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Some interesting facts
about N=2 physics

A full partition function of N=2 d=4 theory can be 
computed by localization [Nekrasov]

Recently a solid connection to non-SUSY CFTs was 
outlined [Alday, Gaiotto, Tachikawa]

and connection to 2d sigma models
[Dorey, Hollowood, Tong] [Shifman, Yung] [Gaiotto, Moore, Neitzke]...

This talk: interplay between
the last two points
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and photons. Here we extend it to electric and magnetic non-Abelian quarks and gluons.

We start our analysis in section 2 by studying at the classical level N=2 SUSY QCD

based on an SU(nc) gauge theory with nf quark hypermultiplets in the fundamental

representation. The moduli space of classical vacua consists of a Coulomb branch where

the gauge group is of rank nc−1 and various Higgs branches where the gauge group is of

lower rank. The different branches touch each other at singular points where new massless

particles are present. It will turn out to be crucial that for nc ≤ nf ≤ 2nc−2 the theory

has distinct Higgs branches touching each other at singular points as shown in Fig. 1.

Coulomb Branch

Non-Baryonic

Branch

B

A

Baryonic
Branch

Fig. 1: Map of the classical moduli space of N=2 SU(nc) QCD with nf

fundamental flavors. The baryonic and non-baryonic Higgs branches intersect
along a submanifold A, while the non-baryonic branch intersects the Coulomb
branch along submanifold B where there is an unbroken SU(r)×U(1)nc−r

gauge symmetry with nf massless fundamental hypermultiplets. A and B in-
tersect at a point where the full SU(nc) with nf hypermultiplets is unbroken.
There are separate non-baryonic branches for 1 ≤ r ≤ [nf/2].

We divide the various Higgs branches into baryonic and non-baryonic branches, names

following from the fact that on the non-baryonic branches all the light fields have vanishing

baryon number. There will turn out to be a single baryonic branch for nf ≥ nc whose

generic low-energy effective theory consists of nfnc−n2
c+1 massless hypermultiplets. Non-

baryonic branches will be shown to exist for nf ≥ 2, each with (generically) nc−1−r
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Coulomb vs Higgs branches

⇠

�a = ma

holomorphic gauge invariant operators formed from the hypermultiplet fields. For
Nf = Nc, these include the baryonic operators,

B = Qa1

1 Qa2

2 . . . Q
aNc

Nc
εa1...aNc

B̃ = Q̃a1

1 Q̃a2

2 . . . Q̃
aNc

Nc
εa1...aNc

where ai denote colour indices. There are also meson operators of the form Mij = Q̃iQj .

The classical spectrum of BPS states depends on the vacuum in which the theory

lives. We shall start by discussing the classical spectrum on the Coulomb branch,

only subsequently moving onto quantum corrected spectrum and, ultimately, to the

quantum spectrum on the Higgs branch. At a generic point on the Coulomb branch
the theory has an interesting mixture of BPS states arising from both elementary

excitations as well as non-perturbative monopole and dyon states. Among the former

are the Nc massless photons, together with Nc(Nc − 1) W-bosons with mass |φa − φb|
for a, b = 1 . . . , Nc. There are also NcNf BPS quark states which, for a = 1, . . . , Nc

and i = 1, . . . Nf have masses given by,

Mquark = |φa − mi| (1)

All further BPS states arise as solitons and have non-zero magnetic charges under the

unbroken gauge group U(1)Nc . We denote these magnetic charges as ha and require
∑

a ha = 0, reflecting the fact that monopole solutions only exist in the semi-simple

SU(N)C ⊂ U(N)C part of the gauge group. The classical mass of these monopoles is

given by

Mmon =
2π

e2

∣

∣

∣

∣

∣

Nc
∑

a=1

haφa

∣

∣

∣

∣

∣

(2)

In addition to these purely magnetic solitons, the classical spectrum also contains an

infinite tower of dyons. A unified mass formula for each of these objects can be given

in terms of the central charge Z. For BPS states with electric charge ja and magnetic

charge ha under U(1)Nc , and with charge si under the global flavour group U(1)Nf−1,
the mass of any BPS state is given by M = |Z| with

Z =
Nc
∑

a=1

φa(ja + τha) +

Nf
∑

i=1

misi (3)

The above discussion has been classical. Let us now turn to various aspects of the

quantum theory. The overall U(1) part of the gauge group becomes weakly coupled
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Because of this degeneracy the classical central charge (3) may be written in the sim-
plified form,

Z =
Nc
∑

i=1

mi(Si + τhi) (6)

where we have redefined the charges as Si = sa +ja. We would now like to describe the
quantum corrections to this charge formula as encoded in the Seiberg-Witten solution.

(Recently the semi-classical computation of corrections to the monopole mass was

revisited in [13, 17], finding agreement with the exact result of Seiberg and Witten).

At the root of the baryonic Higgs branch, the Seiberg-Witten elliptic curve has a special

property: it degenerates [18]

F (t, u) =

(

t −
Nc
∏

i=1

(u − mi)

)

(

u − ΛNc
)

(7)

This form of the curve occurs naturally in the M-theory construction of [19], where the

degeneration corresponds to the fact that one of the IIA NS5 branes remains unbent

upon its ascent to M-theory. The curve is branched over the Nc points ei defined by,

Nc
∏

i=1

(u − mi) − ΛNc =
Nc
∏

i=1

(u − ei) = 0 (8)

In the quantum theory the central charge is given by the integral of the Seiberg-

Witten differential λSW = (u/t)dt over certain one cycles of the curve. The resulting
modification of the classical formula (6) is

Z =
Nc
∑

i=1

(miSi + mDihi) (9)

where all the quantum corrections are encoded in the functions mD i which are holo-

morphic in the hypermultiplet masses mi and Λ. They are given by

mDl − mDk =
1

2πi

∫ el

ek

dλSW =
1

2πi

∫ el

ek

u
dt

t
=

1

2π

Nc
∑

i=1

∫ el

ek

u du

u − mi

where, in the final equality, we have used the exact form of the curve (7). Evaluating

this integral, we find the expression for the contribution to the central charge given by

mDl − mDk =
1

2π
Nc(el − ek) +

1

2π

Nc
∑

i=1

mi log

(

el − mi

ek − mi

)

(10)
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Hanany-Witten construction
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Figure 2.2: The Higgs branch root !a = !mF .

tuned to satisfy a relation

−h
L
∏

l=1

(

v − m̃l

)

+ (h+ 2)
L
∏

l=1

(

v −ml

)

= 2
L
∏

l=1

(

v − φl

)

, (2.3)

the Seiberg-Witten curve becomes degenerate

[

L
∏

l=1

(

v − m̃l

)

t− (h + 2)
L
∏

l=1

(

v −ml

)

]

×
[

t+ h
]

= 0 , (2.4)

and !A = !CF . We will soon explain a correspondence between the root of baryonic Higgs

branch and ferromagnetic vacuum of the SL(2,R) integrable model.

2.1 The classical integrable system

We now review the connection between N = 2 supersymmetric gauge theories in four di-

mensions and complex classical integrable systems. We begin by introducing the Heisenberg

spin chain.

We will consider a chain of L complex “spins” [36, 37, 38] corresponding to classical

variables, L±
l , L0

l , for l = 1, 2, . . . , L with Poisson brackets:

{L+
l ,L

−
m} = 2iδlmL0

m {L0
l ,L±

m} = ±iδlmL±
m . (2.5)
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Figure 2.4: A IIA brane construction for Theory II with ε = 0

and

L
∑
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∣
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∣

∣

∣

2

+
L
∑

l=1

∣

∣

∣
− Q̃lλ+ Q̃lM̃l

∣

∣

∣

2

= 0 , (2.24)

where λ denotes the adjoint scalar field in the vector multiplet.

For r = 0, Ql = Q̃l = 0 and Theory II has a classical Coulomb branch parametrized by

the eigenvalues {λ1,λ2, . . . ,λN} of the adjoint scalar field in the U(N) vector multiplet. In

the figure this corresponds to the special case where each D2 is suspended between NS5

and NS5′ and can move independently in the x4 and x5 directions. On the other hand, the

eigenvalues of Z parameterise the position of D2-branes in the {2,3}-plane.

For r > 0, the theory is on a Higgs branch with Q "= 0, Q̃ = 0. The vector multiplet VEVs

are fixed by the second D-term condition (2.24). Solutions are labelled by the number of ways

of distributing the N scalars {λj} between the L values {Ml}. Thus we specify a vacuum by

choosing L non-negative integers {n̂l} with
∑L

l=1 n̂l = N . In the brane construction these

correspond to the number of D2 branes ending on each D4 brane as shown in the figure.
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Color-flavor locked 
 phase of SQCD

Higgs branch root

Nf = 2NcSQCD

[Hanany Tong]
[Witten]

5 Brane Constructions and Dualities in Integrable Sys-
tems

sec:BraneConstruction

As is well known brane configuration reflects geometry of the underlying integrable system,
thus it is interesting to explain the known dualities in the integrable systems using brane
terms. We shall first review the Hanany-Witten type IIA brane construction which yields
the N = 2 SQCD and integrable systems related to it – XXX spin chain and Gaudin
model together with the dualities these models are involved in. Then we shall address the
pure SYM case and brane interpretation of the ✏-string which we have identified in Sec.

sec:FluxTube
2.

Employing the Gaudin/XXX duality we will be able to give a vortex interpretation of the
AGT duality in the next section, where the XXX model appears on the N = 2 theory side
and the Gaudin model naturally arises in study of Liouville CFT’s. Here we shall make some
preparations to that study. In the end we shall discuss yet another duality between Gaudin
and Calogero-Moser systems.

5.1 Dualities from the Hanany-Witten Brane Construction

Brane configuration for the N = 2 SQCD employs the Hanany-Witten construction [
Hanany:1996ie
32]. As

it was shown in [
Dorey:2011pa
10] and further explained here in Sec.

sec:SQCD
3, in presence of Omega background

the Higgs branch condition gets deformed (
eq:DHLHiggs
3.1). Hence positions of the flavor D4 branes

shift by n
a

✏ for each color (see left picture in Fig.
fig:hweps
5.1). It contains two NS5, N D4 branes

which are stretched between the two NS5 branes and two sets of semi infinite D4’s which are
attached to NS5’s. All D4 branes occupy 01236 directions, NS5’s lie in 012345 directions.

0 1 2 3 4 5 6 7 8 9

NS5 x x x x x x
D4 x x x x x
D2 x x x

Under geometric transition the brane configuration described in [
Dorey:2011pa,Chen:2011sj
10,19] interpolate between

the 4d theory and the 2d theory. The latter can be obtained by moving the right NS5 brane
in the 7th direction and emerging D2 branes (037) which are stretched between this NS5
and D4’s (see right picture in Fig.

fig:hweps
5.1). The value of x

7

gives tension of D2 strings which is
equal to ✏ in our construction.

The rank of the gauge group of the two dimensional GLSM is given by summing up all
the D2 branes K =

P
i

n̂
i

, where, we remind, n̂
i

= n
i

� 1. The low energy dynamics of
the two dimensional theory is given by the e↵ective twisted superpotential and the following
ground state equations

NY

l=1

�
j

� M
l

�
j

� fM
l

= q
KY

k 6=j

�
j

� �
k

� ✏

�
j

� �
k

+ ✏
, (5.1) eq:2dXXXBAE

which is the Bethe ansatz equations for the anisotropic SL(2) spin chain. Note that for

generic 2d masses M
a

and fM
a

at each spins at each site a = 1, . . . , N have di↵erent repre-
sentations. Indeed, in order to match each term in the left hand side of (

eq:2dXXXBAE
5.1) with phases of
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is simple to determine: it is a U(k) gauge theory with 4 real adjoint scalars, or two

complex scalars

σ = X4 + iX5 , Z = X1 + iX2 (3.27)

which combine to give the N = (4, 4) theory in d = 1 + 1. N D4−branes

NS5−branes
012345

01236

039
k D2−branes

Figure 19:

The D4-branes contribute hypermultiplets (ψa, ψ̃a) with a =

1, . . . , N . These hypermultiplets get a mass only when the
D2-branes and D6-branes are separated in the X4 and X5

directions. This means we have a coupling like

N
∑

a=1

ψ†
a {σ†, σ}ψa + ψ̃a {σ†, σ} ψ̃†

a (3.28)

But there is no such coupling between the hypermultiplets
and Z. The coupling (3.28) breaks supersymmetry to N =

(2, 2). So we now understand the D2-brane theory of figure
19. However, the D2-brane theory that we’re really interested in, shown in figure 18,

differs from this in two ways

• The right-hand NS5-brane is moved out of the page. But we already saw in the

manoeuvres around figure 16 that this induces a FI parameter on brane theory.
Except this this time the FI parameter is for the D2-brane theory. It’s given by

r =
∆x6

2πgsls
=

4π

e2
(3.29)

• We only have half of the D4-branes, not all of them. If a full D4-brane gives rise
to a hypermultiplet, one might guess that half a D4-brane should give rise to half

a hypermultiplet, otherwise known as a chiral multiplet. Although the argument
is a little glib, it turns out that this is the correct answer [164].
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Understanding 2d theory: ‘ANO’ String

string. As we’re used to by now, such winding is characterized by the homotopy group,
this time

Π1 (U(N) × SU(N)/SU(N)diag) ∼= Z (3.6)

Which means that we can expect vortex strings supported by a single winding number
k ∈ Z. To see that this winding of the scalar is associated with magnetic flux, we use

the same trick as for monopoles. Finiteness of the quark kinetic term requires that
Dq ∼ 1/r2 as r → ∞. But a winding around S1

∞ necessarily means that ∂q ∼ 1/r. To

cancel this, we must turn on A → i∂q q−1 asymptotically. The winding of the scalar at
infinity is determined by an integer k, defined by

2πk = Tr

∮

S1
∞

i∂θq q−1 = Tr

∮

S1
∞

Aθ = Tr

∫

dx1dx2 B3 (3.7)

This time however, in contrast to the case of magnetic monopoles, there is no long

range magnetic flux. Physically this is because the theory has a mass gap, ensuring
any excitations die exponentially. The result, as we shall, is that the magnetic flux is

confined in the center of the vortex string.

The Lagrangian of equation (3.1) is very spe- x3

phase of q

Figure 11:

cial, and far from the only theory admitting vor-
tex solutions. Indeed, the vortex zoo is well pop-

ulated with different objects, many exhibiting cu-
rious properties. Particularly interesting examples
include Alice strings [148, 149], and vortices in Chern-

Simons theories [150]. In this lecture we shall stick
with the vortices arising from (3.1) since, as we

shall see, they are closely related to the instantons
and monopoles described in the previous lectures.

To my knowledge, the properties of non-abelian vortices in this model were studied
only quite recently in [151] (a related model, sharing similar properties, appeared at
the same time [152]).

3.2 The Vortex Equations

To derive the vortex equations we once again perform the Bogomoln’yi completing the
square trick (due, once again, to Bogomoln’yi [14]). We look for static strings in the x3

direction, so make the ansatz ∂0 = ∂3 = 0 and A0 = A3 = 0. We also set φ = 0. In fact
φ will not play a role for the remainder of this lecture, although it will be resurrected
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3. Vortices

In this lecture, we’re going to discuss vortices. The motivation for studying vortices
should be obvious: they are one of the most ubiquitous objects in physics. On table-
tops, vortices appear as magnetic flux tubes in superconductors and fractionally charged

quasi-excitations in quantum Hall fluids. In the sky, vortices in the guise of cosmic
strings have been one one of the most enduring themes in cosmology research. With

new gravitational wave detectors coming on line, there is hope that we may be able
to see the distinctive signatures of these strings as the twist and whip. Finally, and
more formally, vortices play a crucial role in determining the phases of low-dimensional

quantum systems: from the phase-slip of superconducting wires, to the physics of
strings propagating on Calabi-Yau manifolds, the vortex is key.

As we shall see in detail below, in four dimensional theories vortices are string like

objects, carrying magnetic flux threaded through their core. They are the semi-classical
cousins of the more elusive QCD flux tubes. In what follows we will primarily be inter-
ested in the dynamics of infinitely long, parallel vortex strings and the long-wavelength

modes they support. There are a number of reviews on the dynamics of vortices in four
dimensions, mostly in the context of cosmic strings [142, 143, 144].

3.1 The Basics

In order for our theory to support vortices, we must add a further field to our La-
grangian. In fact we must make two deformations

• We increase the gauge group from SU(N) to U(N). We could have done this

before now, but as we have considered only fields in the adjoint representation
the central U(1) would have simply decoupled.

• We add matter in the fundamental representation of U(N). We’ll add Nf scalar
fields qi, i = 1 . . . , Nf .

The action that we’ll work with throughout this lecture is

S =

∫

d4x Tr

(

1

2e2
F µνFµν +

1

e2
(Dµφ)2

)

+

Nf
∑

i=1

|Dµqi|2

−
Nf
∑

i=1

q†iφ
2qi −

e2

4
Tr (

Nf
∑

i=1

qiq
†
i − v2 1N)2 (3.1)

The potential is of the type admitting a completion to N = 1 or N = 2 supersymmetry.
In this context, the final term is called the D-term. Note that everything in the bracket
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of the D-term is an N×N matrix. Note also that the couplings in front of the potential
are not arbitrary: they have been tuned to critical values.

We’ve included a new parameter, v2, in the potential. Obviously this will induce a
vev for q. In the context of supersymmetric gauge theories, this parameter is known as

a Fayet-Iliopoulos term.

We are interested in ground states of the theory with vanishing potential. For Nf <
N , one can’t set the D-term to zero since the first term is, at most, rank Nf , while the
v2 term is rank N . In the context of supersymmetric theories, this leads to spontaneous

supersymmetry breaking. In what follows we’ll only consider Nf ≥ N . In fact, for the
first half of this section we’ll restrict ourselves to the simplest case:

Nf = N (3.2)

With this choice, we can view q as an N ×N matrix qa
i, where a is the color index and

i the flavor index. Up to gauge transformations, there is a unique ground state of the
theory,

φ = 0 , qa
i = vδa

i (3.3)

Studying small fluctuations around this vacuum, we find that all gauge fields and scalars
are massive, and all have the same mass M2 = e2v2. The fact that all masses are equal

is a consequence of tuning the coefficients of the potential.

The theory has a U(N)G ×SU(N)F gauge and flavor symmetry. On the quark fields

q this acts as

q → UqV U ∈ U(N)G, V ∈ SU(N)F (3.4)

The vacuum expectation value (3.3) is preserved only for transformations of the form
U = V , meaning that we have the pattern of spontaneous symmetry breaking

U(N)G × SU(N)F → SU(N)diag (3.5)

This is known as the color-flavor-locked phase in the high-density QCD literature [145].

When N = 1, our theory is the well-studied abelian Higgs model, which has been
known for many years to support vortex strings [146, 147]. These vortex strings also
exist in the non-abelian theory and enjoy rather rich properties, as we shall now see.

Let’s choose the strings to lie in the x3 direction. To support such objects, the scalar
fields q must wind around S1

∞ at spatial infinity in the (x1, x2) plane, transverse to the
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Vacuum
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known for many years to support vortex strings [146, 147]. These vortex strings also
exist in the non-abelian theory and enjoy rather rich properties, as we shall now see.

Let’s choose the strings to lie in the x3 direction. To support such objects, the scalar
fields q must wind around S1

∞ at spatial infinity in the (x1, x2) plane, transverse to the

– 71 –

breaks symmetry
string. As we’re used to by now, such winding is characterized by the homotopy group,
this time

Π1 (U(N) × SU(N)/SU(N)diag) ∼= Z (3.6)

Which means that we can expect vortex strings supported by a single winding number
k ∈ Z. To see that this winding of the scalar is associated with magnetic flux, we use

the same trick as for monopoles. Finiteness of the quark kinetic term requires that
Dq ∼ 1/r2 as r → ∞. But a winding around S1

∞ necessarily means that ∂q ∼ 1/r. To

cancel this, we must turn on A → i∂q q−1 asymptotically. The winding of the scalar at
infinity is determined by an integer k, defined by

2πk = Tr

∮

S1
∞

i∂θq q−1 = Tr

∮

S1
∞

Aθ = Tr

∫

dx1dx2 B3 (3.7)

This time however, in contrast to the case of magnetic monopoles, there is no long

range magnetic flux. Physically this is because the theory has a mass gap, ensuring
any excitations die exponentially. The result, as we shall, is that the magnetic flux is

confined in the center of the vortex string.

The Lagrangian of equation (3.1) is very spe- x3

phase of q

Figure 11:

cial, and far from the only theory admitting vor-
tex solutions. Indeed, the vortex zoo is well pop-

ulated with different objects, many exhibiting cu-
rious properties. Particularly interesting examples
include Alice strings [148, 149], and vortices in Chern-

Simons theories [150]. In this lecture we shall stick
with the vortices arising from (3.1) since, as we

shall see, they are closely related to the instantons
and monopoles described in the previous lectures.

To my knowledge, the properties of non-abelian vortices in this model were studied
only quite recently in [151] (a related model, sharing similar properties, appeared at
the same time [152]).

3.2 The Vortex Equations

To derive the vortex equations we once again perform the Bogomoln’yi completing the
square trick (due, once again, to Bogomoln’yi [14]). We look for static strings in the x3

direction, so make the ansatz ∂0 = ∂3 = 0 and A0 = A3 = 0. We also set φ = 0. In fact
φ will not play a role for the remainder of this lecture, although it will be resurrected
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To find a string need 
winding at infinity

U(N) gauge theory with fundamental matter

of the D-term is an N×N matrix. Note also that the couplings in front of the potential
are not arbitrary: they have been tuned to critical values.

We’ve included a new parameter, v2, in the potential. Obviously this will induce a
vev for q. In the context of supersymmetric gauge theories, this parameter is known as

a Fayet-Iliopoulos term.

We are interested in ground states of the theory with vanishing potential. For Nf <
N , one can’t set the D-term to zero since the first term is, at most, rank Nf , while the
v2 term is rank N . In the context of supersymmetric theories, this leads to spontaneous

supersymmetry breaking. In what follows we’ll only consider Nf ≥ N . In fact, for the
first half of this section we’ll restrict ourselves to the simplest case:

Nf = N (3.2)

With this choice, we can view q as an N ×N matrix qa
i, where a is the color index and

i the flavor index. Up to gauge transformations, there is a unique ground state of the
theory,

φ = 0 , qa
i = vδa

i (3.3)

Studying small fluctuations around this vacuum, we find that all gauge fields and scalars
are massive, and all have the same mass M2 = e2v2. The fact that all masses are equal

is a consequence of tuning the coefficients of the potential.
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BPS equations for vortexin the following lecture. The tension (energy per unit length) of the string is

Tvortex =

∫

dx1dx2 Tr

(

1

e2
B2

3 +
e2

4
(

N
∑

i=1

qiq
†
i − v2 1N)2

)

+
N
∑

i=1

|D1qi|2 + |D2qi|2

=

∫

dx1dx2 1

e2
Tr

(

B3 ∓
e2

2
(

N
∑

i=1

qiq
†
i − v2 1N)

)2

+
N
∑

i=1

|D1qi ∓ iD2qi|2

∓v2

∫

dx1dx2 TrB3 (3.8)

To get from the first line to the second, we need to use the fact that [D1, D2] = −iB3,
to cancel the cross terms from the two squares. Using (3.7), we find that the tension

of the charge |k| vortex is bounded by

Tvortex ≥ 2πv2 |k| (3.9)

In what follows we focus on vortex solutions with winding k < 0. (These are mapped

into k > 0 vortices by a parity transformation, so there is no loss of generality). The
inequality is then saturated for configurations obeying the vortex equations

B3 =
e2

2
(
∑

i

qiq
†
i − v2 1N) , Dzqi = 0 (3.10)

where we’ve introduced the complex coordinate z = x1 + ix2 on the plane transverse to
the vortex string, so ∂z = 1

2(∂1 − i∂2). If we choose N = 1, then the Lagrangian (3.1)

reduces to the abelian-Higgs model and, until recently, attention mostly focussed on
this abelian variety of the equations (3.10). However, as we shall see below, when the

vortex equations are non-abelian, so each side of the first equation (3.10) is an N ×N
matrix, they have a much more interesting structure.

Unlike monopoles and instantons, no analytic solution to the vortex equations is

known. This is true even for a single k = 1 vortex in the U(1) theory. There’s nothing
sinister about this. It’s just that differential equations are hard and no one has decided

to call the vortex solution a special function and give it a name! However, it’s not
difficult to plot the solution numerically and the profile of the fields is sketched below.

The energy density is localized within a core of the vortex of size L = 1/ev, outside of
which all fields return exponentially to their vacuum.

The simplest k = 1 vortex in the abelian N = 1 theory has just two collective

coordinates, corresponding to its position on the z-plane. But what are the collective
coordinates of a vortex in U(N). We can use the same idea we saw in the instanton
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Figure 12: A sketch of the vortex profile.

lecture, and embed the abelian vortex — let’s denote it q! and A!
z — in the N × N

matrices of the non-abelian theory. We have

Az =















A!
z

0
. . .

0















, q =















q!

v
. . .

v















(3.11)

where the columns of the q matrix carry the color charge, while the rows carry the flavor

charge. We have chosen the embedding above to lie in the upper left-hand corner but
this isn’t unique. We can rotate into other embeddings by acting with the SU(N)diag

symmetry preserved in the vacuum. Dividing by the stabilizer, we find the internal
moduli space of the single non-abelian vortex to be

SU(N)diag/S[U(N − 1) × U(1)] ∼= CP
N−1 (3.12)

The appearance of CP
N−1 as the internal space of the vortex is interesting: it tells us

that the low-energy dynamics of a vortex string is the much studied quantum CP
N−1

sigma model. We’ll see the significance of this in the following lecture. For now, let’s
look more closely at the moduli of the vortices.

3.3 The Moduli Space

We’ve seen that a single vortex has 2N collective coordinates: 2 translations, and

2(N − 1) internal modes, dictating the orientation of the vortex in color and flavor
space. We denote the moduli space of charge k vortices in the U(N) gauge theory as
Vk,N . We’ve learnt above that

V1,N
∼= C × CP

N−1 (3.13)
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For higher k

What about higher k? An index theorem [154, 151] tells us that the number of collective
coordinates is

dim(Vk,N) = 2kN (3.14)

Look familiar? Remember the result for k instantons in U(N) that we found in lecture
1: dim(Ik,N) = 4kN . We’ll see more of this similarity between instantons and vortices

in the following.

As for previous solitons, the counting (3.14) has a natural interpretation: k parallel
vortex strings may be placed at arbitrary position, each carrying 2(N −1) independent
orientational modes. Thinking physically in terms of forces between vortices, this is a

consequence of tuning the coefficient e2/4 in front of the D-term in (3.1) so that the
mass of the gauge bosons equals the mass of the q scalars. If this coupling is turned

up, the scalar mass increases and so mediates a force with shorter range than the gauge
bosons, causing the vortices to repel. (Recall the general rule: spin 0 particles give rise

to attractive forces; spin 1 repulsive). This is a type II non-abelian superconductor. If
the coupling decreases, the mass of the scalar decreases and the vortices attract. This
is a non-abelian type I superconductor. In the following, we keep with the critically

coupled case (3.1) for which the first order equations (3.10) yield solutions with vortices
at arbitrary position.

3.3.1 The Moduli Space Metric

There is again a natural metric on Vk,N arising from taking the overlap of zero modes.

These zero modes must solve the linearized vortex equations together with a suitable
background gauge fixing condition. The linearized vortex equations read

DzδAz̄ −Dz̄δAz =
ie2

4
(δq q† + q δq†) and Dzδq = iδAzq (3.15)

where q is to be viewed as an N × N matrix in these equations. The gauge fixing
condition is

DzδAz̄ + Dz̄δAz = −ie2

4
(δq q† − q δq†) (3.16)

which combines with the first equation in (3.15) to give

Dz̄δAz = −ie2

4
δq q† (3.17)

Then, from the index theorem, we know that there are 2kN zero modes (δαAz, δαq),

α, β = 1, . . . , 2kN solving these equations, providing a metric on Vk,N defined by

gαβ = Tr

∫

dx1dx2 1

e2
δαAaδβAz̄ +

1

2
δαqδβq† + h.c. (3.18)
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T � 2⇡v2|k| bound saturates for BPS states

Again:
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Figure 2: Various regimes for the monopoles and flux tubes in the simplest case of two flavors.

down to U(1)(N−1) by a VEV of the SU(N) adjoint scalar

〈ak
l 〉 = − 1√

2
δk
l Ml . (6.3)

Thus, there are ’t Hooft–Polyakov monopoles embedded in the broken gauge

SU(N). Classically, on the Coulomb branch the masses of (N − 1) elementary
monopoles are proportional to

|(MA − MA+1) |/g2
2

This is shown in the upper left corner of Fig. 2 for the case

N = 2 , ∆m ≡ M1 − M2 .

In the limit (MA − MA+1) → 0 the monopoles tend to become massless, for-

mally, in the classical approximation. Simultaneously their size become infinite
[28]. The mass and size are stabilized by confinement effects which are highly
quantum. The confinement of monopoles occurs in the Higgs phase, at ξ '= 0.

• Now we introduce the FI parameter ξ which triggers the squark condensation.
The theory is in the Higgs phase. We still keep N = 2 breaking parameters h

and µ’s vanishing,

µ1 = µ2 = 0, h = 0, ξ '= 0, M '= 0. (6.4)
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Hanany-Tong model as U(1) GLSM

On Weighted Nonlinear Sigma Models

Abstract

Sigma models on non-compact target spaces have a number of interest-
ing properties which their compact counterparts (e.g. CPN , O(N)) do
not possess. We discuss perturbative aspects of these models.

1 Introduction
Sec:Intro

2 From the Hanany-Tong model to the ZN model
Sec:HananyTongModel

The U(Nc) SQCD with Nf flavors is known to have semi-local string solutions [
Shifman:2006kd
1]. According

to Hanany and Tong conjecture [
Hanany:2003hp
2] the low energy e⇤ective theory on the worldsheet of the

string is given by the strong coupling limit e ⇥ ⇤ of the two-dimensional U(1) gauge theory
with the following Lagrangian

L =

↵
d4⇥

⌃

�
Nc⌦

i=1

⇥†
i e

V⇥i +
Ñ⌦

i=1

�⇥†
i e

�V �⇥i � rV +
1

2e2
�†�

⌥

 , (2.1) eq:LagrWeightedSigma

where � is the field strength for the vector multiplet V and Ñ = Nf �Nc. Matter superfields

⇥i = ni + ⇥̄⌅i + ⇥⌅̄i + ⇥̄⇥F i , i = 1, . . . , Nc

�⇥j = ⇧j + ⇥̄�j + ⇥�̄j + ⇥̄⇥F̃ j , j = 1, . . . , Ñ (2.2)

Vector field in Wess-Zumino gauge

V = ⇥+⇥̄+(A0 + A3) + ⇥�⇥̄�(A0 � A3)� ⇥�⇥̄+⌃ � ⇥�⇥̄+⌃̄ + ⇥̄2⇥⇤+ ⇥2⇥̄⇤̄+ ⇥̄⇥⇥̄⇥D , (2.3)

and twisted chiral field � = D+D̄�V reads

� = ⌃ + i⇥+⇤̄+ � i⇥̄�⇤� + ⇥+⇥̄�(D � iF01) . (2.4)

In components the model reads check all compts formulae!

L =
1

e2
|⌥µ⌃|2 +

1

e2
i⇤̄⌥/⇤� 1

4e2
Fµ�F

µ�

+ |⌅µni|2 +
⇧⇧⌅̄µ⇧i

⇧⇧2 + i⌅̄iL⌅R⌅
i
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Note that the Fayet-Illiopolous (FI) parameter r in (
eq:LagrWeightedSigmaeq:LagrWeightedSigma
2.1) can have di⇤erent signs, as was

shown by Witten [
Witten:1993yc
3], interpolation between the regions with di⇤erent values of r corresponds

to transition between Calabi-Yau and Landau-Ginzburg sigma models. Also physics of the
model depends on the relationship between Nc and Ñ , to ensure

1

One loop twisted effective superpotential is exact in (2,2)

gives vacua of the theory and its BPS spectrum
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We wish to emphasize here that (4.2) is exact only if applied to the BPS
sector of the theory. Once we start looking at perturbations around the
vacua given by minimization of the twisted superpotential, formula (4.2), or
its massive generalization, is of no use. Still, when we treat the model in the
large-N approximation, the e↵ective potential

V (�) =
�

�
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e↵

�

�

�

2

, (4.4)

give the correct spectrum of the theory. We will address both questions in
the next section.

Finally let us note that twisted masses can be introduced in the theory
by gauging each U(1) factor in the U(1)N

f

group by its own gauge field with
non-zero �-component (equal to associated mass) [18]. This leads to the
following generalization of the e↵ective twisted superpotential (4.2) to the
case of non-zero twisted masses:
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Clearly this e↵ective twisted superpotential identically coincides with the one
for HT model [18].

This fact together with the matching of the kink spectrum obtained at
the classical level in Ref. [1], leads us to claim the matching of the BPS
spectra of the zn and HT at both semiclassical and quantum levels. As a
consequence, the BPS spectrum of the bulk theory coincides with the BPS
spectrum of the true e↵ective theory on semilocal vortices, as expected.

5 Large-N Solution of the zn Model

In this section we will study the zn model at large N along the lines of
Witten’s analysis [17]. Namely, we will consider the limit N ! 1, eN ! 1,
while the ratio of eN and N is kept fixed. The representations (2.10) and
(3.4) suggest that to the leading order in N the solutions of zn and the HT
models are the same. The reason for this is that all terms in the second
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AGT in NS limit



Omega background

SO(4) ! SO(2)⇥ SO(2)

2 Setup
sec:Setup

We are intended to follow the notations of Shifman and Yung in Euclidean signature. We
benefit from this while studying static configurations, where in the gauge A

0

= 0 the La-
grangian is nothing but the energy density.

Omega deformation. Torus action on R4 is given by two matrices ⌦m
an , a = 5, 6 which act

by rotations in 12 and 34 planes respectively. In the NS limit matrix ⌦
6

vanishes, therefore
we shall denote ⌦ = ⌦

5

. Metric on the deformed torus reads

GABdx
A
dx

B = Adzdz̄ + (dxm + ⌦m
dz + ⌦̄m

dz̄)2 , (2.1) eq:MetricTorusOmega

where z = x

5 + ix

6

, z̄ = x

5 � ix

6 and the vector field ⌦m = ⌦m
n x

n. In the notations of [
Ito:2011wv
6]

⌦m = (�i✏x

2

, i✏x

1

, 0, 0). The components of the metric in the limit A ! 0 read

Gmn = �mn , Gam = ⌦am , Gab = �ab + ⌦m
a ⌦bm . (2.2)

In order to study deformations of the action is convenient to use dual frame description
GAB = e

(c)
A e

(c)
B . The components of sixbeins read

e

(m)

n = �

m
n , e

(m)

a = ⌦m
a , e
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m = 0 , e
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b = �
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b . (2.3) eq:vielbeins

Supersymmetry algebra. Supersymmetry algebra for N = 2 theory has the following
form

{QI
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I
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I
J ,

{QI
↵, Q

J
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IJ
Z

mon

+ (Z
d.w.

)IJ↵� . (2.4)

There are three types on central charges: string, monopole and domain wall types.
The full global symmetry of the theory is SU(2)L ⇥ SU(2)R ⇥ SU(2)R ⇥ SU(2)c. It is

broken by the Omega background in the NS limit to SU(2)R+R ⇥ SU(2)c. Twisted super-
charges

Q = �

↵
I Q

I
↵ , Qm = (�̄m)

I↵
QI↵ , Qmn = (�mn)

↵
IQ

I
↵ . (2.5)

The former operator above is also known as BRST operator. Omega deformation in the NS
limit breaks Lorentz invariance in four dimensions leaving only four supercharges which form
(2, 2) theory. The (2,2) SUSY algebra is generated by Q
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2

, Q̄

13

, Q̄

14

[
Ito:2011wv
6] and reads work

out Donaldson-Witten twist

{Qm, Q̄} = 2Pm + 2Zm . . . (2.6)
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↵ = 1

2

(�m)I↵⇣m , ⇣̄I,↵̇ = 1

2

✏I↵̇⇣̄ +
1

2

(�mn)I↵̇⇣̄
mn

, (2.7)
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4
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The AGT duality

Liouville theory on 2-sphere 
with 4 punctures at 1, 1, q, 0

4d U(2) SQCD w/ 4 flavors
with masses m1,m2,m3,m4

(
eq:KZeq
5.10) for the dual WZNW model cite with level k and b2 = �(k + 2)�1. The classical limit
corresponds to taking k ! �2

� 1

k + 2

d (z
i

)

dz
i

= H
Gaud

 (z
i

) , i = 1, . . . , L , (6.5) eq:KZClassical

Here  (z
i

) is a conformal block of a classical Liouville theory on S2 as a function of the
punctures’ coordinates, and H

Gaud

is the Hamiltonian of the rational Gaudin model. One
can also probe Liouville conformal blocks with surface operator insertions [

Alday:2009fs
49], those also

satisfy Gaudin eigenvalue problem. Some details about the Gaudin model are given in
App.

sec:GaudLiouville
A. The rescaled conformal dimensions of chiral operators therefore become

�
i

= ��i

b2
, (6.6) eq:rescaleddims

as b ! 1 . For S2 with four punctures at 1, 1, q and 0 respectively from (
eq:ChiralPrimConfDim
6.2,

eq:alphas
6.3) and (

eq:rescaleddims
6.13)

we obtain

�
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✓
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b
� 1
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◆
,

�
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= �
⇣µ

0

b
� 1

⌘ µ
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b
,

�
3
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⇣µ

1

b
� 1

⌘ µ
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b
,
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✓
eµ
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b
� 1

2

◆✓
eµ
1

b
+

1

2

◆
, (6.7)

as b ! 1. Our next step is to allow the mass parameters µ
a

and eµ
a

scale with b upon
identification with the 4d theory.

6.2 N = 2 SQCD in the NS Omega background

On the gauge theory side we compute the Nekrasov partition function for the 4d N = 2
SQCD with mass parameters µ

0

, eµ
0

, µ
1

, eµ
1

whose instanton part

Z
inst

(a, µ
0

, eµ
0

, µ
1

, eµ
1

) = (1 � q)2µ0(Q�µ1)F µ0 µ1
↵0 ↵ ↵1

(q) , (6.8) eq:PartFuncLiouv

where ↵ = 1

2

Q� a and a is the SU(2) Coulomb modulus. For a generic Omega background,
according to the AGT dictionary, b = 1/✏

2

, so the NS limit ✏
2

! 0 corresponds to the
classical limit in the Liouville theory and b = ✏

1

= ✏ ! 1.
As we have already discussed above, in the NS limit a more appropriate object to study

is not the Nekrasov partition function but the e↵ective twisted superpotential (
eq:EffTwistedExactSuperpot
1.1). As it

was shown in [
Dorey:2011pa
10] that this superpotential also emerges from the (2, 2) GLSM which we have

described in Sec.
sec:SQCD
3.

The DHL paper has done a perturbative calculation in the instanton number q in order to
establish their 4d/2d duality (

DHLduality
3.5) and the proof to all orders was further established in [

Chen:2011sj
19].

DHLC showed that in the NS limit the Nekrasov partition function can be represented as an
integral over a finite set of variables and can be evaluated, and the saddle point condition is

32

the XXX chain on the classical level was studied in [
Mironov:2012uh
47]. The quantum analogue, together

with its brane interpretation, was discussed above in Sec.
sec:bispec
5.2. Now we shall start with the

left column of Fig.
fig:roadmap
6 by reminding ourselves how the Gaudin model is related to Liouville

conformal blocks, and further on, by means of the bispectral duality, we shall connect the
story to the Heisenberg SL(2) chain and to the 4d gauge theory.

6.1 Liouville theory and rational Gaudin model

Recall that the Liouville theory has central charge

c = 1 + 6Q2 , Q = b+
1

b
, (6.1)

and in the classical limit b ! 1 so Q ! 1 as well. Let us now consider a conformal
block F µ0 µ1

↵0 ↵ ↵1
(q) of the Virasoro algebra with central charge c ! 1 for the four primary

operators of dimensions

�
1

= ↵
0

(Q � ↵
0

) , �
2

= µ
0

(Q � µ
0

) , �
3

= µ
1

(Q � µ
1

) , �
4

= ↵
1

(Q � ↵
1

) , (6.2) eq:ChiralPrimConfDim

inserted at points 1, 1, q, 0 respectively on the S2 with an intermediate s-channel state of
dimension � = ↵(Q � ↵). In the above formula

↵
0

= 1

2

Q+ eµ
0

, ↵ = 1

2

Q+ a , ↵
1

= 1

2

Q+ eµ
1

, (6.3) eq:alphas

where a is the SU(2) Coulomb branch coordinate. In the above formulae the mass parameters
represent the following linear combinations of the SQCD quark masses m

1,2,3,4

µ
0

= 1

2

(m
1

+m
2

), eµ
0

= 1

2

(m
1

� m
2

), µ
1

= 1

2

(m
3

+m
4

), eµ
1

= 1

2

(m
3

� m
4

) . (6.4)

There is an obvious notational conflict with [
Alday:2009aq
11], where µ’s and m’s are interchanged com-

pared to our paper. We had to switch the notations in order to be consistent with Sec.
sec:SQCD
3,

were m’s are used for the quark masses. As far as the rest of the notations are concerned,
they will be in agreement with [

Alday:2009aq
11]. Note that in Sec.

sec:SQCD
3 we treated all the four flavors as

fundamental hypermultiplets, however, in [
Alday:2009aq
11] as well as in [

Dorey:2011pa
10] two of them, with masses m

3

and m
4

are considered to be fundamental and two others, with masses m
1

and m
2

to be anti
fundamental. For the purposes of Sec.

sec:SQCD
3 this turned out to be a mild di↵erence and we were

able to identify the 4d and 2d theories by studying the vortex e↵ective theory. Also from the
GLSM perspective it was natural to distinct fundamental and antifundamental fields. In this
section we have to be more careful about this issue as contributions from the fundamental
and antifundamental multiplets to the Nekrasov partition at finite ✏ are di↵erent.

Note that all conformal dimensions (
eq:ChiralPrimConfDim
6.2) diverge at least linearly with b, however, as

we shall later see, in order to match the Liouville CFT with the four dimensional theory
in this limit, the dimensions will diverge quadratically and proper regularization is needed.
Teschner in [

Teschner:2010je
48] have identified e↵ective twisted superpotential (

eq:EffTwistedExactSuperpot
1.1)8 with the NS limit of a

Liouville conformal block on the sphere as well as the proper regularization of the conformal
dimensions. The Liouville conformal block on the sphere was found to satisfy the KZ equation

8According to the NS dictionary this is also a Yang-Yang function

31

the XXX chain on the classical level was studied in [
Mironov:2012uh
47]. The quantum analogue, together

with its brane interpretation, was discussed above in Sec.
sec:bispec
5.2. Now we shall start with the

left column of Fig.
fig:roadmap
6 by reminding ourselves how the Gaudin model is related to Liouville

conformal blocks, and further on, by means of the bispectral duality, we shall connect the
story to the Heisenberg SL(2) chain and to the 4d gauge theory.

6.1 Liouville theory and rational Gaudin model

Recall that the Liouville theory has central charge

c = 1 + 6Q2 , Q = b+
1

b
, (6.1)

and in the classical limit b ! 1 so Q ! 1 as well. Let us now consider a conformal
block F µ0 µ1

↵0 ↵ ↵1
(q) of the Virasoro algebra with central charge c ! 1 for the four primary

operators of dimensions

�
1

= ↵
0

(Q � ↵
0

) , �
2

= µ
0

(Q � µ
0

) , �
3

= µ
1

(Q � µ
1

) , �
4

= ↵
1

(Q � ↵
1

) , (6.2) eq:ChiralPrimConfDim

inserted at points 1, 1, q, 0 respectively on the S2 with an intermediate s-channel state of
dimension � = ↵(Q � ↵). In the above formula

↵
0

= 1

2

Q+ eµ
0

, ↵ = 1

2

Q+ a , ↵
1

= 1

2

Q+ eµ
1

, (6.3) eq:alphas

where a is the SU(2) Coulomb branch coordinate. In the above formulae the mass parameters
represent the following linear combinations of the SQCD quark masses m

1,2,3,4

µ
0

= 1

2

(m
1

+m
2

), eµ
0

= 1

2

(m
1

� m
2

), µ
1

= 1

2

(m
3

+m
4

), eµ
1

= 1

2

(m
3

� m
4

) . (6.4)

There is an obvious notational conflict with [
Alday:2009aq
11], where µ’s and m’s are interchanged com-

pared to our paper. We had to switch the notations in order to be consistent with Sec.
sec:SQCD
3,

were m’s are used for the quark masses. As far as the rest of the notations are concerned,
they will be in agreement with [

Alday:2009aq
11]. Note that in Sec.

sec:SQCD
3 we treated all the four flavors as

fundamental hypermultiplets, however, in [
Alday:2009aq
11] as well as in [

Dorey:2011pa
10] two of them, with masses m

3

and m
4

are considered to be fundamental and two others, with masses m
1

and m
2

to be anti
fundamental. For the purposes of Sec.

sec:SQCD
3 this turned out to be a mild di↵erence and we were

able to identify the 4d and 2d theories by studying the vortex e↵ective theory. Also from the
GLSM perspective it was natural to distinct fundamental and antifundamental fields. In this
section we have to be more careful about this issue as contributions from the fundamental
and antifundamental multiplets to the Nekrasov partition at finite ✏ are di↵erent.

Note that all conformal dimensions (
eq:ChiralPrimConfDim
6.2) diverge at least linearly with b, however, as

we shall later see, in order to match the Liouville CFT with the four dimensional theory
in this limit, the dimensions will diverge quadratically and proper regularization is needed.
Teschner in [

Teschner:2010je
48] have identified e↵ective twisted superpotential (

eq:EffTwistedExactSuperpot
1.1)8 with the NS limit of a

Liouville conformal block on the sphere as well as the proper regularization of the conformal
dimensions. The Liouville conformal block on the sphere was found to satisfy the KZ equation

8According to the NS dictionary this is also a Yang-Yang function

31
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and antifundamental multiplets to the Nekrasov partition at finite ✏ are di↵erent.

Note that all conformal dimensions (
eq:ChiralPrimConfDim
6.2) diverge at least linearly with b, however, as

we shall later see, in order to match the Liouville CFT with the four dimensional theory
in this limit, the dimensions will diverge quadratically and proper regularization is needed.
Teschner in [

Teschner:2010je
48] have identified e↵ective twisted superpotential (

eq:EffTwistedExactSuperpot
1.1)8 with the NS limit of a

Liouville conformal block on the sphere as well as the proper regularization of the conformal
dimensions. The Liouville conformal block on the sphere was found to satisfy the KZ equation

8According to the NS dictionary this is also a Yang-Yang function
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Conformal block matches with instanton partition 
function

In NS limit b ! 1

3g � 3 + n Coulomb branch



But the proof already exists! [Mironov, Morozov]
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Proving AGT relations in the large-c limit

A.Mironov∗ and A.Morozov†

FIAN/TD-24/09
ITEP/TH-44/09

Abstract

In the limit of large central charge c the 4-point Virasoro conformal block becomes a hypergeometric
function. It is represented by a sum of chiral Nekrasov functions, which can also be explicitly evaluated. In
this way the known proof of the AGT relation is extended from special to generic set of external states, but
in the special limit of c = ∞.

1 Introduction

The AGT relations [1]-[15] express conformal blocks [16, 17, 18] of 2d chiral algebras through the Nekrasov
functions [19]-[27]. In the case of the Virasoro block with 4 primaries, the both sides of the relation depend on
6 free parameters: five dimensions, four ”external” and one ”internal” which we parameterize as

∆i =
αi(ε − αi)

ε2ε2
, i = 0, . . . , 4, (1)

and the central charge, parameterized as c = 1 + 6ε2

ε1ε2
, ε = ε1 + ε2. The relation states that

∑

|Y |=|Y ′|

x|Y |γ∆∆1∆2
(Y )Q−1

∆ (Y, Y ′)γ∆∆3∆4
(Y ′) = (1 − x)−ν

∑

Y,Y ′

x|Y |+|Y ′|Z∆;∆2∆2;∆3∆4
(Y, Y ′) (2)

For notations and other details see [4]. The sum goes over pairs of Young diagrams, but in two different
ways: it is diagonal in the number of boxes, |Y | = |Y ′| at the l.h.s., while the summation variables are totally
free (unconstrained) at the r.h.s. These two expansions are related to boson and fermion representations of
more general τ -functions [28], what deserves a more detailed study and discussion. In fact, there are plenty of
different questions about the AGT relations, which connect the transcendental and often controversial field of
Seiberg-Witten theory [29] and integration over singular instanton moduli spaces with the basic group theory
and complex analysis, unified into a difficult but well defined subject of 2d conformal field theory.

In [5, 13, 14] the two limiting cases of (2) were considered: one of large external dimensions, which on
the Nekrasov-SW side corresponds to the case of non-conformal (asymptotically free) SYM models, and the
other one of large internal dimension ∆0, where the nice Zamolodchikov asymptotic formula [30] allows one to
effectively deal with the old controversial case [31] of the instanton calculus in 4d conformal invariant model with
Nf = 2Nc (one can confirm that instanton corrections exist and even odd numbers of instantons contribute,
moreover, the end-point of RG flow is described by an elegant modular relation, at least, for Nc = 2).

This letter is devoted to one more limit, c → ∞. In this limit, either ε1 → 0 or ε2 → 0. Then only the
chiral Nekrasov functions, i.e.those with (Y, Y ′) = ([1n], ∅) or (∅, [1n]) contribute to the r.h.s. of (2), while the
l.h.s. becomes a hypergeometric series. In other words, the limit reproduces the situation studied in [7] and [8],
where the AGT relations were proved (this is the only case where a complete explicit proof already exists) for
the Fateev-Litvinov conformal blocks [32]. The difference is that there restricting the hypergeometricity and
chirality came from a special selection of external states, while here it is enough to take, say, ε1 → 0 without
constraining external states.

2 Hypergeometric conformal block

The fact that

B∆;∆1∆2∆3∆4
(x)

c→∞
−→ 2F1

(

∆ + ∆1 − ∆2, ∆ + ∆3 − ∆4; 2∆; x
)

=

=
∞
∑

n=0

xn

n!

n−1
∏

k=0

(∆ + ∆1 − ∆2 + k)(∆ + ∆3 − ∆4 + k)

2∆ + k
(3)

∗Lebedev Physics Institute and ITEP, Moscow, Russia; mironov@itep.ru; mironov@lpi.ru
†ITEP, Moscow, Russia; morozov@itep.ru
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at large c conformal block becomes a hypergeometric function
[Zamolodchikov]
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Only chiral Nekrasov functions contribute

One can identify each term of the expansion in the instanton number 
with the Taylor series in x for 2F1

Similar to Fateev-Litvinov 
conformal blocks

Both proofs are rather formal and deal with each term 
in the series. Need more physical understanding...
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4d/2d in Omega background [Dorey 
Hollowood Lee]

N=2 SQCD in Omega background 
in NS limit with Nf=2Nc

Theory I and Theory II respectively). The duality applies to the large class of four dimen-

sional theories with N = 2 supersymmetry which can be realised by the standard quiver

construction as in [1]. As our main example we have,

Theory I: Four-dimensional N = 2 SQCD with gauge group SU(L), L hypermultiplets

in the fundamental representation with masses !mF = (m1, . . . , mL) and L hypermultiplets in

the anti-fundamental with masses !mAF = (m̃1, . . . , m̃L). The theory is conformally invariant

in the UV with marginal coupling τ = 4πi/g2 + ϑ/2π.

For some purposes it will also be useful to consider the corresponding U(L) gauge theory.

We consider Theory I in the presence of a particular #1 Nekrasov deformation with param-

eter ε which preserves N = (2, 2) supersymmetry in an R1,1 subspace of four-dimensional

spacetime. The resulting effective theory in two dimensions is characterised by a (twisted)

superpotential, W(I) with holomorphic dependence on (twisted) chiral superfields. The su-

perpotential W(I) receives an infinite series of corrections from perturbation theory and

instantons which encode the four-dimensional origin of the theory. It has an L-dimensional

lattice of stationary points corresponding to supersymmetric vacua of the deformed theory.

These are determined by the F-term equation,

!a = !mF − !nε !n = (n1, . . . , nL) ∈ Z
L

where !a = (a1, . . . , aL) are the usual special Kähler coordinates on the Coulomb branch of

the four-dimensional theory. A generic point on the Coulomb branch of the undeformed

theory can be recovered in an appropriate ε → 0, |!n| → ∞ limit.

We will propose an exact duality of Theory I to a surprisingly simple model defined in

two-dimensions which holds for all positive values of the integers {nl} introduced above;

Theory II: Two-dimensional N = (2, 2) supersymmetric Yang-Mills theory with gauge

group U(N) with L chiral multiplets in the fundamental representation with twisted masses

!MF = (M1, . . . ,ML) and L chiral multiplets in the anti-fundamental with twisted masses

#1As we explain in Section 2.2 below there are a family of inequivalent deformations related to each other

by the low-energy electromagnetic duality group of the four-dimensional theory.

2

(2,2) GLSM w/ gauge group U(K)
massive adjoint and twisted masses

K =
NX

i=1

ni �N

!MAF = (M̃1, . . . , M̃L). In addition the theory has a single chiral multiplet in the adjoint

representation with mass ε. The FI parameter r and 2d vacuum angle θ combine to form a

complex marginal coupling τ̂ = ir + θ/2π.

Theory II has a twisted effective superpotential W(II) which is one-loop exact [2]. In both

Theory I and Theory II, the superpotential determines the chiral ring of supersymmetric

vacuum states.

Claim: The chiral rings of Theory I and Theory II are isomorphic. In particular, there

is a 1-1 correspondence between the supersymmetric vacua of the two theories and, with an

appropriate identification of complex parameters, the values of the twisted superpotentials

coincide in corresponding vacua (up to a vacuum-independent additive constant),

W(I)

on−shell

≡ W(II)

The rank N of the 2d gauge group is identified in terms of the 4d parameters according to

N + L =
∑L

l=1 nl. Thus, when |ε| is small, low values of N correspond to points near the

Higgs branch root of the 4d theory. The deformation parameter ε of Theory I is identified

with adjoint mass of Theory II. The explicit map between the remaining parameters takes

the form,

τ̂ = τ +
1

2
(N + 1) , !MF = !mF − 3

2
!ε , !MAF = !mAF +

1

2
!ε . (1.1)

where !ε = (ε, ε, . . . , ε). Further details of the map between the chiral rings of the two theories

is given in Subection 2.5 below.

The initial motivation for this duality comes from the mysterious connection between

supersymmetric gauge theories and quantum integrable systems developed in a remarkable

series of papers by Nekrasov and Shatashvili (NS) [3, 4]. These authors propose a general

correspondence in which the space of supersymmetric vacua of a theory with N = (2, 2)

supersymmetry is identified with the Hilbert space of a quantum integrable system. The

generators of the chiral ring are mapped to the commuting conserved charges of the integrable

system. The twisted superpotential itself corresponds to the so-called Yang-Yang potential

which is naturally thought of as a generating function for the conserved charges. The ideas
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Figure 4.2: (a) Theory II: n̂ D2 branes suspended between a D4 and an NS5. (b) Theory I:

D4 brane breaks on NS5.

The duality proposed in this paper relates the world-volume theory on a surface operator

probing the Higgs branch of a four dimensional gauge theory with a corresponding bulk

theory (ie the same four dimensional gauge theory without surface operator on its Coulomb

branch). As such it is reminiscent of the AdS/CFT correspondence and other large-N

dualities. This observation can be made precise in the context of geometric engineering

where the Nekrasov partition function of four-dimensional theory is computed by the closed

topological string on a suitable local geometry. More precisely we should consider the closed

string partition function computed using the refined topological vertex of [45]. On the

other hand, the partition function for gauge theory in the presence of a surface operator

corresponds to an open topological string partition function [46, 47]. The proposed duality

therefore asserts the equality of certain open and closed topological string partition functions

and it is natural to ask if it is related to the geometric transition of Gopakumar and Vafa

[31]. Strictly speaking the latter is defined only in the unrefined case corresponding to

ε1 = −ε2 = gs while our duality proposal applies only to the NS limit ε2 → 0. Nevertheless

there are strong similarities which suggest that a “refined” geometric transition should exist

and should be equivalent in the NS limit to the duality proposed in this paper (see also [28]).
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exact proof
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Nekrasov-Shatashvili quantization

from the RG flows and the very RG equation plays the role of the Hamilton-Jacobi equation
in the proper variables. cites

The identification of the proper degrees of freedom for each dynamical system is a subtle
issue. It was clear that they are described in terms of brane embeddings into the internal
space. A proper brane content involves surface operators or, equivalently, nonabelian strings
with large tension. At least in simplest situations degrees of freedom of an integrable system
are identified with embedding coordinates of such strings. String theory is known to have
various dualities which can be made manifest in a brane picture. The connection between
branes and integrable models enables us to relate string theory dualities to those between
integrable models. This question will be widely addressed in the current paper in Sec.

sec:BraneConstruction
5.

The quantum integrable system we are considering in this work can be extracted from the
four dimensional theory in Omega background [

Nekrasov:2002qd
4] with ✏

1

= ✏, ✏
2

= 0 (the so called NS limit).
Given a prepotential of the 4d theory F(a) as a function of the Coulomb branch moduli
parameters a 2d theory of this kind has the following e↵ective exact twisted superpotential

fW(a, ✏) = lim
✏2!0

F(a, ✏, ✏
2

)

✏
2

=
@F(a, ✏, ✏

2

)

@✏
2

�

�

�

✏2=0

, (1.1) eq:EffTwistedExactSuperpot

where ✏
1

is replaced by ✏ [
Nekrasov:2009rc
1]. The F-terms equations of the e↵ective Lagrangian e↵ectively

become two dimensional in the NS limit and are described by fW(a, ✏). For small ✏ formula
(
eq:EffTwistedExactSuperpot
1.1) can be even further simplified

fW(a, ✏) =
F(a)

✏
+ . . . , (1.2)

where the ellipses denote terms which are regular in ✏. This twisted superpotential has
perturbative and instantonic contributions.

Minimization of superpotential (
eq:EffTwistedExactSuperpot
1.1) yields for supersymmetric vacua which, according to

the same authors [
Nekrasov:2009uh,Nekrasov:2009ui
5,6], are intimately connected with quantum integrable systems. Indeed,

according to Nekrasov and Shatashvili, supersymmetric vacua of a two (also three and four)
dimensional N = 2 gauge theory are in one-to-one correspondence with Bethe roots of a
certain integrable system, namely

exp

 

@fW (a)

@a
i

!

= 1 , (1.3) eq:BAEInt

where fW (a) is e↵ective twisted superpotential as a function of coordinates on the Coulomb
branch, can be viewed as a Bethe ansatz equations for some integrable system. This is
consistent with the interpretation of the prepotential with the action in the Whitham system.
Since a is the coordinate variable in the Whitham dynamics one recognizes the momentum
in the exponential.

There also exists a di↵erent well known duality between four dimensional gauge theories
and two dimensional theories (sigma models) [

Dorey:1999zk,Hanany:2004ea
7, 8] (see [

Shifman:2007ce
9] for review, we shall refer to it as

4d/2d duality). A four dimensional theory in question sits at the baryonic root of its Higgs
branch; therefore electric and flavor charges can be combined in a single quantum number.
Together with magnetic charges they form two sets of quantum numbers which parameterize

3

From 4d prepotential to 2d twisted superpotential

at small epsilon
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3

Twisted superpotential is multivalued on Coulomb branch

In this paper we will be mainly concerned with the Nekrasov-Shatashvili limit ε2 → 0 with

ε1 held fixed, where the deformation is restricted to one plane in R4. We define a quantum

prepotential in this limit as,

F ("a, ε) = lim
ε2→0

[

ε1ε2 log Z("a, ε1, ε2)|ε1=ε

]

.

In the further limit ε → 0, the quantum prepotential reduces to the familiar prepotential of

the undeformed theory: F("a, ε) → F("a). Following [39, 41], the quantum prepotential can

be obtained by a suitable deformation of the Seiberg-Witten differential appearing in (2.2),

λ(ε) = λSW + O(ε) ,

with periods,

"a(ε) =
1

2πi

∮

"A

λ(ε) , "aD(ε) =
1

2πi

∮

"B

λ(ε) , (2.10)

such that,

"aD(ε) =
1

2πi

∂

∂"a(ε)
F("a, ε) . (2.11)

For convenience we will suppress the ε dependence of the deformed central charges from now

on and denote them simply as "a and "aD.

For ε "= 0, the four-dimensional N = 2 supersymmetry is broken down to N = (2, 2)

supersymmetry two dimensions. The zero modes of the U(1)L−1 vector multiplet in the

four-dimensional low energy theory give rise to a field strength multiplet in two dimensions.

This multiplet includes the gauge field strength "F01 in the undeformed directions and the

scalar fields "a which parametrize the 4d Coulomb branch. Thus "a is the lowest component

of a twisted chiral superfield in N = (2, 2) superspace. This superfield inherits a twisted

superpotential from the partition function of the four-dimensional theory. The resulting

twisted superpotential is a multi-valued function on the Coulomb branch,

W(I) ("a, ε) =
1

ε
F ("a, ε) − 2πi"k · "a (2.12)

where the integer-valued vector#5 "k ∈ ZL corresponds to the choice of branch. This choice

corresponds to the freedom to shift the 2d vacuum angle associated with each U(1) factor in

#5For an SU(L) theory we should also impose
∑

l
kl = 0.
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from the RG flows and the very RG equation plays the role of the Hamilton-Jacobi equation
in the proper variables. cites

The identification of the proper degrees of freedom for each dynamical system is a subtle
issue. It was clear that they are described in terms of brane embeddings into the internal
space. A proper brane content involves surface operators or, equivalently, nonabelian strings
with large tension. At least in simplest situations degrees of freedom of an integrable system
are identified with embedding coordinates of such strings. String theory is known to have
various dualities which can be made manifest in a brane picture. The connection between
branes and integrable models enables us to relate string theory dualities to those between
integrable models. This question will be widely addressed in the current paper in Sec.

sec:BraneConstruction
5.

The quantum integrable system we are considering in this work can be extracted from the
four dimensional theory in Omega background [

Nekrasov:2002qd
4] with ✏

1

= ✏, ✏
2

= 0 (the so called NS limit).
Given a prepotential of the 4d theory F(a) as a function of the Coulomb branch moduli
parameters a 2d theory of this kind has the following e↵ective exact twisted superpotential

fW(a, ✏) = lim
✏2!0

F(a, ✏, ✏
2

)

✏
2

=
@F(a, ✏, ✏

2

)

@✏
2

�

�

�

✏2=0

, (1.1) eq:EffTwistedExactSuperpot

where ✏
1

is replaced by ✏ [
Nekrasov:2009rc
1]. The F-terms equations of the e↵ective Lagrangian e↵ectively

become two dimensional in the NS limit and are described by fW(a, ✏). For small ✏ formula
(
eq:EffTwistedExactSuperpot
1.1) can be even further simplified

fW(a, ✏) =
F(a)

✏
+ . . . , (1.2)

where the ellipses denote terms which are regular in ✏. This twisted superpotential has
perturbative and instantonic contributions.

Minimization of superpotential (
eq:EffTwistedExactSuperpot
1.1) yields for supersymmetric vacua which, according to

the same authors [
Nekrasov:2009uh,Nekrasov:2009ui
5,6], are intimately connected with quantum integrable systems. Indeed,

according to Nekrasov and Shatashvili, supersymmetric vacua of a two (also three and four)
dimensional N = 2 gauge theory are in one-to-one correspondence with Bethe roots of a
certain integrable system, namely

exp

 

@fW (a)

@a
i

!

= 1 , (1.3) eq:BAEInt

where fW (a) is e↵ective twisted superpotential as a function of coordinates on the Coulomb
branch, can be viewed as a Bethe ansatz equations for some integrable system. This is
consistent with the interpretation of the prepotential with the action in the Whitham system.
Since a is the coordinate variable in the Whitham dynamics one recognizes the momentum
in the exponential.

There also exists a di↵erent well known duality between four dimensional gauge theories
and two dimensional theories (sigma models) [

Dorey:1999zk,Hanany:2004ea
7, 8] (see [

Shifman:2007ce
9] for review, we shall refer to it as

4d/2d duality). A four dimensional theory in question sits at the baryonic root of its Higgs
branch; therefore electric and flavor charges can be combined in a single quantum number.
Together with magnetic charges they form two sets of quantum numbers which parameterize

3

Quantization of  a-m cycle

. ....

α1α2αL

x̂2L x̂2L−1 x̂4 x̂3 x̂2 x̂1

X-plane

Figure 2.3: The cut x-plane corresponding to the curve ΓL.

The key feature of the semiclassical limit is that the Bethe roots {xj} condense to form cuts

in the complex plane. In this limit the resolvent L(x) = d logQ(x)/dx is naturally defined on

a double cover of the x-plane with two sheets joined along these cuts. The resulting Riemann

surface is exactly the the spectral curve ΓL and the meromorphic differential L(x)dx can

be identified with the Seiberg-Witten differential λSW . For the case of the homogeneous

untwisted chain of spin zero, the semiclassical limit is described in detail in Section 2.2 of

[36]. In this case the Bethe roots condense to form branch cuts on the real axis. Working

in the vicinity of the ferromagnetic vacuum, the curve can be represented as a double cover

of the x plane with 2L real branch points#8 at x = x̂1 ≥ x̂2 ≥ . . . ≥ x̂2L as shown in

Figure (2.3). We also define one-cycles αl, l = 1, . . . , L surrounding each branch cut. In the

semiclassical limit, the quantum SL(2,R) spin chain gives rise to a particular real slice of

the complex classical spin chain considered above. The reality conditions select a middle-

dimensional subspace of the original complex phase space. Allowing generic complex values

of the moduli corresponds to working with a complexification of the spin chain in which

SL(2,R) is replaced by SL(2,C).

At the classical level, the moduli of the curve vary continuously. The leading semiclassical

approximation the quantum spectrum arises from imposing appropriate Bohr-Sommerfeld

quantisation conditions which are formulated in terms of the periods of the meromorphic

differential L(x)dx on ΓL which coincides with the Seiberg-Witten differential λSW ,

1

2π

∮

αl

λSW = ! n̂l , (2.22)

#8Strictly speaking this picture is correct with a real twist parameter slightly different from unity. In the

special case q = 1, one cut degenerates and the genus of the curve drops to L− 2.
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Omega Deformation. Our task now is to construct the Omega deformed theory. As
in the pure SYM case the deformation can naturally be understood in terms of the six
dimensional N = 1 theory [

Nekrasov:2003rj
12]. It is convenient to use dual frame description G

AB

= e
(c)

A

e
(c)

B

.
The components of sixbeins read

e(m)

n

= �m
n

, e(m)

a

= ⌦m

a

, e(a)
m

= 0 , e
(a)

b

= �a
b

. (3.7) eq:vielbeins

Using the above equation we can rewrite the kinetic term for squarks

r
a

q = e(B)

a

r
(B)

q = r
a

q � i⌦m

a

r
m

q . (3.8)

Thus we have
|r

A

q|2 = |r
m

q|2 + |(�� i⌦mr
m

)q|2 , (3.9)

and analogously the kinetic term for anti squarks. The bosonic part of the action after quark
masses m

i

and em
i

are included reads

L = 1

4g

2F
2

mn

+ |r
m

�� F
mn

⌦̄n|2 + g

2

2

|�⌧a�̄� ir
m

(⌦m�̄a � ⌦̄m�a) + q̄⌧aq � eq⌧aēq|2
+ 1

2

|r
m

q|2 + 1

2

|r
m

eq|2 + 1

2

|(�� m
i

� i⌦mr
m

)q
i

|2 + 1

2

|(�� em
i

� i⌦mr
m

)eq
i

|2
+ 2g2|eq⌧aq|2 + g

2

2

|eq
i

q
i

� N⇠
FI

|2 + g

2

8

(|q|2 � |eq|2)2 . (3.10)

Theory has U(N)
c

⇥ SU(N)
f

global color and flavor symmetry.

Supersymmetry transformations. In what follows it is convenient to package squarks
and antisquarks into a single vector qif = (qi, ˜̄qi), where f = 1 for squarks and f = 2 for
antisquarks. Supersymmetry acts on the fields in the following way5

��a = �
p
2⇣↵f (�a

↵f

� ⌦↵↵̇�̄a
↵̇f

) + ⇣̄f
↵̇

⌦↵↵̇�a
f↵

,

��a f
↵

= �⇣�fF a

↵�

+ i⇣g
↵

Da f

g

+ i
p
2⇣̄ ↵̇f

⇣

r
↵↵̇

�a � F a

↵↵̇�

˙

�

⌦�

˙

�

⌘

,

�qif =
p
2⇣↵f i

↵

+ i
p
2⇣̄f

↵̇

¯̃ i↵̇ ,

� i

↵

= �i
p
2⇣̄ ↵̇

f

r
↵↵̇

qif + 2i⇣f
↵

⇣

�̄
a

(⌧a)i
j

qj
f

� i⌦�

˙

�r
�

˙

�

qi
f

⌘

, (3.11)

where i = 1, . . . , N runs through fundamental representation, a = 1, . . . , N2 runs through
the adjoint representation of U(N), f, g = 1, 2 denote SU(2) R-symmetry index, and the
D-term contribution in the first line above has the following form

Da f

g

= �g2
�

q̄
g

⌧aqf + �̄⌧a��f
g

� ⌅a f

g

�

, (3.12)

where the generalized FI-term reads

⌅a f

g

= ir
↵↵̇

(⌦̄↵↵̇�a � ⌦↵↵̇�̄a)�f
g

+ ⇠f
FI g

�a
N

2 . (3.13) eq:GeneralizedFI

The first term we have already seen in the previous section, similar story here – it is generated
by the Omega background. The second contribution to ⌅ is the standard FI term. Here,

5We use chiral notation here.
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(2,2) SUSY is the same as for BPS vortices

Omega Deformation. Our task now is to construct the Omega deformed theory. As
in the pure SYM case the deformation can naturally be understood in terms of the six
dimensional N = 1 theory [

Nekrasov:2003rj
12]. It is convenient to use dual frame description G

AB

= e
(c)

A

e
(c)

B

.
The components of sixbeins read

e(m)

n

= �m
n

, e(m)

a

= ⌦m

a

, e(a)
m

= 0 , e
(a)

b

= �a
b

. (3.7) eq:vielbeins

Using the above equation we can rewrite the kinetic term for squarks

r
a

q = e(B)

a

r
(B)

q = r
a

q � i⌦m

a

r
m

q . (3.8)

Thus we have
|r

A

q|2 = |r
m

q|2 + |(�� i⌦mr
m

)q|2 , (3.9)

and analogously the kinetic term for anti squarks. The bosonic part of the action after quark
masses m

i

and em
i

are included reads

L = 1

4g

2F
2

mn

+ |r
m

�� F
mn

⌦̄n|2 + g

2

2

|�⌧a�̄� ir
m

(⌦m�̄a � ⌦̄m�a) + q̄⌧aq � eq⌧aēq|2
+ 1

2

|r
m

q|2 + 1

2

|r
m

eq|2 + 1

2

|(�� m
i

� i⌦mr
m

)q
i

|2 + 1

2

|(�� em
i

� i⌦mr
m

)eq
i

|2
+ 2g2|eq⌧aq|2 + g

2

2

|eq
i

q
i

� N⇠
FI

|2 + g

2

8

(|q|2 � |eq|2)2 . (3.10)

Theory has U(N)
c

⇥ SU(N)
f

global color and flavor symmetry.

Supersymmetry transformations. In what follows it is convenient to package squarks
and antisquarks into a single vector qif = (qi, ˜̄qi), where f = 1 for squarks and f = 2 for
antisquarks. Supersymmetry acts on the fields in the following way5

��a = �
p
2⇣↵f (�a

↵f

� ⌦↵↵̇�̄a
↵̇f

) + ⇣̄f
↵̇

⌦↵↵̇�a
f↵

,

��a f
↵

= �⇣�fF a

↵�

+ i⇣g
↵

Da f

g

+ i
p
2⇣̄ ↵̇f

⇣

r
↵↵̇

�a � F a

↵↵̇�

˙

�

⌦�

˙

�

⌘

,

�qif =
p
2⇣↵f i

↵

+ i
p
2⇣̄f

↵̇

¯̃ i↵̇ ,

� i

↵
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p
2⇣̄ ↵̇

f
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qif + 2i⇣f
↵
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(⌧a)i
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qj
f

� i⌦�

˙
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˙
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qi
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, (3.11)

where i = 1, . . . , N runs through fundamental representation, a = 1, . . . , N2 runs through
the adjoint representation of U(N), f, g = 1, 2 denote SU(2) R-symmetry index, and the
D-term contribution in the first line above has the following form

Da f

g

= �g2
�

q̄
g

⌧aqf + �̄⌧a��f
g

� ⌅a f

g

�

, (3.12)

where the generalized FI-term reads

⌅a f

g

= ir
↵↵̇

(⌦̄↵↵̇�a � ⌦↵↵̇�̄a)�f
g

+ ⇠f
FI g

�a
N

2 . (3.13) eq:GeneralizedFI

The first term we have already seen in the previous section, similar story here – it is generated
by the Omega background. The second contribution to ⌅ is the standard FI term. Here,

5We use chiral notation here.
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BPS equations

diagonal subalgebra of the U(1) from (
eq:symmetrybreaking
3.17) and the N � 1’st Cartan generator of the G

c+f

.
Then for the two terms in the second line of (

eq:SQCDOmegaCompts
3.10) read

V � �

�(�i

j

� m
N

�i
j

+ n̂✏�i
j

+ ✏⇢(A
'

)i
j

)qNj

�

�

2

. (3.18)

It vanishes provided that the expression in the parentheses above is equal to zero. So we put

�N

N

= m
N

� n̂✏ � ✏⇢(A
'

)N
N

. (3.19)

It can certainly be generalized to the case where more squark fields have angular dependences

�a = ma � n̂a✏ � i⌦mAa

m

, (3.20) eq:PhiVacuumValue

where n̂a is an integer valued vector, which is intended to count the number of flux quanta
which flow through the vortex. We see that the above classical vacuum equation related the
adjoint scalar and the gauge field.

Vortex BPS equations. While studying a 1/2-BPS object we work with the half of
supersymmetry algebra which acts trivially on it. In the case at hand this algebra is generated
by (

eq:SUSYGens22
2.14). Remarkably it coincides with the BPS subalgebra of the non-Abelian vortex

considered by Shifman and Yung [
Shifman:2007ce
9]. Thus even in the Omega deformed background in the

NS limit, the vortex configuration we are considering in this section will remain 1/2-BPS.
Performing Bogomol’ny completion of the action (

eq:SQCDOmegaCompts
3.10) we get the following energy den-

sity

L = 1

2g

2

�

�(Ba

3

)2 + g2(q̄⌧aq � ⌅a)
�

�

2

+ |(r
1

+ ir
2

)�a � (⌦
2

� i⌦
1

)Ba

3

|2
+ |(r

1

+ ir
2

)q|2 +N ⇠
FI

BN

3

+ @
m

(⌦m�̄a � ⌦̄m�a)Ba

3

. (3.21)

Here we assumed that the adjoint scalar and gauge field are only aligned along the Cartan
subalgebra of the gauge Lie algebra. The last two terms in the second line of the above
expression are total derivatives, but due to a di↵erent reason: the former is the Abelian field
strength, which gives circulation of the gauge field after removing one integration, the latter
involves @

'

derivative and is of the same kind as (
eq:StringChargeDensity
2.16). We can see that the Lagrangian

(
eq:SQCDOmegaCompts
3.10) under the constraint (

eq:PhiVacuumValue
3.20) and color-flavor locked condition q̄i = eqi takes almost

exactly the same form as for the undeformed case considered by Shifman and Yung [
Shifman:2007ce
9]. It

means that the BPS construction for the vortex will also be almost exactly the same. The
only di↵erence is that adjoint scalar �a will have a nontrivial profile defined by the magnetic
field and the Omega background. The corresponding BPS equations read

Ba

3

+ g2(q̄
i

⌧aqi � ⌅a) = 0 ,

(r
1

+ ir
2

)qi = 0 ,

(r
1

+ ir
2

)�a � (⌦
2

� i⌦
1

)Ba

3

= 0 , (3.22)

where, again as in (
eq:GeneralizedFI
3.13), the color index a = 1, . . . , N2 goes through all U(N) generators.

For convenience we can split up U(1) and SU(N) parts and rewrite the first equation above
using the definition of the generalized FI term (

eq:GeneralizedFI
3.13)

B
3

+ g2(|q|2 � ⇠
FI

� ⇠N
nFI

) = 0 ,

Ba

3

+ g2(q̄
i

⌧aqi � ⇠a
nFI

) = 0 , (3.23)
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where we have denoted

⇠a
nFI

= ir
↵↵̇

(⌦̄↵↵̇�a � ⌦↵↵̇�̄a) = @
'

(✏̄�a + ✏�̄a) , a = 1, . . . , N , (3.24)

the non-Abeilan FI field. In its absence equations (
eq:Bzprofile
3.23) and second equation in (

eq:BPSeqnsSQCDFull
3.22)

exactly reproduce the BPS set considered in [
Shifman:2007ce
9]; hence the solutions for the profile functions

can be extracted from there directly. Thus the modification to the BPS vortex equations
in the Omega background consist of introducing ⇠a

nFI

(which for some configurations can
vanish) and the nontrivial profile for the adjoint scalar dictated by the third equation in
(
eq:BPSeqnsSQCDFull
3.22).

Asymptotic behavior of solutions. Let us for the moment assume that �a is invariant
under rotations around the z-axis, in other words ⇠a

nFI

vanishes. From the analysis of the
previous section we conclude that it happens when � does not depend on the azimuthal
angle '. Then, we know the solution for the magnetic filed in all color directions, since it is
exactly the same as in [

Shifman:2007ce
9]. In particular, far away from the vortex, the gauge field exhibits 1/⇢

behavior. This makes the quantization condition (
eq:PhiVacuumValue
3.20) physical and well defined. Indeed,

it tells us that the adjoint scalar at large ⇢ approaches its vacuum value

�a

vac

= ma � ✏(na + ka) , (3.25) eq:PhiVac

where ka is a Z
N

-valued vector of winding numbers of along the di↵erent Cartan color
directions. We still need to figure out what ka is in terms of na. The reasoning for that comes
from the following physical requirement – string tension (energy per unit length) should be
finite. Indeed as in the undeformed case, the conclusion comes from the requirement that
|r

m

q|2 terms are finite.
+1
Z

0

d⇢ ⇢ |r
m

qi|2 . (3.26) eq:squarkkin

This was archived by a proper asymptotical behavior of the azimuthal component of gauge
field A

'

such that in the above integrand could decay fast enough. Indeed, let’s say q ⇠
ein'q(⇢), thus the integral becomes

+1
Z

0

d⇢
1

⇢
|(in � iA

'

⇢) qi|2 , (3.27)

so A
'

! n/⇢ at large ⇢. In other words, A
'

should be proportional to the number of flux
quanta which flow through the vortex. So, given (

eq:PhiVac
3.25) we can easily figure out that ka = �na

and � tends to its undeformed value ma at large radial distances. Thus we conclude that
the adjoint scalar interpolates between

�a = ma � na✏ (3.28) eq:Vac1vor

at ⇢ = 0 and
�a = ma (3.29) eq:Vac2vor
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Ground state equations

GLSM description. As usual, a GLSM description of the theory is more e↵ective for
computations. The 2d theory which is dual to the 4d SQCD in the NS Omega background
with N

f

= N + eN quarks is given by the following Lagrangian provided that (
eq:DHLHiggs
3.1)-(

eq:couplingmatch
3.4) hold

L = Tr

Z
d4✓

2

4 1

2e2
|⌃|2 + �̄ e

V
2 � e�

V
2 +

NX

i=1

X̄
i

eV X i +

e
NX

i=1

Ȳ
i

e�V Y i

3

5

+ Tr

Z
d2✓̃ ⌧⌃+H.c. , (3.35)

where the trace is taken over the adjoint representation of U(K) gauge group, � is adjoint
chiral multiplet, and ⌃ is field strength for 2d vector superfield V . The second line in the
above Lagrangian represents the twisted F-terms of the theory. There are N + eN +1 twisted
mass parameters turned on including N + eN masses for X and Y fields together with the
twisted mass for the adjoint scalar �, which according to [

Dorey:2011pa,Chen:2011sj
10, 19] is equal to ✏. In the limit

e ! 1 the gauge field becomes non dynamical, and we can integrate it out. In this limit
we can recover the geometry of the NLSM’s target space, which naturally appears in the
derivation of the low energy theory.

In order to get the e↵ective twisted superpotential in the right hand side of (
DHLduality
3.5) we need

to integrate out X’s, Y ’s and �’s in (
eq:HTGLSMAdj
3.35). When N

f

= 2N
c

the theory is superconformal,
the coupling does not run and no dynamical scale is generated.
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✏
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� fM
i

✏

!
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KX
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f

✓
�
a
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� ✏

✏

◆
+ 2⇡i⌧̂

KX

a=1

�
a

, (3.36)

where f(x) = x(log x�1). Note the change of the coupling constant to ⌧̂ compared to (
eq:HTGLSMAdj
3.35).

Minimizing the above superpotential we arrive to the ground state equations

NY

l=1

�
j

� M
l

�
j

� fM
l

= e2⇡i⌧̂
KY

k 6=j

�
j

� �
k

� ✏

�
j

� �
k

+ ✏
, (3.37)

which coincide with Bethe ansatz equations for the twisted anisotropic Heizenberg SL(2,R)
magnet. This observation quantifies the so-called Bethe/gauge correspondence for the N = 2
SQCD.

Theories with eN < N can be obtained from the conformal theory by sending some masses
to infinity and renormalizing the coupling constant. Dynamically generated scale ⇤

QCD

will
then appear.

This remark concludes our interpretation of the DHLC 4d/2d correspondence using vortex
flux tubes. There are certainly many more issues to be understood along these lines, we shall
address them in the conclusions.
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sec:GaudLiouville

Here we discuss the Gaudin model – the key tool in our AGT construction, its relations with
the XXX spin chain and how it appears in conformal field theories.

Gaudin model from XXX chain. The Gaudin model is the simplest example of the
Hitchin system on a sphere with marked points [

Nekrasov:1995nq
50]. It is also known to be a large impurity

limit of an anisotropic twisted XXX spin chain. This fact can be realized both in the transfer
matrix at the classical limit and in the Bethe ansatz equations in the quantum case. We
shall be interested in the quantum case and upon the proper limit Bethe ansatz equations
for the Gaudin model can be obtained. Let us start with Bethe equations for anisotropic
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and sending x ! 1 we arrive at the following set of equations
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which are nothing but Bethe equations for the Gaudin model. The anisotropies ⌫
a

at each
site still play the role of the inhomogenities in the model, while the twist q in the XXX chain
play the role of the external field in the Gaudin system. As we can see the latter vanishes
as ✏ ! 1.

10We measure spectral parameters �i in units of i✏ here.
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Bethe ansatz equations for the Gaudin model. Let us now recall how the Bethe
ansatz equations for the rational Gaudin model with the Lie algebra symmetry g are derived.
For our purposes we need merely g = sl(2) and and L points on the sphere. At each
point we fix a representation V (⌫

1

), . . . , V (⌫
L

) of sl(2) algebra with some dominant weights
⌫
a

, a = 1, . . . , L. According to the Bethe ansatz prescription [
refId0
34] we construct the following

operator
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where H
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are Gaudin Hamiltonians at each site of the lattice
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where J(b)
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of the acts with J
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2 sl(2) on the b-th site of the spin chain and with identity
on the others. �(⌫
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) are eigenvalue of the U(sl(2)) quadratic Casimir acting on V (⌫
a

). For
such a system Bethe ansatz equations for the sector with 
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Bethe roots read as follows
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Gaudin in Liouville and WZNW theories.

B Supersymmetry Algebra and Central Charges
sec:Setup

N = 2 supersymmetry algebra in four dimensions has the following form
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There are three types on central charges: string, monopole and domain wall types. The full
global symmetry of the theory is SU(2)

L

⇥ SU(2)
R

⇥ SU(2)R ⇥ SU(2)
c

. It is broken by the
Omega background in the NS limit to SU(2)

R+R ⇥ SU(2)
c

. Twisted supercharges

Q̄ = �↵̇
I

Q̄I

↵̇

, Q
m

= (�̄
m

)I↵Q
I↵

, Q̄
mn

= (�̄
mn

)↵̇
I

Q̄I

↵̇

. (B.2)

The former operator above is also known as BRST operator. The transformations can be
inverted as
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Plugging these formulae into (
eq:N2SUSYalgebra
B.1) we get the twisted version of the supersymmetry algebra
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Gaudin Hamiltonians

Effective twisted 
 superpotential

Gaudin model - Hitchin system on S2 with punctures [Nekrasov]



Bispectral duality [Mukhin
Tarasov

Varchenko]

anisotropic chain

eipixa =
�
i

� ⌫
a

� S
a

✏

�
i

� ⌫
a

+ S
a

✏
, (5.2)

where ⌫
a

are anisotropies and S
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are spins, one identifies [
Nekrasov:2009ui
6]
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✏-Strings. Recall that we have not discussed ✏-strings in the context of SQCD in Sec.
sec:SQCD
3.

Rather we used standard FI-strings to locate BPS vortices. However, one may wonder what
is the brane realization of ✏-strings in this construction. Besides, ✏-strings can be studied
even without flavor branes in pure SYM theory.

A construction of gauge theories in Omega background from string theory was given
in [

Hellerman:2011mv
33]. One may wonder if an ✏-strings can be explicitly realized in their context.
Hellerman et al construction and noncommutativity...

5.2 Gaudin/XXX duality
sec:bispec

It is known that the Gaudin model [
refId0
34] enjoys several dualities. First remind the duality

introduced at the classical level in [
springerlink:10.1007/BF00626526
35]. It relates the rational Gaudin model with SL(N)

group at M sites and SL(M) group at N sites. The positions of marked points z
i

on the
sphere corresponding to the inhomogenities and the diagonal element of the twist matrix
get interchanged. At the classical level the spectral curves and the action di↵erentials are
equivalent. At the quantum level the Bethe ansatz equations reflect this symmetry at the
level of spectra.

Let us explain this symmetry in the brane picture. Let us first remind ourselves the
similar symmetry in the Toda system discussed in [

Gorsky:1997jq
3]. It the Toda case this symmetry

merely implies the equivalence of 2 ⇥ 2 and N ⇥ N Lax operator representations which can
be explained as the 90 degrees rotation of the viewpoint of the brane picture. In the first
representation the gage group is connected to NS5 branes, while in the second case it is
defined by the number of D4 branes in the IIA picture.

If we add the fundamental matter and consider the conformal case there are additional
data which have to be matched via the duality. In the 2 ⇥ 2 representation the SL(2) twist
matrix emerges which reflects the positions of NS5 branes in the 6-10 plane Fig.

fig:bispec
5.2. The

masses of the fundamentals provide the inhomogenities at the corresponding lattice sites.
Upon the 90 degrees rotation similar to the Toda case the two sets of data get interchanged.

The duality between a pair of rational Gaudin models can be generalized to a similar
duality between a trigonometric Gaudin model and a XXX spin chain via the so-called
gl(M)/gl(N) duality [

MR2409414
39]. For M = N = 2 Bethe ansatz equations read as follows7
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7We have adopted the notation and made some change of variable compared to [
MR2409414
39].
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Figure 5: (6 + i10, 7) section of the HW brane construction (view from “below”).
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for the SL(2) XXX chain. The Mukhin-Tarasov-Varchenko (MTV) duality [
MR2409414
39] states that
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We can now recognize (
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Also it will be more useful for us to use the 4d masses instead of the 2d ones. By using the
first two relations above and (

eq:massescorr
3.3) we get
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and we can then rewrite set of MTV dual equations (
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Thus we can see that twists z
1

, z
2

, corresponding to the positions of the NS5 branes in 6-
10 plane Fig.

fig:bispec
5.2, and masses of the fundamentals m

1

,m
2

interchange their roles upon the
duality. We see that matching to the BAE corresponding to U(2), N

f

= 4 SQCD shows
that the strange nonequal mass shifts to the fundamentals and antifundamentals (

eq:massescorr
3.3) has
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for trigonometric Gaudin, and
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, (5.5) eq:BAElargeEps

for the SL(2) XXX chain. The Mukhin-Tarasov-Varchenko (MTV) duality [
MR2409414
36] states that

(
eq:TrigomGaud
5.4) as set of equations with respect to t

1

, . . . t
2 has isomorphic space of orbits of solutions

with the one of (
eq:BAElargeEps
5.5) as set w.r.t. �

1

, . . . ,�
⌫2 provided that 

1
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2

= ⌫
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+ ⌫
2
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M

1,2

and z
1,2

are generic. To our purposes of the next section it is enough to consider ⌫
1

= 0,
so for us
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2

. (5.6)

We can now recognize (
eq:2dXXXBAE
5.1) in (

eq:BAElargeEps
5.5) with
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, N = 2, z
1

= 1, z
2

= q . (5.7)

Also it will be more useful for us to use the 4d masses instead of the 2d ones. By using the
first two relations above and (

eq:massescorr
3.3) we get

m
a

= em
a

+ (
a

+ 2)✏ , (5.8) eq:MMkapparel

and we can then rewrite set of MTV dual equations (
eq:TrigomGaud
5.4,

eq:BAElargeEps
5.5) as
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Thus we can see that twists z
1

, z
2

, corresponding to the positions of the NS5 branes in 6-
10 plane Fig.

fig:bispec
5.2, and masses of the fundamentals m

1

,m
2

interchange their roles upon the
duality. We see that matching to the BAE corresponding to U(2), N

f

= 4 SQCD shows
that the strange nonequal mass shifts to the fundamentals and antifundamentals (

eq:massescorr
3.3) has
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From Liouville to Gaudin

the clear interpretation within the duality in the form of (
eq:MMkapparel
5.8). Namely, the number of the

Gaudin Bethe roots yields the asymmetry between the fundamental and antifundamental
masses. Also Gaudin spins match with the number of Bethe roots at the XXX side. Later
in the next section we shall use these spins in order to make the AGT duality manifest.

Let us emphasize that the Hamiltonian of the Gaudin model is nothing but the r.h.s.
of the Knizhnik-Zamolodchikov (KZ) equation [

Knizhnik198483
37] on the sphere with L+ 3 marked points

z
i

[
Babujian_Flume_1993
38]

b2
d (z

i

)

dz
i

= H
Gaud

 (z
i

) , i = 1, . . . , L , (5.10) eq:KZeq

where b is some constant. In the next section, when we will be discussing Liouville theory
on the same Riemann surface, we shall specify its value.

Sasha, please explain more on these....
One could also introduce [

MR2409414
36] the so called dynamical operators with respect to the

boundary conditions. Under the duality transformation the Gaudin KZ operator and the
dynamical operators get interchanged as well. The number of the marked points n the N⇥N
representation corresponds to the number of the NS5 branes that is relevant to the product
of group gauge group.

Exchange of the Bethe roots.......

5.3 Walls of marginal stably and bispectral duality
G-X

Gaudin-XXX correspondence. In the paper [
MR2409414
36] was established a certain correspon-

dence between the trigonometric Gaudin system and XXX system of some special form. The
Bethe ansatz equations for these systems are:
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, (5.11) BAE_Gaudin

for the Gaudin model and
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(5.12) BAE_XXX

for the XXX model. The integer parameters n
a

,m
a

satisfy the relation n
1

+n
2

= m
1

+m
2

.
One of the results of the paper [

MR2409414
36] is the isomorphicity of the orbits of the solutions to the

Bethe system under the group of the permutations of variables (permutations of t
1

, ..., t
n2 for

the Gaudin model and of s
a

, ..., s
m2 for the XXX model). At first glance such correspondence

seems very weak. It does not establish direct connection between roots of both systems and
does not allow to simplify one system knowing the solution of the other. But it preserves
one important feature of the XXX model, namely the Argyres-Douglas points [

Argyres:1995jj
39].

The Argyres-Douglas manifold is the set in the moduli space of the theory where the
di↵erent vacua merge. From the point of view of the Bethe ansatz system it corresponds to
the appearance of multiple roots. We will consider a simple case n

1

= m
2

= 2, n
2

= m
1

= 1
(
BAE_example
5.13) as an example and find the AD manifolds for both models.
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Gaudin Hamiltonian
in KZ equation 

[Babujian
Flume]

[Teschner]

(
eq:KZeq
5.10) for the dual WZNW model cite with level k and b2 = �(k + 2)�1. The classical limit
corresponds to taking k ! �2

� 1

k + 2

d (z
i

)

dz
i

= H
Gaud

 (z
i

) , i = 1, . . . , L , (6.5) eq:KZClassical

Here  (z
i

) is a conformal block of a classical Liouville theory on S2 as a function of the
punctures’ coordinates, and H

Gaud

is the Hamiltonian of the rational Gaudin model. One
can also probe Liouville conformal blocks with surface operator insertions [

Alday:2009fs
51], those also

satisfy Gaudin eigenvalue problem. Some details about the Gaudin model are given in
App.

sec:GaudLiouville
A. The rescaled conformal dimensions of chiral operators therefore become

�
i

= ��i

b2
, (6.6) eq:rescaleddims

as b ! 1 . For S2 with four punctures at 1, 1, q and 0 respectively from (
eq:ChiralPrimConfDim
6.2,

eq:alphas
6.3) and (

eq:rescaleddims
6.13)

we obtain
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◆
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= �
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b
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b
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�
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b
� 1
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b
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�
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= �
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eµ
1

b
� 1
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◆✓

eµ
1

b
+

1

2

◆

, (6.7)

as b ! 1. Our next step is to allow the mass parameters µ
a

and eµ
a

scale with b upon
identification with the 4d theory.

6.2 N = 2 SQCD in the NS Omega background

On the gauge theory side we compute the Nekrasov partition function for the 4d N = 2
SQCD with mass parameters µ

0

, eµ
0

, µ
1

, eµ
1

whose instanton part

Z
inst

(a, µ
0

, eµ
0

, µ
1

, eµ
1

) = (1 � q)2µ0(Q�µ1)F µ0 µ1
↵0 ↵ ↵1

(q) , (6.8) eq:PartFuncLiouv

where ↵ = 1

2

Q� a and a is the SU(2) Coulomb modulus. For a generic Omega background,
according to the AGT dictionary, b = 1/✏

2

, so the NS limit ✏
2

! 0 corresponds to the
classical limit in the Liouville theory and b = ✏

1

= ✏ ! 1.
As we have already discussed above, in the NS limit a more appropriate object to study

is not the Nekrasov partition function but the e↵ective twisted superpotential (
eq:EffTwistedExactSuperpot
1.1). As it

was shown in [
Dorey:2011pa
10] that this superpotential also emerges from the (2, 2) GLSM which we have

described in Sec.
sec:SQCD
3.

The DHL paper has done a perturbative calculation in the instanton number q in order to
establish their 4d/2d duality (

DHLduality
3.5) and the proof to all orders was further established in [

Chen:2011sj
19].

DHLC showed that in the NS limit the Nekrasov partition function can be represented as an
integral over a finite set of variables and can be evaluated, and the saddle point condition is
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with rescaled 
conformal 
dimensions

take home message: CB in Liouville 
- wave function in Gaudin

Liouville CB satisfies 2nd order ODE 
which in the NS limit becomes KZ 
equation with Gaudin Hamiltonian 

(
eq:KZeq
5.9) for the dual WZNW model cite with level k and b2 = �(k + 2)�1. The classical limit
corresponds to taking k ! �2

� 1

k + 2

d (z
i

)

dz
i

= H
Gaud

 (z
i

) , i = 1, . . . , L , (6.5) eq:KZClassical

Here  (z
i

) is a conformal block of a classical Liouville theory on S2 as a function of the
punctures’ coordinates, and H

Gaud

is the Hamiltonian of the rational Gaudin model. One
can also probe Liouville conformal blocks with surface operator insertions [

Alday:2009fs
51], those also

satisfy Gaudin eigenvalue problem. Some details about the Gaudin model are given in
App.

sec:GaudLiouville
A. The rescaled conformal dimensions of chiral operators therefore become

�
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= ��i

b2
, (6.6) eq:rescaleddims

as b ! 1 . For S2 with four punctures at 1, 1, q and 0 respectively from (
eq:ChiralPrimConfDim
6.2,

eq:alphas
6.3) and (

eq:rescaleddims
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as b ! 1. Our next step is to allow the mass parameters µ
a

and eµ
a

scale with b upon
identification with the 4d theory.

6.2 N = 2 SQCD in the NS Omega background

On the gauge theory side we compute the Nekrasov partition function for the 4d N = 2
SQCD with mass parameters µ

0

, eµ
0

, µ
1

, eµ
1

whose instanton part

Z
inst

(a, µ
0

, eµ
0

, µ
1

, eµ
1

) = (1 � q)2µ0(Q�µ1)F µ0 µ1
↵0 ↵ ↵1

(q) , (6.8) eq:PartFuncLiouv

where ↵ = 1

2

Q� a and a is the SU(2) Coulomb modulus. For a generic Omega background,
according to the AGT dictionary, b = 1/✏

2

, so the NS limit ✏
2

! 0 corresponds to the
classical limit in the Liouville theory and b = ✏

1

= ✏ ! 1.
As we have already discussed above, in the NS limit a more appropriate object to study

is not the Nekrasov partition function but the e↵ective twisted superpotential (
eq:EffTwistedExactSuperpot
1.1). As it

was shown in [
Dorey:2011pa
10] that this superpotential also emerges from the (2, 2) GLSM which we have

described in Sec.
sec:SQCD
3.

The DHL paper has done a perturbative calculation in the instanton number q in order to
establish their 4d/2d duality (

DHLduality
3.5) and the proof to all orders was further established in [

Chen:2011sj
19].

CDHL showed that in the NS limit the Nekrasov partition function can be represented as an
integral over a finite set of variables and can be evaluated, and the saddle point condition is
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rational Gaudin Bethe equations on S2 with all four punctures included. Indeed,
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t
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X

j=1

j 6=i

2✏

t
i

� t
j

= 0 , (6.11) eq:sl2Gaudz4

where z
0,1,2,3

= {1, 1, q, 0}, is equivalent to (
eq:TrigomGaud
5.4) with

✏⌫
1

= 0, ✏⌫
2

= K, ✏⌫
3

= m
3

� m
4

� ✏ = 2eµ
1

� ✏ , (6.12) eq:U1cond

is the spin of the representation sitting at z
3

= 0. Specification of ⌫
1

is not important as the
corresponding contribution drops out from the equation since z

0

= 1.
So far we have only covered the case 

a

= 2 in (
eq:TrigomGaud
5.4), in other words only two-excitation

sector of the Gaudin model’s Hilbert space. One may wonder what do other sectors with

a

> 2 correspond to under the bispectral duality which we considered earlier. In order
to understand this we need to recall the Higgs brach condition (

eq:CoulombHiggs
6.9) again. Recall that we

keep aa fixed. The duality between (
eq:TrigomGaud
5.4) and (

eq:BAElargeEps
5.5) trades the shift between m

a

’s and em
a

’s.
In particular, for 

a

= 2 this relative shift is 2✏. Since eµ
0

and eµ
1

are free parameters and
are not a↵ected by (

eq:CoulombHiggs
6.9), we can understand the 

a

shift in terms of shifting n
a

’s in (
eq:CoulombHiggs
6.9).

Indeed, let us start with 
a

= 2, i.e. two Bethe roots at the Gaudin side. In turn, the Higgs
branch condition (

eq:CoulombHiggs
6.9) has some (arbitrary) set of n

a

’s. Now, if we change the number of
Gaudin Bethe roots, in order to keep a

a

and masses intact, we have to shift n
a

’s by the same
amount. So to summarize, various sectors of the trigonometric Gaudin models’ Hilbert space
parameterized by number of Bethe roots (excitations over the Bethe vacuum), by means of
the bispectral duality, are mapped onto various points of the Higgs branch lattice {n

a

} of
the four dimensional theory.

From the gauge theory prospective we are interested in keeping Coulomb branch param-
eters in (

eq:CoulombHiggs
6.9) finite while masses µ

0

and µ
1

and ✏ are sent to infinity.
The rescaled conformal dimensions (

eq:RescaledConfDims
6.7) therefore read

�
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where
�
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0,1

� 2) + 1

2

. (6.14) eq:gamma12

Note that in the NS limit the SU(2) Coulomb coordinate has dropped from the formulae.
In the second and the third term of (

eq:rescaleddims
6.13) we recognize sl(2) negated Casimir eigenvalues on

representations of spins 1

2

n
0

and 1

2

n
1

and negated eigenvalues of spin 1

2

�
0

and 1

2

�
1

for the first
and the fourth terms respectively. First negative signs in (

eq:rescaleddims
6.13) may seem strange, however,

it is clear that in the limit we are taking all conformal dimensions have to be negative as
�

a

⇠ �m2

a

+ . . . . The rescaled dimension of the operator in the intermediate channels is
therefore � = �1

4

.
Now we can relate rescaled Liouville conformal dimensions (

eq:rescaleddims
6.13) of the operators at

1, 1, q, 0 with the spins of the sl
2

Gaudin model (
eq:sl2Gaudz4
6.11) corresponding to each singularity.

First, we can see that the Gaudin spin at infinity is not fixed by (
eq:sl2Gaudz4
6.11), but our construction

above predicts it to be equal to �
1

(
eq:gamma12
6.14). Then we can identify all the other spins. As for

z
1,2

= 1, q we see that Gaudin spins correspond to the right (up to a sign) eigenvalues if the
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rational Gaudin Bethe equations on S2 with all four punctures included. Indeed,
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corresponding contribution drops out from the equation since z
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= 2, i.e. two Bethe roots at the Gaudin side. In turn, the Higgs
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6.9) has some (arbitrary) set of n
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’s. Now, if we change the number of
Gaudin Bethe roots, in order to keep a
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and masses intact, we have to shift n
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’s by the same
amount. So to summarize, various sectors of the trigonometric Gaudin models’ Hilbert space
parameterized by number of Bethe roots (excitations over the Bethe vacuum), by means of
the bispectral duality, are mapped onto various points of the Higgs branch lattice {n

a

} of
the four dimensional theory.

From the gauge theory prospective we are interested in keeping Coulomb branch param-
eters in (

eq:CoulombHiggs
6.9) finite while masses µ
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and µ
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+ . . . . The rescaled dimension of the operator in the intermediate channels is
therefore � = �1
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Now we can relate rescaled Liouville conformal dimensions (

eq:rescaleddims
6.13) of the operators at

1, 1, q, 0 with the spins of the sl
2

Gaudin model (
eq:sl2Gaudz4
6.11) corresponding to each singularity.

First, we can see that the Gaudin spin at infinity is not fixed by (
eq:sl2Gaudz4
6.11), but our construction

above predicts it to be equal to �
1

(
eq:gamma12
6.14). Then we can identify all the other spins. As for

z
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= 1, q we see that Gaudin spins correspond to the right (up to a sign) eigenvalues if the
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U(1) condition

Higgs branch root

shown to be equivalent to the Bethe ansatz equations for the SL(2) XXX chain. As we are
being showing in the current paper, the 4d/2d duality is the essential physical ingredient of
the classical AGT correspondence, so the proof former statement one automatically proves
the latter. Also in Sec.

sec:SQCD
3 we provided a derivation of that GLSM through the BPS vortices,

which can be regarded as a physics inside of the 4d/2d duality.
One may ask immediately why the vortices are relevant, indeed, they only exist in a

Higgs branch of the four dimensional theory, whereas, the AGT statement relates Liouville
momenta with Coulomb branch coordinates. In order to understand this let us recall, that
at zero value of the FI term the Higgs branch touches the Coulomb branch, and as it was
pointed out in [

Dorey:2011pa
10], by making a proper limit in the relation9

a
a

= m
2+a

� n
a

✏ , a = 1, 2 , (6.9) eq:CoulombHiggs

one may recover any point of the Coulomb branch of the U(2) SQCD. Indeed, as ✏ ! 0
the Higgs lattice becomes more and more dense filling the Coulomb branch in that limit.
However, for what we are doing here, the opposite ✏ ! 1 limit is relevant, as it is required
by the connection to the Liouville theory. Still we want to be able to cover any point on the
Coulomb branch, so one has to scale the fundamental masses m

a

with ✏ as well in order to
keep combination (

eq:CoulombHiggs
6.9) finite. So at any given Liouville momentum we only need to sit at a

certain point on a Coulomb branch and the Higgs branch root has all information we need
about that point. Recall that the antifundamental masses and, correspondingly µ

0

and eµ
0

are not a↵ected by (
eq:CoulombHiggs
6.9) and therefore do not scale with ✏.

We now make an observation that the ground state equations for the (2, 2) GLSM (
eq:2dXXXBAE
5.1)
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, (6.10) eq:XXXBAE6

can be written as the second equation from the MTV dual pair (
eq:MTVdualref
5.9). In order to see this we

need to employ (
eq:CoulombHiggs
6.9) and substitute m

3

and m
4

into the numerators of the let hand side of
(
eq:XXXBAE6
6.10). Then we take the limit of large ✏ keeping in mind that rapidities �

i

also scale with ✏.
Neither Coulomb moduli a

a

nor the antifundamental masses m
1,2

enjoy this scaling, so they
will drop out from the equations. We then arrive to (
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6.3 The duality

Now let us start connecting the story with the Liouville. By means of the bispectral duality
these equations are mapped onto (

eq:TrigomGaud
5.4) yielding the trigonometric Gaudin model from the

Heisenberg chain. Note that (
eq:TrigomGaud
5.4) depends only on two points z
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and z
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corresponding to
the locations of the NS5 branes in 6-10 plane in Fig.
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5.1. However, the Liouville conformal

block depends on four operators sitting at 1, 1, q, 0 points. Let us mention, however, that
trigonometric Gaudin Bethe equations when only z
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and z
2

punctures are involved as a

9From now on we shall work with the U(2) SQCD with 4 flavors.
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Casimir. Moreover, n
1

and n
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are related to the number of D2 branes ending
on one of the NS5 branes K = n

1

+n
2

�2. As we know, only one NS5 brane (the one located
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= q) has D2 branes ended on it, however, as it will later be clear from the linear quiver
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(
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or using the Liouville mass parameters

µ
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2
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It balances the count of the parameters on both sides of the correspondence as in order to
match sl

2

spin at z
4

= 0 we used only one antifundamental mass parameter (which is related
to the fundamental one).

Here is the summary table of the correspondence between the objects we have discussed
in this section in addition to the standard AGT dictionary

Liouville conformal block at b ! 1 U(2) , N
f

= 4 SQCD instanton
on S2 with four punctures partition function in the NS limit
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equation on conformal blocks equation for the 2d GLSM dual to 4d theory
Puncture’s positions z

2

/z
1

Instanton number q
sl

2

spin at z = q U(1) condition
Conformal dimensions of chiral operators Quadratic sl(2) Casimir eigenvalues on

at points z = 1, z = q spin n
0,1

representations
at points z = 1, z = 0 spin �

1,2

representations
Gaudin Hilbert space sectors with Higgs branch lattice {n

a

}
di↵erent number 

a

of Bethe roots

6.4 Generalization to SU(2) linear quivers

One can easily generalize the above construction to the Liouville theory on S2 with L + 3
punctures. A natural quiver gauge theory associated to this Riemann surface has L SU(2)
gauge nodes with Coulomb moduli a
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successively connected together. Liouville conformal
block of L+ 3 operators located at points
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AGT in NS limit

terms of (
eq:rescaleddims
6.16) we recognize negated sl(2) quadratic Casimir eigenvalues on representations

of spins 1

2

K and �
0

respectively. First the minus signs in (
eq:rescaleddims
6.16) may seem strange, however,

it is clear that in the limit we are taking all conformal dimensions have to be negative as
�
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⇠ �m2

a

+ . . . when the masses are large. The rescaled dimension of the operator in the
intermediate channel of the conformal block is therefore � = �1

4
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respectively glued by operators of dimensions ↵
i

(Q � ↵
i

) in the intermediate s-channels.
NS limit of such quiver theory has been elaborated in [

Chen:2011sj
19]. Brane interpretation of the

bispectral duality is very useful in this case. The corresponding Hanany-Witten picture view
from “below” (in (6+i10)�7 space) is shown in Fig.

fig:CDHLquiver
6.4. Quiver theories have bifundamental

matter with masses µ(p)
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, so the Higgs branch conditions get changed
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Using the above relation we can express conformal dimensions (
eq:confdimsL
6.19) in terms of Coulomb

branch coordinates, quantization parameters and bifundamental masses. Performing the
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where K
i

= n̂
(i)

1

+ n̂
(i)

2

, i = 1, . . . , L, corresponding to the sl(2) Casimir eigenvalues on repre-
sentations of spins 1

2

K
1

. . . , 1
2

K
L

. Spins sitting at each point z
i

(multiplied by 2) correspond
to the total number of D2 branes stretched between the i’th NS5 brane and both D4 branes.
Our construction has to be supplemented by L U(1) conditions similar to (

eq:U1cond
6.15) for each

gauge group.
The full treatment of the AGT duality for linear quivers requires the construction of the

bispectral dual to the twisted anisotropic SL(L,R) chain, which emerges from it [
Chen:2011sj
19]. We

shall postpone this analysis for the future work.

Yang-Yang function and AGT. The twisted superpotential plays the role of the Yang-
Yang function in the quantum integrable system which is also know as the master function.
The YY fnction for the Gaudin model obeys the following equations

d�

�
i

= 0,
d�

z
i

= p
i

= H
i

(6.23)

This means that it plays the role of the generating function of the Lagrangian manifold both
for the Gaudin and Calogero models.

Sasha will add something here....
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N = 2 four dimensional gauge theories in Omega background in the Nekrasov-Shatashvili
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SUSY algebra
{QI

↵, Q̄
J
�̇
} = 2�IJP↵�̇ + 2�IJZ↵�̇

{QI
↵, Q

J
�} = 2ZIJ

↵�

strings
monopoles domain walls

In N=2 SYM we only find dyons as BPS solitons 
in the low energy effective theory
Let us see what happens in Omega background

SU(2)c ⇥ SU(2)R ⇥ SU(2)R ! U(1)c ⇥ SU(2)R+R

Symmetry breaking pattern

transformations of (
eq:N2SYMOmegNoWL
2.6) with the problematic spin operators omitted, and then see what

terms do we need to add. One has [
Ito:2011wv
14] the following

�� = ⇣I
↵

(�↵

I

� ⌦m(�
m

)↵↵̇�̄
I↵̇
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,

��
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F
mn

+ i[�, �̄]��
↵
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(⌦̄m� � ⌦m�̄)��
↵

)

+ ⇣̄
I

˙

�

(�m)
˙

�

↵

(r
m

� � F
mn

⌦n) . (2.10)

However, since the action is not supersymmetric, the above transformations do not leave the
Lagrangian invariant. As suggested in [

Nekrasov:2003rj
12] and later extended in [

Ito:2011wv
14], one has to turn on

R-symmetry Wilson lines properly to restore some part of the supersymmetry. Thus, in the
NS limit one has to add

� ĀJ

I

�I�
J

� AJ

I

�̄I �̄
J

, (2.11)

where
AJ

I

= �1

2

⌦̄
mn

(�̄mn)I
J

, (2.12)

to the Lagrangian. One can also treat the above terms as emerging from a superpotential
which we add to the theory. We shall speculate more on that in Sec.

sec:NekPartFunc
4. In the NS limit,

when ✏
2

= 0, the supersymmetry of the theory is lifted to the (2,2) [
Ito:2011wv
14] and is generated by

the following supercharges
Q

1

, Q
2

, Q̄
13

, Q̄
14

. (2.13)

Using the inverted transformation (
eq:InvertedDWtransf
B.3) we conclude that in the original formulation of SUSY

algebra (
eq:N2SUSYalgebra
B.1) the following generators are included into the (2,2) subalgebra

Q
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˙
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. (2.14) eq:SUSYGens22

In the remaining part of the section we shall investigate 1/2 BPS object – a string which is
annihilated by the above charges.

String central charge and string tension. The supercurrent for the Omega deformed
SYM theory was computed in [

Ito:2011wv
14]. Its Euclidean time component has the following form

(assuming static configuration, B
3

6= 0, others components of F
mn

vanish)
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Let us find the string central charge current. Performing standard variation of the above
supercurrent we get3

�
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3Technically there is another contribution from the R-current [
Gorsky:1999hk
17], which contributes to the ( 1

2 ,

1
2 ) central

charge. However, if we are only interested in string solutions without any domain walls present, the R-current
gives no contribution.

7

Four supercharges remain

a special way, this shift brings us to a well defined Lagrangian of a di↵erent theory [
Nekrasov:2010ka
15].

Another deformation of the theory consists of shifting of the coupling constant, thereby we
promote it to a superfield. In the N = 2 superfield language2 the shift reads as follows
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)† , (2.5)
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ators. In components the Lagrangian of the N = 2 SYM after the deformation takes the
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2

⌦̄mn�
mn

)�a

f

� �̄a

f

(⌦mr
m

� 1

2

⌦mn�
mn

)�̄fa , (2.6)

where f = 1, 2 denotes the R-symmetry index, spinor indices are suppressed.

SUSY transformations. Recall that N = 2 supersymmetry algebra in four dimensions
has the following form

{QI

↵

, Q̄
J ↵̇

} = 2P
↵↵̇

�I
J

+ 2Z
↵↵̇

�I
J

,

{QI

↵

, QJ

�

} = ✏
↵�

✏IJZ
mon

+ (Z
d.w.

)IJ
↵�

. (2.7)

There are three types on central charges: string, monopole and domain wall types. We shall
focus on the former in this section leaving monopoles and domain walls to Sec.

sec:NekPartFunc
4.

The full global symmetry of the theory is SU(2)
L

⇥SU(2)
R

⇥SU(2)R (left, right and the
R-symmetry). It is broken by the Omega background in the NS limit to SU(2)

L

⇥SU(2)
R+R

by paring the R-symmetry with the right handed SU(2). The supercharges undergo the
Donaldson-Witten twist [

Witten:1988ze
16]

Q̄ = �↵̇
I

Q̄I

↵̇

, Q
m

= (�̄
m

)I↵Q
I↵

, Q̄
mn

= (�̄
mn

)↵̇
I

Q̄I

↵̇

. (2.8)

These transformations can be inverted as follows

QI

↵

= 1

2

(�m)I
↵

Q
m

, Q̄
↵̇J

= 1

2

✏
↵̇J

Q̄+ 1

2

(�̄
mn

)
↵̇J

Q̄mn . (2.9) eq:InvertedDWtransf

It turns out that a generic Omega background breaks all supersymmetries of the theory
(
eq:N2SYMOmegNoWL
2.6) but the BRST charge Q̄. Moreover, it can be shown that the Lagrangian (

eq:N2SYMOmegNoWL
2.6) is a

Q̄-exact expression [
Nekrasov:2002qd
4], which makes it possible to compute the partition function of the

theory by localization methods. In this paper we are not doing localization and we need
more supersymmetries to have control of our calculations.

It is more or less clear that the obstacle to supersymmetry is due to the spin operator
terms 1

2

⌦mn�
mn

in the fermionic sector. The theory thus has to be further deformed to gain
more supersymmetry. To understand what we need to do let us look at the supersymmetry

2See Shadchin’s PhD thesis [
Shadchin:2005mx
13] for details

6

SUSY transform

transformations of (
eq:N2SYMOmegNoWL
2.6) with the problematic spin operators omitted, and then see what

terms do we need to add. One has [
Ito:2011wv
14] the following

�� = ⇣I
↵

(�↵

I

� ⌦m(�
m

)↵↵̇�̄
I↵̇

) + ⇣̄I
↵̇

⌦m(�̄
m

)↵↵̇�
I↵

,

��
I↵

= ⇣
I�

((�mn)�
↵

F
mn

+ i[�, �̄]��
↵

+ r
m

(⌦̄m� � ⌦m�̄)��
↵

)

+ ⇣̄
I

˙

�

(�m)
˙

�

↵

(r
m

� � F
mn

⌦n) . (2.10)

However, since the action is not supersymmetric, the above transformations do not leave the
Lagrangian invariant. As suggested in [

Nekrasov:2003rj
12] and later extended in [

Ito:2011wv
14], one has to turn on

R-symmetry Wilson lines properly to restore some part of the supersymmetry. Thus, in the
NS limit one has to add

� ĀJ

I

�I�
J

� AJ

I

�̄I �̄
J

, (2.11)

where
AJ

I

= �1

2

⌦̄
mn

(�̄mn)I
J

, (2.12)

to the Lagrangian. One can also treat the above terms as emerging from a superpotential
which we add to the theory. We shall speculate more on that in Sec.

sec:NekPartFunc
4. In the NS limit,

when ✏
2

= 0, the supersymmetry of the theory is lifted to the (2,2) [
Ito:2011wv
14] and is generated by

the following supercharges
Q

1

, Q
2

, Q̄
13

, Q̄
14

. (2.13)

Using the inverted transformation (
eq:InvertedDWtransf
B.3) we conclude that in the original formulation of SUSY

algebra (
eq:N2SUSYalgebra
B.1) the following generators are included into the (2,2) subalgebra

Q
12

, Q
21

, Q̄
˙

12

, Q̄
˙

21

. (2.14) eq:SUSYGens22

In the remaining part of the section we shall investigate 1/2 BPS object – a string which is
annihilated by the above charges.

String central charge and string tension. The supercurrent for the Omega deformed
SYM theory was computed in [

Ito:2011wv
14]. Its Euclidean time component has the following form

(assuming static configuration, B
3

6= 0, others components of F
mn

vanish)

J4

I↵

=
⇣

(�i[�, �̄] + (�⌦̄n � �̄⌦n)r
n

)�4

↵↵̇

+ 2F̃
4n

�n

↵↵̇

⌘

�̄↵̇

I

+ 2
p
2(�4n)�

↵

(�r
n

�+ F
np

⌦̄p)�
I�

(2.15)

Let us find the string central charge current. Performing standard variation of the above
supercurrent we get3

�
⇣

I
↵
J̄4J

↵̇

= 2�4

↵↵̇

�J
I

L + @
m

�

(�a⌦̄m � �̄a⌦m)Ba

3

�

�3

↵↵̇

�J
I

, (2.16)

3Technically there is another contribution from the R-current [
Gorsky:1999hk
17], which contributes to the ( 1

2 ,

1
2 ) central

charge. However, if we are only interested in string solutions without any domain walls present, the R-current
gives no contribution.
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Vortices in Omega background [PK Gorsky Chen]
in progress

String central charge
current

3 Non-Abelian strings in Super Yang-Mills theory
sec:FluxTube

It is a standard lore in the study of topological defects in supersymmetric theories that BPS
strings only exist when a gauge group is at least semi-simple, e.g. U(N). A simple reason
for this is based on existence of a nontrivial fundamental group of the resulting moduli space
due to presence of a U(1) factor. The latter causes a nonzero FI term which supports string
solutions. Let us call them FI strings. In the present paper we address to a di↵erent kind
of string-like objects which have not been discussed in the literature before, we shall refer
to them as ✏-strings. As we shall later see their tension is equal to ✏ and classical field
configurations are supported on them. For simplicity we shall only focus on the gauge group
SU(2) in this section.

Action. In this section we shall work with N = 2 Super Yang-Mills theory in four dimen-
sions. Lagrangian reads

L = Im


⌧

Z
d

4

✓ �̄e2V�+ ⌧

Z
d

2

✓ (W↵)2
�

(3.1)

In components it takes the following form

L = 1

4

F

2

mn+|rm��Fmn⌦̄
n|2+ 1

2

|�⌧a�̄�irm(⌦
m
�̄

a�⌦̄m
�

a)+i⌦̄m⌦n
F

a
mn|2+fermions (3.2)

Note that in the NS limit ⌦̄m⌦n
F

a
mn identically vanishes.

SUSY transformations and supercurrent. Supersymmetry transformations of the
gluino field

�⇤I
↵ = ⇣

I
�((�

mn)�↵Fmn + i[�, �̄]��↵ +rm(⌦̄
m
�� ⌦m

�̄)��↵)

+ ⇣̄

I
˙�
(�m)

˙�
↵(rm�� Fmn⌦

n) (3.3)

Was calculated in [
Ito:2011wv
6]. Its time components has the following form (assuming static

configuration, B
3

6= 0, others components of Fmn vanish)

J

4

I↵ =
⇣
(�i[�, �̄] + (�⌦̄n � �̄⌦n)rn � ⌦̄p⌦n

Fnp)�
4

↵↵̇ + 

2

F̃

4n�
n
↵↵̇

⌘
⇤̄↵̇

I

+ 2
p
2(�4n)�↵(�rn�+ Fnp⌦̄

p)⇤I� (3.4)

String central charge and tension. Here we are talking about di↵erent kind of strings.
To understand what kind of objects are we dealing with let us see how the supercurrent
transforms under the supersymmetries (

eq:SuperCurrent
3.4)

�⇣I↵ J̄
4J
↵̇ = 2�4

↵↵̇�
J
I L+ @m

�
(�a⌦̄m � �̄

a⌦m)Ba
3

�
�

3

↵↵̇�
J
I , (3.5)

where L is the Lagrangian of the system. We see that there is a correction which represents
the string central charge. More specifically the correction takes the following form

⇣

3

= 1

2

@m

�
(�a⌦̄m � �̄

a⌦m)Ba
3

�
�

3

↵↵̇�
IJ = i

2

B

a
3

@'(�
a
✏̄� �̄

a
✏)�3

↵↵̇�
IJ

, (3.6)

3

where ⇢

2 = x

2

1

+ x

2

2

is the transversal coordinate to the string. If ✏ is real then

⇣

3

= @'(Re ✏�̄

a
B

a
3

) . (3.7)

The central charge is given by

Z

string

=

Z
d

3

x ⇣

3

=

Z
dz

Z
d⇢ ⇢

2⇡Z

0

d'@'(Re(✏�̄a)Ba
3

)

=

Z
dz

Z
d⇢ ⇢B

a
3

Re(✏�̄a)
���
2⇡

0

. (3.8)

We can immediately see that multivalueness of � as a function of the azimuthal angle is
required in order to make the central charge nonzero. The tension of the string solution
under consideration (let’s call them ✏-strings) is therefore given by

T =

1Z

0

d⇢⇢B

a
3

Re(✏�̄a)
���
2⇡

0

. (3.9)

Assuming that
�(⇢,') = �(⇢)e

i'
n
, (3.10) eq:AngleAnsarzPhi

where n is an integer, we arrive to

T =

1Z

0

d⇢ ⇢Re(✏Ba
3

�̄

a(e�
2⇡i
n � 1)) . (3.11) eq:StringTension

The above expression for the tension of ✏-string only makes sense if it is finite. In order to
establish that one has to solve BPS equations in order to find the profile functions for � andeq:BPSeqnsFull
B

3

as function of the radial coordinate ⇢.

BPS equations. Let us now find the BPS equations which describe such a string. Bosonic
part of the action

L = 1

4

F

2

mn + |rm�� Fmn⌦̄
n|2 + 1

2

|�⌧a�̄� irm(⌦
m
�̄

a � ⌦̄m
�

a)|2 (3.12)

We can now do the Bogomolny completion, as the supersymmetry algebra (
eq:SusyTransform
3.3) suggests

L = 1

2

|Ba
z + �⌧

a
�̄� irm(⌦

m
�̄

a � ⌦̄m
�

a)|2 + 1

2

|D
1

�

a + iD
2

�

a � (⌦
2

� i⌦
1

)Ba
z |2

+ @m(B
a
z (⌦

m
�̄

a � ⌦̄m
�

a)) � @m(B
a
z (⌦

m
�̄

a � ⌦̄m
�

a)) . (3.13)

The above inequality saturates provided that the following BPS equations are satisfied

B

a
z + �̄⌧

a
�� irm(⌦

m
�̄

a � ⌦̄m
�

a) = 0 ,

r
1

�

a + ir
2

�

a � (⌦
2

� i⌦
1

)Ba
z = 0 . (3.14)

4

Bogomolny completion

Can view Omega deformation as formal replacement

2 Flux Tubes in Pure Super Yang-Mills theory
sec:FluxTube

It is a standard lore in the study of topological defects in supersymmetric theories that BPS
strings only exist when a gauge group is at least semi-simple, e.g. U(N). A simple reason for
this is based on existence of a nontrivial fundamental group of the resulting moduli space due
to presence of a U(1) factor. The latter causes a nonzero Fayet-Iliopoulos (FI) term which
supports string solutions. Let us call them FI strings. In the present paper we address to
a di↵erent kind of string-like objects which have not been discussed in the literature before,
we shall refer to them as ✏-strings. As we shall later see their tension is proportional to ✏2

and classical field configurations are supported on them. For simplicity we shall only focus
on the gauge group SU(2) in this section.

Action. Let us start with the N = 2 Super Yang-Mills theory in four dimensions in Omega
background. The undeformed Lagrangian of the theory reads1

L = Im



⌧ Tr

Z

d4✓ �̄eV�+ ⌧ Tr

Z

d2✓ (W↵)2
�

, (2.1) eq:LagrSYM

where � = (�, , F ) is the chiral superfield, V = (�,�, D) is the adjoint vector superfield
and W↵ is its field strength.

Omega deformation. The Omega deformation of a four dimensional theory like (
eq:LagrSYM
2.1)

is constructed from a six dimensional theory by compactifying the theory on a two-torus
with twisted boundary conditions [

Nekrasov:2003rj,Shadchin:2005mx
12, 13]. Torus action on R4 is given by two matrices

⌦m

an

, a = 5, 6 which act by rotations in 12 and 34 planes respectively. In the NS limit matrix
⌦

6

vanishes, therefore we shall denote ⌦ = ⌦
5

. Metric on the deformed torus reads

G
AB

dxAdxB = Adzdz̄ + (dxm + ⌦mdz + ⌦̄mdz̄)2 , (2.2) eq:MetricTorusOmega

where z = x5 + ix6, z̄ = x5 � ix6 and the vector field ⌦m = ⌦m

n

xn. In the notations of [
Ito:2011wv
14]

⌦m = (�i✏x2, i✏x1, 0, 0). In other words vector field ⌦ = i✏ @
'

is a rotation generator around
x
3

-axis. Here we denote ⇢ =
p

x2

1

+ x2

2

. The components of the metric in the limit A ! 0
read

G
mn

= �
mn

, G
am

= ⌦
am

, G
ab

= �
ab

+ ⌦m

a

⌦
bm

. (2.3)

Upon the reduction fifth and sixth components of the gauge field form an adjoint scalar,
which undergoes the following deformation due to the Omega background

� 7! �� i⌦mr
m

+ i

2

⌦mnS
mn

, (2.4) eq:ScalarShift

where ⌦m, ⌦mn were introduced after formula (
eq:MetricTorusOmega
2.2) and S

mn

is the spin operator for adjoint
representation of the gauge group. The latter does not a↵ect the bosonic part of the the-
ory, however, it does modify the fermions. This issue will be important when we will be
considering supersymmetry of the theory in the next paragraph. Transformation (

eq:ScalarShift
2.4) itself

is certainly not a well defined change of coordinates, but, since � enters the Lagrangian in

1Here and further on we shall use the notations of Shifman and Yung [
Shifman:2007ce
9]

5

Lagrangian

a special way, this shift brings us to a well defined Lagrangian of a di↵erent theory [
Nekrasov:2010ka
15].

Another deformation of the theory consists of shifting of the coupling constant, thereby we
promote it to a superfield. In the N = 2 superfield language2 the shift reads as follows

⌧ 7! ⌧ � ✓̄m✓̄n(⌦̄
mn

)† , (2.5)

where ✓̄m = (�̄m)↵̇I ✓̄
↵̇I

is the twisted Grassmann variable by the diagonal su(2)
R+R gener-

ators. In components the Lagrangian of the N = 2 SYM after the deformation takes the
following form

L = 1

4g

2 (F
a

mn

)2 + |r
m

�a � F a

mn

⌦̄n|2 + 1

2

|�⌧a�̄ � ir
m

(⌦m�̄a � ⌦̄m�a) + i⌦̄m⌦nF a

mn

|2
+ 1

g

2 �̄
fa�mr

m

�a

f

� i�af �̄ ⌧a�
f

+ i�̄a

f

� ⌧a�̄f

+ �fa(⌦̄mr
m

� 1

2

⌦̄mn�
mn

)�a

f

� �̄a

f

(⌦mr
m

� 1

2

⌦mn�
mn

)�̄fa , (2.6)

where f = 1, 2 denotes the R-symmetry index, spinor indices are suppressed.

SUSY transformations. Recall that N = 2 supersymmetry algebra in four dimensions
has the following form

{QI

↵

, Q̄
J ↵̇

} = 2P
↵↵̇

�I
J

+ 2Z
↵↵̇

�I
J

,

{QI

↵

, QJ

�

} = ✏
↵�

✏IJZ
mon

+ (Z
d.w.

)IJ
↵�

. (2.7)

There are three types on central charges: string, monopole and domain wall types. We shall
focus on the former in this section leaving monopoles and domain walls to Sec.

sec:NekPartFunc
4.

The full global symmetry of the theory is SU(2)
L

⇥SU(2)
R

⇥SU(2)R (left, right and the
R-symmetry). It is broken by the Omega background in the NS limit to SU(2)

L

⇥SU(2)
R+R

by paring the R-symmetry with the right handed SU(2). The supercharges undergo the
Donaldson-Witten twist [

Witten:1988ze
16]

Q̄ = �↵̇
I

Q̄I

↵̇

, Q
m

= (�̄
m

)I↵Q
I↵

, Q̄
mn

= (�̄
mn

)↵̇
I

Q̄I

↵̇

. (2.8)

These transformations can be inverted as follows

QI

↵

= 1

2

(�m)I
↵

Q
m

, Q̄
↵̇J

= 1

2

✏
↵̇J

Q̄+ 1

2

(�̄
mn

)
↵̇J

Q̄mn . (2.9) eq:InvertedDWtransf

It turns out that a generic Omega background breaks all supersymmetries of the theory
(
eq:N2SYMOmegNoWL
2.6) but the BRST charge Q̄. Moreover, it can be shown that the Lagrangian (

eq:N2SYMOmegNoWL
2.6) is a

Q̄-exact expression [
Nekrasov:2002qd
4], which makes it possible to compute the partition function of the

theory by localization methods. In this paper we are not doing localization and we need
more supersymmetries to have control of our calculations.

It is more or less clear that the obstacle to supersymmetry is due to the spin operator
terms 1

2

⌦mn�
mn

in the fermionic sector. The theory thus has to be further deformed to gain
more supersymmetry. To understand what we need to do let us look at the supersymmetry

2See Shadchin’s PhD thesis [
Shadchin:2005mx
13] for details
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where L is the Lagrangian of the system. Note that there is an additional contribution to
the above string charge current which is bilinear in fermions of the form @

m

(⌦m�̄�). For
classical analysis, where all fermionic fields can be put to zero it can be omitted. We see
that there is a correction which represents the string central charge. More specifically the
correction takes the following form

⇣
3

= 1

2

@
m

�

(�a⌦̄m � �̄a⌦m)Ba

3

�

�3

↵↵̇

�IJ , (2.17)

where ⇢2 = x2

1

+ x2

2

is the transversal coordinate to the string. If ✏ is real then

⇣
3

= @
'

(Re ✏�̄aBa

3

) . (2.18)

The central charge is given by

Z
string

=

Z

d3x ⇣
3

=

Z

dz

Z

d⇢ ⇢

2⇡

Z

0

d'@
'

(Re(✏�̄a)Ba

3

)

=

Z

dz

Z

d⇢ ⇢Ba

3

Re(✏�̄a)
�

�

�

2⇡

0

. (2.19)

We can immediately see that multivalueness of � as a function of the azimuthal angle
is required in order to make the central charge nonzero. The tension of the string solution
under consideration (let’s call them ✏-strings) is therefore given by

T =

1
Z

0

d⇢⇢Ba

3

Re(✏�̄a)
�

�

�

2⇡

0

. (2.20) eq:StringTension

Assuming that
�(⇢,') = �(⇢)ei↵' , (2.21) eq:AngleAnsarzPhi

where ↵ is an constant, we arrive to

T =

1
Z

0

d⇢ ⇢Re
�

✏Ba

3

�̄a(e�2⇡i↵ � 1)
�

. (2.22) eq:StringTension

The above expression for the tension of ✏-string only makes sense if it is finite. In order to
establish that one has to solve BPS equations in order to find the profile functions for � andeq:BPSeqnsFull
B

3

as function of the radial coordinate ⇢.

BPS equations. Let us now find the BPS equations which describe such a string. Once
supersymmetry algebra is understood (

eq:SUSYGens22
2.14), we can focus on the bosonic part of the action

L = 1

4

F 2

mn

+ |r
m

� � F
mn

⌦̄n|2 + 1

2

|�⌧a�̄ � ir
m

(⌦m�̄a � ⌦̄m�a)|2 . (2.23) eq:ActionN2OmegaBos

Note that in the NS limit ⌦̄m⌦nF a

mn

identically vanishes. We can now do the Bogomolny
completion, as the supersymmetry algebra suggests

L = 1

2

|Ba

3

+ �⌧a�̄ � ir
m

(⌦m�̄a � ⌦̄m�a)|2 + 1

2

|r
1

�a + ir
2

�a � (⌦
2

� i⌦
1

)Ba

3

|2
+ @

m

(Ba

3

(⌦m�̄a � ⌦̄m�a)) � @
m

(Ba

3

(⌦m�̄a � ⌦̄m�a)) . (2.24)
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central charge
is nonzero
if conical singularity 
is present similar to cosmic string

we call it epsilon-string



Monopoles and domain walls
Let’s try to find a monopole

fig:epsStringMon

Figure 2: Left: Boojum as a monopole-string-domain wall junction. The string is infinite and is
stretched along the z-axis. Right: ✏-string ending at monopoles located on two parallel domain
walls in xy-plane can be viewed as the superposition of two boojums. The string does not continue
through the domain walls to the outer area, since the scalar field, main building block of the ✏-string,
vanishes outside of the domain walls.

fig:2d2dmon

Figure 3: ’t-Hooft-Polyakov monopole on a surface defect.

to derive the full 2d/4d wall crossing formula. Bound states of monopoles on surface defects
are present in the theory, and, since the 4d theory is at the Coulomb branch, its magnetic
field has a spherically symmetric pattern, unlike a Higgs monopole whose field lines are
trapped to a vortex. These two pictures – Higgsed monopole an a vortex and a Polyakov-’t-
Hooft monopole on a surface defect Fig.

fig:2d2dmon
4 may represent two di↵erent limiting configurations

of a more generic setup, which involves more sophisticated 2d/4d dynamics. Keeping the
calculations we have done in this section we may hope that 4d theories in Omega background
may be reasonable candidates for such a theory. It would be interesting to investigate the
solution of BPS equations (

eq:BPSMononDW
4.15) more closely and study di↵erent values of the deformation

parameter ✏. At large ✏ the surface operator limit emerges and Gaiotto et al story [
Gaiotto:2011tf
31] may

come out.
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where m = 1, 2. The solution of these equations if given in [
Ito:2011wv
14]. The authors’ conclusion is

that the monopole’s mass is not changed, the magnetic field strength has the same form as
the one in the undeformed case for ✏ = 0. However, there is a correction of the scalar field
profile. In the singular gauge (when only �3 6= 0) the solution reads
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vanishes at z ! ±1. Functions F and H are taken from the ’t-Hooft-Polyakov monopole
solution [

Prasad:1975kr
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Note that scalar filed � does not go to its vacuum value v any longer as it does for ✏ = 0,
but rather interpolates between �

+1 = v + ✏ to ��1 = v � ✏ at plus and minus z-infinity
respectively. This suggests us that maybe 1/2 BPS monopole is not a proper interpretation
of the above solution and more structures can be involved.

Before we go further let us mention an useful symmetry of equations (
eq:BPSeqnsComplts
4.5). In the above

analysis axial symmetry was assumed both � and B fields depended only on ⇢ and z. We
can also introduce azimuthal angle ' in the game by giving the scalar field a phase

� 7! � ei↵' . (4.9) eq:phirescaling

In order to preserve (
eq:BPSeqnsComplts
4.5) the magnetic field strength also acquires a phase and its azimuthal
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m
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4.3) becomes
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Let us now see how to construct monopoles and domain walls in SU(2) SYM theory in the
NS Omega background.
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fig:epsStringMon

Figure 2: Left: Boojum as a monopole-string-domain wall junction. The string is infinite and is
stretched along the z-axis. Right: ✏-string ending at monopoles located on two parallel domain
walls in xy-plane can be viewed as the superposition of two boojums. The string does not continue
through the domain walls to the outer area, since the scalar field, main building block of the ✏-string,
vanishes outside of the domain walls.

fig:2d2dmon

Figure 3: ’t-Hooft-Polyakov monopole on a surface defect.
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On the solution adjoint scalar interpolates between different values 
at large and small z, magnetic field pattern is spherically symmetric

Naturally suggests that this monopole is located on a domain wall 
separating two vacua
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respectively. This suggests us that maybe 1/2 BPS monopole is not a proper interpretation
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Conclusions and open questions

• Study of SQCD BPS (and beyond) spectrum can 
effectively be done using 2d GLSM

• 4d/2d duality helps to understand  AGT in NS limit 
by reducing it to bispectral duality

• Study dynamics of new solitons (eps strings, d.w.)

• Generalize to other AGT pairs


