begin{array}{llll}
q^{\star} & & & \\
& v & & \\
& & \ddots & \\
& & & v
\end{array}\right)
$$

Moduli space

$$
(\mathrm{k}=\mathrm{l})
$$

$S U(N)_{\text {dias }} / S[U(N-1) \times U(1)] \cong \mathbb{C P}^{N-1}$

$$
\mathcal{V}_{1, N} \cong \mathbf{C} \times \mathbb{C P}^{N-1}
$$

For higher $\mathrm{k} \quad \operatorname{dim}\left(\mathcal{V}_{k, N}\right)=2 k N$
Again:
$T \geq 2 \pi v^{2}|k| \quad$ bound saturates for BPS states

Non-Abelian String

$$
\begin{aligned}
& \varphi=U\left(\begin{array}{cccc}
\phi_{2}(r) & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \phi_{2}(r) & 0 \\
0 & 0 & \ldots & \phi_{1}(r)
\end{array}\right) U^{-1}, \\
& A_{i}^{\mathrm{SU}(N)}=\frac{1}{N} U\left(\begin{array}{cccc}
1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & -(N-1)
\end{array}\right) U^{-1}\left(\partial_{i} \alpha\right) f_{N A}(r) \\
& \text { Matrix U parameterizes } \\
& A_{i}^{\mathrm{U}(1)}=-\frac{1}{N}\left(\partial_{i} \alpha\right) f(r), \quad A_{0}^{\mathrm{U}(1)}=A_{0}^{\mathrm{SU}(N)}=0, \\
& \text { Take Abelian string solution } \\
& \text { Make global rotation } \\
& \text { orientational modes }
\end{aligned}
$$

Gauge group is broken to \mathbb{Z}_{N}
All bulk degrees of freedom massive $\quad M^{2} \sim \xi$
Theory is fully Higgsed

Vortex moduli space

$\mathrm{Nf}=\mathrm{Nc}$ color-flavor locked phase single SUSY vacuum
$\mathrm{Nf}=\mathrm{Nc}$ local vortex

$$
\begin{gathered}
\frac{S U(N)}{S U(N-1) \times U(1)}=\mathbb{C P}^{N-1} \\
\pi_{2}\left(\mathcal{M}_{\text {vac }}\right)=\pi_{2}\left(\frac{S U(N+\tilde{N})}{S U(N) \times S U(\tilde{N}) \times U(1)}\right)=\mathbb{Z}
\end{gathered}
$$

$\mathrm{Nf}>\mathrm{Nc}$ semilocal (+size moduli)
Duality between two strongly coupled theories

Monopoles in Higgs Phase
 [Shifman,Yung] [Tong]

Add masses. New vacuum $\quad \phi=\operatorname{diag}\left(m_{i}\right) \quad, \quad q_{i}^{a}=v \delta^{a}{ }_{i} \quad, \quad \tilde{q}^{a}{ }_{i}=0$
Pattern of symmetry breaking depends on the relationship between the differences of masses and FI parameter

$$
\begin{aligned}
& \text { ev>> } \gg m \quad \stackrel{\mathrm{~L}_{\text {mon }}}{ } \\
& U(N)_{G} \times S U(N)_{F} \xrightarrow{v} S U(N)_{\text {diag }} \xrightarrow{m} U(1)_{\text {diag }}^{N-1}
\end{aligned}
$$

$$
e v \ll \Delta m
$$

$$
U(N)_{G} \times S U(N)_{F} \xrightarrow{m} U(1)_{G}^{N} \times U(1)_{F}^{N-1} \xrightarrow{v} U(1)_{\text {diag }}^{N-1}
$$

Confined monopoles

$\xi=e^{2} v^{2}$

The 't Hooft-Polyakov monopole

$$
\Lambda_{C P(1)} \ll|\Delta m| \ll \xi^{1 / 2}
$$

Confined monopole, quasiclassical regime

$$
\frac{(\Delta m)^{2}}{\xi} \text { becomes 2d FI term } r
$$

BPS dyons in 4d N=2

$$
\begin{aligned}
& Z=\sum_{a=1}^{N_{c}} \phi_{a}\left(j_{a}+\tau h_{a}\right)+\sum_{i=1}^{N_{f}} m_{i} s_{i} \\
& Z=\sum_{i=1}^{N_{c}} m_{i}\left(S_{i}+\tau h_{i}\right) \\
& F(t, u)=\left(t-\prod_{i=1}^{N_{c}}\left(u-m_{i}\right)\right)\left(u-\Lambda^{N_{c}}\right) \\
& Z=\sum_{i=1}^{N_{c}}\left(m_{i} S_{i}+m_{D_{i}} h_{i}\right)
\end{aligned}
$$

Central charge

At baryonic root of Higgs branch

All quantum corrections in mD

Integrating from one branching point to another

$$
m_{D l}-m_{D k}=\frac{1}{2 \pi} N_{c}\left(e_{l}-e_{k}\right)+\frac{1}{2 \pi} \sum_{i=1}^{N_{c}} m_{i} \log \left(\frac{e_{l}-m_{i}}{e_{k}-m_{i}}\right)
$$

$(2,2)$ 2d GLSM

Consider $\mathrm{U}(\mathrm{I})$ gauge theory

$$
\mathcal{L}_{\text {vortex }}=\frac{1}{2 g^{2}}\left(F_{01}^{2}+|\partial \sigma|^{2}\right)+\sum_{i=1}^{N_{c}}\left(\left|\mathcal{D} \psi_{i}\right|^{2}+\left|\sigma-m_{i}\right|^{2}\left|\psi_{i}\right|^{2}\right)+\frac{g^{2}}{2}\left(\sum_{i=1}^{N_{c}}\left|\psi_{i}\right|^{2}-r\right)^{2}
$$

Vacuum $i: \quad \sigma=m_{i} \quad, \quad\left|\psi_{j}\right|^{2}=r \delta_{i j}$
for vortex embedded into i's $U(I)$ subgroup
FI term runs

$$
r(\mu)=r_{0}-\frac{N_{c}}{2 \pi} \log \left(\frac{M_{U V}}{\mu}\right) \leadsto \Lambda=\mu \exp \left(-\frac{2 \pi r(\mu)}{N_{c}}\right)
$$

Effective twisted superpotential
$\mathcal{W}(\Sigma)=\frac{i}{2} \tau \Sigma-\frac{1}{4 \pi} \sum_{i=1}^{N_{c}}\left(\Sigma-m_{i}\right) \log \left(\frac{2}{\mu}\left(\Sigma-m_{i}\right)\right) \Rightarrow \exp \frac{\partial \mathcal{W}}{\partial \sigma}=1$
Central charge $\quad Z=-i \sum_{i=1}^{N_{c}}\left(m_{i} S_{i}+m_{D i} T_{i}\right)$

$$
m_{D i}=-2 i \mathcal{W}\left(e_{i}\right)=\frac{1}{2 \pi i} N_{c} e_{i}+\frac{1}{2 \pi i} \sum_{j=1}^{N_{c}} m_{j} \log \left(\frac{e_{i}-m_{j}}{\Lambda}\right)
$$

Hanany-Tong model as $U(I)$ GLSM

$$
\mathcal{L}=\int d^{4} \theta\left[\sum_{i=1}^{N_{c}} \Phi_{i}^{\dagger} \mathrm{e}^{\nu} \Phi_{i}+\sum_{i=1}^{\tilde{N}} \widetilde{\Phi}_{i}^{\dagger} \mathrm{e}^{-\mathcal{\nu}} \widetilde{\Phi}_{i}-r \mathcal{V}+\frac{1}{2 e^{2}} \Sigma^{\dagger} \Sigma\right]
$$

$$
V=\theta^{+} \bar{\theta}^{+}\left(A_{0}+A_{3}\right)+\theta^{-} \bar{\theta}^{-}\left(A_{0}-A_{3}\right)-\theta^{-} \bar{\theta}^{+} \sigma-\theta^{-} \bar{\theta}^{+} \bar{\sigma}+\bar{\theta}^{2} \theta \lambda+\theta^{2} \bar{\theta} \bar{\lambda}+\bar{\theta} \theta \bar{\theta} \theta D
$$

One loop twisted effective superpotential is exact in $(2,2)$

$$
\begin{aligned}
\widetilde{W}_{\text {eff }} & =-\frac{1}{2 \pi} \sum_{i=1}^{N}\left(\sqrt{2} \sigma+m_{i}\right)\left(\log \frac{\sqrt{2} \sigma+m_{i}}{\Lambda}-1\right)+ \\
& +\frac{1}{2 \pi} \sum_{j=1}^{\tilde{N}}\left(\sqrt{2} \sigma+\widetilde{m}_{j}\right)\left(\log \frac{\sqrt{2} \sigma+\widetilde{m}_{j}}{\Lambda}-1\right) .
\end{aligned}
$$

gives vacua of the theory and its BPS spectrum !!
[PK Monin Vinci]
$\mathrm{N}=5 \mathrm{Nf}=8$

$\mathrm{N}=15 \mathrm{Nf}=18$

$\mathrm{Nf}=5 \mathrm{C} \mu$ phase

Subtlety \#I

Brane construction is not sensitive to IR physics

Blind to deformations within the same universality class

Need to know explicit metric on the vacuum manifold in order to go beyond BPS sector

Let's see if GLSMS from brane picture are the same as sigma models which live on a vortex

From GLSM

$\mathcal{L}=\int d^{4} \theta\left(\left(\left|X_{1}\right|^{2}+\left|X_{2}\right|^{2}\right) e^{V}-r V+\frac{1}{e^{2}}|\Sigma|^{2}\right)$
Take limit $\quad e \rightarrow \infty$ solve for \vee
Kahler potential $\quad K=r \log \left(1+|X|^{2}\right) \quad X=X_{2} / X_{1}$

For HT model

$\mathcal{L}_{\mathrm{HT}}=\int d^{4} \theta\left(\left|\mathcal{N}_{i}\right|^{2} \mathrm{e}^{V}+\left|\mathcal{Z}_{j}\right|^{2} \mathrm{e}^{-V}-r V\right)$

$$
\downarrow_{\mathbb{C P}^{N-1}}^{\mathcal{O}(-1)^{\tilde{N}}}
$$

Kahler potential $\quad K_{\mathrm{HT}}=\sqrt{r^{2}+4 r|\zeta|^{2}}-r \log \left(r+\sqrt{r^{2}+4 r|\zeta|^{2}}\right)+r \log \left(1+\left|\Phi_{i}\right|^{2}\right)$

$$
|\zeta|^{2} \equiv\left|\mathfrak{z}_{j}\right|^{2}\left(1+\left|\Phi_{i}\right|^{2}\right) \quad \mathfrak{z}_{\mathfrak{j}}=r^{-1 / 2} \mathcal{N}_{N} \mathcal{Z}_{j}, \quad j=1, \ldots, \widetilde{N}
$$

Let's see what is the metric on the vortex sigma model

ZN model vs HT model

$$
\begin{aligned}
& K_{\mathrm{HT}}=\underbrace{\sqrt{r^{2}+4 r|\zeta|^{2}}-r \log \left(r+\sqrt{r^{2}+4 r|\zeta|^{2}}\right)+r \log \left(1+\left|\Phi_{i}\right|^{2}\right)}_{\underbrace{\zeta \rightarrow 0}} \\
& \quad K_{z n}=r|\zeta|^{2}+r \log \left(1+\left|\Phi_{i}\right|^{2}\right) \\
& K_{\mathrm{HT}}=K_{z n}+\mathcal{O}\left(|\zeta|^{2}\right)
\end{aligned}
$$

IR physics of ZN and HT models is the same BPS spectra are the same, but otherwise different

Subtlety \#2: Perturbation theory

Gel-Mann-Low function

$$
\begin{aligned}
& R_{i \bar{\jmath}}^{(1)}=R_{i \bar{\jmath}}, \\
& R_{i \bar{\jmath}}^{(2)}=R_{i \bar{k} l \bar{m}} R_{\bar{\jmath}}^{\bar{k} l \bar{m}}
\end{aligned}
$$

$\beta_{i \bar{\jmath}}=a^{(1)} R_{i \bar{\jmath}}^{(1)}+\frac{1}{2 r} a^{(2)} R_{i \bar{\jmath}}^{(2)}+\ldots$
Kaehler metric $g_{i \bar{\jmath}}=\partial_{i} \bar{\partial}_{\bar{\jmath}} K\left(z_{i}, \bar{z}_{i}\right)$

Ricci tensor $\quad R_{i \bar{\jmath}}=-\partial_{i} \bar{\partial}_{\bar{\jmath}} \log \operatorname{det}\left(g_{i \bar{\jmath}}\right)$
for Hanany-Tong model $\mathrm{N}=2, \mathrm{Nf}=3$

$$
-\log \operatorname{det}\left(g_{i \bar{\jmath}}^{(\mathrm{HT})}\right)=\log \left(1+\left|\Phi_{i}\right|^{2}\right)-\log \left(1+\frac{r}{\sqrt{r^{2}+4 r|\zeta|^{2}}}\right)
$$

Fl term renormalization (GLSM)

$$
\begin{aligned}
& r_{\mathrm{ren}}(\mu)=r_{0}-\frac{N-\tilde{N}}{2 \pi} \log \frac{M}{\mu} . \quad r_{\mathrm{ren}}=0 \Longrightarrow r_{0}=\frac{N-\tilde{N}}{2 \pi} \log \frac{M}{\Lambda} \\
& \left.c_{1}\left(M_{\mathrm{HT}}\right)\right|_{\mathbb{C P}^{N-1}}=(N-\widetilde{N})\left[\omega_{\mathbb{C P}^{N-1}}\right]
\end{aligned}
$$

Kaehler class is renormalized only at one loop, hence the result above should be the full answer for the coupling renormalization

If so what does the extra term in the last formula on the previous slide mean?

To understand why we need to compare renormalization schemes used in both calculations

GLSM vs NLSM

$\int d^{2} x \int d^{4} \theta\left(|\Phi|^{2} e^{V}-r V+\frac{1}{e^{2}}|\Sigma|^{2}\right)$
V-massive vector field $\mathrm{w} /$ propagator

$$
\frac{1}{\frac{p^{2}}{e^{2}}-M^{2}} \stackrel{p \ll e}{\rightleftharpoons} \frac{1}{-M^{2}}
$$

Integrating out V
$-\log \operatorname{det}\left(g_{i \bar{\jmath}}\right)=(N-\tilde{N}) \log \left(1+\left|\Phi_{i}\right|^{2}\right)-(N-1)|\zeta|^{2}+\mathcal{O}\left(|\zeta|^{4}\right)$.
Dimensional regularization (GLSM perturbation theory) mixes up UV and IR divergencies. Need to single out the UV piece out, IR contribution is not seen in the GLSM limit

AGT in NS limit

Omega background

Rotational symmetry broken to maximal torus

$$
S O(4) \rightarrow S O(2) \times S O(2)
$$

6d Metric

$$
G_{A B} d x^{A} d x^{B}=A d z d \bar{z}+\left(d x^{m}+\Omega^{m} d z+\bar{\Omega}^{m} d \bar{z}\right)^{2}
$$

We will be interested in Nekrasov-Shatashvili limit

$$
\begin{equation*}
\Omega^{m}=\left(-i \epsilon x^{2}, i \epsilon x^{1}, 0,0\right) \tag{2}
\end{equation*}
$$

The AGT duality

$$
3 g-3+n
$$

Coulomb branch

Liouville theory on 2-sphere with 4 punctures at $\infty, 1, q, 0$
 4d U(2) SQCD w/ 4 flavors with masses $m_{1}, m_{2}, m_{3}, m_{4}$

central charge

$$
c=1+6 Q^{2}, \quad Q=b+\frac{1}{b}
$$

conformal dimensions of chiral operators

$$
\begin{aligned}
& \Delta_{1}=\alpha_{0}\left(Q-\alpha_{0}\right), \quad \Delta_{2}=\mu_{0}\left(Q-\mu_{0}\right), \quad \Delta_{3}=\mu_{1}\left(Q-\mu_{1}\right), \quad \Delta_{4}=\alpha_{1}\left(Q-\alpha_{1}\right) \\
& \alpha_{0}=\frac{1}{2} Q+\widetilde{\mu}_{0}, \quad \alpha=\frac{1}{2} Q+a, \quad \alpha_{1}=\frac{1}{2} Q+\widetilde{\mu}_{1}
\end{aligned}
$$

Conformal block matches with instanton partition function

$$
\begin{aligned}
& \mathcal{Z}_{\text {inst }}\left(a, \mu_{0}, \widetilde{\mu}_{0}, \mu_{1}, \widetilde{\mu}_{1}\right)=(1-q)^{2 \mu_{0}\left(Q-\mu_{1}\right)} \mathcal{F}_{\alpha_{0} \alpha \alpha_{1}}^{\mu_{0} \mu_{1}}(q) \\
& b=\epsilon_{1}=1 / \epsilon_{2} \quad \| \text { n NS limit } \quad b \rightarrow \infty
\end{aligned}
$$

But the proof already exists! Mrionox, Morooov]

at large c conformal block becomes a hypergeometric function

$$
\begin{aligned}
B_{\Delta ; \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}}(x) & \xrightarrow{c \rightarrow \infty}{ }_{2} F_{1}\left(\Delta+\Delta_{1}-\Delta_{2}, \Delta+\Delta_{3}-\Delta_{4} ; 2 \Delta ; x\right)= \\
& =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \prod_{k=0}^{n-1} \frac{\left(\Delta+\Delta_{1}-\Delta_{2}+k\right)\left(\Delta+\Delta_{3}-\Delta_{4}+k\right)}{2 \Delta+k}
\end{aligned}
$$

[Zamolodchikov]

Only chiral Nekrasov functions contribute

$$
\left(Y, Y^{\prime}\right)=\left(\left[1^{n}\right], \emptyset\right) \text { or }\left(\emptyset,\left[1^{n}\right]\right)
$$

One can identify each term of the expansion in the instanton numbe with the Taylor series in x for 2 FI

Similar to Fateev-Litvinov conformal blocks

Both proofs are rather formal and deal with each term in the series. Need more physical understanding...

Roadmap to proof

Liouville CFT on S^{2} with four punctures at $z=\infty, 1, q, 0 \quad b \rightarrow \infty$ $\left\{\begin{array}{l}C B \text { satisfies KZ } \\ \text { eq with Gaudin } \\ \text { Hamiltonian }\end{array}\right.$
Rational Gaudin model on S^{2} with singularities at $z=\infty, 1, q, 0$

Trigonometric Gaudin model with singularities at $z=1, q$

Twisted anisotropic $S L(2) \mathrm{XXX}$ chain

4d/2d in Omega background
 (b)
 NS5

$\mathrm{N}=2$ SQCD in Omega background in NS limit with $\mathrm{Nf}=2 \mathrm{Nc}$

$$
\vec{a}=\vec{m}_{F}-\vec{n} \epsilon \quad \vec{n}=\left(n_{1}, \ldots, n_{L}\right) \in \mathbb{Z}^{L}
$$

$$
\stackrel{\substack{\text { on-sneit }}}{\equiv}
$$

XXX vs Gaudin

$\begin{aligned} & \text { Effective twisted } \\ & \text { superpotential }\end{aligned} \widetilde{W}_{\text {eff }}^{2 d}(\lambda)=\epsilon \sum_{a=1}^{K} \sum_{i=1}^{N} f\left(\frac{\lambda_{a}-M_{i}}{\epsilon}\right)-\epsilon \sum_{a=1}^{K} \sum_{i=1}^{N} f\left(\frac{\lambda_{a}-\widetilde{M}_{i}}{\epsilon}\right)$

$$
+\epsilon \sum_{a, b=1}^{K} f\left(\frac{\lambda_{a}-\lambda_{b}-\epsilon}{\epsilon}\right)+2 \pi i \hat{\tau} \sum_{a=1}^{K} \lambda_{a},
$$

Ground state equations
Heisenberg SL(2) magnet
twisted and anisotropic
Large anisotropy limit rational Gaudin model

Bethe equations obtained by diagonalizing (4 sites)

$$
\prod_{a=1}^{N} \frac{\lambda_{i}-\nu_{a}+\frac{\epsilon}{2} S_{a}}{\lambda_{i}-\nu_{a}-\frac{\epsilon}{2} S_{a}}=q \prod_{\substack{j=1 \\ j \neq i}}^{K} \frac{\lambda_{i}-\lambda_{j}-\epsilon}{\lambda_{i}-\lambda_{j}+\epsilon}
$$

$$
\lambda_{i} \mapsto x \lambda_{i}, \quad \nu_{a} \mapsto x \nu_{a}, \quad \hat{\tau} \mapsto \frac{\hat{\tau}}{x}
$$

$$
\frac{\log q}{\epsilon}-\sum_{a=1}^{N} \frac{S_{a}}{\lambda_{i}-\nu_{a}}=\sum_{\substack{j=1 \\ j \neq i}}^{K} \frac{2}{\lambda_{i}-\lambda_{j}}
$$

Gaudin Hamiltonians

$$
S(u)=\sum_{a=1}^{4} \frac{\mathcal{H}_{a}}{u-z_{a}}+\sum_{a=1}^{4} \frac{\Delta\left(\nu_{a}\right)}{\left(u-z_{a}\right)^{2}}
$$

$$
\mathcal{H}_{a}=\sum_{b \neq a} \sum_{\alpha, \beta=1}^{\operatorname{dim}(\mathfrak{g})} \frac{\mathfrak{J}_{\alpha}^{(b)} \mathfrak{J}^{\alpha(b)}}{z_{a}-z_{b}}
$$

Bispectral duality

Trigonometric Gaudin vs XXX magnet

$$
\begin{array}{ll}
\frac{\mathcal{M}_{1}-\mathcal{M}_{2}-\epsilon}{t_{i}}+\sum_{b=1}^{2} \frac{\nu_{b} \epsilon}{t_{i}-z_{b}}-\sum_{\substack{j=1 \\
j \neq i}}^{\kappa_{2}} \frac{2 \epsilon}{t_{i}-t_{j}}=0, \quad i=1, \ldots, \kappa_{2}, \\
\quad \begin{array}{l}
\text { Equations have isomorphic } \\
\text { spaces of solutions }
\end{array} \\
\prod_{a=1}^{2} \frac{\lambda_{i}+\mathcal{M}_{a}}{\lambda_{i}+\mathcal{M}_{a}+\kappa_{a} \epsilon}=\frac{z_{2}}{z_{1}} \prod_{\substack{j=1 \\
j \neq i}}^{\nu_{2}} \frac{\lambda_{i}-\lambda_{j}-\epsilon}{\lambda_{i}-\lambda_{j}+\epsilon}, \quad i=1, \ldots, \nu_{2} & \kappa_{1}+\kappa_{2}=\nu_{1}+\nu_{2}
\end{array}
$$

Nice brane interpretation
Rotation by 90 degrees

De Liouville à Gaudin

Gaudin Hamiltonian in KZ equation

$$
b^{2} \frac{d \Psi\left(z_{i}\right)}{d z_{i}}=\mathcal{H}_{G a u d} \Psi\left(z_{i}\right), \quad i=1, \ldots, L
$$

[Babujian Flume]

Dual WZNW model $\quad b^{2}=-(k+2)^{-1}$
[Teschner]

NS limit - critical level $\quad k \rightarrow-2$

$$
\delta_{i}=-\frac{\Delta_{i}}{b^{2}}
$$

$$
\begin{aligned}
& \delta_{1}=-\left(\frac{\widetilde{\mu}_{0}}{b}-\frac{1}{2}\right)\left(\frac{\widetilde{\mu}_{0}}{b}+\frac{1}{2}\right) \\
& \delta_{2}=-\left(\frac{\mu_{0}}{b}-1\right) \frac{\mu_{0}}{b}, \\
& \delta_{3}=-\left(\frac{\mu_{1}}{b}-1\right) \frac{\mu_{1}}{b}, \\
& \delta_{4}=-\left(\frac{\widetilde{\mu}_{1}}{b}-\frac{1}{2}\right)\left(\frac{\widetilde{\mu}_{1}}{b}+\frac{1}{2}\right)
\end{aligned}
$$

take home message: CB in Liouville

- wave function in Gaudin

The Duality

$$
\sum_{b=1}^{4} \frac{\nu_{b} \epsilon}{t_{i}-z_{b}}-\sum_{\substack{j=1 \\
j \neq i}}^{\kappa_{2}} \frac{2 \epsilon}{t_{i}-t_{j}}=0 \quad \text { Higgs branch root } \quad \begin{aligned}
& a_{a}=m_{2+a}-n_{a} \epsilon, \quad a=1,2
\end{aligned}
$$

$$
\epsilon \nu_{1}=0, \quad \epsilon \nu_{2}=K, \quad \epsilon \nu_{3}=m_{3}-m_{4}-\epsilon=2 \widetilde{\mu}_{1}-\epsilon
$$

$\mathrm{U}(\mathrm{I})$ condition

$$
\frac{\mu_{1}}{\epsilon}=\frac{n_{1}+n_{2}}{2}
$$

AGT in NS limit

Liouville conformal block at $b \rightarrow \infty$ on S^{2} with four punctures	$U(2), N_{f}=4$ SQCD instanton partition function in the NS limit
Rational Gaudin model from KZ equation on conformal blocks	$S L(2)$ spin chain from the ground state equation for the 2d GLSM dual to 4 d theory
Puncture's positions z_{2} / z_{1}	Instanton number q
$\mathfrak{s l}_{2}$ spin at $z=q$	$U(1)$ condition
Conformal dimensions of chiral operators at points $z=1, z=q$ at points $z=\infty, z=0$	Quadratic $\mathfrak{s l}(2)$ Casimir eigenvalues on spin $0, \frac{1}{2} \hat{n}_{1}+\frac{1}{2} \hat{n}_{2}$ representations spin $0, \frac{1}{2} \hat{n}_{1}-\frac{1}{2} \hat{n}_{2}-\frac{1}{2}$, representations
Gaudin Hilbert space sectors with different number κ_{a} of Bethe roots	Higgs branch lattice $\left\{n_{a}\right\}$

Quiver Generalizations

Vortices in Omega background $\mathfrak{c r k}$ Gorsky chen in progress

SUSY transform pure SYM

$$
\begin{aligned}
\delta \Lambda_{\alpha}^{I}= & \zeta_{\beta}^{I}\left(\left(\sigma^{m n}\right){ }_{\alpha}^{\beta} F_{m n}+i[\phi, \bar{\phi}] \delta_{\alpha}^{\beta}+\nabla_{m}\left(\bar{\Omega}^{m} \phi-\Omega^{m} \bar{\phi}\right) \delta_{\alpha}^{\beta}\right) \\
& +\bar{\zeta}_{\dot{\beta}}^{I}\left(\sigma^{m}\right){ }_{\alpha}^{\dot{\beta}}\left(\nabla_{m} \phi-F_{m n} \Omega^{n}\right)
\end{aligned}
$$

String central charge $\zeta_{3}=\frac{1}{2} \partial_{m}\left(\left(\phi^{a} \bar{\Omega}^{m}-\bar{\phi}^{a} \Omega^{m}\right) B_{3}^{a}\right) \sigma_{\alpha \dot{\alpha}}^{3} I^{I J}=\frac{i}{2} B_{3}^{a} \partial_{\varphi}\left(\phi^{a} \bar{\epsilon}-\bar{\phi}^{a} \epsilon\right) \sigma_{\alpha \dot{\alpha}}^{3} \delta^{I J}$ current
yields for a string of tension ~ epsilon

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2}\left|B_{z}^{a}+\phi \tau^{a} \bar{\phi}-i \nabla_{m}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right|^{2}+\frac{1}{2}\left|\mathcal{D}_{1} \phi^{a}+i \mathcal{D}_{2} \phi^{a}-\left(\Omega_{2}-i \Omega_{1}\right) B_{z}^{a}\right|^{2} \\
& +\partial_{m}\left(B_{z}^{a}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right) \geq \partial_{m}\left(B_{z}^{a}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right) .
\end{aligned}
$$

Symmetry breaking pattern

$$
S U(2)_{c} \times S U(2)_{R} \times S U(2)_{\mathcal{R}} \rightarrow U(1)_{c} \times S U(2)_{R+\mathcal{R}}
$$

Searching for the field theoretical explanation of the new duality

Less SUSY: Heterotic deformation

$(0,2)$ Theory

In 4d introduce masses breaks $\mathcal{N}=2$ to $\mathcal{N}=1$
obtain heterotic sigma model
$\mathcal{L}=\int d^{4} \theta\left(\Phi_{i}^{\dagger} e^{V} \Phi^{i}-r V-\mathcal{B} V\right)$

On the flux tube
$(2,2) \longmapsto(0,2)$
Note: cannot be $(1,1)$ since then it's automatically $(2,2)$

B-right handed superfield
can be treated as model w/ field dependent FI term
$K=(r+\mathcal{B}) \log \left(1+\left|\phi^{i}\right|^{2}\right)$

$(0,2)$ deformation of $\mathrm{H} \mathrm{T}_{\text {prknainver }}$

$\int d^{4} \theta\left[\sum_{i=1}^{N_{c}} \Phi_{i}^{\dagger} e^{V} \Phi_{i}+\sum_{i=1}^{N_{c}-N_{f}} \tilde{\Phi}_{i}^{\dagger} e^{-V} \tilde{\Phi}_{i}-(r+\mathcal{B}) V+\frac{1}{2 e^{2}} \Sigma^{\dagger} \Sigma\right]$
$\Phi^{i}=n^{i}+\bar{\theta} \xi^{i}+\theta \bar{\xi}^{i}+\bar{\theta} \theta F^{i}, \quad i=1, \ldots, N_{c}$
$\widetilde{\Phi}^{j}=\rho^{j}+\bar{\theta} \eta^{j}+\theta \bar{\eta}^{j}+\bar{\theta} \theta \tilde{F}^{j}, \quad j=1, \ldots, \tilde{N}$
$\Sigma=\sigma+i \theta^{+} \bar{\lambda}_{+}-i \bar{\theta}^{-} \lambda_{-}+\theta^{+} \bar{\theta}^{-}\left(D-i F_{01}\right)$
$\mathcal{B}=\omega\left(\bar{\theta} \zeta_{R}+\bar{\theta} \theta \overline{\mathcal{F}} \mathcal{F}\right)$
deformation adds
$\mathcal{L}^{\text {het }}=\mathcal{L}+\bar{\zeta}_{R} \partial_{L} \zeta_{R}-|\omega|^{2}|\sigma|^{2}-\left[i \omega \lambda_{L} \zeta_{R}+\right.$ H.c. $]$

Not enough SUSY

non-pert. corrections out of control Have to dwell on large-N approach

Large- N solution of $(0,2)$

$$
\begin{aligned}
V_{1-\text { loop }}= & \frac{1}{4 \pi} \sum_{i=1}^{N-1}\left(-\left(D+\left|\sigma-m_{i}\right|^{2}\right) \log \frac{\left|\sigma-m_{i}\right|^{2}+D}{\Lambda^{2}}+\left|\sigma-m_{i}\right|^{2} \log \frac{\left|\sigma-m_{i}\right|^{2}}{\Lambda^{2}}\right) \\
& -\frac{1}{4 \pi} \sum_{j=1}^{\tilde{N}-1}\left(-\left(D-\left|\sigma-\mu_{j}\right|^{2}\right) \log \frac{\left|\sigma-\mu_{j}\right|^{2}-D}{\Lambda^{2}}-\left|\sigma-\mu_{j}\right|^{2} \log \frac{\left|\sigma-\mu_{j}\right|^{2}}{\Lambda^{2}}\right) \\
& +\frac{N-\tilde{N}}{4 \pi} D . \\
V_{\text {eff }}= & V_{1-\text { loop }}+\left(\left|\sigma-m_{0}\right|^{2}+D\right)\left|n_{0}\right|^{2}+\left(\left|\sigma-\mu_{0}\right|^{2}-D\right)\left|\rho_{0}\right|^{2}+\frac{u N}{4 \pi}|\sigma|^{2}
\end{aligned}
$$

for zero masses

Symmetric masses

$$
\begin{aligned}
m_{k} & =m e^{2 \pi i \frac{k}{N}}, \quad k=0, \ldots, N-1 \\
\mu_{l} & =\mu e^{2 \pi i \frac{l}{\tilde{N}}}, \quad l=0, \ldots, \tilde{N}-1
\end{aligned}
$$

Vacuum equations

$$
\begin{aligned}
& \left(\left|\sigma-m_{0}\right|^{2}+D\right) n_{0}=0, \quad\left(\left|\sigma-\mu_{0}\right|^{2}-D\right) \rho_{0}=0 \\
& \frac{1}{4 \pi} \sum_{i=1}^{N-1} \log \frac{\left|\sigma-m_{i}\right|^{2}+D}{\Lambda^{2}}-\frac{1}{4 \pi} \sum_{j=1}^{\tilde{N}-1} \log \frac{\left|\sigma-\mu_{j}\right|^{2}-D}{\Lambda^{2}}=\left|n_{0}\right|^{2}-\left|\rho_{0}\right|^{2}, \\
& \frac{1}{4 \pi} \sum_{i=1}^{N-1}\left(\sigma-m_{i}\right) \log \frac{\left|\sigma-m_{i}\right|^{2}+D}{\left|\sigma-m_{i}\right|^{2}}+\frac{1}{4 \pi} \sum_{j=1}^{\tilde{N}-1}\left(\sigma-\mu_{j}\right) \log \frac{\left|\sigma-\mu_{j}\right|^{2}-D}{\left|\sigma-\mu_{j}\right|^{2}}= \\
& =\left(\sigma-m_{0}\right)\left|n_{0}\right|^{2}+\left(\sigma-\mu_{0}\right)\left|\rho_{0}\right|^{2}+\frac{u N}{4 \pi} \sigma .
\end{aligned}
$$

Solution of $(2,2)$ model

Phase transitions - artifact of large-N
$\left(\left|\sigma-m_{0}\right|^{2}+D\right) n_{0}=0, \quad\left(\left|\sigma-\mu_{0}\right|^{2}-D\right) \rho_{0}=0$
Higgs in $n(H n)$
$\rho_{0}=0 \quad D=-|\sigma-m|^{2}$

$$
r= \begin{cases}\frac{N-\tilde{N}}{2 \pi} \log \frac{m}{\Lambda}, & \mu<m \\ \frac{N}{2 \pi} \log \frac{m}{\Lambda}-\frac{\tilde{N}}{2 \pi} \log \frac{\mu}{\Lambda}, & \mu>m .\end{cases}
$$

Higgs in rho $\left(\mathrm{H}_{\rho}\right)$

$$
n_{0}=0 \quad D=|\sigma-\mu|^{2}
$$

$$
r= \begin{cases}\frac{N-\tilde{N}}{2 \pi} \log \frac{\mu}{\Lambda}, & \mu>m \\ \frac{N}{2 \pi} \log \frac{m}{\Lambda}-\frac{\tilde{N}}{2 \pi} \log \frac{\mu}{\Lambda}, & \mu<m\end{cases}
$$

Coulomb (C)

$$
n_{0}=\rho_{0}=0
$$

renormalized Fl term vanishes in C phase in $(2,2)$ from exact superpotential
$\prod\left(\sigma-m_{i}\right)$
$\frac{i}{\prod_{i}\left(\sigma-\mu_{j}\right)}=\Lambda^{N-\tilde{N}} \quad \sigma=0 \quad$ is one of the solutions...

Spectrum

$\mathcal{L}=-\frac{1}{4 e_{\gamma}^{2}} F_{\mu \nu}^{2}+\frac{1}{e_{\sigma 1}^{2}}\left(\partial_{\mu} \mathfrak{R e} \sigma\right)^{2}+\frac{1}{e_{\sigma 2}^{2}}\left(\partial_{\mu} \mathfrak{I m} \sigma\right)^{2}+i \mathfrak{I m}(\bar{b} \delta \sigma) \epsilon_{\mu \nu} F^{\mu \nu}-V_{\text {eff }}(\sigma)+$ Fermions
Anomaly

$b=\frac{N}{4 \pi}\left(\frac{1}{N} \sum_{i=1}^{N-1} \frac{1}{\bar{\sigma}_{0}-\bar{m}_{i}}-\alpha \frac{1}{\tilde{N}} \sum_{i=1}^{\tilde{N}-1} \frac{1}{\bar{\sigma}_{0}-\bar{\mu}_{i}}\right)$

$$
m_{\gamma}=e_{\sigma 2} e_{\gamma}|b|
$$

Photon becomes massless in Cs phase!! Confinement!
Note that Lambda vacua disappear at large deformations Need to sit in zero-vacua
e.g. in Cm phase

$$
m_{\gamma}=\sqrt{6} \Lambda\left(\frac{\Lambda}{m}\right)^{1 / \alpha}\left(\left(\frac{m}{\Lambda}\right)^{2 / \alpha}-\left(\frac{\mu}{\Lambda}\right)^{2} e^{u / \alpha}\right) \mathrm{e}^{-\frac{\mu}{2 \alpha}}
$$

Massless goldstino in fermionic sector

NSVZ in $(0,2)$ sigma model

\mathbb{P}^{N} sigma models exhibit instanton solutions
[Cui Shifman]
Let us now remove half of the fermions
An instanton has four bosonic zero modes but only two fermionic ones

$$
A_{\text {inst }}=\frac{y}{z-z_{0}}, \quad A_{\text {inst }}^{\dagger}=\frac{\bar{y}\left(1+4 i \theta^{\dagger} \beta^{\dagger}\right)}{\bar{z}_{\mathrm{ch}}-\bar{z}_{0}-4 i \theta^{\dagger} \alpha}
$$

One loop corrections in the instanton background do not cancel completely

$$
d \mu=\left(\frac{M^{2}}{g^{2}}\right)^{n_{b}}\left(\frac{g^{2}}{M}\right)^{n_{f}} \underbrace{(M)^{-1}}_{\text {One loop modification }} e^{-\frac{4 \pi}{g^{2}}} d \log (y) d \log (\bar{y}) d z_{0} d \bar{z}_{0} d \alpha d \beta^{\dagger}
$$

Exact beta function

$$
\beta\left(g^{2}\right)=-\frac{g^{4}}{2 \pi} \frac{1}{1-\frac{g^{2}}{4 \pi}}
$$

What does it mean for $4 \mathrm{~d} / 2 \mathrm{~d}$?

Conclusions and open questions

- Study of SQCD BPS (and beyond) spectrum can effectively be done using 2d NLSM (and GLSM)
- 4d/2d duality helps to understand AGT in NS limit by reducing it to bispectral duality
- Relationship w/ another 4d/2d duality [Vafa et al]
- Generalize to other AGT pairs
- Holography for Non-Abelian vortices
- A lot is unknown about $(0,2)$ theory... how far can we push 4d/2d?

