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How rich are N=2 gauge theories in 4d?
Dynamics of low energy effective theories is quite well 
understood [Seiberg Witten ...]

However dynamics of non-BPS sector seems to be 
complicated
Still a full partition function of N=2 d=4 theory can be 
computed by localization [Nekrasov]

Recently a solid connection to non-SUSY CFTs was 
outlined [Alday, Gaiotto, Tachikawa]

and connection to relatively simple 2d sigma models
[Dorey, Hollowod, Lee] [Shifman, Yung] [Gaiotto, Moore, Neitzke]...

This talk: last two points



Outline
• 4d/2d w/ 8 supercharges: what and why? 

★ Vortices in field theory vs. type IIA string theory

★ (2,2) GLSM, NLSM

★ The Dictionary of 4d/2d

• AGT duality vs 4d/2d correspondence

★ Omega Background

★ Liouville at large central charge

★ 4d/2d duality in NS limit and duality

• Less Supersymmetry (4 supercharges)

★ Heterotic deformation and Large-N solution 
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The real parameter ξ is the Fayet–Iliopoulos (FI) term [35]. As we will see
shortly, a nonvanishing ξ puts the theory into the Higgs phase. Moreover, the
superscripts 0 and a refer to the U(1) and SU(N) parts of the gauge group,
respectively. For simplicity we choose both gauge couplings to be equal. This
assumption is not necessary and could have been readily lifted, but we prefer
to work with a single gauge coupling g. If the mass parameters mA are taken
real, we can consistently consider the adjoint fields a0, aa to be real as well
on the solitonic solutions. The above expression then simplifies,
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It is convenient to organize all fields into matrices, of sizes N×N and N×Nf ,
respectively,
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, Q ≡ qAi . (2.4)

Using the notation above, the action (2.3) can be written in the following
compact form:
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where the square mass matrix M is defined as
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and photons. Here we extend it to electric and magnetic non-Abelian quarks and gluons.

We start our analysis in section 2 by studying at the classical level N=2 SUSY QCD

based on an SU(nc) gauge theory with nf quark hypermultiplets in the fundamental

representation. The moduli space of classical vacua consists of a Coulomb branch where

the gauge group is of rank nc−1 and various Higgs branches where the gauge group is of

lower rank. The different branches touch each other at singular points where new massless

particles are present. It will turn out to be crucial that for nc ≤ nf ≤ 2nc−2 the theory

has distinct Higgs branches touching each other at singular points as shown in Fig. 1.

Coulomb Branch

Non-Baryonic

Branch

B

A

Baryonic
Branch

Fig. 1: Map of the classical moduli space of N=2 SU(nc) QCD with nf

fundamental flavors. The baryonic and non-baryonic Higgs branches intersect
along a submanifold A, while the non-baryonic branch intersects the Coulomb
branch along submanifold B where there is an unbroken SU(r)×U(1)nc−r

gauge symmetry with nf massless fundamental hypermultiplets. A and B in-
tersect at a point where the full SU(nc) with nf hypermultiplets is unbroken.
There are separate non-baryonic branches for 1 ≤ r ≤ [nf/2].

We divide the various Higgs branches into baryonic and non-baryonic branches, names

following from the fact that on the non-baryonic branches all the light fields have vanishing

baryon number. There will turn out to be a single baryonic branch for nf ≥ nc whose

generic low-energy effective theory consists of nfnc−n2
c+1 massless hypermultiplets. Non-

baryonic branches will be shown to exist for nf ≥ 2, each with (generically) nc−1−r

2

Coulomb vs Higgs branches

⇠

�a = ma

SU(Nf �Nc)
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Hanany-Witten construction
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Figure 2.2: The Higgs branch root a⃗ = m⃗F .

tuned to satisfy a relation
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the Seiberg-Witten curve becomes degenerate
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and A⃗ = C⃗F . We will soon explain a correspondence between the root of baryonic Higgs

branch and ferromagnetic vacuum of the SL(2,R) integrable model.

2.1 The classical integrable system

We now review the connection between N = 2 supersymmetric gauge theories in four di-

mensions and complex classical integrable systems. We begin by introducing the Heisenberg

spin chain.

We will consider a chain of L complex “spins” [36, 37, 38] corresponding to classical

variables, L±
l , L0

l , for l = 1, 2, . . . , L with Poisson brackets:

{L+
l ,L

−
m} = 2iδlmL0

m {L0
l ,L±

m} = ±iδlmL±
m . (2.5)
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Figure 2.4: A IIA brane construction for Theory II with ϵ = 0
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where λ denotes the adjoint scalar field in the vector multiplet.

For r = 0, Ql = Q̃l = 0 and Theory II has a classical Coulomb branch parametrized by

the eigenvalues {λ1,λ2, . . . ,λN} of the adjoint scalar field in the U(N) vector multiplet. In

the figure this corresponds to the special case where each D2 is suspended between NS5

and NS5′ and can move independently in the x4 and x5 directions. On the other hand, the

eigenvalues of Z parameterise the position of D2-branes in the {2,3}-plane.

For r > 0, the theory is on a Higgs branch with Q ≠ 0, Q̃ = 0. The vector multiplet VEVs

are fixed by the second D-term condition (2.24). Solutions are labelled by the number of ways

of distributing the N scalars {λj} between the L values {Ml}. Thus we specify a vacuum by

choosing L non-negative integers {n̂l} with
∑L

l=1 n̂l = N . In the brane construction these

correspond to the number of D2 branes ending on each D4 brane as shown in the figure.
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Color-flavor locked 
 phase of SQCD

Higgs branch root

Nf = 2NcSQCD

[Hanany Tong]
[Witten]

5 Brane Constructions and Dualities in Integrable Sys-
tems

sec:BraneConstruction

As is well known brane configuration reflects geometry of the underlying integrable system,
thus it is interesting to explain the known dualities in the integrable systems using brane
terms. We shall first review the Hanany-Witten type IIA brane construction which yields
the N = 2 SQCD and integrable systems related to it – XXX spin chain and Gaudin
model together with the dualities these models are involved in. Then we shall address the
pure SYM case and brane interpretation of the ✏-string which we have identified in Sec.

sec:FluxTube
2.

Employing the Gaudin/XXX duality we will be able to give a vortex interpretation of the
AGT duality in the next section, where the XXX model appears on the N = 2 theory side
and the Gaudin model naturally arises in study of Liouville CFT’s. Here we shall make some
preparations to that study. In the end we shall discuss yet another duality between Gaudin
and Calogero-Moser systems.

5.1 Dualities from the Hanany-Witten Brane Construction

Brane configuration for the N = 2 SQCD employs the Hanany-Witten construction [
Hanany:1996ie
32]. As

it was shown in [
Dorey:2011pa
10] and further explained here in Sec.

sec:SQCD
3, in presence of Omega background

the Higgs branch condition gets deformed (
eq:DHLHiggs
3.1). Hence positions of the flavor D4 branes

shift by na✏ for each color (see left picture in Fig.
fig:hweps
5.1). It contains two NS5, N D4 branes

which are stretched between the two NS5 branes and two sets of semi infinite D4’s which are
attached to NS5’s. All D4 branes occupy 01236 directions, NS5’s lie in 012345 directions.

0 1 2 3 4 5 6 7 8 9

NS5 x x x x x x
D4 x x x x x
D2 x x x

Under geometric transition the brane configuration described in [
Dorey:2011pa,Chen:2011sj
10,19] interpolate between

the 4d theory and the 2d theory. The latter can be obtained by moving the right NS5 brane
in the 7th direction and emerging D2 branes (037) which are stretched between this NS5
and D4’s (see right picture in Fig.

fig:hweps
5.1). The value of x7 gives tension of D2 strings which is

equal to ✏ in our construction.
The rank of the gauge group of the two dimensional GLSM is given by summing up all

the D2 branes K =
P

i n̂i, where, we remind, n̂i = ni � 1. The low energy dynamics of
the two dimensional theory is given by the e↵ective twisted superpotential and the following
ground state equations

NY

l=1

�j � Ml

�j � fMl

= q

KY

k 6=j

�j � �k � ✏

�j � �k + ✏
, (5.1) eq:2dXXXBAE

which is the Bethe ansatz equations for the anisotropic SL(2) spin chain. Note that for

generic 2d masses Ma and fMa at each spins at each site a = 1, . . . , N have di↵erent repre-
sentations. Indeed, in order to match each term in the left hand side of (

eq:2dXXXBAE
5.1) with phases of
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is simple to determine: it is a U(k) gauge theory with 4 real adjoint scalars, or two

complex scalars

σ = X4 + iX5 , Z = X1 + iX2 (3.27)

which combine to give the N = (4, 4) theory in d = 1 + 1. N D4−branes

NS5−branes
012345

01236

039
k D2−branes

Figure 19:

The D4-branes contribute hypermultiplets (ψa, ψ̃a) with a =

1, . . . , N . These hypermultiplets get a mass only when the
D2-branes and D6-branes are separated in the X4 and X5

directions. This means we have a coupling like

N
∑

a=1

ψ†
a {σ†, σ}ψa + ψ̃a {σ†, σ} ψ̃†

a (3.28)

But there is no such coupling between the hypermultiplets
and Z. The coupling (3.28) breaks supersymmetry to N =

(2, 2). So we now understand the D2-brane theory of figure
19. However, the D2-brane theory that we’re really interested in, shown in figure 18,

differs from this in two ways

• The right-hand NS5-brane is moved out of the page. But we already saw in the

manoeuvres around figure 16 that this induces a FI parameter on brane theory.
Except this this time the FI parameter is for the D2-brane theory. It’s given by

r =
∆x6

2πgsls
=

4π

e2
(3.29)

• We only have half of the D4-branes, not all of them. If a full D4-brane gives rise
to a hypermultiplet, one might guess that half a D4-brane should give rise to half

a hypermultiplet, otherwise known as a chiral multiplet. Although the argument
is a little glib, it turns out that this is the correct answer [164].
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Understanding 2d theory: ‘ANO’ String

string. As we’re used to by now, such winding is characterized by the homotopy group,
this time

Π1 (U(N) × SU(N)/SU(N)diag) ∼= Z (3.6)

Which means that we can expect vortex strings supported by a single winding number
k ∈ Z. To see that this winding of the scalar is associated with magnetic flux, we use

the same trick as for monopoles. Finiteness of the quark kinetic term requires that
Dq ∼ 1/r2 as r → ∞. But a winding around S1

∞ necessarily means that ∂q ∼ 1/r. To

cancel this, we must turn on A → i∂q q−1 asymptotically. The winding of the scalar at
infinity is determined by an integer k, defined by

2πk = Tr

∮

S1
∞

i∂θq q−1 = Tr

∮

S1
∞

Aθ = Tr

∫

dx1dx2 B3 (3.7)

This time however, in contrast to the case of magnetic monopoles, there is no long

range magnetic flux. Physically this is because the theory has a mass gap, ensuring
any excitations die exponentially. The result, as we shall, is that the magnetic flux is

confined in the center of the vortex string.

The Lagrangian of equation (3.1) is very spe- x3

phase of q

Figure 11:

cial, and far from the only theory admitting vor-
tex solutions. Indeed, the vortex zoo is well pop-

ulated with different objects, many exhibiting cu-
rious properties. Particularly interesting examples
include Alice strings [148, 149], and vortices in Chern-

Simons theories [150]. In this lecture we shall stick
with the vortices arising from (3.1) since, as we

shall see, they are closely related to the instantons
and monopoles described in the previous lectures.

To my knowledge, the properties of non-abelian vortices in this model were studied
only quite recently in [151] (a related model, sharing similar properties, appeared at
the same time [152]).

3.2 The Vortex Equations

To derive the vortex equations we once again perform the Bogomoln’yi completing the
square trick (due, once again, to Bogomoln’yi [14]). We look for static strings in the x3

direction, so make the ansatz ∂0 = ∂3 = 0 and A0 = A3 = 0. We also set φ = 0. In fact
φ will not play a role for the remainder of this lecture, although it will be resurrected
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3. Vortices

In this lecture, we’re going to discuss vortices. The motivation for studying vortices
should be obvious: they are one of the most ubiquitous objects in physics. On table-
tops, vortices appear as magnetic flux tubes in superconductors and fractionally charged

quasi-excitations in quantum Hall fluids. In the sky, vortices in the guise of cosmic
strings have been one one of the most enduring themes in cosmology research. With

new gravitational wave detectors coming on line, there is hope that we may be able
to see the distinctive signatures of these strings as the twist and whip. Finally, and
more formally, vortices play a crucial role in determining the phases of low-dimensional

quantum systems: from the phase-slip of superconducting wires, to the physics of
strings propagating on Calabi-Yau manifolds, the vortex is key.

As we shall see in detail below, in four dimensional theories vortices are string like

objects, carrying magnetic flux threaded through their core. They are the semi-classical
cousins of the more elusive QCD flux tubes. In what follows we will primarily be inter-
ested in the dynamics of infinitely long, parallel vortex strings and the long-wavelength

modes they support. There are a number of reviews on the dynamics of vortices in four
dimensions, mostly in the context of cosmic strings [142, 143, 144].

3.1 The Basics

In order for our theory to support vortices, we must add a further field to our La-
grangian. In fact we must make two deformations

• We increase the gauge group from SU(N) to U(N). We could have done this

before now, but as we have considered only fields in the adjoint representation
the central U(1) would have simply decoupled.

• We add matter in the fundamental representation of U(N). We’ll add Nf scalar
fields qi, i = 1 . . . , Nf .

The action that we’ll work with throughout this lecture is

S =

∫

d4x Tr

(

1

2e2
F µνFµν +

1

e2
(Dµφ)2

)

+

Nf
∑

i=1

|Dµqi|2

−
Nf
∑

i=1

q†iφ
2qi −

e2

4
Tr (

Nf
∑

i=1

qiq
†
i − v2 1N)2 (3.1)

The potential is of the type admitting a completion to N = 1 or N = 2 supersymmetry.
In this context, the final term is called the D-term. Note that everything in the bracket
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of the D-term is an N×N matrix. Note also that the couplings in front of the potential
are not arbitrary: they have been tuned to critical values.

We’ve included a new parameter, v2, in the potential. Obviously this will induce a
vev for q. In the context of supersymmetric gauge theories, this parameter is known as

a Fayet-Iliopoulos term.

We are interested in ground states of the theory with vanishing potential. For Nf <
N , one can’t set the D-term to zero since the first term is, at most, rank Nf , while the
v2 term is rank N . In the context of supersymmetric theories, this leads to spontaneous

supersymmetry breaking. In what follows we’ll only consider Nf ≥ N . In fact, for the
first half of this section we’ll restrict ourselves to the simplest case:

Nf = N (3.2)

With this choice, we can view q as an N ×N matrix qa
i, where a is the color index and

i the flavor index. Up to gauge transformations, there is a unique ground state of the
theory,

φ = 0 , qa
i = vδa

i (3.3)

Studying small fluctuations around this vacuum, we find that all gauge fields and scalars
are massive, and all have the same mass M2 = e2v2. The fact that all masses are equal

is a consequence of tuning the coefficients of the potential.

The theory has a U(N)G ×SU(N)F gauge and flavor symmetry. On the quark fields

q this acts as

q → UqV U ∈ U(N)G, V ∈ SU(N)F (3.4)

The vacuum expectation value (3.3) is preserved only for transformations of the form
U = V , meaning that we have the pattern of spontaneous symmetry breaking

U(N)G × SU(N)F → SU(N)diag (3.5)

This is known as the color-flavor-locked phase in the high-density QCD literature [145].

When N = 1, our theory is the well-studied abelian Higgs model, which has been
known for many years to support vortex strings [146, 147]. These vortex strings also
exist in the non-abelian theory and enjoy rather rich properties, as we shall now see.

Let’s choose the strings to lie in the x3 direction. To support such objects, the scalar
fields q must wind around S1

∞ at spatial infinity in the (x1, x2) plane, transverse to the
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breaks symmetry
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∮

S1
∞
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Aθ = Tr
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This time however, in contrast to the case of magnetic monopoles, there is no long

range magnetic flux. Physically this is because the theory has a mass gap, ensuring
any excitations die exponentially. The result, as we shall, is that the magnetic flux is

confined in the center of the vortex string.

The Lagrangian of equation (3.1) is very spe- x3

phase of q

Figure 11:

cial, and far from the only theory admitting vor-
tex solutions. Indeed, the vortex zoo is well pop-

ulated with different objects, many exhibiting cu-
rious properties. Particularly interesting examples
include Alice strings [148, 149], and vortices in Chern-

Simons theories [150]. In this lecture we shall stick
with the vortices arising from (3.1) since, as we

shall see, they are closely related to the instantons
and monopoles described in the previous lectures.

To my knowledge, the properties of non-abelian vortices in this model were studied
only quite recently in [151] (a related model, sharing similar properties, appeared at
the same time [152]).

3.2 The Vortex Equations

To derive the vortex equations we once again perform the Bogomoln’yi completing the
square trick (due, once again, to Bogomoln’yi [14]). We look for static strings in the x3

direction, so make the ansatz ∂0 = ∂3 = 0 and A0 = A3 = 0. We also set φ = 0. In fact
φ will not play a role for the remainder of this lecture, although it will be resurrected
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To find a string need 
winding at infinity

U(N) gauge theory with fundamental matter

of the D-term is an N×N matrix. Note also that the couplings in front of the potential
are not arbitrary: they have been tuned to critical values.

We’ve included a new parameter, v2, in the potential. Obviously this will induce a
vev for q. In the context of supersymmetric gauge theories, this parameter is known as

a Fayet-Iliopoulos term.

We are interested in ground states of the theory with vanishing potential. For Nf <
N , one can’t set the D-term to zero since the first term is, at most, rank Nf , while the
v2 term is rank N . In the context of supersymmetric theories, this leads to spontaneous

supersymmetry breaking. In what follows we’ll only consider Nf ≥ N . In fact, for the
first half of this section we’ll restrict ourselves to the simplest case:

Nf = N (3.2)

With this choice, we can view q as an N ×N matrix qa
i, where a is the color index and

i the flavor index. Up to gauge transformations, there is a unique ground state of the
theory,

φ = 0 , qa
i = vδa

i (3.3)

Studying small fluctuations around this vacuum, we find that all gauge fields and scalars
are massive, and all have the same mass M2 = e2v2. The fact that all masses are equal

is a consequence of tuning the coefficients of the potential.

The theory has a U(N)G ×SU(N)F gauge and flavor symmetry. On the quark fields

q this acts as

q → UqV U ∈ U(N)G, V ∈ SU(N)F (3.4)

The vacuum expectation value (3.3) is preserved only for transformations of the form
U = V , meaning that we have the pattern of spontaneous symmetry breaking

U(N)G × SU(N)F → SU(N)diag (3.5)

This is known as the color-flavor-locked phase in the high-density QCD literature [145].

When N = 1, our theory is the well-studied abelian Higgs model, which has been
known for many years to support vortex strings [146, 147]. These vortex strings also
exist in the non-abelian theory and enjoy rather rich properties, as we shall now see.

Let’s choose the strings to lie in the x3 direction. To support such objects, the scalar
fields q must wind around S1

∞ at spatial infinity in the (x1, x2) plane, transverse to the
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BPS equations for vortexin the following lecture. The tension (energy per unit length) of the string is

Tvortex =

∫

dx1dx2 Tr

(

1

e2
B2

3 +
e2

4
(

N
∑

i=1

qiq
†
i − v2 1N)2

)

+
N
∑

i=1

|D1qi|2 + |D2qi|2

=

∫

dx1dx2 1

e2
Tr

(

B3 ∓
e2

2
(

N
∑

i=1

qiq
†
i − v2 1N)

)2

+
N
∑

i=1

|D1qi ∓ iD2qi|2

∓v2

∫

dx1dx2 TrB3 (3.8)

To get from the first line to the second, we need to use the fact that [D1, D2] = −iB3,
to cancel the cross terms from the two squares. Using (3.7), we find that the tension

of the charge |k| vortex is bounded by

Tvortex ≥ 2πv2 |k| (3.9)

In what follows we focus on vortex solutions with winding k < 0. (These are mapped

into k > 0 vortices by a parity transformation, so there is no loss of generality). The
inequality is then saturated for configurations obeying the vortex equations

B3 =
e2

2
(
∑

i

qiq
†
i − v2 1N) , Dzqi = 0 (3.10)

where we’ve introduced the complex coordinate z = x1 + ix2 on the plane transverse to
the vortex string, so ∂z = 1

2(∂1 − i∂2). If we choose N = 1, then the Lagrangian (3.1)

reduces to the abelian-Higgs model and, until recently, attention mostly focussed on
this abelian variety of the equations (3.10). However, as we shall see below, when the

vortex equations are non-abelian, so each side of the first equation (3.10) is an N ×N
matrix, they have a much more interesting structure.

Unlike monopoles and instantons, no analytic solution to the vortex equations is

known. This is true even for a single k = 1 vortex in the U(1) theory. There’s nothing
sinister about this. It’s just that differential equations are hard and no one has decided

to call the vortex solution a special function and give it a name! However, it’s not
difficult to plot the solution numerically and the profile of the fields is sketched below.

The energy density is localized within a core of the vortex of size L = 1/ev, outside of
which all fields return exponentially to their vacuum.

The simplest k = 1 vortex in the abelian N = 1 theory has just two collective

coordinates, corresponding to its position on the z-plane. But what are the collective
coordinates of a vortex in U(N). We can use the same idea we saw in the instanton
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Figure 12: A sketch of the vortex profile.

lecture, and embed the abelian vortex — let’s denote it q⋆ and A⋆
z — in the N × N

matrices of the non-abelian theory. We have

Az =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A⋆
z

0
. . .

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, q =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

q⋆

v
. . .

v

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3.11)

where the columns of the q matrix carry the color charge, while the rows carry the flavor

charge. We have chosen the embedding above to lie in the upper left-hand corner but
this isn’t unique. We can rotate into other embeddings by acting with the SU(N)diag

symmetry preserved in the vacuum. Dividing by the stabilizer, we find the internal
moduli space of the single non-abelian vortex to be

SU(N)diag/S[U(N − 1) × U(1)] ∼= CP
N−1 (3.12)

The appearance of CP
N−1 as the internal space of the vortex is interesting: it tells us

that the low-energy dynamics of a vortex string is the much studied quantum CP
N−1

sigma model. We’ll see the significance of this in the following lecture. For now, let’s
look more closely at the moduli of the vortices.

3.3 The Moduli Space

We’ve seen that a single vortex has 2N collective coordinates: 2 translations, and

2(N − 1) internal modes, dictating the orientation of the vortex in color and flavor
space. We denote the moduli space of charge k vortices in the U(N) gauge theory as
Vk,N . We’ve learnt above that

V1,N
∼= C × CP

N−1 (3.13)
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For higher k

What about higher k? An index theorem [154, 151] tells us that the number of collective
coordinates is

dim(Vk,N) = 2kN (3.14)

Look familiar? Remember the result for k instantons in U(N) that we found in lecture
1: dim(Ik,N) = 4kN . We’ll see more of this similarity between instantons and vortices

in the following.

As for previous solitons, the counting (3.14) has a natural interpretation: k parallel
vortex strings may be placed at arbitrary position, each carrying 2(N −1) independent
orientational modes. Thinking physically in terms of forces between vortices, this is a

consequence of tuning the coefficient e2/4 in front of the D-term in (3.1) so that the
mass of the gauge bosons equals the mass of the q scalars. If this coupling is turned

up, the scalar mass increases and so mediates a force with shorter range than the gauge
bosons, causing the vortices to repel. (Recall the general rule: spin 0 particles give rise

to attractive forces; spin 1 repulsive). This is a type II non-abelian superconductor. If
the coupling decreases, the mass of the scalar decreases and the vortices attract. This
is a non-abelian type I superconductor. In the following, we keep with the critically

coupled case (3.1) for which the first order equations (3.10) yield solutions with vortices
at arbitrary position.

3.3.1 The Moduli Space Metric

There is again a natural metric on Vk,N arising from taking the overlap of zero modes.

These zero modes must solve the linearized vortex equations together with a suitable
background gauge fixing condition. The linearized vortex equations read

DzδAz̄ −Dz̄δAz =
ie2

4
(δq q† + q δq†) and Dzδq = iδAzq (3.15)

where q is to be viewed as an N × N matrix in these equations. The gauge fixing
condition is

DzδAz̄ + Dz̄δAz = −ie2

4
(δq q† − q δq†) (3.16)

which combines with the first equation in (3.15) to give

Dz̄δAz = −ie2

4
δq q† (3.17)

Then, from the index theorem, we know that there are 2kN zero modes (δαAz, δαq),

α, β = 1, . . . , 2kN solving these equations, providing a metric on Vk,N defined by

gαβ = Tr

∫

dx1dx2 1

e2
δαAaδβAz̄ +

1

2
δαqδβq† + h.c. (3.18)
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T � 2⇡v2|k| bound saturates for BPS states
Again:



Non-Abelian String
[Shifman Yung]

act trivially on the BPS string. Imposing the conditions (4.2.17) and requir-
ing the left-hand sides of Eqs. (4.2.14) to vanish 16 we get, upon substituting
the ansatz (4.2.6), the first-order equations (4.2.11).

4.3 Elementary non-Abelian strings

The elementary ZN strings in the model (4.1.7) give rise to bona fide non-
Abelian strings provided the condition (4.1.13) is satisfied [117, 118, 119, 120].
This means that, in addition to trivial translational moduli, they have extra
moduli corresponding to spontaneous breaking of a non-Abelian symmetry.
Indeed, while the “flat” vacuum (4.1.14) is SU(N)C+F symmetric, the solu-
tion (4.2.6) breaks this symmetry 17 down to U(1)×SU(N − 1) (at N > 2).
This ensures the presence of 2(N − 1) orientational moduli.

To obtain the non-Abelian string solution from the ZN string (4.2.6) we
apply the diagonal color-flavor rotation preserving the vacuum (4.1.14). To
this end it is convenient to pass to the singular gauge where the scalar fields
have no winding at infinity, while the string flux comes from the vicinity of
the origin. In this gauge we have

ϕ = U

⎛

⎜

⎜

⎜

⎜

⎝

φ2(r) 0 ... 0

... ... ... ...

0 ... φ2(r) 0

0 0 ... φ1(r)

⎞

⎟

⎟

⎟

⎟

⎠

U−1 ,

ASU(N)
i =

1

N
U

⎛

⎜

⎜

⎜

⎜

⎝

1 ... 0 0

... ... ... ...

0 ... 1 0

0 0 ... −(N − 1)

⎞

⎟

⎟

⎟

⎟

⎠

U−1 (∂iα) fNA(r) ,

AU(1)
i = − 1

N
(∂iα) f(r) , AU(1)

0 = ASU(N)
0 = 0 , (4.3.1)

16If, instead of (4.2.17), we required other combinations of the SUSY transformation pa-
rameters to vanish (changing the signs in (4.2.17)) we would get the anti-string equations,
with the opposite direction of the gauge fluxes.

17At N = 2 the string solution breaks SU(2) down to U(1).
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Matrix U parameterizes 
orientational modes

Gauge group is broken to ZN

All bulk degrees of freedom massive

Theory is fully Higgsed

[Auzzi, Bolognesi, 
Evslin, Konishi, Yung]

Take Abelian string solution
Make global rotation

M2 ⇠ ⇠
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SU(N)⇥ SU(Ñ)⇥ U(1)
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Monopoles in Higgs Phase [Tong]

Add masses. New vacuum 

[Shifman, Yung]

of U(N)G, and a further Nf scalars q̃i transforming in the N̄. The bosonic part of the
Lagrangian is given by,

L = Tr

(

1

4e2
FµνF

µν +
1

2e2
|Dµφ|

2

)

+

Nf
∑

i=1

(

|Dµqi|
2 + |Dµq̃i|

2
)

−Tr

⎛

⎝

1

2e2
[φ†,φ]2 + e2|

Nf
∑

i=1

qiq̃i|
2 +

e2

2
(

Nf
∑

i=1

qiq
†
i − q̃†i q̃i − v2)2

⎞

⎠

−

Nf
∑

i=1

(

q†i |φ− mi|
2qi + q̃i|φ− mi|

2q̃†i

)

In the above expression we have introduced complex mass parameters mi and a real FI

parameter v2, each consistent with N = 2 supersymmetry. For generic values of these

parameters the theory has a unique vacuum state, up to Weyl permutations, given by,

φ = diag(mi) , qa
i = vδa

i , q̃a
i = 0 (1)

where a = 1, . . . , N is the colour index. The U(N)G gauge symmetry is completely

broken and the theory lies in a gapped, colour-flavour-locked phased.

The pattern of symmetry breaking at intermediate energy scales depends on the
relative values of mi and v2. For |mi −mj | ≫ ev, the flavour group is explicitly broken
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An impressionistic rendering of the U(2) monopole in the Higgs phase when Lvort ≫ Lmon.

The solutions will turn out not to involve the fields q̃ and we set them to zero at this

stage. Moreover, the simplest configurations have Im(mi) = 0 which allows us to also
set Im(φ) = 0. In the following φ will therefore denote a real adjoint scalar field3. Since

the flux will leave the monopole in a tube, we must decide in which direction this string

will head: we choose the x3 direction. Restricting to time independent configurations

the Hamiltonian reads,

H =
1

2e2
B2
ρ +

1

2e2
|Dρφ|

2 + |Dρqi|
2 +

e2

2
(qiq

†
i − v2)2 + q†i (φ− mi)

2qi

=
1

2e2
(D1φ− B1)

2 +
1

2e2
(D2φ− B2)

2 + (D3φ− B3 − e2(qiq
†
i − v2))2

+|D1qi − iD2qi|
2 + |D3qi + (φ− mi)qi|

2 − v2B3 +
1

e2
∂ρ(φBρ)

≥ −v2B3 +
1

e2
∂ρ(φBρ) (4)

where we have left colour indices and traces implicit, summed over the flavour index i,
and introduced the spatial index ρ = 1, 2, 3. Both terms in the final line are topological

invariants. The first measures the flux carried by vortex strings lying in the x3 direction;

the second measures the magnetic charge carried by a monopole. As we shall see, we

can have strings without any need for monopoles, but the presence of a monopole will

require two, semi-infinite vortex strings to carry away its flux. In the Coulomb phase,

the integral of ∂ · (φB) is evaluated on the S2
∞ boundary. In the present case the

monopole’s flux does not make it to all points on the boundary and is instead captured
3It seems likely that interesting dyonic monopole-flux tube configurations can be built by relaxing

this condition to allow Im(mi) ≠ 0.
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Figure 2: Various regimes for the monopoles and flux tubes in the simplest case of two flavors.

down to U(1)(N−1) by a VEV of the SU(N) adjoint scalar

⟨ak
l ⟩ = − 1√

2
δk
l Ml . (6.3)

Thus, there are ’t Hooft–Polyakov monopoles embedded in the broken gauge

SU(N). Classically, on the Coulomb branch the masses of (N − 1) elementary
monopoles are proportional to

|(MA − MA+1) |/g2
2

This is shown in the upper left corner of Fig. 2 for the case

N = 2 , ∆m ≡ M1 − M2 .

In the limit (MA − MA+1) → 0 the monopoles tend to become massless, for-

mally, in the classical approximation. Simultaneously their size become infinite
[28]. The mass and size are stabilized by confinement effects which are highly
quantum. The confinement of monopoles occurs in the Higgs phase, at ξ ≠ 0.

• Now we introduce the FI parameter ξ which triggers the squark condensation.
The theory is in the Higgs phase. We still keep N = 2 breaking parameters h

and µ’s vanishing,

µ1 = µ2 = 0, h = 0, ξ ≠ 0, M ≠ 0. (6.4)
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BPS dyons in 4d N=2

holomorphic gauge invariant operators formed from the hypermultiplet fields. For
Nf = Nc, these include the baryonic operators,

B = Qa1

1 Qa2

2 . . . Q
aNc

Nc
ϵa1...aNc

B̃ = Q̃a1

1 Q̃a2

2 . . . Q̃
aNc

Nc
ϵa1...aNc

where ai denote colour indices. There are also meson operators of the form Mij = Q̃iQj .

The classical spectrum of BPS states depends on the vacuum in which the theory

lives. We shall start by discussing the classical spectrum on the Coulomb branch,

only subsequently moving onto quantum corrected spectrum and, ultimately, to the

quantum spectrum on the Higgs branch. At a generic point on the Coulomb branch
the theory has an interesting mixture of BPS states arising from both elementary

excitations as well as non-perturbative monopole and dyon states. Among the former

are the Nc massless photons, together with Nc(Nc − 1) W-bosons with mass |φa − φb|
for a, b = 1 . . . , Nc. There are also NcNf BPS quark states which, for a = 1, . . . , Nc

and i = 1, . . . Nf have masses given by,

Mquark = |φa − mi| (1)

All further BPS states arise as solitons and have non-zero magnetic charges under the

unbroken gauge group U(1)Nc . We denote these magnetic charges as ha and require
∑

a ha = 0, reflecting the fact that monopole solutions only exist in the semi-simple

SU(N)C ⊂ U(N)C part of the gauge group. The classical mass of these monopoles is

given by

Mmon =
2π

e2

∣

∣

∣

∣

∣

Nc
∑

a=1

haφa

∣

∣

∣

∣

∣

(2)

In addition to these purely magnetic solitons, the classical spectrum also contains an

infinite tower of dyons. A unified mass formula for each of these objects can be given

in terms of the central charge Z. For BPS states with electric charge ja and magnetic

charge ha under U(1)Nc , and with charge si under the global flavour group U(1)Nf−1,
the mass of any BPS state is given by M = |Z| with

Z =
Nc
∑

a=1

φa(ja + τha) +

Nf
∑

i=1

misi (3)

The above discussion has been classical. Let us now turn to various aspects of the

quantum theory. The overall U(1) part of the gauge group becomes weakly coupled

4

Because of this degeneracy the classical central charge (3) may be written in the sim-
plified form,

Z =
Nc
∑

i=1

mi(Si + τhi) (6)

where we have redefined the charges as Si = sa +ja. We would now like to describe the
quantum corrections to this charge formula as encoded in the Seiberg-Witten solution.

(Recently the semi-classical computation of corrections to the monopole mass was

revisited in [13, 17], finding agreement with the exact result of Seiberg and Witten).

At the root of the baryonic Higgs branch, the Seiberg-Witten elliptic curve has a special

property: it degenerates [18]

F (t, u) =

(

t −
Nc
∏

i=1

(u − mi)

)

(

u − ΛNc
)

(7)

This form of the curve occurs naturally in the M-theory construction of [19], where the

degeneration corresponds to the fact that one of the IIA NS5 branes remains unbent

upon its ascent to M-theory. The curve is branched over the Nc points ei defined by,

Nc
∏

i=1

(u − mi) − ΛNc =
Nc
∏

i=1

(u − ei) = 0 (8)

In the quantum theory the central charge is given by the integral of the Seiberg-

Witten differential λSW = (u/t)dt over certain one cycles of the curve. The resulting
modification of the classical formula (6) is

Z =
Nc
∑

i=1

(miSi + mDihi) (9)

where all the quantum corrections are encoded in the functions mD i which are holo-

morphic in the hypermultiplet masses mi and Λ. They are given by

mDl − mDk =
1

2πi

∫ el

ek

dλSW =
1

2πi

∫ el

ek

u
dt

t
=

1

2π

Nc
∑

i=1

∫ el

ek

u du

u − mi

where, in the final equality, we have used the exact form of the curve (7). Evaluating

this integral, we find the expression for the contribution to the central charge given by

mDl − mDk =
1

2π
Nc(el − ek) +

1

2π

Nc
∑

i=1

mi log

(

el − mi

ek − mi

)

(10)
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(2,2) 2d GLSM [Witten]

The neutral chiral multiplet Z contains a single complex scalar field z, parameterising
the center of mass motion of the vortex. It corresponds to the C factor in (15). Since

this field is free, we pay it no more attention and ignore it in the following. Each

charged chiral multiplet Ψi also contains a complex scalar ψi, i = 1, . . . , Nc, while the

U(1) vector multiplet contains the two dimensional gauge field and a further, neutral,

complex scalar σ. The bosonic part of the Lagrangian describing the internal degrees

of freedom of the vortex is given by,

− Lvortex =
1

2g2

(

F 2
01 + |∂σ|2

)

+
Nc
∑

i=1

(

|Dψi|2 + |σ − mi|2|ψi|2
)

+
g2

2
(

Nc
∑

i=1

|ψi|2 − r)2 (17)

For vanishing twisted masses mi, the theory has a SU(Nc)D global symmetry which is

identified with the SU(Nc)diag symmetry in four dimensions. For generic mi ≠ 0, this
is broken to U(1)Nc−1

D . The theory also has a U(1)R symmetry which is inherited from

the U(1)R symmetry in four dimensions. This rotates the phases of both σ and mi.

For vanishing masses, the vortex theory has a Higgs branch of vacua given by σ = 0

with the chiral multiplets constrained to obey
∑

i |ψ|2 = r. After dividing by the U(1)

action we see the Higgs branch is CPNc−1 in agreement with (15). In the presence of

twisted masses, performing the same procedure results in a twisted potential on the
Higgs branch of the type constructed in [24] as we show explicitly in Appendix B. The

potential has Nc isolated vacua given by,

Vacuum i : σ = mi , |ψj |2 = rδij (18)

As described above, the ith vacuum corresponds to a vortex embedded in the ith U(1)

subgroup, carrying magnetic charge B = diag(0, . . . , 0, 1, 0, . . . , 0), where the 1 sits in

the ith entry.

So far we have discussed the relevant aspects of the classical two-dimensional theory

on the vortex worldsheet. Let us now turn to the quantum theory. When the twisted
masses vanish mi = 0, there is a one-loop correction to the FI parameter r, leading to

a logarithmic running at scale µ,

r(µ) = r0 −
Nc

2π
log

(

MUV

µ

)

(19)

where r0 is the bare FI parameter defined at the UV cut-off MUV . Note that, since

this theory describes the low-energy dynamics of a soliton, it is inappropriate to take
MUV to infinity. Instead it is set by the mass scale of the vortex: MUV = v2.
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for vortex embedded into 
i’s U(1) subgroup
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this field is free, we pay it no more attention and ignore it in the following. Each

charged chiral multiplet Ψi also contains a complex scalar ψi, i = 1, . . . , Nc, while the

U(1) vector multiplet contains the two dimensional gauge field and a further, neutral,

complex scalar σ. The bosonic part of the Lagrangian describing the internal degrees

of freedom of the vortex is given by,

− Lvortex =
1

2g2

(

F 2
01 + |∂σ|2

)

+
Nc
∑

i=1

(

|Dψi|2 + |σ − mi|2|ψi|2
)

+
g2

2
(

Nc
∑

i=1

|ψi|2 − r)2 (17)

For vanishing twisted masses mi, the theory has a SU(Nc)D global symmetry which is

identified with the SU(Nc)diag symmetry in four dimensions. For generic mi ≠ 0, this
is broken to U(1)Nc−1

D . The theory also has a U(1)R symmetry which is inherited from

the U(1)R symmetry in four dimensions. This rotates the phases of both σ and mi.

For vanishing masses, the vortex theory has a Higgs branch of vacua given by σ = 0

with the chiral multiplets constrained to obey
∑

i |ψ|2 = r. After dividing by the U(1)

action we see the Higgs branch is CPNc−1 in agreement with (15). In the presence of

twisted masses, performing the same procedure results in a twisted potential on the
Higgs branch of the type constructed in [24] as we show explicitly in Appendix B. The

potential has Nc isolated vacua given by,

Vacuum i : σ = mi , |ψj |2 = rδij (18)

As described above, the ith vacuum corresponds to a vortex embedded in the ith U(1)

subgroup, carrying magnetic charge B = diag(0, . . . , 0, 1, 0, . . . , 0), where the 1 sits in

the ith entry.

So far we have discussed the relevant aspects of the classical two-dimensional theory

on the vortex worldsheet. Let us now turn to the quantum theory. When the twisted
masses vanish mi = 0, there is a one-loop correction to the FI parameter r, leading to

a logarithmic running at scale µ,

r(µ) = r0 −
Nc

2π
log

(

MUV

µ

)

(19)

where r0 is the bare FI parameter defined at the UV cut-off MUV . Note that, since

this theory describes the low-energy dynamics of a soliton, it is inappropriate to take
MUV to infinity. Instead it is set by the mass scale of the vortex: MUV = v2.
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FI term runs

Effective twisted superpotential

Σ whose lowest component is the complex scalar field σ, and includes F01 as part of
the auxiliary field. In the presence of twisted masses, this calculation was first done in

[3], resulting in the effective twisted superpotential,

W(Σ) =
i

2
τΣ − 1

4π

Nc
∑

i=1

(Σ − mi) log

(

2

µ
(Σ − mi)

)

Assuming no singularities in the Kähler potential, the Nc quantum vacua of the theory

are determined by the critical points of the twisted superpotential ∂W/∂Σ = 0 and

are given by,

Nc
∏

i=1

(σ − mi) − ΛNc ≡
Nc
∏

i=1

(σ − ei) = 0

which we notice as the same equation describing the branch points of the Seiberg-
Witten curve at the root of the baryonic Higgs branch (8). The classical BPS kinks

which we described above also survive in this effective theory [28] although their mass

is now corrected to include quantum effects. A kink interpolating between the Vacuum

i and Vacuum j has mass Mkink = 2∆W = 2W(ei) − 2W(ej). In the weak coupling

regime |mi − mj | ≫ Λ the leading contribution is precisely the classical result (21).

Deep in the strong coupling regime, |mi − mj | ≪ Λ, quantum effects are dominant.
The exact BPS mass of the kink can be captured by a correction to the central charge

so that all BPS excitations of the string have masses M = |Z|, now with

Z = −i
Nc
∑

i=1

(miSi + mD iTi)

where all the quantum corrections are encoded in mD,i, each a holomorphic function of

mj and Λ. Using the expressions above, we find that (up to an i-independent irrelevant

constant)

mD i = −2iW(ei) =
1

2πi
Ncei +

1

2πi

Nc
∑

j=1

mj log

(

ei − mj

Λ

)

which we see coincides with the expression computed in four dimensions (10). Note
that these two equations arose from very different origins: the degeneration of the

Seiberg-Witten elliptic curve in four dimensions, and the critical points of the effective

twisted superpotential in two dimensions. This agreement is the main result of [1].

16

In (19) we see our first hint that the vortex theory understands something of the four
dimensional quantum dynamics since the one-loop beta function for r is identical to

that of the four-dimensional coupling e2. This ensures that the relationship r = 2π/e2

is preserved under RG flow. Note that although vortices exist by virtue of the overall

U(1) ⊂ U(Nc), the renormalisation of r clearly follows the asymptotically free SU(Nc)

gauge coupling in four dimensions, rather than the infra-red free U(1) coupling. Since

the beta functions for r and 2π/e2 are equal, it follows that if we eliminate r(µ) in
favour of the one-loop RG invariant scale,

Λ = µ exp

(

−2πr(µ)

Nc

)

then this coincides with the dynamically generated scale in four dimensions (4).

The anomaly structure provides further agreement between the vortex theory and

four dimensions. The U(1)R symmetry on the vortex worldsheet is broken by anomalies

to Z2Nc , in agreement with the four dimensional result. This suggests an interplay

between Yang-Mills instantons and worldsheet instantons. We shall return to this

later.

In the presence of twisted masses, the story is similar. The running of the coupling
r(µ) is cut-off at the scale |mi−mj |. For |mi −mj | ≫ Λ, the theory is weakly coupled.

Again, this is in agreement with the four dimensional theory at the root of the baryonic

Higgs branch, which sits far out on the Coulomb branch when |mi − mj | ≫ Λ. In

this regime, the Nc classical vacua of the vortex theory (18) are trustworthy ground

states around which to study excitations. Finally, we note that at strong coupling,

|mi −mj | ≪ Λ, the Witten index ensures that there remain Nc isolated vacuum states
in the quantum vortex theory.

The Spectrum of the Vortex String

Having identified the theory on the vortex string and described some of its properties,
our task now is to determine its spectrum. In fact this is precisely the calculation

performed by Dorey in [1] where he computed the exact quantum BPS spectrum as a

function of the twisted masses mi and Λ. In this subsection we review the results of

[1] and describe how they relate to the vortex string.

We deal first with the classical, elementary internal excitations of the BPS string.

The vortex theory (17) includes a gapped photon with mass g
√

r. This does not lie
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Hanany-Tong model as U(1) GLSM

On Weighted Nonlinear Sigma Models

Abstract

Sigma models on non-compact target spaces have a number of interest-
ing properties which their compact counterparts (e.g. CPN , O(N)) do
not possess. We discuss perturbative aspects of these models.

1 Introduction
Sec:Intro

2 From the Hanany-Tong model to the ZN model
Sec:HananyTongModel

The U(Nc) SQCD with Nf flavors is known to have semi-local string solutions [
Shifman:2006kd
1]. According

to Hanany and Tong conjecture [
Hanany:2003hp
2] the low energy e⇤ective theory on the worldsheet of the

string is given by the strong coupling limit e ⇥ ⇤ of the two-dimensional U(1) gauge theory
with the following Lagrangian

L =

↵
d4⇥

⌃

�
Nc⌦

i=1

⇥†
i e

V⇥i +
Ñ⌦

i=1

�⇥†
i e

�V �⇥i � rV +
1

2e2
�†�

⌥

 , (2.1) eq:LagrWeightedSigma

where � is the field strength for the vector multiplet V and Ñ = Nf �Nc. Matter superfields

⇥i = ni + ⇥̄⌅i + ⇥⌅̄i + ⇥̄⇥F i , i = 1, . . . , Nc

�⇥j = ⇧j + ⇥̄�j + ⇥�̄j + ⇥̄⇥F̃ j , j = 1, . . . , Ñ (2.2)

Vector field in Wess-Zumino gauge

V = ⇥+⇥̄+(A0 + A3) + ⇥�⇥̄�(A0 � A3)� ⇥�⇥̄+⌃ � ⇥�⇥̄+⌃̄ + ⇥̄2⇥⇤+ ⇥2⇥̄⇤̄+ ⇥̄⇥⇥̄⇥D , (2.3)

and twisted chiral field � = D+D̄�V reads

� = ⌃ + i⇥+⇤̄+ � i⇥̄�⇤� + ⇥+⇥̄�(D � iF01) . (2.4)

In components the model reads check all compts formulae!

L =
1

e2
|⌥µ⌃|2 +

1

e2
i⇤̄⌥/⇤� 1

4e2
Fµ�F

µ�

+ |⌅µni|2 +
⇧⇧⌅̄µ⇧i

⇧⇧2 + i⌅̄iL⌅R⌅
i
L + i⌅̄iR⌅L⌅

i
R + i�̄iL⌅R�

i
L + i�̄iR⌅L�

i
R

� |⌃|2|ni|2 � |⌃|2|⇧i|2 �D
�
|ni|2 � |⇧i|2 � r0

⇥

+
⇤
in̄i

�
⇤L⌅

i
R � ⇤R⌅

i
L

⇥
� i⌃⌅̄iR⌅

i
L +H.c.

⌅

+
⇤
�i⇧̄i

�
⇤̄L�

i
R � ⇤̄R�

i
L

⇥
+ i⌃̄�̄iR�

i
L +H.c.

⌅
. (2.5)

Note that the Fayet-Illiopolous (FI) parameter r in (
eq:LagrWeightedSigmaeq:LagrWeightedSigma
2.1) can have di⇤erent signs, as was

shown by Witten [
Witten:1993yc
3], interpolation between the regions with di⇤erent values of r corresponds

to transition between Calabi-Yau and Landau-Ginzburg sigma models. Also physics of the
model depends on the relationship between Nc and Ñ , to ensure

1

One loop twisted effective superpotential is exact in (2,2)

gives vacua of the theory and its BPS spectrum !!

V = �+�̄+(A0 +A3) + ���̄�(A0 �A3)� ���̄+⇤ � ���̄+⇤̄ + �̄2�⇥+ �2�̄⇥̄+ �̄��̄�D

We wish to emphasize here that (4.2) is exact only if applied to the BPS
sector of the theory. Once we start looking at perturbations around the
vacua given by minimization of the twisted superpotential, formula (4.2), or
its massive generalization, is of no use. Still, when we treat the model in the
large-N approximation, the e↵ective potential

V (�) =
���fW 0

e↵

���
2

, (4.4)

give the correct spectrum of the theory. We will address both questions in
the next section.

Finally let us note that twisted masses can be introduced in the theory
by gauging each U(1) factor in the U(1)Nf group by its own gauge field with
non-zero �-component (equal to associated mass) [18]. This leads to the
following generalization of the e↵ective twisted superpotential (4.2) to the
case of non-zero twisted masses:

fWe↵ = �
1

2⇡

NX

i=1

(
p
2� +mi)

 
log

p
2� +mi

⇤
� 1

!
+

+
1

2⇡

eNX

j=1

(
p
2� + emj)

 
log

p
2� + emj

⇤
� 1

!
. (4.5)

Clearly this e↵ective twisted superpotential identically coincides with the one
for HT model [18].

This fact together with the matching of the kink spectrum obtained at
the classical level in Ref. [1], leads us to claim the matching of the BPS
spectra of the zn and HT at both semiclassical and quantum levels. As a
consequence, the BPS spectrum of the bulk theory coincides with the BPS
spectrum of the true e↵ective theory on semilocal vortices, as expected.

5 Large-N Solution of the zn Model

In this section we will study the zn model at large N along the lines of
Witten’s analysis [17]. Namely, we will consider the limit N ! 1, eN ! 1,
while the ratio of eN and N is kept fixed. The representations (2.10) and
(3.4) suggest that to the leading order in N the solutions of zn and the HT
models are the same. The reason for this is that all terms in the second
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Subtlety #1 [Shifman Vinci Yung]

Brane construction is not sensitive to IR physics

Blind to deformations within the same universality class

Need to know explicit metric on the vacuum manifold
in order to go beyond BPS sector

Let’s see if GLSMs from brane picture are the same as 
sigma models which live on a vortex



From GLSM

Kahler potential

From GL�M to NL�M . Let us first illustrate the main idea with a
simple example. We will review here how a vacuum manifold of the CP1

NL�M emerges from the gauged description of the model in the limit when
the gauge coupling(s) are sent to infinity.

The corresponding gauged linear sigma model (GL�M) Lagrangian for
the CP1 model in the superfields formalism reads

L =

Z
d
4
✓

✓�
|X1|

2 + |X2|
2
�
e
V
� rV +

1

e2
|⌃|2

◆
, (6.1)

where X1, X2 are chiral multiplets, V is a twisted vector multiplet with field
strength ⌃, r is the FI parameter, and e is the gauge coupling. One can see
that the following term belongs to the Lagrangian:

D(|x1|
2 + |x2|

2
� r) , (6.2)

which gives rise to the D-term constraint and it comes from the terms linear
in V . Here x1,2 are the bottom components of fields X1,2. The constraint
modulo the U(1) symmetry (C2

� Z)//U(1), where Z is the locus of |x1|
2 +

|x2|
2
� r defines the vacuum target manifold of the model. In this particular

case is given by CP1
' S

2, the two-dimensional sphere of radius r. By making
the radius of the sphere very large we go into the flat limit and the target
manifold of the model should simply reduce to C1. However, this statement
is not evident from analyzing the D-term constraint (6.2). The reason for
this is that X1 and X2 are not the true coordinates of the vacuum manifold,
but their ratio is. Indeed, integrating out V in (6.1) we get

L =

Z
d
4
✓ r log

�
|X1|

2 + |X2|
2
�
. (6.3)

Now we need to fix the gauge in order to keep only physical degrees of
freedom, doing this we obtain the Kähler potential for the CP1 model

K = r log(1 + |X|
2) , (6.4)

where X = X2/X1. Let us further do the rescaling X ! X/
p
r and take the

limit r ! +1. What we get is

K = |X|
2
, (6.5)

which corresponds to the flat metric on C. Note that one could have con-
sidered (6.4) and instead of doing the rescaling expand the Kähler potential
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where � and �̄ are infinetissimal transformation parameters. This expresses
the SU(2)/U(1) invariance of the CP1 action. Indeed, under these transfor-
mations

1 + ��̄ !
�
1 + ��̄

� �
1 + ��̄

� �
1 + �̄ �

�
(6.17)

implying Kähler transformations of log (1 + |�|2) under which the CP1 ac-
tion is invariant. Let us supplement (6.16) by the following holomorphic
transformations of the variables zj

zj !
zj

1 + �̄ �
, z̄j !

z̄j
1 + � �̄

. (6.18)

We immediately confirm that |⇣|
2 is invariant under the combined action

of (6.16) and (6.18). Here it is obvious that this is the only independent
invariant of this type. Thus the observed symmetry only allows polynomials
in |⇣|

2 in the Kähler potential.

Vacuum manifold of the HT model. Using the same notations for the
superfields as for the zn model we can formulate the HT model (2.10) as the
following GL�M (e ! 1):

LHT =

Z
d
4
✓
�
|Ni|

2eV + |Zj|
2e�V

� rV
�
. (6.19)

Using the same change of variables as in (6.11), after integrating out V in
(6.19) we obtain the Kähler potential for the HT model,

KHT =
p
r2 + 4r|⇣|2 � r log

⇣
r +

p
r2 + 4r|⇣|2

⌘
+ r log(1 + |�i|

2) . (6.20)

ForN = 2, eN = 1, the Kähler potential (6.20) describes the so-called Eguchi–
Hanson space and was discovered by Calabi [25]. For generic eN the target

manifold in question is the O(�1) eN tautological fiber bundle over CPN�1.
For a mathematical derivation of the Kähler potential (6.20) see [26].

From the HT model to the zn model. At first sight the zn and HT
models look quite di↵erent, as much as their Kähler potentials (6.12) and
(6.20). This is indeed the case, but there is a domain of the target space
where they reduce to the same model. As we have already mentioned, the
target manifold of the HT model is the total space of the eN -th power of the
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� �
1 + �̄ �

�
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implying Kähler transformations of log (1 + |�|2) under which the CP1 ac-
tion is invariant. Let us supplement (6.16) by the following holomorphic
transformations of the variables zj

zj !
zj

1 + �̄ �
, z̄j !

z̄j
1 + � �̄

. (6.18)

We immediately confirm that |⇣|
2 is invariant under the combined action

of (6.16) and (6.18). Here it is obvious that this is the only independent
invariant of this type. Thus the observed symmetry only allows polynomials
in |⇣|
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Kahler potential

For HT model

Similarly to the CP1 case described above we need to get rid of the unphysical
degree of freedom which is present in the above expression. If we define 11

�i =
Ni

NN
, i = 1, . . . , N � 1 ,

zj = r
�1/2

NNZj , j = 1, . . . , eN , (6.11)

we get the following Kähler potential for the zn model:

Kzn = r|⇣|
2 + r log(1 + |�i|

2) , (6.12)

where
|⇣|

2
⌘ |zj|

2(1 + |�i|
2) . (6.13)

Note that ⇣ is not a holomorphic variable in any sense. We use the notation
(6.13) as a shorthand. |⇣|

2 is the only combination involving zj’s which is
invariant under the global symmetries (2.9) of the model. Needless to say, so
is any power of |⇣|2.

The Kähler potential (6.12) describes geometry of the vacuum manifold
of the zn model in terms of (N + eN � 1) unconstrained complex variables.
The global SU(N) is realized nonlinearly much in the same way as in the
CPN�1 model while the SU( eN) symmetry is realized linearly on the zj fields.

For eN = 1, the Kähler potential (6.12) reduces to that describing the blow-
up of the CN space at the origin [24]. In this case we can observe that the
SU(N) symmetry becomes manifest and is realized as the isometry of the
target space after the following redefinition:

|⇣|
2 = |⌅i|

2
, ⌅1 = z1 , ⌅i = z1�i , i = 2, . . . , N . (6.14)

In this case the Kähler potential takes the form

Kzn = r|⌅i|
2 + r log |⌅i|

2
. (6.15)

It is instructive to reiterate to make explicit all isometries of (6.12). For
simplicity we put N = 1, so that the second part of the action in (6.12) is, in
fact, that of CP1. As is well known, CP1 is invariant under nonhomogenious
nonlinear transformations

� ! �+ � + �̄ �2
, �̄ ! �̄+ �̄ + � �̄2

, (6.16)

11Assuming NN 6= 0.
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Let’s see what is the metric on the vortex sigma model

Limit             defines vacuum manifold
CPN�1

O(�1)Ñ

e ! 1

�!



ZN model vs HT model

IR physics of ZN and HT models is the same
BPS spectra are the same, but otherwise different
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⇣ ! 0

One can see from (6.21) that in the leading order the HT and zn models
have the same Kähler potential,

KHT = Kzn +O(|⇣|2) . (6.25)

This observation suggests that at one loop, in the leading order in |⇣|
2 the

two models have the same one-loop � functions. Nevertheless, beyond one
loop one expects the theories to have di↵erent � functions. Moreover, even
at one loop for large values of |⇣|2 the two models get di↵erent corrections.
We will give explicit expressions later on in this section.

6.2 Perturbation theory

For any Kähler nonlinear sigma model with the Kähler metric gi|̄ and cou-
pling constant g the Gel-Mann–Low functional (in what follows we shall call
it � function for short) reads [27]

�i|̄ = a
(1)
R

(1)

i|̄ +
1

2r
a
(2)
R

(2)

i|̄ + . . . , (6.26)

where a(k) are some constants (k = 1, 2, ...) and R
(k) are operators composed

from k-th power of the curvature tensors (see e.g. (6.27)). According to the
above series a contribution from the nth loop scales as r1�n. For the metric
of a general form the first several terms are known. The first two of them are

R
(1)

i|̄ = Ri|̄ ,

R
(2)

i|̄ = Rik̄lm̄R
k̄ lm̄
|̄ . (6.27)

In supersymmetric sigma models, however, most of the coe�cients a(k) from
(6.26) vanish. For example, in supersymmetric CPN�1 sigma model all terms
except the first one in (6.26) are zero [28]. The calculation was based on the
instanton counting [29] and the coe�cients of the � function were expressed
in terms of the number of the zero modes.

The common lore in perturbation theory of nonlinear sigma models sug-
gests that for generic Kähler manifolds the theory is nonrenormalizable, as
each order in the perturbation series (6.26) brings in a new operator, with a
di↵erent field dependence. For some particular symmetric target manifolds
e.g. for the Einstein manifolds, no new structures are produced. The renor-
malization is merely reduced to a single coupling constant renormalization.
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Gel-Mann-Low function

Kaehler metric

It is easy to see that the HT and zn model target spaces are not of this kind
and all terms in the series (6.26) have di↵erent field dependence. However,
let us have a closer look the one-loop perturbation theory and see how we
can deal with the above mentioned nonrenormalizability.

One-loop renormalization of the Kähler potential in the zn model.
For a Kähler manifold with the Kähler potential K(zi, z̄i) the metric is given
by

gi|̄ = @i@̄|̄K(zi, z̄i) , (6.28)

while all other components (such as gij = 0) vanish. The corresponding Ricci
tensor is therefore a total derivative and is given by

Ri|̄ = �@i@̄|̄ log det(gi|̄) . (6.29)

For Einstein manifolds Ricci tensor is proportional to the metric, therefore

� log det(gi|̄) = ↵K(zi, z̄i) (6.30)

up to a Kähler transformation. For instance, for the CPN�1 model the coe�-
cient ↵ in the above formula is equal to N . As we emphasized previously, for
the CPN�1 model this result is exact: higher loops do not give any corrections
to the � function.

Let us now examine the curvature tensors for the zn model. It turns out
that the calculation of the determinant of the metric tensor can be performed
exactly for any N and eN ; the answer is more intricate in the HT model. After
some calculations we get13

� log det(g(zn)i|̄ ) = (N � eN) log(1 + |�i|
2)� (N � 1) log(1 + |⇣|

2) . (6.31)

Let us at this point derive the same quantity for the HT model in order to
show how its one-loop result deviates from the one for the zn model. For
the HT model a generic formula is harder to get, we therefore focus on an
example for, say, N = 2, eN = 1. One gets

� log det(g(HT)

i|̄ ) = log(1 + |�i|
2)� log

 
1 +

rp
r2 + 4r|⇣|2

!
. (6.32)

13This result holds up to an additive constant which depends on r. Since the Ricci
tensor is a total derivative we can allow such a freedom. Certainly we can also change this
expression by a Kähler transformation.

32

It is easy to see that the HT and zn model target spaces are not of this kind
and all terms in the series (6.26) have di↵erent field dependence. However,
let us have a closer look the one-loop perturbation theory and see how we
can deal with the above mentioned nonrenormalizability.

One-loop renormalization of the Kähler potential in the zn model.
For a Kähler manifold with the Kähler potential K(zi, z̄i) the metric is given
by

gi|̄ = @i@̄|̄K(zi, z̄i) , (6.28)

while all other components (such as gij = 0) vanish. The corresponding Ricci
tensor is therefore a total derivative and is given by

Ri|̄ = �@i@̄|̄ log det(gi|̄) . (6.29)

For Einstein manifolds Ricci tensor is proportional to the metric, therefore

� log det(gi|̄) = ↵K(zi, z̄i) (6.30)

up to a Kähler transformation. For instance, for the CPN�1 model the coe�-
cient ↵ in the above formula is equal to N . As we emphasized previously, for
the CPN�1 model this result is exact: higher loops do not give any corrections
to the � function.

Let us now examine the curvature tensors for the zn model. It turns out
that the calculation of the determinant of the metric tensor can be performed
exactly for any N and eN ; the answer is more intricate in the HT model. After
some calculations we get13

� log det(g(zn)i|̄ ) = (N � eN) log(1 + |�i|
2)� (N � 1) log(1 + |⇣|

2) . (6.31)

Let us at this point derive the same quantity for the HT model in order to
show how its one-loop result deviates from the one for the zn model. For
the HT model a generic formula is harder to get, we therefore focus on an
example for, say, N = 2, eN = 1. One gets

� log det(g(HT)

i|̄ ) = log(1 + |�i|
2)� log

 
1 +

rp
r2 + 4r|⇣|2

!
. (6.32)

13This result holds up to an additive constant which depends on r. Since the Ricci
tensor is a total derivative we can allow such a freedom. Certainly we can also change this
expression by a Kähler transformation.

32

Ricci tensor
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for Hanany-Tong model N=2, Nf=3

Subtlety #2: Perturbation theory



FI term renormalization (GLSM)

Based on the arguments given in [30, 31] the HT model in this case should
flow to the space with metric (6.35). Studying the fixed points of the RG
flow in NL�Ms is an interesting question, but it is beyond the scope of the
present paper. Hence we return to the one-loop renormalization of the zn

model.

Renormalization of the FI parameter. The first part of the renormal-
ization procedure is similar to the CPN�1 model. Indeed, we can extract
from the first term the coupling constant renormalization

rren(µ) = r0 �
N � eN
2⇡

log
M

µ
. (6.37)

The so-called dimensional transmutation occurs at the scale ⇤, when the
theory becomes strongly coupled, (rren(⇤) = 0),

r0 =
N � eN
2⇡

log
M

⇤
. (6.38)

Note that this does not happen for N = eN , the FI parameter remains un-
changed and the theory has an IR conformal fixed point.

It was shown in [26] that the first Chern class of the eN -th power of the
tautological fiber bundle over CPN�1, or in our notation the target space of
the HT model, restricted to the base is given by

c1(MHT)
���
CPN�1

= (N � eN) [!CPN�1 ] , (6.39)

where [!CPN�1 ] denotes the Kähler class of CPN�1. In the above calculations
this fact is reflected by (6.37). Since in the N = (2, 2) supersymmetric
theories the Kähler class is only renormalized at one loop [32, 30], (6.37)
represents the exact answer for the FI term renormalization. Unfortunately
one cannot say much about the exact part of the Kähler form. Generally
speaking, it is known to be modified at every order in perturbation theory
and its structure is unpredictable unless we carry out an explicit calculation.
We will place some argument in the next paragraph about renormalization
of such terms at small |⇣|2.

At this point we can make a connection with the GL�M one-loop com-
putation (3.11). We have mentioned earlier that in the GL�M formulation
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Based on the arguments given in [30, 31] the HT model in this case should
flow to the space with metric (6.35). Studying the fixed points of the RG
flow in NL�Ms is an interesting question, but it is beyond the scope of the
present paper. Hence we return to the one-loop renormalization of the zn

model.

Renormalization of the FI parameter. The first part of the renormal-
ization procedure is similar to the CPN�1 model. Indeed, we can extract
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M

µ
. (6.37)

The so-called dimensional transmutation occurs at the scale ⇤, when the
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N � eN
2⇡

log
M

⇤
. (6.38)

Note that this does not happen for N = eN , the FI parameter remains un-
changed and the theory has an IR conformal fixed point.

It was shown in [26] that the first Chern class of the eN -th power of the
tautological fiber bundle over CPN�1, or in our notation the target space of
the HT model, restricted to the base is given by
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= (N � eN) [!CPN�1 ] , (6.39)
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Kaehler class is renormalized only at one loop, hence the 
result above should be the full answer for the coupling 
renormalization

If so what does the extra term in the last formula on 
the previous slide mean? 

To understand why we need to compare 
renormalization schemes used in both calculations



GLSM vs NLSM

at finite value of the gauge coupling e there are only two divergent one-loop
graphs which are regularized by the UV cuto↵ – the tadpoles emerging from
the D-term constraint. The FI renormalization (3.11) was obtained after cal-
culating these tadpoles. Equation (6.37) confirms this by the corresponding
NL�M calculation performed above. One may now ask if we can trace the
origin of the remaining terms in the one-loop � function, like the last term
in (6.31)?

The answer is quite tricky, we will sketch a part of it here. One needs
to look more carefully at the perturbation theory at finite e. There will be
one-loop (and also higher loop) graphs which will have log(µ/e), where µ is
the IR cuto↵ (it appears from propagation of light fields in the loops). After
we make a transition from the GL�M to the NL�M by increasing e, we will
hit the UV cuto↵ on the way e ⇠ M . In NL�M we identify M = e.

This argument shows us how additional structures, which were not present
in the genuine UV domain of the GL�M (i.e. the domain above e) appear in
the geometrical renormalization. From the standpoint of the finite-e GL�M

they are of the infrared origin.
Below we will analyze the renormalization of the linear term in |⇣|

2 in
(6.33).

Renormalization of the non-Einstein part. Equation (6.31) gives the
exact one-loop answer for the � function of the zn sigma model (after ap-
plying @i@̄|̄ to it). Nevertheless it is instructive to understand how the linear
term in |⇣|

2 (and higher order terms as well) appear in perturbation theory
in geometric formulation. At small |⇣|2 one can expand the logarithm in the
last term in Eq. (6.31) to get

� log det(gi|̄) = (N � eN) log(1 + |�i|
2)� (N � 1)|⇣|2 +O(|⇣|4) . (6.40)

Using (6.33) and the coupling renormalization (6.37) we obtain for the |⇣|
2

term

K
(1)

zn � |⇣|
2

✓
1 +

1

r

N � 1

2⇡
log

M

µ

◆
= Z|⇣|

2
. (6.41)

Therefore we can absorb this Z factor by redefining |⇣|
2
! |⇣|

2
/Z. The con-

tribution (6.41) arises in the following calculation. Since the general structure
of the e↵ective action is already known, we can perform a calculation at any
point in the target space. It is convenient to choose the background field
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V-massive vector field w/ propagator
1

p2

e2 �M2

1

�M2

p ⌧ e

Z
d2x

Z
d4✓

✓
|�|2eV � rV +

1

e2
|⌃|2

◆

Integrating out V

Dimensional regularization (GLSM perturbation theory) mixes up UV 
and IR divergencies. Need to single out the UV piece out, IR 
contribution is not seen in the GLSM limit



AGT in NS limit



Omega background

SO(4) ! SO(2)⇥ SO(2)

2 Setup

sec:Setup
We are intended to follow the notations of Shifman and Yung in Euclidean signature. We
benefit from this while studying static configurations, where in the gauge A0 = 0 the La-
grangian is nothing but the energy density.

Omega deformation. Torus action on R4 is given by two matrices ⌦m
an , a = 5, 6 which act

by rotations in 12 and 34 planes respectively. In the NS limit matrix ⌦6 vanishes, therefore
we shall denote ⌦ = ⌦5. Metric on the deformed torus reads

GABdx
AdxB = Adzdz̄ + (dxm + ⌦mdz + ⌦̄mdz̄)2 , (2.1) eq:MetricTorusOmega

where z = x5 + ix6, z̄ = x5 � ix6 and the vector field ⌦m = ⌦m
n x

n. In the notations of [
Ito:2011wv
6]

⌦m = (�i✏x2, i✏x1, 0, 0). The components of the metric in the limit A ! 0 read

Gmn = �mn , Gam = ⌦am , Gab = �ab + ⌦m
a ⌦bm . (2.2)

In order to study deformations of the action is convenient to use dual frame description
GAB = e(c)A e(c)B . The components of sixbeins read

e(m)
n = �mn , e(m)

a = ⌦m
a , e(a)m = 0 , e(a)b = �ab . (2.3) eq:vielbeins

Supersymmetry algebra. Supersymmetry algebra for N = 2 theory has the following
form

{QI
↵, Q̄J ↵̇} = 2P↵↵̇�

I
J + 2Z↵↵̇�

I
J ,

{QI
↵, Q

J
�} = ✏↵�✏

IJZmon + (Zd.w.)
IJ
↵� . (2.4)

There are three types on central charges: string, monopole and domain wall types.
The full global symmetry of the theory is SU(2)L ⇥ SU(2)R ⇥ SU(2)R ⇥ SU(2)c. It is

broken by the Omega background in the NS limit to SU(2)R+R ⇥ SU(2)c. Twisted super-
charges

Q = �↵I Q
I
↵ , Qm = (�̄m)

I↵QI↵ , Qmn = (�mn)
↵
IQ

I
↵ . (2.5)

The former operator above is also known as BRST operator. Omega deformation in the NS
limit breaks Lorentz invariance in four dimensions leaving only four supercharges which form
(2, 2) theory. The (2,2) SUSY algebra is generated by Q1, Q2, Q̄13, Q̄14 [

Ito:2011wv
6] and reads work

out Donaldson-Witten twist

{Qm, Q̄} = 2Pm + 2Zm . . . (2.6)

Since
⇣I↵ = 1

2(�
m)I↵⇣m , ⇣̄I,↵̇ = 1

2✏I↵̇⇣̄ +
1
2(�mn)I↵̇⇣̄

mn , (2.7)

we have ⇣3 = ⇣4 = ⇣̄12 = ⇣̄34 = 0. recheck! which part of SUSY algebra is actually conserved
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We will be interested in Nekrasov-Shatashvili limit

✏2 ! 0

[Nekrasov et al]



The AGT duality

Liouville theory on 2-sphere 
with 4 punctures at 1, 1, q, 0

4d U(2) SQCD w/ 4 flavors
with masses m1,m2,m3,m4

(
eq:KZeq
5.10) for the dual WZNW model cite with level k and b

2 = �(k + 2)�1. The classical limit
corresponds to taking k ! �2

�
1

k + 2

d (zi)

dzi
= HGaud (zi) , i = 1, . . . , L , (6.5) eq:KZClassical

Here  (zi) is a conformal block of a classical Liouville theory on S
2 as a function of the

punctures’ coordinates, and HGaud is the Hamiltonian of the rational Gaudin model. One
can also probe Liouville conformal blocks with surface operator insertions [

Alday:2009fs
49], those also

satisfy Gaudin eigenvalue problem. Some details about the Gaudin model are given in
App.

sec:GaudLiouville
A. The rescaled conformal dimensions of chiral operators therefore become

�i = �
�i

b2
, (6.6) eq:rescaleddims

as b ! 1 . For S2 with four punctures at 1, 1, q and 0 respectively from (
eq:ChiralPrimConfDim
6.2,

eq:alphas
6.3) and (

eq:rescaleddims
6.13)

we obtain

�1 = �

✓
eµ0

b
�

1

2

◆✓
eµ0

b
+

1

2

◆
,

�2 = �

⇣
µ0

b
� 1

⌘
µ0

b
,

�3 = �

⇣
µ1

b
� 1

⌘
µ1

b
,

�4 = �

✓
eµ1

b
�

1

2

◆✓
eµ1

b
+

1

2

◆
, (6.7)

as b ! 1. Our next step is to allow the mass parameters µa and eµa scale with b upon
identification with the 4d theory.

6.2 N = 2 SQCD in the NS Omega background

On the gauge theory side we compute the Nekrasov partition function for the 4d N = 2
SQCD with mass parameters µ0, eµ0, µ1, eµ1 whose instanton part

Zinst(a, µ0, eµ0, µ1, eµ1) = (1 � q)2µ0(Q�µ1)F
µ0 µ1

↵0 ↵ ↵1
(q) , (6.8) eq:PartFuncLiouv

where ↵ = 1
2Q� a and a is the SU(2) Coulomb modulus. For a generic Omega background,

according to the AGT dictionary, b = 1/✏2, so the NS limit ✏2 ! 0 corresponds to the
classical limit in the Liouville theory and b = ✏1 = ✏ ! 1.

As we have already discussed above, in the NS limit a more appropriate object to study
is not the Nekrasov partition function but the e↵ective twisted superpotential (

eq:EffTwistedExactSuperpot
1.1). As it

was shown in [
Dorey:2011pa
10] that this superpotential also emerges from the (2, 2) GLSM which we have

described in Sec.
sec:SQCD
3.

The DHL paper has done a perturbative calculation in the instanton number q in order to
establish their 4d/2d duality (

DHLduality
3.5) and the proof to all orders was further established in [

Chen:2011sj
19].

DHLC showed that in the NS limit the Nekrasov partition function can be represented as an
integral over a finite set of variables and can be evaluated, and the saddle point condition is

32

the XXX chain on the classical level was studied in [
Mironov:2012uh
47]. The quantum analogue, together

with its brane interpretation, was discussed above in Sec.
sec:bispec
5.2. Now we shall start with the

left column of Fig.
fig:roadmap
6 by reminding ourselves how the Gaudin model is related to Liouville

conformal blocks, and further on, by means of the bispectral duality, we shall connect the
story to the Heisenberg SL(2) chain and to the 4d gauge theory.

6.1 Liouville theory and rational Gaudin model

Recall that the Liouville theory has central charge

c = 1 + 6Q2
, Q = b+

1

b
, (6.1)

and in the classical limit b ! 1 so Q ! 1 as well. Let us now consider a conformal
block F

µ0 µ1
↵0 ↵ ↵1

(q) of the Virasoro algebra with central charge c ! 1 for the four primary
operators of dimensions

�1 = ↵0(Q � ↵0) , �2 = µ0(Q � µ0) , �3 = µ1(Q � µ1) , �4 = ↵1(Q � ↵1) , (6.2) eq:ChiralPrimConfDim

inserted at points 1, 1, q, 0 respectively on the S
2 with an intermediate s-channel state of

dimension � = ↵(Q � ↵). In the above formula

↵0 =
1
2Q+ eµ0 , ↵ = 1

2Q+ a , ↵1 =
1
2Q+ eµ1 , (6.3) eq:alphas

where a is the SU(2) Coulomb branch coordinate. In the above formulae the mass parameters
represent the following linear combinations of the SQCD quark masses m1,2,3,4

µ0 =
1
2(m1 +m2), eµ0 =

1
2(m1 � m2), µ1 =

1
2(m3 +m4), eµ1 =

1
2(m3 � m4) . (6.4)

There is an obvious notational conflict with [
Alday:2009aq
11], where µ’s and m’s are interchanged com-

pared to our paper. We had to switch the notations in order to be consistent with Sec.
sec:SQCD
3,

were m’s are used for the quark masses. As far as the rest of the notations are concerned,
they will be in agreement with [

Alday:2009aq
11]. Note that in Sec.

sec:SQCD
3 we treated all the four flavors as

fundamental hypermultiplets, however, in [
Alday:2009aq
11] as well as in [

Dorey:2011pa
10] two of them, with masses m3

and m4 are considered to be fundamental and two others, with masses m1 and m2 to be anti
fundamental. For the purposes of Sec.

sec:SQCD
3 this turned out to be a mild di↵erence and we were

able to identify the 4d and 2d theories by studying the vortex e↵ective theory. Also from the
GLSM perspective it was natural to distinct fundamental and antifundamental fields. In this
section we have to be more careful about this issue as contributions from the fundamental
and antifundamental multiplets to the Nekrasov partition at finite ✏ are di↵erent.

Note that all conformal dimensions (
eq:ChiralPrimConfDim
6.2) diverge at least linearly with b, however, as

we shall later see, in order to match the Liouville CFT with the four dimensional theory
in this limit, the dimensions will diverge quadratically and proper regularization is needed.
Teschner in [

Teschner:2010je
48] have identified e↵ective twisted superpotential (

eq:EffTwistedExactSuperpot
1.1)8 with the NS limit of a

Liouville conformal block on the sphere as well as the proper regularization of the conformal
dimensions. The Liouville conformal block on the sphere was found to satisfy the KZ equation

8According to the NS dictionary this is also a Yang-Yang function
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conformal dimensions of chiral operators
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and antifundamental multiplets to the Nekrasov partition at finite ✏ are di↵erent.

Note that all conformal dimensions (
eq:ChiralPrimConfDim
6.2) diverge at least linearly with b, however, as

we shall later see, in order to match the Liouville CFT with the four dimensional theory
in this limit, the dimensions will diverge quadratically and proper regularization is needed.
Teschner in [

Teschner:2010je
48] have identified e↵ective twisted superpotential (

eq:EffTwistedExactSuperpot
1.1)8 with the NS limit of a

Liouville conformal block on the sphere as well as the proper regularization of the conformal
dimensions. The Liouville conformal block on the sphere was found to satisfy the KZ equation

8According to the NS dictionary this is also a Yang-Yang function
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But the proof already exists! [Mironov, Morozov]
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Proving AGT relations in the large-c limit

A.Mironov∗ and A.Morozov†

FIAN/TD-24/09
ITEP/TH-44/09

Abstract

In the limit of large central charge c the 4-point Virasoro conformal block becomes a hypergeometric
function. It is represented by a sum of chiral Nekrasov functions, which can also be explicitly evaluated. In
this way the known proof of the AGT relation is extended from special to generic set of external states, but

in the special limit of c = ∞.

1 Introduction

The AGT relations [1]-[15] express conformal blocks [16, 17, 18] of 2d chiral algebras through the Nekrasov
functions [19]-[27]. In the case of the Virasoro block with 4 primaries, the both sides of the relation depend on
6 free parameters: five dimensions, four ”external” and one ”internal” which we parameterize as

∆i =
αi(ϵ − αi)

ϵ2ϵ2
, i = 0, . . . , 4, (1)

and the central charge, parameterized as c = 1 + 6ϵ2

ϵ1ϵ2
, ϵ = ϵ1 + ϵ2. The relation states that

∑

|Y |=|Y ′|

x|Y |γ∆∆1∆2
(Y )Q−1

∆ (Y, Y ′)γ∆∆3∆4
(Y ′) = (1 − x)−ν

∑

Y,Y ′

x|Y |+|Y ′|Z∆;∆2∆2;∆3∆4
(Y, Y ′) (2)

For notations and other details see [4]. The sum goes over pairs of Young diagrams, but in two different
ways: it is diagonal in the number of boxes, |Y | = |Y ′| at the l.h.s., while the summation variables are totally
free (unconstrained) at the r.h.s. These two expansions are related to boson and fermion representations of
more general τ -functions [28], what deserves a more detailed study and discussion. In fact, there are plenty of
different questions about the AGT relations, which connect the transcendental and often controversial field of
Seiberg-Witten theory [29] and integration over singular instanton moduli spaces with the basic group theory
and complex analysis, unified into a difficult but well defined subject of 2d conformal field theory.

In [5, 13, 14] the two limiting cases of (2) were considered: one of large external dimensions, which on
the Nekrasov-SW side corresponds to the case of non-conformal (asymptotically free) SYM models, and the
other one of large internal dimension ∆0, where the nice Zamolodchikov asymptotic formula [30] allows one to
effectively deal with the old controversial case [31] of the instanton calculus in 4d conformal invariant model with
Nf = 2Nc (one can confirm that instanton corrections exist and even odd numbers of instantons contribute,
moreover, the end-point of RG flow is described by an elegant modular relation, at least, for Nc = 2).

This letter is devoted to one more limit, c → ∞. In this limit, either ϵ1 → 0 or ϵ2 → 0. Then only the
chiral Nekrasov functions, i.e.those with (Y, Y ′) = ([1n], ∅) or (∅, [1n]) contribute to the r.h.s. of (2), while the
l.h.s. becomes a hypergeometric series. In other words, the limit reproduces the situation studied in [7] and [8],
where the AGT relations were proved (this is the only case where a complete explicit proof already exists) for
the Fateev-Litvinov conformal blocks [32]. The difference is that there restricting the hypergeometricity and
chirality came from a special selection of external states, while here it is enough to take, say, ϵ1 → 0 without
constraining external states.

2 Hypergeometric conformal block

The fact that

B∆;∆1∆2∆3∆4
(x)

c→∞
−→ 2F1

(

∆ + ∆1 − ∆2, ∆ + ∆3 − ∆4; 2∆; x
)

=

=
∞
∑

n=0

xn

n!

n−1
∏

k=0

(∆ + ∆1 − ∆2 + k)(∆ + ∆3 − ∆4 + k)

2∆ + k
(3)

∗Lebedev Physics Institute and ITEP, Moscow, Russia; mironov@itep.ru; mironov@lpi.ru
†ITEP, Moscow, Russia; morozov@itep.ru
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at large c conformal block becomes a hypergeometric function
[Zamolodchikov]
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Only chiral Nekrasov functions contribute

One can identify each term of the expansion in the instanton number 
with the Taylor series in x for 2F1

Similar to Fateev-Litvinov 
conformal blocks

Both proofs are rather formal and deal with each term in the 
series. Need more physical understanding...
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4d/2d in Omega background [Dorey 
Hollowood Lee]

N=2 SQCD in Omega background 
in NS limit with Nf=2Nc

Theory I and Theory II respectively). The duality applies to the large class of four dimen-

sional theories with N = 2 supersymmetry which can be realised by the standard quiver

construction as in [1]. As our main example we have,

Theory I: Four-dimensional N = 2 SQCD with gauge group SU(L), L hypermultiplets

in the fundamental representation with masses m⃗F = (m1, . . . , mL) and L hypermultiplets in

the anti-fundamental with masses m⃗AF = (m̃1, . . . , m̃L). The theory is conformally invariant

in the UV with marginal coupling τ = 4πi/g2 + ϑ/2π.

For some purposes it will also be useful to consider the corresponding U(L) gauge theory.

We consider Theory I in the presence of a particular #1 Nekrasov deformation with param-

eter ϵ which preserves N = (2, 2) supersymmetry in an R1,1 subspace of four-dimensional

spacetime. The resulting effective theory in two dimensions is characterised by a (twisted)

superpotential, W(I) with holomorphic dependence on (twisted) chiral superfields. The su-

perpotential W(I) receives an infinite series of corrections from perturbation theory and

instantons which encode the four-dimensional origin of the theory. It has an L-dimensional

lattice of stationary points corresponding to supersymmetric vacua of the deformed theory.

These are determined by the F-term equation,

a⃗ = m⃗F − n⃗ϵ n⃗ = (n1, . . . , nL) ∈ Z
L

where a⃗ = (a1, . . . , aL) are the usual special Kähler coordinates on the Coulomb branch of

the four-dimensional theory. A generic point on the Coulomb branch of the undeformed

theory can be recovered in an appropriate ϵ → 0, |n⃗| → ∞ limit.

We will propose an exact duality of Theory I to a surprisingly simple model defined in

two-dimensions which holds for all positive values of the integers {nl} introduced above;

Theory II: Two-dimensional N = (2, 2) supersymmetric Yang-Mills theory with gauge

group U(N) with L chiral multiplets in the fundamental representation with twisted masses

M⃗F = (M1, . . . ,ML) and L chiral multiplets in the anti-fundamental with twisted masses

#1As we explain in Section 2.2 below there are a family of inequivalent deformations related to each other

by the low-energy electromagnetic duality group of the four-dimensional theory.

2

(2,2) GLSM w/ gauge group U(K)
massive adjoint and twisted masses

K =
NX

i=1

ni �N

M⃗AF = (M̃1, . . . , M̃L). In addition the theory has a single chiral multiplet in the adjoint

representation with mass ϵ. The FI parameter r and 2d vacuum angle θ combine to form a

complex marginal coupling τ̂ = ir + θ/2π.

Theory II has a twisted effective superpotential W(II) which is one-loop exact [2]. In both

Theory I and Theory II, the superpotential determines the chiral ring of supersymmetric

vacuum states.

Claim: The chiral rings of Theory I and Theory II are isomorphic. In particular, there

is a 1-1 correspondence between the supersymmetric vacua of the two theories and, with an

appropriate identification of complex parameters, the values of the twisted superpotentials

coincide in corresponding vacua (up to a vacuum-independent additive constant),

W(I)

on−shell

≡ W(II)

The rank N of the 2d gauge group is identified in terms of the 4d parameters according to

N + L =
∑L

l=1 nl. Thus, when |ϵ| is small, low values of N correspond to points near the

Higgs branch root of the 4d theory. The deformation parameter ϵ of Theory I is identified

with adjoint mass of Theory II. The explicit map between the remaining parameters takes

the form,

τ̂ = τ +
1

2
(N + 1) , M⃗F = m⃗F − 3

2
ϵ⃗ , M⃗AF = m⃗AF +

1

2
ϵ⃗ . (1.1)

where ϵ⃗ = (ϵ, ϵ, . . . , ϵ). Further details of the map between the chiral rings of the two theories

is given in Subection 2.5 below.

The initial motivation for this duality comes from the mysterious connection between

supersymmetric gauge theories and quantum integrable systems developed in a remarkable

series of papers by Nekrasov and Shatashvili (NS) [3, 4]. These authors propose a general

correspondence in which the space of supersymmetric vacua of a theory with N = (2, 2)

supersymmetry is identified with the Hilbert space of a quantum integrable system. The

generators of the chiral ring are mapped to the commuting conserved charges of the integrable

system. The twisted superpotential itself corresponds to the so-called Yang-Yang potential

which is naturally thought of as a generating function for the conserved charges. The ideas
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Figure 4.2: (a) Theory II: n̂ D2 branes suspended between a D4 and an NS5. (b) Theory I:

D4 brane breaks on NS5.

The duality proposed in this paper relates the world-volume theory on a surface operator

probing the Higgs branch of a four dimensional gauge theory with a corresponding bulk

theory (ie the same four dimensional gauge theory without surface operator on its Coulomb

branch). As such it is reminiscent of the AdS/CFT correspondence and other large-N

dualities. This observation can be made precise in the context of geometric engineering

where the Nekrasov partition function of four-dimensional theory is computed by the closed

topological string on a suitable local geometry. More precisely we should consider the closed

string partition function computed using the refined topological vertex of [45]. On the

other hand, the partition function for gauge theory in the presence of a surface operator

corresponds to an open topological string partition function [46, 47]. The proposed duality

therefore asserts the equality of certain open and closed topological string partition functions

and it is natural to ask if it is related to the geometric transition of Gopakumar and Vafa

[31]. Strictly speaking the latter is defined only in the unrefined case corresponding to

ϵ1 = −ϵ2 = gs while our duality proposal applies only to the NS limit ϵ2 → 0. Nevertheless

there are strong similarities which suggest that a “refined” geometric transition should exist

and should be equivalent in the NS limit to the duality proposed in this paper (see also [28]).
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XXX vs Gaudin

Ground state equations

GLSM description. As usual, a GLSM description of the theory is more e↵ective for
computations. The 2d theory which is dual to the 4d SQCD in the NS Omega background
with Nf = N + eN quarks is given by the following Lagrangian provided that (

eq:DHLHiggs
3.1)-(

eq:couplingmatch
3.4) hold

L = Tr

Z
d
4
✓

2

4 1

2e2
|⌃|

2 + �̄ e
V
2 � e

�V
2 +

NX

i=1

X̄ie
V
X

i +

eNX

i=1

Ȳie
�V

Y
i

3

5

+ Tr

Z
d
2
✓̃ ⌧⌃+H.c. , (3.35)

where the trace is taken over the adjoint representation of U(K) gauge group, � is adjoint
chiral multiplet, and ⌃ is field strength for 2d vector superfield V . The second line in the
above Lagrangian represents the twisted F-terms of the theory. There are N + eN +1 twisted
mass parameters turned on including N + eN masses for X and Y fields together with the
twisted mass for the adjoint scalar �, which according to [

Dorey:2011pa,Chen:2011sj
10, 19] is equal to ✏. In the limit

e ! 1 the gauge field becomes non dynamical, and we can integrate it out. In this limit
we can recover the geometry of the NLSM’s target space, which naturally appears in the
derivation of the low energy theory.

In order to get the e↵ective twisted superpotential in the right hand side of (
DHLduality
3.5) we need

to integrate out X’s, Y ’s and �’s in (
eq:HTGLSMAdj
3.35). When Nf = 2Nc the theory is superconformal,

the coupling does not run and no dynamical scale is generated.

fW 2d
e↵ (�) = ✏

KX

a=1

NX

i=1

f

✓
�a � Mi

✏

◆
� ✏

KX

a=1

NX

i=1

f

 
�a � fMi

✏

!

+ ✏

KX

a,b=1

f

✓
�a � �b � ✏

✏

◆
+ 2⇡i⌧̂

KX

a=1

�a , (3.36)

where f(x) = x(log x�1). Note the change of the coupling constant to ⌧̂ compared to (
eq:HTGLSMAdj
3.35).

Minimizing the above superpotential we arrive to the ground state equations

NY

l=1

�j � Ml

�j � fMl

= e
2⇡i⌧̂

KY

k 6=j

�j � �k � ✏

�j � �k + ✏
, (3.37)

which coincide with Bethe ansatz equations for the twisted anisotropic Heizenberg SL(2,R)
magnet. This observation quantifies the so-called Bethe/gauge correspondence for the N = 2
SQCD.

Theories with eN < N can be obtained from the conformal theory by sending some masses
to infinity and renormalizing the coupling constant. Dynamically generated scale ⇤QCD will
then appear.

This remark concludes our interpretation of the DHLC 4d/2d correspondence using vortex
flux tubes. There are certainly many more issues to be understood along these lines, we shall
address them in the conclusions.

19

Heisenberg SL(2) magnet
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Omega deformation beyond the NS limit.
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A Gaudin model from Liouville CFT
sec:GaudLiouville

Here we discuss the Gaudin model – the key tool in our AGT construction, its relations with
the XXX spin chain and how it appears in conformal field theories.

Gaudin model from XXX chain. The Gaudin model is the simplest example of the
Hitchin system on a sphere with marked points [

Nekrasov:1995nq
50]. It is also known to be a large impurity

limit of an anisotropic twisted XXX spin chain. This fact can be realized both in the transfer
matrix at the classical limit and in the Bethe ansatz equations in the quantum case. We
shall be interested in the quantum case and upon the proper limit Bethe ansatz equations
for the Gaudin model can be obtained. Let us start with Bethe equations for anisotropic
XXXS

2
spin chain10 with twist q = e

2⇡i⌧̂

NY

a=1

�i � ⌫a +
✏
2Sa

�i � ⌫a �
✏
2Sa

= q

KY

j=1
j 6=i

�i � �j � ✏

�i � �j + ✏
. (A.1)

By taking logarithms of both parts of the above equations, then rescaling

�i 7! x�i, ⌫a 7! x⌫a, ⌧̂ 7!
⌧̂

x
, (A.2)

and sending x ! 1 we arrive at the following set of equations

log q

✏
�

NX

a=1

Sa

�i � ⌫a
=

KX

j=1
j 6=i

2

�i � �j
, (A.3)

which are nothing but Bethe equations for the Gaudin model. The anisotropies ⌫a at each
site still play the role of the inhomogenities in the model, while the twist q in the XXX chain
play the role of the external field in the Gaudin system. As we can see the latter vanishes
as ✏ ! 1.

10We measure spectral parameters �i in units of i✏ here.
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Omega deformation beyond the NS limit.
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2Sa
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2Sa

= q
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j=1
j 6=i

�i � �j � ✏

�i � �j + ✏
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By taking logarithms of both parts of the above equations, then rescaling

�i 7! x�i, ⌫a 7! x⌫a, ⌧̂ 7!
⌧̂

x
, (A.2)

and sending x ! 1 we arrive at the following set of equations

log q

✏
�

NX

a=1

Sa

�i � ⌫a
=

KX

j=1
j 6=i

2

�i � �j
, (A.3)

which are nothing but Bethe equations for the Gaudin model. The anisotropies ⌫a at each
site still play the role of the inhomogenities in the model, while the twist q in the XXX chain
play the role of the external field in the Gaudin system. As we can see the latter vanishes
as ✏ ! 1.

10We measure spectral parameters �i in units of i✏ here.
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A Gaudin model from Liouville CFT
sec:GaudLiouville
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Bethe ansatz equations for the Gaudin model. Let us now recall how the Bethe
ansatz equations for the rational Gaudin model with the Lie algebra symmetry g are derived.
For our purposes we need merely g = sl(2) and and L points on the sphere. At each
point we fix a representation V (⌫1), . . . , V (⌫L) of sl(2) algebra with some dominant weights
⌫a, a = 1, . . . , L. According to the Bethe ansatz prescription [

refId0
34] we construct the following

operator

S(u) =
4X

a=1

Ha

u � za
+

4X

a=1

�(⌫a)

(u � za)2
, (A.4)

where Ha are Gaudin Hamiltonians at each site of the lattice

Ha =
X

b 6=a

dim(g)X

↵,�=1

J(b)
↵ J↵ (b)

za � zb
, (A.5)

where J(b)
↵ of the acts with J↵ 2 sl(2) on the b-th site of the spin chain and with identity

on the others. �(⌫a) are eigenvalue of the U(sl(2)) quadratic Casimir acting on V (⌫a). For
such a system Bethe ansatz equations for the sector with a Bethe roots read as follows

LX

b=1

⌫b✏

ti � zb
�

aX

j=1
j 6=i

2✏

ti � tj
= 0, i = 1, . . . ,a . (A.6) eq:RationalGaudGen

Gaudin in Liouville and WZNW theories.

B Supersymmetry Algebra and Central Charges
sec:Setup

N = 2 supersymmetry algebra in four dimensions has the following form

{Q
I
↵, Q̄J ↵̇} = 2P↵↵̇�

I
J + 2Z↵↵̇�

I
J ,

{Q
I
↵, Q

J
�} = ✏↵�✏

IJ
Zmon + (Zd.w.)

IJ
↵� . (B.1)

There are three types on central charges: string, monopole and domain wall types. The full
global symmetry of the theory is SU(2)L ⇥ SU(2)R ⇥ SU(2)R ⇥ SU(2)c. It is broken by the
Omega background in the NS limit to SU(2)R+R ⇥ SU(2)c. Twisted supercharges

Q̄ = �
↵̇
I Q̄

I
↵̇ , Qm = (�̄m)

I↵
QI↵ , Q̄mn = (�̄mn)

↵̇
I Q̄

I
↵̇ . (B.2)

The former operator above is also known as BRST operator. The transformations can be
inverted as

Q
I
↵ = 1

2(�
m)I↵Qm , Q̄↵̇J = 1

2✏↵̇JQ̄+ 1
2(�̄mn)↵̇JQ̄

mn
. (B.3) eq:InvertedDWtransf

Plugging these formulae into (
eq:N2SUSYalgebra
B.1) we get the twisted version of the supersymmetry algebra

check on the domain wall charge

{Q̄, Qm} = 8Pm + 8Zm , {Qm, Q̄nk} = 4(�mk�ln � �ml�kn � "mlnk)(P
l + Z

l) ,

{Qm, Qn} = 2�mn(Zmon � Zd.w.) , {Q̄, Q̄} = 4(Z̄mon � Z̄d.w.) ,

{Q̄, Q̄mn} = 0 , {Q̄mn, Q̄pq} = 2i(�mp�nq � �mq�np � ✏mnpq)(Z̄mon � Z̄d.w.) . (B.4)
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Bispectral duality [Mukhin
Tarasov

Varchenko]

anisotropic chain

e
ipixa =

�i � ⌫a � Sa✏

�i � ⌫a + Sa✏
, (5.2)

where ⌫a are anisotropies and Sa are spins, one identifies [
Nekrasov:2009ui
6]

Ma = ⌫a + Sa✏ ,
fMa = ⌫a � Sa✏ . (5.3)

✏-Strings. Recall that we have not discussed ✏-strings in the context of SQCD in Sec.
sec:SQCD
3.

Rather we used standard FI-strings to locate BPS vortices. However, one may wonder what
is the brane realization of ✏-strings in this construction. Besides, ✏-strings can be studied
even without flavor branes in pure SYM theory.

A construction of gauge theories in Omega background from string theory was given
in [

Hellerman:2011mv
33]. One may wonder if an ✏-strings can be explicitly realized in their context.
Hellerman et al construction and noncommutativity...

5.2 Gaudin/XXX duality
sec:bispec

It is known that the Gaudin model [
refId0
34] enjoys several dualities. First remind the duality

introduced at the classical level in [
springerlink:10.1007/BF00626526
35]. It relates the rational Gaudin model with SL(N)

group at M sites and SL(M) group at N sites. The positions of marked points zi on the
sphere corresponding to the inhomogenities and the diagonal element of the twist matrix
get interchanged. At the classical level the spectral curves and the action di↵erentials are
equivalent. At the quantum level the Bethe ansatz equations reflect this symmetry at the
level of spectra.

Let us explain this symmetry in the brane picture. Let us first remind ourselves the
similar symmetry in the Toda system discussed in [

Gorsky:1997jq
3]. It the Toda case this symmetry

merely implies the equivalence of 2 ⇥ 2 and N ⇥ N Lax operator representations which can
be explained as the 90 degrees rotation of the viewpoint of the brane picture. In the first
representation the gage group is connected to NS5 branes, while in the second case it is
defined by the number of D4 branes in the IIA picture.

If we add the fundamental matter and consider the conformal case there are additional
data which have to be matched via the duality. In the 2 ⇥ 2 representation the SL(2) twist
matrix emerges which reflects the positions of NS5 branes in the 6-10 plane Fig.

fig:bispec
5.2. The

masses of the fundamentals provide the inhomogenities at the corresponding lattice sites.
Upon the 90 degrees rotation similar to the Toda case the two sets of data get interchanged.

The duality between a pair of rational Gaudin models can be generalized to a similar
duality between a trigonometric Gaudin model and a XXX spin chain via the so-called
gl(M)/gl(N) duality [

MR2409414
39]. For M = N = 2 Bethe ansatz equations read as follows7

M1 � M2 � ✏

ti
+

2X

b=1

⌫b✏

ti � zb
�

2X

j=1
j 6=i

2✏

ti � tj
= 0, i = 1, . . . ,2 , (5.4) eq:TrigomGaud

7We have adopted the notation and made some change of variable compared to [
MR2409414
39].
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for trigonometric Gaudin, and

2Y

a=1

�i + Ma

�i + Ma + a✏
=

z2

z1

⌫2Y

j=1
j 6=i

�i � �j � ✏

�i � �j + ✏
, i = 1, . . . , ⌫2 , (5.5) eq:BAElargeEps

for the SL(2) XXX chain. The Mukhin-Tarasov-Varchenko (MTV) duality [
MR2409414
39] states that

(
eq:TrigomGaud
5.4) as set of equations with respect to t1, . . . t2 has isomorphic space of orbits of solutions
with the one of (

eq:BAElargeEps
5.5) as set w.r.t. �1, . . . ,�⌫2 provided that 1 + 2 = ⌫1 + ⌫2. Parameters

M1,2 and z1,2 are generic. To our purposes of the next section it is enough to consider ⌫1 = 0,
so for us

2 + 2 = ⌫2 . (5.6)

We can now recognize (
eq:2dXXXBAE
5.1) in (

eq:BAElargeEps
5.5) with

Ma = �Ma,
fMa = �Ma � a✏, K = ⌫2, N = 2, z1 = 1, z2 = q . (5.7)

Also it will be more useful for us to use the 4d masses instead of the 2d ones. By using the
first two relations above and (

eq:massescorr
3.3) we get

ma = ema + (a + 2)✏ , (5.8) eq:MMkapparel

and we can then rewrite set of MTV dual equations (
eq:TrigomGaud
5.4,

eq:BAElargeEps
5.5) as

�m1 +m2 � ✏

ti
+

K✏

ti � z2
=

2X

j=1
j 6=i

2✏

ti � tj
,

2Y

a=1

�i � ma +
3
2✏

�i � ma + (32 + a)✏
=

z2

z1

KY

j=1
j 6=i

�i � �j � ✏

�i � �j + ✏
. (5.9)

Thus we can see that twists z1, z2, corresponding to the positions of the NS5 branes in 6-
10 plane Fig.

fig:bispec
5.2, and masses of the fundamentals m1,m2 interchange their roles upon the

duality. We see that matching to the BAE corresponding to U(2), Nf = 4 SQCD shows
that the strange nonequal mass shifts to the fundamentals and antifundamentals (

eq:massescorr
3.3) has
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De Liouville à Gaudin

the clear interpretation within the duality in the form of (
eq:MMkapparel
5.8). Namely, the number of the

Gaudin Bethe roots yields the asymmetry between the fundamental and antifundamental
masses. Also Gaudin spins match with the number of Bethe roots at the XXX side. Later
in the next section we shall use these spins in order to make the AGT duality manifest.

Let us emphasize that the Hamiltonian of the Gaudin model is nothing but the r.h.s.
of the Knizhnik-Zamolodchikov (KZ) equation [

Knizhnik198483
37] on the sphere with L+ 3 marked points

zi [
Babujian_Flume_1993
38]

b
2d (zi)

dzi
= HGaud (zi) , i = 1, . . . , L , (5.10) eq:KZeq

where b is some constant. In the next section, when we will be discussing Liouville theory
on the same Riemann surface, we shall specify its value.

Sasha, please explain more on these....

One could also introduce [
MR2409414
36] the so called dynamical operators with respect to the

boundary conditions. Under the duality transformation the Gaudin KZ operator and the
dynamical operators get interchanged as well. The number of the marked points n the N⇥N

representation corresponds to the number of the NS5 branes that is relevant to the product
of group gauge group.

Exchange of the Bethe roots.......

5.3 Walls of marginal stably and bispectral duality
G-X

Gaudin-XXX correspondence. In the paper [
MR2409414
36] was established a certain correspon-

dence between the trigonometric Gaudin system and XXX system of some special form. The
Bethe ansatz equations for these systems are:

2l � 1

ti
+

m1

ti � z1
+

m2

ti � z2
�

n2X

j=1,j 6=i

2

ti � tj
= 0, i = 1, ..., n2, (5.11) BAE_Gaudin

for the Gaudin model and

sa � l � 1

sa � l � 1 � n1

sa + l � 1

sa + l � 1 � n2

m2Y

b=1,b 6=a

sa � sb � 1

sa � sb + 1

z1

z2
= 1, a = 1, ...,m2 (5.12) BAE_XXX

for the XXX model. The integer parameters na,ma satisfy the relation n1+n2 = m1+m2.
One of the results of the paper [

MR2409414
36] is the isomorphicity of the orbits of the solutions to the

Bethe system under the group of the permutations of variables (permutations of t1, ..., tn2 for
the Gaudin model and of sa, ..., sm2 for the XXX model). At first glance such correspondence
seems very weak. It does not establish direct connection between roots of both systems and
does not allow to simplify one system knowing the solution of the other. But it preserves
one important feature of the XXX model, namely the Argyres-Douglas points [

Argyres:1995jj
39].

The Argyres-Douglas manifold is the set in the moduli space of the theory where the
di↵erent vacua merge. From the point of view of the Bethe ansatz system it corresponds to
the appearance of multiple roots. We will consider a simple case n1 = m2 = 2, n2 = m1 = 1
(
BAE_example
5.13) as an example and find the AD manifolds for both models.
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1

k + 2
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dzi
= HGaud (zi) , i = 1, . . . , L , (6.5) eq:KZClassical

Here  (zi) is a conformal block of a classical Liouville theory on S
2 as a function of the

punctures’ coordinates, and HGaud is the Hamiltonian of the rational Gaudin model. One
can also probe Liouville conformal blocks with surface operator insertions [

Alday:2009fs
51], those also

satisfy Gaudin eigenvalue problem. Some details about the Gaudin model are given in
App.

sec:GaudLiouville
A. The rescaled conformal dimensions of chiral operators therefore become

�i = �
�i

b2
, (6.6) eq:rescaleddims

as b ! 1 . For S2 with four punctures at 1, 1, q and 0 respectively from (
eq:ChiralPrimConfDim
6.2,

eq:alphas
6.3) and (

eq:rescaleddims
6.13)

we obtain
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as b ! 1. Our next step is to allow the mass parameters µa and eµa scale with b upon
identification with the 4d theory.

6.2 N = 2 SQCD in the NS Omega background

On the gauge theory side we compute the Nekrasov partition function for the 4d N = 2
SQCD with mass parameters µ0, eµ0, µ1, eµ1 whose instanton part

Zinst(a, µ0, eµ0, µ1, eµ1) = (1 � q)2µ0(Q�µ1)F
µ0 µ1

↵0 ↵ ↵1
(q) , (6.8) eq:PartFuncLiouv

where ↵ = 1
2Q� a and a is the SU(2) Coulomb modulus. For a generic Omega background,

according to the AGT dictionary, b = 1/✏2, so the NS limit ✏2 ! 0 corresponds to the
classical limit in the Liouville theory and b = ✏1 = ✏ ! 1.

As we have already discussed above, in the NS limit a more appropriate object to study
is not the Nekrasov partition function but the e↵ective twisted superpotential (

eq:EffTwistedExactSuperpot
1.1). As it

was shown in [
Dorey:2011pa
10] that this superpotential also emerges from the (2, 2) GLSM which we have

described in Sec.
sec:SQCD
3.

The DHL paper has done a perturbative calculation in the instanton number q in order to
establish their 4d/2d duality (

DHLduality
3.5) and the proof to all orders was further established in [

Chen:2011sj
19].

DHLC showed that in the NS limit the Nekrasov partition function can be represented as an
integral over a finite set of variables and can be evaluated, and the saddle point condition is
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The Duality

rational Gaudin Bethe equations on S
2 with all four punctures included. Indeed,

4X

b=1

⌫b✏

ti � zb
�

2X

j=1
j 6=i

2✏

ti � tj
= 0 , (6.11) eq:sl2Gaudz4

where z0,1,2,3 = {1, 1, q, 0}, is equivalent to (
eq:TrigomGaud
5.4) with

✏⌫1 = 0, ✏⌫2 = K, ✏⌫3 = m3 � m4 � ✏ = 2eµ1 � ✏ , (6.12) eq:U1cond

is the spin of the representation sitting at z3 = 0. Specification of ⌫1 is not important as the
corresponding contribution drops out from the equation since z0 = 1.

So far we have only covered the case a = 2 in (
eq:TrigomGaud
5.4), in other words only two-excitation

sector of the Gaudin model’s Hilbert space. One may wonder what do other sectors with
a > 2 correspond to under the bispectral duality which we considered earlier. In order
to understand this we need to recall the Higgs brach condition (

eq:CoulombHiggs
6.9) again. Recall that we

keep a
a fixed. The duality between (

eq:TrigomGaud
5.4) and (

eq:BAElargeEps
5.5) trades the shift between ma’s and ema’s.

In particular, for a = 2 this relative shift is 2✏. Since eµ0 and eµ1 are free parameters and
are not a↵ected by (

eq:CoulombHiggs
6.9), we can understand the a shift in terms of shifting na’s in (

eq:CoulombHiggs
6.9).

Indeed, let us start with a = 2, i.e. two Bethe roots at the Gaudin side. In turn, the Higgs
branch condition (

eq:CoulombHiggs
6.9) has some (arbitrary) set of na’s. Now, if we change the number of

Gaudin Bethe roots, in order to keep aa and masses intact, we have to shift na’s by the same
amount. So to summarize, various sectors of the trigonometric Gaudin models’ Hilbert space
parameterized by number of Bethe roots (excitations over the Bethe vacuum), by means of
the bispectral duality, are mapped onto various points of the Higgs branch lattice {na} of
the four dimensional theory.

From the gauge theory prospective we are interested in keeping Coulomb branch param-
eters in (

eq:CoulombHiggs
6.9) finite while masses µ0 and µ1 and ✏ are sent to infinity.

The rescaled conformal dimensions (
eq:RescaledConfDims
6.7) therefore read

�0 = ��0(�0 + 1) , �1 = �n0(n0 + 1) , �3 = �n1(n1 + 1) , �4 = ��1(�1 + 1) , (6.13) eq:rescaleddims

where
�0,1 = n̂0,1 � (0,1 � 2) + 1

2 . (6.14) eq:gamma12

Note that in the NS limit the SU(2) Coulomb coordinate has dropped from the formulae.
In the second and the third term of (

eq:rescaleddims
6.13) we recognize sl(2) negated Casimir eigenvalues on

representations of spins 1
2n0 and

1
2n1 and negated eigenvalues of spin 1

2�0 and
1
2�1 for the first

and the fourth terms respectively. First negative signs in (
eq:rescaleddims
6.13) may seem strange, however,

it is clear that in the limit we are taking all conformal dimensions have to be negative as
�a ⇠ �m

2
a + . . . . The rescaled dimension of the operator in the intermediate channels is

therefore � = �
1
4 .

Now we can relate rescaled Liouville conformal dimensions (
eq:rescaleddims
6.13) of the operators at

1, 1, q, 0 with the spins of the sl2 Gaudin model (
eq:sl2Gaudz4
6.11) corresponding to each singularity.

First, we can see that the Gaudin spin at infinity is not fixed by (
eq:sl2Gaudz4
6.11), but our construction

above predicts it to be equal to �1 (
eq:gamma12
6.14). Then we can identify all the other spins. As for

z1,2 = 1, q we see that Gaudin spins correspond to the right (up to a sign) eigenvalues if the
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U(1) condition

Higgs branch root

shown to be equivalent to the Bethe ansatz equations for the SL(2) XXX chain. As we are
being showing in the current paper, the 4d/2d duality is the essential physical ingredient of
the classical AGT correspondence, so the proof former statement one automatically proves
the latter. Also in Sec.

sec:SQCD
3 we provided a derivation of that GLSM through the BPS vortices,

which can be regarded as a physics inside of the 4d/2d duality.
One may ask immediately why the vortices are relevant, indeed, they only exist in a

Higgs branch of the four dimensional theory, whereas, the AGT statement relates Liouville
momenta with Coulomb branch coordinates. In order to understand this let us recall, that
at zero value of the FI term the Higgs branch touches the Coulomb branch, and as it was
pointed out in [

Dorey:2011pa
10], by making a proper limit in the relation9

aa = m2+a � na✏ , a = 1, 2 , (6.9) eq:CoulombHiggs

one may recover any point of the Coulomb branch of the U(2) SQCD. Indeed, as ✏ ! 0
the Higgs lattice becomes more and more dense filling the Coulomb branch in that limit.
However, for what we are doing here, the opposite ✏ ! 1 limit is relevant, as it is required
by the connection to the Liouville theory. Still we want to be able to cover any point on the
Coulomb branch, so one has to scale the fundamental masses ma with ✏ as well in order to
keep combination (

eq:CoulombHiggs
6.9) finite. So at any given Liouville momentum we only need to sit at a

certain point on a Coulomb branch and the Higgs branch root has all information we need
about that point. Recall that the antifundamental masses and, correspondingly µ0 and eµ0

are not a↵ected by (
eq:CoulombHiggs
6.9) and therefore do not scale with ✏.

We now make an observation that the ground state equations for the (2, 2) GLSM (
eq:2dXXXBAE
5.1)

2Y

a=1

�i � m2+a +
3
2✏

�i � ma �
1
2✏

= q

KY

j=1
j 6=i

�i � �j � ✏

�i � �j + ✏
, (6.10) eq:XXXBAE6

can be written as the second equation from the MTV dual pair (
eq:MTVdualref
5.9). In order to see this we

need to employ (
eq:CoulombHiggs
6.9) and substitute m3 and m4 into the numerators of the let hand side of

(
eq:XXXBAE6
6.10). Then we take the limit of large ✏ keeping in mind that rapidities �i also scale with ✏.
Neither Coulomb moduli aa nor the antifundamental masses m1,2 enjoy this scaling, so they
will drop out from the equations. We then arrive to (

eq:MTVdualref
5.9) where K = n̂1 + n̂2, z2/z1 = q and

na = a + 2.

6.3 The duality

Now let us start connecting the story with the Liouville. By means of the bispectral duality
these equations are mapped onto (

eq:TrigomGaud
5.4) yielding the trigonometric Gaudin model from the

Heisenberg chain. Note that (
eq:TrigomGaud
5.4) depends only on two points z1 and z2 corresponding to

the locations of the NS5 branes in 6-10 plane in Fig.
fig:hweps
5.1. However, the Liouville conformal

block depends on four operators sitting at 1, 1, q, 0 points. Let us mention, however, that
trigonometric Gaudin Bethe equations when only z1 and z2 punctures are involved as a

9From now on we shall work with the U(2) SQCD with 4 flavors.
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quadratic sl2 Casimir. Moreover, n1 and n2 are related to the number of D2 branes ending
on one of the NS5 branes K = n1+n2�2. As we know, only one NS5 brane (the one located
at z2 = q) has D2 branes ended on it, however, as it will later be clear from the linear quiver
generalization, we should found D2 branes belonging to each gauge group. Finally, for z4 = 0
we have �1 = ⌫4 (

eq:K4spin
??) which provides a mapping between the number of Gaudin Bethe roots

and the Higgs lattice {na}.
Note that one should also take out the U(1) factor from the U(2) gauge group, as it does

not have an analogue in the Liouville theory. Imposing it on the U(2) Coulomb moduli a1, a2
with the help of (

eq:CoulombHiggs
6.9) we get

m3 +m4 � (n1 + n2)✏ = 0 , (6.15) eq:U1cond

or using the Liouville mass parameters

µ1

✏
=

n1 + n2

2
(6.16)

It balances the count of the parameters on both sides of the correspondence as in order to
match sl2 spin at z4 = 0 we used only one antifundamental mass parameter (which is related
to the fundamental one).

Here is the summary table of the correspondence between the objects we have discussed
in this section in addition to the standard AGT dictionary

Liouville conformal block at b ! 1 U(2) , Nf = 4 SQCD instanton
on S

2 with four punctures partition function in the NS limit

Rational Gaudin model from KZ SL(2) spin chain from the ground state
equation on conformal blocks equation for the 2d GLSM dual to 4d theory
Puncture’s positions z2/z1 Instanton number q

sl2 spin at z = q U(1) condition
Conformal dimensions of chiral operators Quadratic sl(2) Casimir eigenvalues on

at points z = 1, z = q spin n0,1 representations
at points z = 1, z = 0 spin �1,2 representations

Gaudin Hilbert space sectors with Higgs branch lattice {na}

di↵erent number a of Bethe roots

6.4 Generalization to SU(2) linear quivers

One can easily generalize the above construction to the Liouville theory on S
2 with L + 3

punctures. A natural quiver gauge theory associated to this Riemann surface has L SU(2)
gauge nodes with Coulomb moduli ai successively connected together. Liouville conformal
block of L+ 3 operators located at points

1, 1, q1, q1q2, . . . , q1q2 . . . qL, 0 , (6.17)

with the following scaling dimensions

↵0(Q � ↵0) , µ0(Q � µ0) , . . . , mL(Q � mL) , ↵L+1(Q � ↵L+1) , (6.18) eq:confdimsL
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gauge nodes with Coulomb moduli ai successively connected together. Liouville conformal
block of L+ 3 operators located at points

1, 1, q1, q1q2, . . . , q1q2 . . . qL, 0 , (6.17)

with the following scaling dimensions

↵0(Q � ↵0) , µ0(Q � µ0) , . . . , mL(Q � mL) , ↵L+1(Q � ↵L+1) , (6.18) eq:confdimsL
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3 Non-Abelian strings in Super Yang-Mills theory

sec:FluxTube
It is a standard lore in the study of topological defects in supersymmetric theories that BPS
strings only exist when a gauge group is at least semi-simple, e.g. U(N). A simple reason
for this is based on existence of a nontrivial fundamental group of the resulting moduli space
due to presence of a U(1) factor. The latter causes a nonzero FI term which supports string
solutions. Let us call them FI strings. In the present paper we address to a di↵erent kind
of string-like objects which have not been discussed in the literature before, we shall refer
to them as ✏-strings. As we shall later see their tension is equal to ✏ and classical field
configurations are supported on them. For simplicity we shall only focus on the gauge group
SU(2) in this section.

Action. In this section we shall work with N = 2 Super Yang-Mills theory in four dimen-
sions. Lagrangian reads

L = Im


⌧

Z
d4✓ �̄e2V�+ ⌧

Z
d2✓ (W↵)2

�
(3.1)

In components it takes the following form

L = 1
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2
mn+|rm��Fmn⌦̄

n|2+ 1
2 |�⌧

a�̄�irm(⌦
m�̄a�⌦̄m�a)+i⌦̄m⌦nF a

mn|2+fermions (3.2)

Note that in the NS limit ⌦̄m⌦nF a
mn identically vanishes.

SUSY transformations and supercurrent. Supersymmetry transformations of the
gluino field

�⇤I
↵ = ⇣I�((�

mn)�↵Fmn + i[�, �̄]��↵ +rm(⌦̄
m�� ⌦m�̄)��↵)

+ ⇣̄I
�̇
(�m)�̇↵(rm�� Fmn⌦

n) (3.3)

Was calculated in [
Ito:2011wv
6]. Its time components has the following form (assuming static

configuration, B3 6= 0, others components of Fmn vanish)

J4
I↵ =

⇣
(�i[�, �̄] + (�⌦̄n � �̄⌦n)rn � ⌦̄p⌦nFnp)�

4
↵↵̇ + 2F̃4n�

n
↵↵̇

⌘
⇤̄↵̇

I

+ 2
p
2(�4n)�↵(�rn�+ Fnp⌦̄

p)⇤I� (3.4)

String central charge and tension. Here we are talking about di↵erent kind of strings.
To understand what kind of objects are we dealing with let us see how the supercurrent
transforms under the supersymmetries (

eq:SuperCurrent
3.4)

�⇣I↵ J̄
4J
↵̇ = 2�4

↵↵̇�
J
I L+ @m

�
(�a⌦̄m � �̄a⌦m)Ba

3

�
�3
↵↵̇�

J
I , (3.5)

where L is the Lagrangian of the system. We see that there is a correction which represents
the string central charge. More specifically the correction takes the following form

⇣3 =
1
2@m

�
(�a⌦̄m � �̄a⌦m)Ba

3

�
�3
↵↵̇�

IJ = i
2B

a
3@'(�

a✏̄� �̄a✏)�3
↵↵̇�

IJ , (3.6)
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where ⇢2 = x2
1 + x2

2 is the transversal coordinate to the string. If ✏ is real then

⇣3 = @'(Re ✏�̄aBa
3 ) . (3.7)

The central charge is given by

Zstring =

Z
d3x ⇣3 =

Z
dz

Z
d⇢ ⇢

2⇡Z

0

d'@'(Re(✏�̄a)Ba
3 )

=

Z
dz

Z
d⇢ ⇢Ba

3 Re(✏�̄a)
���
2⇡

0
. (3.8)

We can immediately see that multivalueness of � as a function of the azimuthal angle is
required in order to make the central charge nonzero. The tension of the string solution
under consideration (let’s call them ✏-strings) is therefore given by

T =

1Z

0

d⇢⇢Ba
3 Re(✏�̄a)

���
2⇡

0
. (3.9)

Assuming that

�(⇢,') = �(⇢)e
i'
n , (3.10) eq:AngleAnsarzPhi

where n is an integer, we arrive to

T =

1Z

0

d⇢ ⇢Re(✏Ba
3 �̄

a(e�
2⇡i
n � 1)) . (3.11) eq:StringTension

The above expression for the tension of ✏-string only makes sense if it is finite. In order to
establish that one has to solve BPS equations in order to find the profile functions for � andeq:BPSeqnsFull
B3 as function of the radial coordinate ⇢.

BPS equations. Let us now find the BPS equations which describe such a string. Bosonic
part of the action

L = 1
4F

2
mn + |rm�� Fmn⌦̄

n|2 + 1
2 |�⌧

a�̄� irm(⌦
m�̄a � ⌦̄m�a)|2 (3.12)

We can now do the Bogomolny completion, as the supersymmetry algebra (
eq:SusyTransform
3.3) suggests

L = 1
2 |B

a
z + �⌧a�̄� irm(⌦

m�̄a � ⌦̄m�a)|2 + 1
2 |D1�

a + iD2�
a � (⌦2 � i⌦1)B

a
z |2

+ @m(B
a
z (⌦

m�̄a � ⌦̄m�a)) � @m(B
a
z (⌦

m�̄a � ⌦̄m�a)) . (3.13)

The above inequality saturates provided that the following BPS equations are satisfied

Ba
z + �̄⌧a�� irm(⌦

m�̄a � ⌦̄m�a) = 0 ,

r1�
a + ir2�

a � (⌦2 � i⌦1)B
a
z = 0 . (3.14)
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yields for a string of tension ~ epsilon

SU(2)c ⇥ SU(2)R ⇥ SU(2)R ! U(1)c ⇥ SU(2)R+R

Symmetry breaking pattern

Searching for the field theoretical explanation of the new duality
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Z
d4�

⇣
�†
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V �i � rV � BV
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B-right handed superfield

can be treated as model w/ field dependent FI term
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On Weighted Nonlinear Sigma Models

Abstract

Sigma models on non-compact target spaces have a number of interest-
ing properties which their compact counterparts (e.g. CPN , O(N)) do
not possess. We discuss perturbative aspects of these models.

1 Introduction
Sec:Intro

2 From the Hanany-Tong model to the ZN model
Sec:HananyTongModel

The U(Nc) SQCD with Nf flavors is known to have semi-local string solutions [
Shifman:2006kd
1]. According

to Hanany and Tong conjecture [
Hanany:2003hp
2] the low energy e⇤ective theory on the worldsheet of the

string is given by the strong coupling limit e ⇥ ⇤ of the two-dimensional U(1) gauge theory
with the following Lagrangian

L =

↵
d4⇥

⌃

�
Nc⌦

i=1

⇥†
i e

V⇥i +
Ñ⌦

i=1

�⇥†
i e
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2e2
�†�

⌥

 , (2.1) eq:LagrWeightedSigma

where � is the field strength for the vector multiplet V and Ñ = Nf �Nc. Matter superfields

⇥i = ni + ⇥̄⌅i + ⇥⌅̄i + ⇥̄⇥F i , i = 1, . . . , Nc

�⇥j = ⇧j + ⇥̄�j + ⇥�̄j + ⇥̄⇥F̃ j , j = 1, . . . , Ñ (2.2)

Vector field in Wess-Zumino gauge

V = ⇥+⇥̄+(A0 + A3) + ⇥�⇥̄�(A0 � A3)� ⇥�⇥̄+⌃ � ⇥�⇥̄+⌃̄ + ⇥̄2⇥⇤+ ⇥2⇥̄⇤̄+ ⇥̄⇥⇥̄⇥D , (2.3)

and twisted chiral field � = D+D̄�V reads

� = ⌃ + i⇥+⇤̄+ � i⇥̄�⇤� + ⇥+⇥̄�(D � iF01) . (2.4)

In components the model reads check all compts formulae!
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Note that the Fayet-Illiopolous (FI) parameter r in (
eq:LagrWeightedSigmaeq:LagrWeightedSigma
2.1) can have di⇤erent signs, as was

shown by Witten [
Witten:1993yc
3], interpolation between the regions with di⇤erent values of r corresponds

to transition between Calabi-Yau and Landau-Ginzburg sigma models. Also physics of the
model depends on the relationship between Nc and Ñ , to ensure
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Large-N solution of (0,2)
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Symmetric masses

For the further convenience we define a new constant ↵ = Ñ/N . Notice that in the N ! 1
limit, the masses are distributed uniformly on circles with radii |m| and |µ| correspondingly.
We consider m and µ to be real. There are particular choices of ↵ which are interesting
because they leave some residual discrete symmetry on the classical level. In particular, if
N and Ñ have N � Ñ as a common divisor, a discrete ZN�Ñ symmetry is preserved5. As
we shall later see in Sec. 3, in quantum theory VEV of � breaks this symmetry, however, for
certain values of the twisted masses (2.8) h�i = 0 and the symmetry gets restored.

3 Large-N Solution

In this section we solve the model in the large-N approximation, closely following the analysis
of Refs. [13, 14]. Since the ni , ⇢j , ⇠i , ⌘j fields appear in the action quadratically, we can
perform the Gaussian integration over these fields. We integrate over all but the following
four fields (n0, ⇢0, ⇠0, ⌘0). The scalar fields (n0, ⇢0) will represent the helpful set of the order
parameters defining various phases of the theory.

The Gaussian integration leads to the following determinants

N�1Y

i=1


det ((@k + iAk)2 +D + |� �mi|2)

det ((@k + iAk)2 + |� �mi|2)

� Ñ�1Y

j=1


det ((@k � iAk)2 �D + |� � µj|2)

det ((@k � iAk)2 + |� � µj|2)

�
.

(3.1)

The large-N approximation is technically equivalent to a one-loop calculation of the above
determinants, where we can also drop the gauge fields [1]. The result gives an e↵ective
potential for the � field6

V1�loop =
1

4⇡

N�1X

i=1

 
�
�
D + |� �mi|2

�
log

|� �mi|2 +D

⇤2
+ |� �mi|2 log

|� �mi|2

⇤2

!

� 1

4⇡

Ñ�1X

j=1

 
�
�
D � |� � µj|2

�
log

|� � µj|2 �D

⇤2
� |� � µj|2 log

|� � µj|2

⇤2

!

+
N � Ñ

4⇡
D . (3.2)

To get the above result we have again traded the UV cut-o↵ for the scale ⇤. Including the
pieces already present at the classical level we get the expression for the e↵ective potential

Veff = V1�loop +
�
|� �m0|2 +D

�
|n0|2 +

�
|� � µ0|2 �D

�
|⇢0|2 +

uN

4⇡
|�|2 , (3.3)

where we set u = 8⇡|!|2/N .

5This symmetry is a combination of the flavor and R symmetry.
6For a discussion of the relationship between the Large-N potential and the exact N = (2, 2) super-

potential (2.5) see Ref. [14]. It is indeed possible to reconstruct a full exact potential like (2.5) from this
expression, by noticing that the large-N expression must give, at the first linear order in D, the following
term: D(W 0(�) + h.c). We thank A. Vainshtein for this observation.
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2.2 N = (0, 2) weighted sigma-model: heterotic deformation

As is well-known from early studies of two-dimensional supersymmetric sigma-models [29],
there is no smooth N = (0, 2) deformation of the N = (2, 2) CPN�1 sigma-model3. On the
other hand, it is possible to have deformation of the C⇥CPN�1 model, which is the relevant
e↵ective theory emerging in when studying the non-Abelian vortices (the C factor describes
the translation modes of the vortex). From the additional C piece, one can keep only a
right-handed fermion, while the scalar and left-handed fermionic super-partners is free. A
similar situation occurs for the weighted sigma-model4. As a result we consider the following
Lagrangian

Lhet
WCPNF�1 = LWCPNF�1 + i

2 ⇣̄R@L⇣R � 2|!|2|�|2 � [i!�L⇣R +H.c.] . (2.6)

The heterotic coupling ! is introduced by means of an additional right-handed fermion ⇣R.
Obviously the modification dramatically changes the physics of the sigma-model at hand.
For example, the Witten index is modified from N � Ñ to zero as in the CPN�1 case. This
observation is indeed consistent with supersymmetry breaking [13,31] occurring in the model.

Adding the twisted masses. Twisted masses can be easily introduced into the model
by first gauging the U(1)NF�1 independent flavor symmetries and then setting to zero all the
fields in the additional twisted multiplets but not the lowest components [24]. The resulting
Lagrangian takes the following form

Lhet
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+ i
2 ⇣̄R@L⇣R � [i!�L⇣R +H.c.]� 2|!|2|�|2 . (2.7)

For zero values of the twisted masses there is a U(1) R-symmetry under which the fermions
⇠iR, ⌘

j
R,�R (⇠iL, ⌘

j
L,�L) have charge +1(�1), whereas � has charge +2. A generic choice of the

masses mi and µj breaks this symmetry completely. Instead, we make the following choice
for the masses

mk = me2⇡i
k
N , k = 0, . . . , N � 1 ,

µl = µ e2⇡i
l
Ñ , l = 0, . . . , Ñ � 1 . (2.8)

3See Refs. [9, 30] for a discussion of this issue in a context related to non-Abelian vortices
4In fact, it is possible to introduce N = (0, 2) deformations of the weighted sigma-model without in-

troducing any new degrees of freedom, or C factors. However, all the possible deformations di↵erent from
the one considered in the text do not arise in the context of non-Abelian vortices. Nevertheless, it may be
interesting to study the e↵ects of such deformations. For more details on this aspect, see Ref. [9].
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For the further convenience we define a new constant ↵ = Ñ/N . Notice that in the N ! 1
limit, the masses are distributed uniformly on circles with radii |m| and |µ| correspondingly.
We consider m and µ to be real. There are particular choices of ↵ which are interesting
because they leave some residual discrete symmetry on the classical level. In particular, if
N and Ñ have N � Ñ as a common divisor, a discrete ZN�Ñ symmetry is preserved5. As
we shall later see in Sec. 3, in quantum theory VEV of � breaks this symmetry, however, for
certain values of the twisted masses (2.8) h�i = 0 and the symmetry gets restored.

3 Large-N Solution

In this section we solve the model in the large-N approximation, closely following the analysis
of Refs. [13, 14]. Since the ni , ⇢j , ⇠i , ⌘j fields appear in the action quadratically, we can
perform the Gaussian integration over these fields. We integrate over all but the following
four fields (n0, ⇢0, ⇠0, ⌘0). The scalar fields (n0, ⇢0) will represent the helpful set of the order
parameters defining various phases of the theory.

The Gaussian integration leads to the following determinants

N�1Y

i=1


det ((@k + iAk)2 +D + |� �mi|2)

det ((@k + iAk)2 + |� �mi|2)

� Ñ�1Y

j=1


det ((@k � iAk)2 �D + |� � µj|2)

det ((@k � iAk)2 + |� � µj|2)

�
.

(3.1)

The large-N approximation is technically equivalent to a one-loop calculation of the above
determinants, where we can also drop the gauge fields [1]. The result gives an e↵ective
potential for the � field6

V1�loop =
1

4⇡

N�1X

i=1

 
�
�
D + |� �mi|2

�
log

|� �mi|2 +D

⇤2
+ |� �mi|2 log

|� �mi|2

⇤2

!

� 1

4⇡

Ñ�1X

j=1

 
�
�
D � |� � µj|2

�
log

|� � µj|2 �D

⇤2
� |� � µj|2 log

|� � µj|2

⇤2

!

+
N � Ñ

4⇡
D . (3.2)

To get the above result we have again traded the UV cut-o↵ for the scale ⇤. Including the
pieces already present at the classical level we get the expression for the e↵ective potential

Veff = V1�loop +
�
|� �m0|2 +D

�
|n0|2 +

�
|� � µ0|2 �D

�
|⇢0|2 +

uN

4⇡
|�|2 , (3.3)

where we set u = 8⇡|!|2/N .

5This symmetry is a combination of the flavor and R symmetry.
6For a discussion of the relationship between the Large-N potential and the exact N = (2, 2) super-

potential (2.5) see Ref. [14]. It is indeed possible to reconstruct a full exact potential like (2.5) from this
expression, by noticing that the large-N expression must give, at the first linear order in D, the following
term: D(W 0(�) + h.c). We thank A. Vainshtein for this observation.
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Vacuum equationsVacuum equations. The extremization7 of this potential with respect to n0 and ⇢0, D
and � gives us the master set of equations which determines the vacuum structure of the
theory

�
|� �m0|2 +D

�
n0 = 0 ,

�
|� � µ0|2 �D

�
⇢0 = 0 , (3.4)

1

4⇡

N�1X

i=1

log
|� �mi|2 +D

⇤2
� 1

4⇡

Ñ�1X

j=1

log
|� � µj|2 �D

⇤2
= |n0|2 � |⇢0|2 ,

1

4⇡

N�1X

i=1

(� �mi) log
|� �mi|2 +D

|� �mi|2
+

1

4⇡

Ñ�1X

j=1

(� � µj) log
|� � µj|2 �D

|� � µj|2
=

= (� �m0) |n0|2 + (� � µ0) |⇢0|2 +
uN

4⇡
� . (3.5)

The second equation above gives us the renormalized coupling constant

r = |n0|2 � |⇢0|2 . (3.6)

In the next section we shall solve the weighted heterotic CPN�1 model in the large-N ap-
proximation. First we address the massless case, and then work out the more involved model
with twisted masses.

3.1 Massless case

Let us warm-up with the problem when all twisted mass are zero. We will be able to
investigate more easily all the features which will be also present in the massive case. The
potential (3.3) takes much simpler form now8

Veff =
N

4⇡

✓
D log

⇤2

|�|2 +D
+ |�|2 log |�2|

|�|2 +D

◆

� Ñ

4⇡

✓
D log

⇤2

|�|2 �D
� |�|2 log |�2|

|�|2 �D

◆

+
N � Ñ

4⇡
D +

uN

4⇡
|�|2 , (3.7)

from which the corresponding vacuum equations follow

log
|�|2 +D

⇤2
� ↵ log

|�|2 �D

⇤2
= 0 ,

� log

✓
1 +

D

|�|2

◆
+ �↵ log

✓
1� D

|�|2

◆
= u� . (3.8)

7The solution of the vacuum equations for D gives Veff a maximum rather than a minimum. This fact,
being usual in supersymmetric gauge theories, is consistent since the D field is not dynamical. We get a true
minimum with respect to the � field.

8Notice that in this case we have integrated out all the fields.
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Solution of (2,2) model

Q
i
(� �mi)

Q
i
(� � µj)

= �N�Ñ

in (2,2) from exact superpotential

� = 0 is one of the solutions...

Phase transitions -- artifact of large-N

renormalized FI term vanishes in C phase 

�0 = 0 D = �|⇥ �m|2

n0 = �0 = 0

n0 = 0 D = |� � µ|2

Higgs in n (Hn) 

Higgs in rho (H )

Coulomb (C)

⇣
|⇥ �m0|2 +D

⌘
n0 = 0 ,

⇣
|⇥ � µ0|2 �D

⌘
�0 = 0

Hn phase. The unbroken supersymmetry of the undeformed model implies D = 0 for all
the phases. From (3.20) we thus find

� = m0 , ⇢0 = 0, D = 0 . (3.23)

From the second line of (3.4) we determine the coupling constant

r = |n0|2 =
1

4⇡

N�1X

i=1

log
|m0 �mi|2

⇤2
� 1

4⇡

Ñ�1X

j=1

log
|m0 � µj|2

⇤2
� 0 . (3.24)

The sums in the expression above can be exactly calculated in the large-N limit as shown
in Ref. [11]

r =

8
<

:

N�Ñ
2⇡ log m

⇤ , µ < m

N
2⇡ log

m
⇤ � Ñ

2⇡ log
µ
⇤ , µ > m .

(3.25)

By asking for r to be positive, we obtain the following conditions for the existence of the Hn
phase

Hn :

8
<

:

m > ⇤, µ < m

m
⇤ >

�
µ
⇤

�↵
, µ > m .

(3.26)

H⇢ phase. In this phase we use (3.21) to find

� = µ0 , n0 = 0, D = 0 , (3.27)

and the coupling constant

r =

8
<

:

N�Ñ
2⇡ log µ

⇤ , µ > m

N
2⇡ log

m
⇤ � Ñ

2⇡ log
µ
⇤ , µ < m

(3.28)

Negativity of r now implies the following conditions for the existence of the H⇢ phase

H⇢ :
⇣m
⇤

⌘1/↵

<
µ

⇤
< 1 . (3.29)

The renormalized coupling constant vanishes, as expected, along the boundaries of the
Higgs phases. As we will explain later the curve defined as

m

⇤
=

⇣µ
⇤

⌘↵

, (3.30)

13

Hn phase. The unbroken supersymmetry of the undeformed model implies D = 0 for all
the phases. From (3.20) we thus find

� = m0 , ⇢0 = 0, D = 0 . (3.23)

From the second line of (3.4) we determine the coupling constant

r = |n0|2 =
1

4⇡

N�1X

i=1

log
|m0 �mi|2

⇤2
� 1

4⇡
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⇤ , µ > m .

(3.25)

By asking for r to be positive, we obtain the following conditions for the existence of the Hn
phase

Hn :

8
<

:

m > ⇤, µ < m

m
⇤ >

�
µ
⇤

�↵
, µ > m .

(3.26)

H⇢ phase. In this phase we use (3.21) to find

� = µ0 , n0 = 0, D = 0 , (3.27)
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µ
⇤ , µ < m

(3.28)

Negativity of r now implies the following conditions for the existence of the H⇢ phase

H⇢ :
⇣m
⇤

⌘1/↵

<
µ

⇤
< 1 . (3.29)

The renormalized coupling constant vanishes, as expected, along the boundaries of the
Higgs phases. As we will explain later the curve defined as

m

⇤
=

⇣µ
⇤

⌘↵

, (3.30)

13

⇢



H

H

C

C m

μ
μ=m

1/α

Λ

Λ n

ρ

|�(0)
µ | = µ�

N � Ñ
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Spectrum
L = � 1

4e2�
F 2
µ⇥ +

1

e2⇤ 1

(⌅µRe⇤)2 +
1

e2⇤ 2

(⌅µIm⇤)2 + iIm(b̄ �⇤)⇥µ⇥F
µ⇥ � Ve�(⇤) + Fermions

Anomaly

m� = e� 2e� |b|

Photon becomes massless in Cs phase!!

Note that Lambda vacua disappear at  large deformations
Need to sit in zero-vacua

e.g. in Cm phase

Massless goldstino in fermionic sector

[Bolokhov Shifman Yung]
[PK Monin Vinci]

Confinement!

⇤-Vacua. The ⇤-vacua (3.34) appear only in the Cm region. The mass of the N = 2
multiplet is given by (4.6) with |�0| = ⇤ and the following numerator

A = 2(1� ↵) . (4.8)

0-Vacua. In the Coulomb phase there are also 0-vacua which are the solutions of the vacua
equations in the two regions of the parameter space Cm and Cµ (see Fig. 4). In this case
in the formulae (4.6,4.7) we should use we have

A = 2↵ , |�0| = ⇤
⇣m
⇤

⌘1/↵

in Cm phase

A = 2 , |�0| = ⇤
⇣µ
⇤

⌘↵

in Cµ phase . (4.9)

4.2 Deformed (0, 2) Model

As we have observed in the previous sections, ⇤ vacua become metastable as we increase u
and for u > ucrit disappear completely. Keeping this in mind let us focus on 0-vacua, which
continue to exist for any value of the deformation, assuming that u is large enough for the
approximations we have used in the end of Sec. 3 to be valid.

In the Cm phase we get

4⇡

Ne2�
=

1

m2
+

↵

3

1

⇤2

✓
⇤

m

◆2/↵

+
2↵

3

1

⇤2
�
m
⇤

�2/↵
e�

u
↵ � µ2

,

4⇡

Ne2� 2

=
1

m2
+

↵

⇤2
�
m
⇤

�2/↵
e�

u
↵ � µ2

, (4.10)

where we have neglected all the terms as in the calculation of VEV D and �0. The photon
mass by means of (4.4) is then given by

m� =
p
6⇤

✓
⇤

m

◆1/↵ ✓⇣m
⇤

⌘2/↵

�
⇣µ
⇤

⌘2

eu/↵
◆
e�

u
2↵ , (4.11)

where we have used (4.7) which implies that A = ↵ in the Cm phase. The above expression
may seem to diverge at large u, but we do not need to forget that the expression in the
parentheses above should be bigger that zero for all u. The bigger u is the smaller is µ and
the whole expression becomes suppressed.

Analogously, the photon mass in the Cµ phase reads

m� =
p
6⇤

✓
⇤

µ

◆↵ ✓⇣µ
⇤

⌘2↵

�
⇣µ
⇤

⌘2

eu
◆
e�u/2 , (4.12)

where we used that A = 2.
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Super-conformal line. Keeping the results of this section in mind, it is now easy to check
that supersymmetry is e↵ectively unbroken as we approach the super-conformal line

µ

⇤
=

⇣m
⇤

⌘1/↵

. (3.73)

Since we are looking into the Cs phase, we put from the beginning r = 0 and � = 0 in the
second line of(3.4)

�
m2 +D

�N
= ⇤N�Ñ

�
µ2 �D

�Ñ
, (3.74)

which is clearly solved by D = 0 provided that (3.73) holds. This condition is enough to show
unbroken supersymmetry. One can also directly check that the vacuum energy vanishes. In
general, in the Cs phase D does not vanish, and supersymmetry is generically broken.

4 Spectrum

As was shown by Witten in the supersymmetric CPN�1 sigma-model photon is massive due
to a coupling to fermions and its mass is given by the chiral anomaly [1]. However, the
photon remains massless in the bosonic CPN�1 sigma model. It was shown in Ref. [14]
that once the twisted masses are nonzero and the heterotic deformation is turned on, the
photon becomes massless in the symmetric Coulomb phase. The authors also call this phase
confining, since existence of long range interactions with massless carrier allows bound states
of particles (“kinks”). In CPN�1 sigma-model only n̄n mesons could be formed, our model
also admits, in principle, ⇢̄⇢ and n⇢ mesons. Below we calculate the photon mass at di↵erent
values of twisted masses m and µ as well as the heterotic deformation parameter u, and
show that it vanishes in the symmetric Coulomb phase as is prescribed by the unbroken
discrete symmetry. Since analogous calculations in supersymmetric sigma-models have been
previously performed (see, for instance Refs. [13, 14, 37]) here we shall just list our result.
Generic expressions for the e↵ective coupling constants can be found in Sec. B.

The one-loop e↵ective Lagrangians for the WCPNF�1 (0, 2) sigma-model reads

L = � 1

4e2�
F 2
µ⌫+

1

e2� 1

(@µRe �)2+
1

e2� 2

(@µIm �)2+iIm(b̄ ��)✏µ⌫F
µ⌫�Ve↵(�)+Fermions . (4.1)

We shall only consider photon-scalar mixing in this section, that is why we specified only
bosonic part of the action. In the above expression we denote � = �0 + ��, where �0 is
the VEV of the field � in the vacuum where our e↵ective theory lives. In (4.1) e↵ective
potential Ve↵(�) is given by (3.3), gauge and scalar couplings can be calculated from the
corresponding one-loop Feynman diagrams. Gauge field is coupled to the imaginary part of
� and the mixing can straightforwardly be generalized from [14]. In Fig. 7 one-loop diagrams
which contribute to the mixing are shown. The result is given by

b =
N

4⇡

0

@ 1

N

N�1X

i=1

1

�̄0 � m̄i
� ↵

1

Ñ

Ñ�1X

i=1

1

�̄0 � µ̄i

1

A

=
N

4⇡

1

�̄0

✓
f

✓
m

|�0|

◆
� ↵f

✓
µ

|�0|

◆◆
, (4.2)
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Figure 7: One-loop diagrams which contribute to the the photon-scalar anomalous mixing.

where the function f(�) was introduced in (3.48) and we assumed that �0 6= 0. If the VEV
for � vanishes at a vacuum (which happens in the symmetric Cs phase) then the result is
di↵erent

b =
1

4⇡

✓
� 1

m
+

↵

µ

◆
. (4.3)

The photon mass can be obtained by diagonalization of the mass Lagrangian

m� = e� 2e�|b| . (4.4)

We can immediately see from (4.3), (4.4) and the formulae for the couplings (B.2), (B.3) that
in the symmetric Cs phase photon is massless in the large-N approximation. This result is
universal, it is dictated by the unbroken discrete ZN�Ñ symmetry present in the Cs phase,
and it is independent of the value of the heterotic deformation.

Let us now calculate the photon case for zero and nonzero values of u in the strongly
coupled Coulomb phases Cm and Cµ, where discrete symmetries are spontaneously broken
by the VEVs of �.

4.1 Undeformed (2, 2) Model

If the (2, 2) supersymmetry is unbroken the masses of the particles of the same multiplet
should be the same

m� = m� = mfermi . (4.5)

Using (4.4,B.10) we can easily find

m� =
A

|�0|
||�0|2 �m2| + ↵

|�0|
||�0|2 � µ2|

, (4.6)

where the numerator reads

A =

����f
✓

m

|�0|

◆
� ↵f

✓
µ

|�0|

◆���� . (4.7)

Depending on the VEV �0 the masses (4.5) can have di↵erent values, in particular, they can
vanish.

23



NSVZ in (0,2) sigma model
[Cui Shifman]sigma models exhibit instanton solutionsPN

An instanton has four bosonic zero modes but only two fermionic 
ones 

with the unit topological charge is

φ =
y

z − z0
, φ† =

ȳ

z̄ − z̄0
, (15)

where y and z0 are the collective coordinates: z0 is the instanton center while a
complex number y parametrizes its size and a U(1) phase. Our notation in Euclidean
space-time is explained in Appendix B to which the reader is referred to for further
details. We easily get the bosonic zero modes, by taking derivatives of the instanton
solution with respect to the above collective coordinates. There are four (real) zero
modes, or, two complex [24].

The fermion zero modes can be obtained by applying supersymmetry and super-
conformal symmetry. From the supersymmetry transformation induced by Q†, one
obtains the following fermion zero mode:

ψ†
z̄ =

ȳα

(z̄ − z̄0)2
. (16)

From the superconformal transformation, we get another zero mode,

ψ†
z̄ =

ȳβ†

z̄ − z̄0
. (17)

Note that N = (0, 2) theory we deal with two fermion zero modes rather than
four, which appear in N = (2, 2) CP(1) model. The reason is that, involution is
lost upon transition to Euclidean space. No zero mode arises from the background
φ = y

z−z0
(see also [14]). This means that the superinstanton under consideration

has no collective coordinates α† and β. The fact that we deal with two rather than
four fermion zero modes agrees with the coefficient in the chiral anomaly (see Sec. 5)
which is twice smaller in N = (0, 2) compared to N = (2, 2).

Assembling everything together, we obtain the instanton superfield in the form

Ainst =
y

z − z0
, A†

inst =
ȳ(1 + 4iθ†β†)

z̄ch − z̄0 − 4iθ†α
, (18)

where 2

z̄ch = z̄ − 2iθ†θ .

2Note that in Sect. 4 we will use θ and θ† to denote the Grassmannian variables in Euclidean
superspace. We intentionally drop the subscript “R” to distinguish from those in Minkowski su-
perspace.
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One loop corrections in the instanton background do not cancel 
completely

Let us now remove half of the fermions

two-loop level. We will postpone the second derivation till Sec. 4.1, and just show
the final result. The measure is

dµ ∼
(

M2

g2

)nb

M−2 dydȳ dz0dz̄0 , nb = 2 , (34)

where the factor M−2 comes from the one-loop correction due to the nonzero modes,
and, hence,

∏

n E
−2
n = M−2. Given Eq. (33), we immediately conclude that the

one-loop correction to the instanton measure in our N = (0, 2) model is M−1.
With this knowledge in hand we can return to Eq. (20) which contains only zero

modes. After inserting nonzero mode one-loop effects we find the instanton measure
in the form

dµ ∼
(

M2

g2

)nb
(

g2

M

)nf

M−1e
− 4π

g2 dydȳ dz0dz̄0d αdβ
† , (35)

with nb = 2 and nf = 1. As we will argue in Sect. 4.1, this is the exact formula.
Finally, note that the instanton measure is dimensionless. Therefore, we need to

reinstate an appropriate dimensional parameter. There is a unique choice, the in-
stanton size, which is, simultaneously, the infrared cutoff in the instanton calculation.
It is given by |y|.

This leaves us with the following master formula for the measure in the N = (0, 2)
CP(1) model:

dµ =

(

M2

g2

)nb
(

g2

M

)nf

(M)−1 e
− 4π

g2 dlog(y)dlog(ȳ) dz0dz̄0 dαdβ† ,

nb = 2 , nf = 1 . (36)

4.1 A nonrenormalization theorem

This is not the end of the story, however. We have to address the question of two-
and higher-loop corrections in the instanton background. In this subsection we will
argue that they vanish. Are arguments are intended to show that the instanton
measure in (36) is all loop exact, i.e., it does not receive higher loop corrections. The
proof is a version of the nonrenormalization theorem [16, 23].

Let us recall that in the instanton background superfield Ainst and A†
inst, we can

apply supersymmetry transformation given by

θ → θ + ϵ , θ† → θ† + ϵ† , z̄ch → z̄ch + 4iϵθ† . (37)
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Exact beta function
One loop modification

as a sum of two terms,

f
(

ȳ(1 + 4iβ†θ†), z̄ch − z̄0 + 4iθ†α, θ − α, β†
)

= f0
(

ȳ(1 + 4iβ†θ†), z̄ch − z̄0 + 4iθ†α
)

+(θ − α)β†f1
(

ȳ(1 + 4iβ†θ†), z̄ch − z̄0 + 4iθ†α
)

, (43)

where f0,1 are some other functions. It is obvious that upon integration over θ, only
f1 can survive, and the integration takes the form

∫

d2z dθ† β† f1
(

ȳ, z̄ − z̄0 + 4iθ†α
)

. (44)

Next, we shift z̄, and then the remaining integral has to vanish. It vanishes,
indeed! Note that the integration is finite and local, hence the shift in z̄ must be
valid.

4.2 The full β function

Now we know that our expression for the instanton measure is all-loop exact. It
depends on the Pauli–Villars regulator massM explicitly, throughM2, and implicitly,
through g2(M). The overall dependence on M must cancel, i.e,

d

dlog(M)

(

−4π

g2
− logg2 + logM2

)

= 0 . (45)

This gives us the all loop exact β function for the coupling constant g,

β(g2) = − g4

2π

1

1− g2

4π

. (46)

The two-loop coefficient is in agreement with (13) determined by a direct perturba-
tion calculation.

5 Supercurrent supermultiplet (hypercurrent)

In this section we will analyze the hypercurrent (see [30, 31]) of the minimal model.
This will set the stage for an alternative derivation of the β function which will be
completed in Sect. 7. Our consideration will run parallel to that of [17].
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What does it  
mean for 4d/2d?



Conclusions and open questions

• Study of SQCD BPS (and beyond) spectrum can 
effectively be done using 2d NLSM (and GLSM)

• 4d/2d duality helps to understand AGT in NS limit 
by reducing it to bispectral duality

• Relationship w/ another 4d/2d duality [Vafa et al]

• Generalize to other AGT pairs

• Holography for Non-Abelian vortices

• A lot is unknown about (0,2) theory... how far can 
we push 4d/2d?


