Strings Monopoles Domain Walls in Omega
 Background and Integrability

Peter Koroteev

University of Minnesota

\& KITP, Santa Barbara

In progress with K. Bulycheva, H. Chen and A.Gorsky I206.xxxx

Some interesting facts about $\mathrm{N}=2$ physics

A full partition function of $N=2 d=4$ theory can be computed by localization [Nekrasov]

Recently a solid connection to non-SUSY CFTs was outlined [Alday, Gaiotto,Tachikawa]
and connection to ad sigma models
[Dory, Hollowood, Tong] [Shifman, Mung] [Gaiotto, Moore, Neitzke]...

$$
\begin{gathered}
\text { This talk: interplay between } \\
\text { the last two points }
\end{gathered}
$$

Outline

- 4d/2d w/ 8 supercharges
« Vortices in field theory and type IIA string theory
$\star(2,2)$ GLSM, NLSM
* The Dictionary of 4d/2d
- AGT duality vs 4d/2d correspondence
\star Omega Background
\star Liouville theory at large central charge
* 4d/2d in NS limit and duality
- Zoo of BPS solitons in Omega deformed theory
* Monopoles, strings, domain walls

4d/2d

4d / 2d duality

$$
\begin{array}{c|l}
\mathcal{N}=2 \quad S U(N) \quad \text { SQCD } & (2,2) \quad U(1) \\
N_{f}=N+\tilde{N} \text { GLSM } \quad \text { e } \\
\text { w/ masses hypers } & N \text { chiral }+\mathbf{I} \quad \tilde{N} \text { chiral -I } \\
m_{1}, \ldots, m_{N} \quad \mu_{1}, \ldots, \mu_{\tilde{N}} & \text { w/twisted masses } \\
\tau=\frac{4 \pi i}{g^{2}}+\frac{\theta}{2 \pi} & m_{1}, \ldots, m_{N} \quad \mu_{1}, \ldots, \mu_{\tilde{N}} \\
\tau=i r+\frac{\theta}{2 \pi}
\end{array}
$$ e

on baryonic Higgs branch

BPS dyons (Seiberg-Witten)
kinks interpolating between different vacua

BPS spectra (as functions of masses, Lambda) are the same

Coulomb vs Higgs branches

Hanany-Witten construction
[Hanany Tong]

NS5
NS5
NS5'

$$
N_{f}=2 N_{c}
$$

SQCD $\quad N_{f}=2 N_{c}$
Higgs branch root
Color-flavor locked phase of SQCD

2d FI parameter $\quad r=\frac{\Delta x^{6}}{2 \pi g_{s} l_{s}}=\frac{4 \pi}{e^{2}}$

$$
V_{2 d}(\sigma, Z)
$$

$$
\sigma=X^{4}+i X^{5} \quad, \quad Z=X^{1}+i X^{2}
$$

Understanding 2d theory:'ANO’ String

 $U(N)$ gauge theory with fundamental matter $q \rightarrow U q V \quad U \in U(N)_{G}, \quad V \in S U(N)_{F}$$$
\begin{aligned}
S=\int d^{4} x \operatorname{Tr} & \left(\frac{1}{2 e^{2}} F^{\mu \nu} F_{\mu \nu}+\frac{1}{e^{2}}\left(\mathcal{D}_{\mu} \phi\right)^{2}\right)+\sum_{i=1}^{N_{f}}\left|\mathcal{D}_{\mu} q_{i}\right|^{2} \\
& -\sum_{i=1}^{N_{f}} q_{i}^{\dagger} \phi^{2} q_{i}-\frac{e^{2}}{4} \operatorname{Tr}\left(\sum_{i=1}^{N_{f}} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)^{2}
\end{aligned}
$$

Vacuum

$$
N_{f}=N_{c}
$$

$\phi=0 \quad, \quad q_{i}^{a}=v \delta^{a}{ }_{i}$
breaks symmetry
(color-flavor locking)

$$
U(N)_{G} \times S U(N)_{F} \rightarrow S U(N)_{\mathrm{diag}}
$$

Induces nontrivial topology on moduli space

$$
\Pi_{1}\left(U(N) \times S U(N) / S U(N)_{\operatorname{diag}}\right) \cong \mathbf{Z}
$$

To find a string need $q_{N} \sim q \mathrm{e}^{i k \theta}$ winding at infinity

$$
2 \pi k=\operatorname{Tr} \oint_{\mathbf{S}_{\infty}^{1}} i \partial_{\theta q} q q^{-1}=\operatorname{Tr} \oint_{\mathbf{S}_{\infty}^{1}} A_{\theta}=\operatorname{Tr} \int d x^{1} d x^{2} B_{3}
$$

BPS equations for vortex

$$
\begin{aligned}
T_{\text {vortex }}= & \int d x^{1} d x^{2} \operatorname{Tr}\left(\frac{1}{e^{2}} B_{3}^{2}+\frac{e^{2}}{4}\left(\sum_{i=1}^{N} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)^{2}\right)+\sum_{i=1}^{N}\left|\mathcal{D}_{1} q_{i}\right|^{2}+\left|\mathcal{D}_{2} q_{i}\right|^{2} \\
= & \int d x^{1} d x^{2} \frac{1}{e^{2}} \operatorname{Tr}\left(B_{3} \mp \frac{e^{2}}{2}\left(\sum_{i=1}^{N} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)\right)^{2}+\sum_{i=1}^{N}\left|\mathcal{D}_{1} q_{i} \mp i \mathcal{D}_{2} q_{i}\right|^{2} \\
& \mp v^{2} \int d x^{1} d x^{2} \operatorname{Tr} B_{3} \geq \mp v^{2} \int d^{2} x \operatorname{Tr} B_{3}=2 \pi v^{2}|k|
\end{aligned}
$$

gives $\quad B_{3}=\frac{e^{2}}{2}\left(\sum_{i} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)$

Vortices

Simple vortex $w / N=l, k=l$ (ANO) has two collective coordinates-translations in x, y directions
$U(N)$ vortex
has more moduli

$$
A_{z}=\left(\begin{array}{cccc}
A_{z}^{\star} & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right) \quad, \quad q=\left(\begin{array}{llll}
q^{\star} & & & \\
& v & & \\
& & \ddots & \\
& & & v
\end{array}\right)
$$

Moduli space

$$
(k=1)
$$

$$
S U(N)_{\operatorname{diag}} / S[U(N-1) \times U(1)] \cong \mathbb{C P}^{N-1}
$$

$$
\mathcal{V}_{1, N} \cong \mathbf{C} \times \mathbb{C P}^{N-1}
$$

For higher $\mathrm{k} \quad \operatorname{dim}\left(\mathcal{V}_{k, N}\right)=2 k N$
Again:
$T \geq 2 \pi v^{2}|k| \quad$ bound saturates for BPS states

Non-Abelian String

$$
\begin{gathered}
q=U\left(\begin{array}{cccc}
q_{1} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & 0 \\
0 & 0 & \ldots & q_{2}
\end{array}\right) U^{-1}
\end{gathered} \quad \text { Take } A
$$

Take Abelian string solution Make global rotation

Matrix U parameterizes orientational modes

Gauge group is broken to \mathbb{Z}_{N}
All bulk degrees of freedom massive $\quad M^{2} \sim \xi$
Theory is fully Higgsed

Vortex moduli space

$\mathrm{Nf}=\mathrm{Nc}$ color-flavor locked phase single SUSY vacuum
$\mathrm{Nf}=\mathrm{Nc}$ local vortex

$$
U\left(N_{c}\right) \times S U\left(N_{f}\right) \rightarrow S U(N)
$$

$$
\frac{S U(N)}{S U(N-1) \times U(1)}=\mathbb{C P}^{N-1}
$$

$\mathrm{Nf}>\mathrm{Nc}$ semilocal (+size moduli)

$$
\pi_{2}\left(\mathcal{M}_{v a c}\right)=\pi_{2}\left(\frac{S U(N+\tilde{N})}{S U(N) \times S U(\tilde{N}) \times U(1)}\right)=\mathbb{Z}
$$ Duality between two strongly coupled theories

Confined monopoles

$\xi=e^{2} v^{2}$

Hanany-Tong model as $U(I)$ GLSM

$$
\mathcal{L}=\int d^{4} \theta\left[\sum_{i=1}^{N_{c}} \Phi_{i}^{\dagger} \mathrm{e}^{\mathcal{V}} \Phi_{i}+\sum_{i=1}^{\tilde{N}} \widetilde{\Phi}_{i}^{\dagger} \mathrm{e}^{-\mathcal{V}} \widetilde{\Phi}_{i}-r \mathcal{V}+\frac{1}{2 e^{2}} \Sigma^{\dagger} \Sigma\right]
$$

$$
V=\theta^{+} \bar{\theta}^{+}\left(A_{0}+A_{3}\right)+\theta^{-} \bar{\theta}^{-}\left(A_{0}-A_{3}\right)-\theta^{-} \bar{\theta}^{+} \sigma-\theta^{-} \bar{\theta}^{+} \bar{\sigma}+\bar{\theta}^{2} \theta \lambda+\theta^{2} \bar{\theta} \bar{\lambda}+\bar{\theta} \theta \bar{\theta} \theta D
$$

One loop twisted effective superpotential is exact in $(2,2)$

$$
\begin{aligned}
\widetilde{W}_{\mathrm{eff}} & =-\frac{1}{2 \pi} \sum_{i=1}^{N}\left(\sqrt{2} \sigma+m_{i}\right)\left(\log \frac{\sqrt{2} \sigma+m_{i}}{\Lambda}-1\right)+ \\
& +\frac{1}{2 \pi} \sum_{j=1}^{\widetilde{N}}\left(\sqrt{2} \sigma+\widetilde{m}_{j}\right)\left(\log \frac{\sqrt{2} \sigma+\widetilde{m}_{j}}{\Lambda}-1\right) .
\end{aligned}
$$

gives vacua of the theory and its BPS spectrum
$N=5 N f=8$

$\mathrm{N}=15 \mathrm{Nf}=18$

$\mathrm{Nf}=5 \mathrm{C} \mu$ phase

AGT in NS limit

Omega background

Rotational symmetry broken to maximal torus

$$
S O(4) \rightarrow S O(2) \times S O(2)
$$

6d Metric

$$
G_{A B} d x^{A} d x^{B}=A d z d \bar{z}+\left(d x^{m}+\Omega^{m} d z+\bar{\Omega}^{m} d \bar{z}\right)^{2}
$$

We will be interested in Nekrasov-Shatashvili limit

$$
\Omega^{m}=\left(-i \epsilon x^{2}, i \epsilon x^{1}, 0,0\right)=i \epsilon \partial_{\varphi} \quad \epsilon_{2} \rightarrow 0
$$

The AGT duality

$$
3 g-3+n
$$

Coulomb branch

Liouville theory on 2-sphere with 4 punctures at $\infty, 1, q, 0$
 td U(2) SQCD w/ 4 flavors with masses $m_{1}, m_{2}, m_{3}, m_{4}$

central charge

$$
c=1+6 Q^{2}, \quad Q=b+\frac{1}{b}
$$

conformal dimensions of chiral operators

$$
\begin{aligned}
& \Delta_{1}=\alpha_{0}\left(Q-\alpha_{0}\right), \quad \Delta_{2}=\mu_{0}\left(Q-\mu_{0}\right), \quad \Delta_{3}=\mu_{1}\left(Q-\mu_{1}\right), \quad \Delta_{4}=\alpha_{1}\left(Q-\alpha_{1}\right) \\
& \alpha_{0}=\frac{1}{2} Q+\widetilde{\mu}_{0}, \quad \alpha=\frac{1}{2} Q+a, \quad \alpha_{1}=\frac{1}{2} Q+\widetilde{\mu}_{1}
\end{aligned}
$$

Conformal block matches with instanton partition function

$$
\begin{aligned}
& \mathcal{Z}_{\text {inst }}\left(a, \mu_{0}, \widetilde{\mu}_{0}, \mu_{1}, \widetilde{\mu}_{1}\right)=(1-q)^{2 \mu_{0}\left(Q-\mu_{1}\right)} \mathcal{F}_{\alpha_{0} \alpha \alpha \alpha_{1}(q)}^{\mu_{0}} \quad \text { In NS limit } \quad b \rightarrow \infty \\
& b=\epsilon_{1}=1 / \epsilon_{2}
\end{aligned}
$$

But the proof already exists! Mrionou, Morooov]

at large c conformal block becomes a hypergeometric function

$$
\begin{aligned}
B_{\Delta ; \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}}(x) & \xrightarrow{c \rightarrow \infty}{ }_{2} F_{1}\left(\Delta+\Delta_{1}-\Delta_{2}, \Delta+\Delta_{3}-\Delta_{4} ; 2 \Delta ; x\right)= \\
= & \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \prod_{k=0}^{n-1} \frac{\left(\Delta+\Delta_{1}-\Delta_{2}+k\right)\left(\Delta+\Delta_{3}-\Delta_{4}+k\right)}{2 \Delta+k}
\end{aligned}
$$

[Zamolodchikov]

Only chiral Nekrasov functions contribute

$$
\left(Y, Y^{\prime}\right)=\left(\left[1^{n}\right], \emptyset\right) \text { or }\left(\emptyset,\left[1^{n}\right]\right)
$$

One can identify each term of the expansion in the instanton number with the Taylor series in x for 2 FI

Similar to Fateev-Litvinov conformal blocks

Both proofs are rather formal and deal with each term in the series. Need more physical understanding...

Roadmap to proof

Liouville CFT on S^{2} with four punctures at $z=\infty, 1, q, 0 \quad b \rightarrow \infty$

Rational Gaudin model on S^{2} with singularities at $z=\infty, 1, q, 0$
equivalence
of Bethe
equations
Trigonometric Gaudin model with singularities at $z=1, q$

Twisted anisotropic $S L(2) \mathrm{XXX}$ chain

4d/2d in Omega background

$\mathrm{N}=2$ SQCD in Omega background in NS limit with $\mathrm{Nf}=2 \mathrm{Nc}$

$$
\vec{a}=\vec{m}_{F}-\vec{n} \epsilon \quad \vec{n}=\left(n_{1}, \ldots, n_{L}\right) \in \mathbb{Z}^{L}
$$

$\mathcal{W}^{(I)} \equiv \mathcal{W}^{(I I)}$

Nekrasov-Shatashvili quantization

From 4d prepotential to 2d twisted superpotential

$$
\widetilde{\mathcal{W}}(a, \epsilon)=\lim _{\epsilon_{2} \rightarrow 0} \frac{\mathcal{F}\left(a, \epsilon, \epsilon_{2}\right)}{\epsilon_{2}}=\left.\frac{\partial \mathcal{F}\left(a, \epsilon, \epsilon_{2}\right)}{\partial \epsilon_{2}}\right|_{\epsilon_{2}=0}
$$

at small epsilon

$$
\widetilde{\mathcal{W}}(a, \epsilon)=\frac{\mathcal{F}(a)}{\epsilon}+\ldots
$$

Twisted superpotential is multivalued on Coulomb branch

$$
\mathcal{W}^{(I)}(\vec{a}, \epsilon)=\frac{1}{\epsilon} \mathcal{F}(\vec{a}, \epsilon)-2 \pi i \vec{k} \cdot \vec{a}
$$

Supersymmetric vacua

$$
\exp \left(\frac{\partial \widetilde{W}(a)}{\partial a_{i}}\right)=1
$$

Quantization of a-m cycle

$$
\frac{1}{2 \pi} \oint_{\alpha_{l}} \lambda_{\mathrm{SW}}=\hbar \hat{n}_{l}
$$

Vortex interpretation

SQCD in NS Omega background

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{4 g^{2}} F_{m n}^{2}+\left|\nabla_{m} \phi-F_{m n} \bar{\Omega}^{n}\right|^{2}+\frac{g^{2}}{2}\left|\phi \tau^{a} \bar{\phi}-i \nabla_{m}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)+\bar{q} \tau^{a} q-\widetilde{q} \tau^{a} \overline{\tilde{q}}\right|^{2} \\
& +\frac{1}{2}\left|\nabla_{m} q\right|^{2}+\frac{1}{2}\left|\nabla_{m} \widetilde{q}\right|^{2}+\frac{1}{2}\left|\left(\phi-m_{i}-i \Omega^{m} \nabla_{m}\right) q_{i}\right|^{2}+\frac{1}{2}\left|\left(\phi-\widetilde{m}_{i}-i \Omega^{m} \nabla_{m}\right) \widetilde{q}_{i}\right|^{2} \\
& +2 g^{2}\left|\widetilde{q} \tau^{a} q\right|^{2}+\frac{g^{2}}{2}\left|\widetilde{q}_{i} q_{i}-N \xi_{F I}\right|^{2}+\frac{g^{2}}{8}\left(|q|^{2}-|\widetilde{q}|^{2}\right)^{2}
\end{aligned}
$$

Vacua $\quad \phi^{a}=m^{a}-n^{a} \epsilon$
$(2,2)$ SUSY is the same as for BPS vortices
Generalized FI terms

$$
\Xi_{g}^{a f}=i \nabla_{\alpha \dot{\alpha}}\left(\bar{\Omega}^{\alpha \dot{\alpha}} \phi^{a}-\Omega^{\alpha \dot{\alpha}} \bar{\phi}^{a}\right) \delta_{g}^{f}+\xi_{F I g}^{f} \delta_{N^{2}}^{a}
$$

BPS equations

$$
\begin{aligned}
B_{3}^{a}+g^{2}\left(\bar{q}_{i} \tau^{a} q^{i}-\Xi^{a}\right) & =0 \\
\left(\nabla_{1}+i \nabla_{2}\right) q^{i} & =0 \\
\left(\nabla_{1}+i \nabla_{2}\right) \phi^{a}-\left(\Omega_{2}-i \Omega_{1}\right) B_{3}^{a} & =0
\end{aligned}
$$

XXX vs Gaudin

Gaudin model - Hitchin system on S2 with punctures
[Nekrasov] Effective twisted superpotential

$$
\begin{aligned}
\widetilde{W}_{\text {eff }}^{2 d}(\lambda)= & \epsilon \sum_{a=1}^{K} \sum_{i=1}^{N} f\left(\frac{\lambda_{a}-M_{i}}{\epsilon}\right)-\epsilon \sum_{a=1}^{K} \sum_{i=1}^{N} f\left(\frac{\lambda_{a}-\widetilde{M}_{i}}{\epsilon}\right) \\
& +\epsilon \sum_{a, b=1}^{K} f\left(\frac{\lambda_{a}-\lambda_{b}-\epsilon}{\epsilon}\right)+2 \pi i \hat{\tau} \sum_{a=1}^{K} \lambda_{a},
\end{aligned}
$$

Ground state equations
Heisenberg SL(2) magnet
twisted and anisotropic
Large anisotropy limit rational Gaudin model

Bethe equations obtained by diagonalizing (4 sites)

$$
S(u)=\sum_{a=1}^{4} \frac{\mathcal{H}_{a}}{u-z_{a}}+\sum_{a=1}^{4} \frac{\Delta\left(\nu_{a}\right)}{\left(u-z_{a}\right)^{2}}
$$

$$
\mathcal{H}_{a}=\sum_{b \neq a} \sum_{\alpha, \beta=1}^{\operatorname{dim}(\mathfrak{g})} \frac{\mathfrak{J}_{\alpha}^{(b)} \mathfrak{J}^{\alpha(b)}}{z_{a}-z_{b}}
$$

Bispectral duality

Trigonometric Gaudin vs XXX magnet

$$
\begin{aligned}
& \frac{\mathcal{M}_{1}-\mathcal{M}_{2}-\epsilon}{t_{i}}+\sum_{b=1}^{2} \frac{\nu_{b} \epsilon}{t_{i}-z_{b}}-\sum_{\substack{j=1 \\
j \neq i}}^{\kappa_{2}} \frac{2 \epsilon}{t_{i}-t_{j}}=0, \quad i=1, \ldots, \kappa_{2}, \\
& \prod_{a=1}^{2} \frac{\lambda_{i}+\mathcal{M}_{a}}{\lambda_{i}+\mathcal{M}_{a}+\kappa_{a} \epsilon}=\frac{z_{2}}{z_{1}} \prod_{\substack{j=1 \\
j \neq i}}^{\nu_{2}} \frac{\lambda_{i}-\lambda_{j}-\epsilon}{\lambda_{i}-\lambda_{j}+\epsilon}, \quad i=1, \ldots, \nu_{2}
\end{aligned}
$$

Equations have isomorphic spaces of solutions

$$
\kappa_{1}+\kappa_{2}=\nu_{1}+\nu_{2}
$$

Nice brane interpretation Rotation by 90 degrees

From Liouville to Gaudin

Gaudin Hamiltonian in KZ equation

$$
b^{2} \frac{d \Psi\left(z_{i}\right)}{d z_{i}}=\mathcal{H}_{\text {Gaud }} \Psi\left(z_{i}\right), \quad i=1, \ldots, L
$$

Liouville CB satisfies end order ODE which in the NS limit becomes KZ
[Teschner] equation with Gaudin Hamiltonian
with rescaled conformal
dimensions

$$
\begin{aligned}
\delta_{1} & =\left(\frac{\widetilde{\mu}_{0}}{b}-\frac{1}{2}\right)\left(\frac{\widetilde{\mu}_{0}}{b}+\frac{1}{2}\right) \\
\delta_{2} & =\left(\frac{\mu_{0}}{b}-1\right) \frac{\mu_{0}}{b}, \\
\delta_{3} & =\left(\frac{\mu_{1}}{b}-1\right) \frac{\mu_{1}}{b}, \\
\delta_{4} & =\left(\frac{\widetilde{\mu}_{1}}{b}-\frac{1}{2}\right)\left(\frac{\widetilde{\mu}_{1}}{b}+\frac{1}{2}\right)
\end{aligned}
$$

$$
\delta_{i}=-\frac{\Delta_{i}}{b^{2}}
$$

take home message: $C B$ in Liouville - ware function in Gaudin

The Duality

$$
2 \mathrm{D} 4^{\prime} s
$$

$2 \mathrm{D} 4{ }^{\prime} s$
Gaudin BAE

$$
\sum_{b=1}^{4} \frac{\nu_{b} \epsilon}{t_{i}-z_{b}}-\sum_{\substack{j=1 \\ j \neq i}}^{\kappa_{2}} \frac{2 \epsilon}{t_{i}-t_{j}}=0
$$

Higgs branch root

$$
a_{a}=m_{2+a}-n_{a} \epsilon, \quad a=1,2
$$

$$
\epsilon \nu_{1}=0, \quad \epsilon \nu_{2}=K, \quad \epsilon \nu_{3}=m_{3}-m_{4}-\epsilon=2 \widetilde{\mu}_{1}-\epsilon
$$

$\mathrm{U}(\mathrm{I})$ condition

$$
\frac{\mu_{1}}{\epsilon}=\frac{n_{1}+n_{2}}{2}
$$

AGT in NS limit

$\left.\begin{array}{|c|c|}\hline \begin{array}{c}\text { Liouville conformal block at } b \rightarrow \infty \\ \text { on } S^{2} \text { with four punctures }\end{array} & \begin{array}{c}U(2), N_{f}=4 \text { SQCD instanton } \\ \text { partition function in the NS limit }\end{array} \\ \hline \hline \text { Rational Gaudin model from KZ } \\ \text { equation on conformal blocks }\end{array} \quad \begin{array}{c}S L(2) \text { spin chain from the ground state } \\ \text { equation for the 2d GLSM dual to 4d theory }\end{array}\right]$ Instanton number q.

Quiver Generalizations

conformal dimensions

$$
\alpha_{0}\left(Q-\alpha_{0}\right), \quad \mu_{0}\left(Q-\mu_{0}\right), \ldots, \quad m_{L}\left(Q-m_{L}\right), \quad \alpha_{L+1}\left(Q-\alpha_{L+1}\right)
$$

Higgs branch

$$
a_{a}^{(p)}=m_{a}^{(p)}+n_{a}^{(p)} \epsilon+\sum_{k=1}^{L} \mu_{k}^{(p)}
$$

Casimir eigenvalues and spins of representations at each NS5 from the number of D2 branes

$$
\frac{K_{1}}{2}\left(\frac{K_{1}}{2}+1\right), \quad \ldots, \quad \frac{K_{L}}{2}\left(\frac{K_{L}}{2}+1\right) \quad K_{i}=\hat{n}_{1}^{(i)}+\hat{n}_{2}^{(i)}
$$

Strings Domain Walls and Monopoles

SUSY algebra

$$
\begin{aligned}
& \left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\beta}}^{J}\right\}=2 \delta^{I J} P_{\alpha \dot{\beta}}+2 \delta^{I J} Z_{\alpha \dot{\beta}} \longleftrightarrow \text { strings } \\
& \left\{Q_{\alpha}^{I}, Q_{\beta}^{J}\right\}=2 Z_{\alpha \beta}^{I J} \text { monopoles domain walls }
\end{aligned}
$$

In N=2 SYM we only find dyons as BPS solitons in the low energy effective theory
Let us see what happens in Omega background
Four supercharges remain

$$
\begin{aligned}
& \bar{Q}_{\dot{\alpha} J} \frac{1}{2} \epsilon_{\dot{\alpha} J} \bar{Q}+\frac{1}{2}\left(\bar{\sigma}_{m n}\right)_{\dot{\alpha} J} \bar{Q}^{m n} \\
& Q_{12}, Q_{21}, \bar{Q}_{12}, \bar{Q}_{21} .
\end{aligned}
$$

Symmetry breaking pattern

$$
S U(2)_{c} \times S U(2)_{R} \times S U(2)_{\mathcal{R}} \rightarrow U(1)_{c} \times S U(2)_{R+\mathcal{R}}
$$

SUSY transform

$$
\begin{aligned}
\delta \phi= & \zeta_{\alpha}^{I}\left(\lambda_{I}^{\alpha}-\Omega^{m}\left(\sigma_{m}\right)^{\alpha \dot{\alpha}} \bar{\lambda}_{I \dot{\alpha}}\right)+\bar{\zeta}_{\dot{\alpha}}^{I} \Omega^{m}\left(\bar{\sigma}_{m}\right)^{\alpha \dot{\alpha}} \lambda_{I \alpha}, \\
\delta \lambda_{I \alpha}= & \zeta_{I \rho}\left(\left(\sigma^{m n}\right)_{\alpha}^{\beta} F_{m n}+i[\phi \bar{\phi} \bar{\phi}\rangle_{\alpha}^{\beta}+\nabla_{m}\left(\bar{\Omega}^{m} \phi-\Omega^{m} \bar{\phi}\right) \delta_{\alpha}^{\beta}\right) \\
& +\bar{\zeta}_{I \dot{\beta}}\left(\sigma^{m}\right)_{\alpha}^{\dot{\beta}}\left(\nabla_{m} \phi-F_{m n} \Omega^{n}\right) .
\end{aligned}
$$

Vortices in Omega background
 [PK Gorsky Chen] in progress

Can view Omega deformation as formal replacement
Lagrangian

$$
\phi \mapsto \phi-i \Omega^{m} \nabla_{m}+\frac{i}{2} \Omega^{m n} S_{m n}
$$

$$
\mathcal{L}=\frac{1}{4 g^{2}}\left(F_{m n}^{a}\right)^{2}+\left|\nabla_{m} \phi^{a}-F_{m n}^{a} \bar{\Omega}^{n}\right|^{2}+\frac{1}{2}\left|\phi \tau^{a} \bar{\phi}-i \nabla_{m}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)+i \bar{\Omega}^{m} \Omega^{n} F_{m n}^{a}\right|^{2}
$$

String central charge

current $\quad \zeta_{3}=\frac{1}{2} \partial_{m}\left(\left(\phi^{a} \bar{\Omega}^{m}-\bar{\phi}^{a} \Omega^{m}\right) B_{3}^{a}\right) \sigma_{\alpha \dot{\alpha}}^{3} \delta^{I J}=\frac{i}{2} B_{3}^{a} \partial_{\varphi}\left(\phi^{a} \bar{\epsilon}-\bar{\phi}^{a} \epsilon\right) \sigma_{\alpha \dot{\alpha}}^{3} \delta^{I J}$
Bogomolny completion

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2}\left|B_{z}^{a}+\phi \tau^{a} \bar{\phi}-i \nabla_{m}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right|^{2}+\frac{1}{2}\left|\mathcal{D}_{1} \phi^{a}+i \mathcal{D}_{2} \phi^{a}-\left(\Omega_{2}-i \Omega_{1}\right) B_{z}^{a}\right|^{2} \\
& +\partial_{m}\left(B_{z}^{a}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right) \geq \partial_{m}\left(B_{z}^{a}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right) .
\end{aligned}
$$

central charge
is nonzero
if conical singularity
is present

$$
Z_{\text {string }}=\int d^{3} x \zeta_{3}=\int d z \int d \rho \rho \int_{0}^{2 \pi} d \varphi \partial_{\varphi}\left(\Re e\left(\left(\bar{\epsilon}^{\alpha}\right) B_{3}^{a}\right)\right.
$$

similar to cosmic string
we call it epsilon-string

Monopoles and domain walls

Let's try to find a monopole [Ito, Kamashita, Sasaki]

$$
\begin{aligned}
B_{3}^{a}-\nabla_{3} \phi^{a}-\epsilon x^{m} B_{m}^{a} & =0 \\
B_{m}^{a}-\nabla_{m} \phi^{a}+\epsilon x_{m} B_{3}^{a} & =0
\end{aligned}
$$

On the solution adjoint scalar interpolates between different values at large and small z , magnetic field pattern is spherically symmetric Naturally suggests that this monopole is located on a domain wall separating two vacua

Tension $\quad T=2 \epsilon\left((v+\epsilon)^{2}-(v-\epsilon)^{2}\right)=8 v \epsilon^{2}$

Conclusions and open questions

- Study of SQCD BPS (and beyond) spectrum can effectively be done using 2d GLSM
- 4d/2d duality helps to understand AGT in NS limit by reducing it to bispectral duality
- Study dynamics of new solitons (eps strings, d.w.)
- Generalize to other AGT pairs

