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Motivation
Supersymmetric gauge theories/String theory have been 
suggesting for a long time that there is a strong connection 
between geometry and integrability

Study of Gromov-Witten invariants was partly influenced by 
progress in string theory. For a symplectic manifold X GW 
invariants appear in the expansion of quantum multiplication in 
quantum cohomology ring of X.

A particular attention is given to genus zero GW invariants. 



Motivation
Supersymmetric gauge theories/String theory have been 
suggesting for a long time that there is a strong connection 
between geometry and integrability

Study of Gromov-Witten invariants was partly influenced by 
progress in string theory. For a symplectic manifold X GW 
invariants appear in the expansion of quantum multiplication in 
quantum cohomology ring of X.

A particular attention is given to genus zero GW invariants. 

In this talk we shall study equivariant quantum K-theory of 
large family of symplectic varieties and its connection to 
integrable systems 



Sigma Model
To see how integrability arises one considers supersymmetric 
sigma model from the base curve (P1 in our case) into X

Witten demonstrated that relevant class of supersymmetric 
sigma models can be rewritten as supersymmetric gauge 
theories ((2,2) GLSMs) in two dimensions whose field content 
is related to geometry of X. Sigma models thus describe 
infrared dynamics of GLSMs.

Nekrasov and Shatashvili showed how to obtain integrable 
systems from such GLSMs. It was conjectured that SUSY 
vacua of 2d theories compute quantum cohomology ring of 
X, while 3d theories on              describe quantum K-theory.R2 ⇥ S1
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

Rep(v,w) — linear space of quiver reps

µ : T ⇤Rep(v,w) ! Lie(G)⇤

G =
Y

GL(Vi)

moment map

X = µ�1(0)//GNakajima quiver variety

Aut(X) =
Y

GL(Qij)⇥
Y

GL(Wi)⇥ C⇥
~Automorphism group

Maximal torus T = T(Aut(X))
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riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

Rep(v,w) — linear space of quiver reps

µ : T ⇤Rep(v,w) ! Lie(G)⇤

G =
Y

GL(Vi)

moment map

X = µ�1(0)//GNakajima quiver variety

Aut(X) =
Y

GL(Qij)⇥
Y

GL(Wi)⇥ C⇥
~Automorphism group

Maximal torus T = T(Aut(X))

Tensorial polynomials of tautological bundles Vi, Wi and their 
duals generate classical T-equivariant K-theory ring of X

We shall study its quantum deformation
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as automorphisms of X, where Q
ij

stands for the number of edges between vertices i and
j, C~ scales cotangent directions with weight ~ and therefore symplectic form with weight
~�1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it V

i

,W
i

, i 2 I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles W

i

are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = �(F ⌦ G⌦K�1/2),

where K is the canonical class and � is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C 99K X

Is a collection of vector bundles V
i

on C of ranks v
i

together with a section of the bundle

(3) f 2 H0(C,M � M ⇤ ⌦ ~),

satisfying µ = 0, where

M =
X

i2I
Hom(W

i

,V
i

)�
X

i,j2I
Q

ij

⌦Hom(V
i

,V
j

),

so that W
i

are trivial bundles of rank w
i

and µ is the moment map. Here ~ is a trivial line
bundle with weight ~ introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles V

i

.

For a point on the curve p 2 C we have an evaluation map to the quotient stack ev
p

:
QMd ! L(v,w)/G defined by ev

p

(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ�1
ss

(0)/G ⇢ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⇢ X. In short, we conclude that the open
subset QMd

nonsing p ⇢ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp�! X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of ev
p

(or compactification), meaning we have a commutative diagram:
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(or compactification), meaning we have a commutative diagram:

[Okounkov]
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Open subset of nonsingular quasimaps is endowed with evaluation map to X

Relative quasimaps are 
resolutions with proper ev map
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QMd
relative p

QMd
nonsing p X

ev
p

eev
p

with a proper evaluation map eev
p

from QMd
relative p to X. The construction of this

resolution and the moduli space of relative quasimaps is explained in [Oko1512]. It follows
a similar construction of relative Gromov-Witten and Donaldson-Thomas moduli spaces.
The main idea of this construction is to allow the base curve to change in cases, when
the relative point becomes singular. When this happens we replace the relative point by
a chain of non-rigid projective lines, such that the endpoint and all the nodes are not
singular. Similarly, for nodal curves, we do not allow the singularity to be in the node, and
if that happens we instead paste in a chain of non-rigid projective lines.

These moduli spaces have a natural action of maximal torus T, lifting its action from X.
When there are at most two special (relative or marked) points and the original curve is
P1 we extend T by additional torus C⇥

q

, which scales P1 such that the tangent space T0P1

has character denoted by q. We call the full torus by G = T⇥ C⇥
q

.

2.3. Picture Notations, Virtual Structure and Gluing Operator. In the theory of
relative quasimaps it is to use picture notation, introduced by Okounkov in [Oko1512].
Here is some of it, which we will use in this manuscript:

denotes the base curve P1,

denotes a marked point (absolute point),

denotes a relative point,

denotes a nonsingular point.

denotes a node on the base curve.

The moduli spaces of quasimaps constructed above have a perfect deformation-obstruction
theory [CFKM1106]. This allows one to construct a tangent virtual bundle T vir, a virtual
structure sheaf Ôvir and a virtual canonical bundle. We will define multiplication in the
quantum K-theory using this data. Without going into detail of the construction of this
virtual sheaf, we state the formula of the reduced virtual tangent bundle. Let ({V

i

}, {W
i

})
be the data defining a quasimap which is nonsingular at fixed point p. We define the fiber
of the reduced virtual tangent bundle to QMd

nonsing p at this point to be equal to:

(5) T vir
({Vi},{Wi})QM

d
nonsing p = H•(M � ~M ⇤)� (1 + ~)

M

i

Ext•(V
i

,V
i

).

[Okounkov]

Relative point is replaced by a chain of non-rigid projective lines, such 
that the endpoint and all the nodes are not singular



Vir Structure and Gluing
Fiber of the reduced virtual tangent bundle to

QUANTUM K-THEORY OF QUIVER VARIETIES AND MANY-BODY SYSTEMS 5

QMd
relative p

QMd
nonsing p X

ev
p

eev
p

with a proper evaluation map eev
p

from QMd
relative p to X. The construction of this

resolution and the moduli space of relative quasimaps is explained in [Oko1512]. It follows
a similar construction of relative Gromov-Witten and Donaldson-Thomas moduli spaces.
The main idea of this construction is to allow the base curve to change in cases, when
the relative point becomes singular. When this happens we replace the relative point by
a chain of non-rigid projective lines, such that the endpoint and all the nodes are not
singular. Similarly, for nodal curves, we do not allow the singularity to be in the node, and
if that happens we instead paste in a chain of non-rigid projective lines.

These moduli spaces have a natural action of maximal torus T, lifting its action from X.
When there are at most two special (relative or marked) points and the original curve is
P1 we extend T by additional torus C⇥

q

, which scales P1 such that the tangent space T0P1

has character denoted by q. We call the full torus by G = T⇥ C⇥
q

.

2.3. Picture Notations, Virtual Structure and Gluing Operator. In the theory of
relative quasimaps it is to use picture notation, introduced by Okounkov in [Oko1512].
Here is some of it, which we will use in this manuscript:

denotes the base curve P1,

denotes a marked point (absolute point),

denotes a relative point,

denotes a nonsingular point.

denotes a node on the base curve.

The moduli spaces of quasimaps constructed above have a perfect deformation-obstruction
theory [CFKM1106]. This allows one to construct a tangent virtual bundle T vir, a virtual
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The symmetrized virtual structure sheaf is defined by:

(6) Ôvir = Ovir ⌦ K 1/2
vir qdeg(P)/2,

where Kvir = det�1T virQMd is the virtual canonical bundle and P is the polarization
bundle.

Since we will be using the symmetrized virtual structure sheaf we will need to adjust
the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = ev
p

1

,p

2

⇤(QM
d
relativep

1

,p

2

Ôvir) 2 K⌦2
T (X)[[z]],(7)

so that the corresponding picture is : .

It plays an important role in the degeneration formula, see e.g. [Oko1512]. Namely, let a
smooth curve C

"

degenerate to a nodal curve:

C0 = C0,1 [p

C0,2.

Here C0,1 and C0,2 are two di↵erent components that are glued to each other at point p.
The degeneration formula counts quasimaps from C

"

in terms of relative quasimaps from
C0,1 and C0,2, where the relative conditions are imposed at the gluing point p. The family
of spaces QM(C

"

! X) is flat, which means that we can replace curve counts for any C
"

by C0. In particular, we can replace counts of quasimaps from P1 by a degeneration of it,
for example by two copies of P1 glued at a point.

The gluing operator G 2 EndKT(X)[[z]] is the tool that allows us to replace quasimap
counts on C

"

by counts on C0,1 and C0,2, so that the following degeneration formula holds:

�(QM(C0 ! X), Ôvirz
d) =

⇣
G�1ev1,⇤(Ôvirz

d), ev2,⇤(Ôvirz
d)
⌘
.

The corresponding picture interpretation is as follows:

= = G�1

2.4. Quantum K-theory Ring. In this section we define multiplication and important
objects of the quantum K-theory ring of X.

As a vector space quantumK-theory ringQKT(X) is isomorphic toKT(X)⌦C[[z{i}]], i 2
I. We will often use the following notation: for a vector d = (d

i

),

zd =
Y

i2I
zdi
i

.

1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).

QMd
nonsing p

Deformation-obstruction theory allows one to construct virtual tangent bundle 
and virtual structure sheaf [Ciocan-Fontanine, Kim, Maulik]
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i

,V
i
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The symmetrized virtual structure sheaf is defined by:
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where Kvir = det�1T virQMd is the virtual canonical bundle and P is the polarization
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counts on C
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Ôvir) 2 K⌦2
T (X)[[z]],(7)

so that the corresponding picture is : .

It plays an important role in the degeneration formula, see e.g. [Oko1512]. Namely, let a
smooth curve C

"

degenerate to a nodal curve:

C0 = C0,1 [p

C0,2.

Here C0,1 and C0,2 are two di↵erent components that are glued to each other at point p.
The degeneration formula counts quasimaps from C

"

in terms of relative quasimaps from
C0,1 and C0,2, where the relative conditions are imposed at the gluing point p. The family
of spaces QM(C

"

! X) is flat, which means that we can replace curve counts for any C
"

by C0. In particular, we can replace counts of quasimaps from P1 by a degeneration of it,
for example by two copies of P1 glued at a point.

The gluing operator G 2 EndKT(X)[[z]] is the tool that allows us to replace quasimap
counts on C

"

by counts on C0,1 and C0,2, so that the following degeneration formula holds:

�(QM(C0 ! X), Ôvirz
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of [28] and its main property can be expressed by the following formula:

χ(QM(C0 → X), Ôvirz
d) =

(
G−1ev1,∗(Ôvirz

d), ev2,∗(Ôvirz
d)
)
,

where

evi : QM(C0,i → X)relative gluing point → X

are the evaluation maps. The degeneration formula and the gluing operator can be
expressed using picture notation:

= = G−1 .

2.3. Quantum K-theory ring. From now on we consider quasimaps from P1, when
not stated otherwise. The equivariant K-theory of Nk,n is a commutative associative
algebra with respect to the tensor product ⊗. The quantum equivariant K-theory
QKT(Nk,n) is a one-parametric commutative deformation of the tensor product. We
denote the deformation parameter by z and the quantum tensor product by !. This
operation is constructed as follows.

Let (·, ·) be the bilinear form on K-Theory defined above. Using this bilinear form
one can define the operator of quantum multiplication by a class F ∈ KT(Nk,n) in the
following way:

F! =
∞∑

d=0

zdevp1,p3∗
(
QMd

p1,p2,p3, ev
∗
p2(G

−1F)Ôvir

)
G−1 ∈ KT(Nk,n)

⊗2[[z]](14)

where QMd
p1,p2,p3 is a moduli space with relative boundary conditions at each point and

G is the gluing operator. This expression is understood as an operator acting from
the second copy of KT(Nk,n) to the first using the bilinear form defined above. In the
picture notation this operator can be presented as:

G−1F
G−1

Note that the moduli space of degree zero quasimaps is isomorphic to Nk,n, which
implies that

F ! G|z=0 = F ⊗ G.
We will refer to z → 0 case as a classical limit. As we explain in the next section,
to construct the quantum K-theory ring it is not enough to consider quantum multi-
plication by classes from KT(Nk,n). For example, the multiplicative identity element
with respect to ! is in fact an element of KT(Nk,n)[[z]]. This motivates the following
definition of quantum K-theory.

Definition 2. The quantum equivariant K-theory ring of Nk,n is the vector space
QKT(Nk,n) = KT(Nk,n)[[z]] endowed with the multiplication (14).

Let us list a set of basic properties of these algebra.
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Definition 2.2. An element of the quantum K-theory

(8) ⌧̂(z) =
1X

d=
�!
0

zdev
p

2

,⇤
⇣
QMd

relative p
2

, bOvir⌧(Vi

|
p

1

)
⌘
2 QKT(X)

is called quantum tautological class corresponding to ⌧ . In picture notation it will be rep-
resented by

⌧

These classes evaluated at 0 are equal to the classical tautological classes onX (⌧̂(0) = ⌧).
For any element F 2 KT(X) the following element

(9)
1X

d=
�!
0

zdev
p

1

,p

3

⇤
⇣
QMd

p

1

,p

2

,p

3

, ev⇤
p

2

(G�1F)bOvir

⌘
2 KT(X)⌦2[[z]]

can be made into an operator from the second copy of KT(X) to the first copy by the
bilinear form (·, ·) defined above. We define the operator of quantum multiplication by F

to be this operator shifted by G�1, i.e

(10) F~ =
1X

d=
�!
0

zdev
p

1

,p

3

⇤
⇣
QMd

p

1

,p

2

,p

3

, ev⇤
p

2

(G�1F)bOvir

⌘
G�1

Definition 2.3. The quantum equivariant K-theory ring of X is vector space QKT(X) =
KT(X)[[z]] endowed with multiplication (10).

This product enjoys properties similar to the product in quantum cohomology. The
proof of the following statement is analogous to the proof of the analogous fact for the
cotangent bundle to Grassmannian [PSZ16].

Theorem 2.4. The quantum K-theory ring QKT(X) is a commutative, associative and
unital algebra.

The operators of quantum multiplication by the quantum tautological bundles obey
the most natural properties. First, assuming Kirwan’s K-theoretic surjectivity conjecture,
we have the following result.

Proposition 2.5. Quantum tautological classes generate the quantum equivariant K-
theory over the quantum equivariant K-theory of a point QKT(·) = C[a±1

m

][[z
i

]] where a
m

for m = 1 · · · dimT are the equivariant parameters of T.

Proof. Since, assuming Kirwan’s K-theoretic surjectivity conjecture, classical K-theory is
generated by tautological classes, the quantum K-theory will be generated by quantum
tautological classes according to Nakayama’s Lemma. ⇤

Second, in contrast with quantum cohomology, the multiplicative identity of the quantum
K-theory ring does not always coincide with the multiplicative identity of classicalK-theory
(i.e. the structure sheaf O

X

):

Quantum parameters
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QKT(X) = KT(X)[[z]] with multiplication 
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and call the corresponding ring quantum K-theory of Nk,n. The word “deformation”
here means that for two K-theory classes A,B we have

A!B = A⊗B +
∞∑

d=1

A!dBzd,

so that if the deformation parameter is equal to zero z → 0 (this special case is usually
referred to as classical limit), the quantum product ! coincides with the classical
tensor product ⊗. The definition of the quantum product follows closely the definition
of the product in quantum cohomology: the classes A !d B ∈ KT(N(n)) (quantum
corrections) are given by certain degree d curve counting in Nk,n.

Next, for a tautological bundle τ ∈ KT(Nk,n) as above, we define a deformation
which will be referred to as quantum tautological bundle:

τ̂ (z) = τ +
∞∑

d>0

τdz
d ∈ KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multipli-
cation by quantum tautological bundles. The following Theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 1. The eigenvalues of operators of quantum multiplication by τ̂ (z) are given
by the values of the corresponding Laurent polynomials τ(s1, · · · , sk) evaluated at the
solutions of the following equations:

n∏
j=1

si − aj
!aj − si

= z !−n/2
k∏

j=1
j ̸=i

si!− sj
si − sj!

, i = 1 · · ·k.(4)

When z = 0 we return to the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (4) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[31], [7] for a more detailed outline.

Let us consider a system of n interacting magnetic dipoles (usually refered to as
spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⊗ C2 ⊗ · · ·⊗ C2.(5)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = −
n∑

i=1

σi
x ⊗ σi+1

x + σi
y ⊗ σi+1

y +∆ σi
z ⊗ σi+1

z ,(6)

where ∆ = !1/2 + !−1/2 is the parameter of anisotropy and σi
m are the standard Pauli

matrices acting in the i-th factor of (5). The periodic boundary conditions are imposed
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Definition 2.2. An element of the quantum K-theory

(8) ⌧̂(z) =
1X

d=
�!
0

zdev
p

2

,⇤
⇣
QMd

relative p
2

, bOvir⌧(Vi

|
p

1

)
⌘
2 QKT(X)

is called quantum tautological class corresponding to ⌧ . In picture notation it will be rep-
resented by

⌧

These classes evaluated at 0 are equal to the classical tautological classes onX (⌧̂(0) = ⌧).
For any element F 2 KT(X) the following element

(9)
1X

d=
�!
0

zdev
p

1

,p

3

⇤
⇣
QMd

p

1

,p

2

,p

3

, ev⇤
p

2

(G�1F)bOvir

⌘
2 KT(X)⌦2[[z]]

can be made into an operator from the second copy of KT(X) to the first copy by the
bilinear form (·, ·) defined above. We define the operator of quantum multiplication by F

to be this operator shifted by G�1, i.e

(10) F~ =
1X

d=
�!
0

zdev
p

1

,p

3

⇤
⇣
QMd

p

1

,p

2

,p

3

, ev⇤
p

2

(G�1F)bOvir

⌘
G�1

Definition 2.3. The quantum equivariant K-theory ring of X is vector space QKT(X) =
KT(X)[[z]] endowed with multiplication (10).

This product enjoys properties similar to the product in quantum cohomology. The
proof of the following statement is analogous to the proof of the analogous fact for the
cotangent bundle to Grassmannian [PSZ16].

Theorem 2.4. The quantum K-theory ring QKT(X) is a commutative, associative and
unital algebra.

The operators of quantum multiplication by the quantum tautological bundles obey
the most natural properties. First, assuming Kirwan’s K-theoretic surjectivity conjecture,
we have the following result.

Proposition 2.5. Quantum tautological classes generate the quantum equivariant K-
theory over the quantum equivariant K-theory of a point QKT(·) = C[a±1

m

][[z
i

]] where a
m

for m = 1 · · · dimT are the equivariant parameters of T.

Proof. Since, assuming Kirwan’s K-theoretic surjectivity conjecture, classical K-theory is
generated by tautological classes, the quantum K-theory will be generated by quantum
tautological classes according to Nakayama’s Lemma. ⇤

Second, in contrast with quantum cohomology, the multiplicative identity of the quantum
K-theory ring does not always coincide with the multiplicative identity of classicalK-theory
(i.e. the structure sheaf O

X

):

Quantum parameters
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The symmetrized virtual structure sheaf is defined by:

(6) Ôvir = Ovir ⌦ K 1/2
vir qdeg(P)/2,

where Kvir = det�1T virQMd is the virtual canonical bundle and P is the polarization
bundle.

Since we will be using the symmetrized virtual structure sheaf we will need to adjust
the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = ev
p

1

,p

2

⇤(QM
d
relativep

1

,p

2

Ôvir) 2 K⌦2
T (X)[[z]],(7)

so that the corresponding picture is : .

It plays an important role in the degeneration formula, see e.g. [Oko1512]. Namely, let a
smooth curve C

"

degenerate to a nodal curve:

C0 = C0,1 [p

C0,2.

Here C0,1 and C0,2 are two di↵erent components that are glued to each other at point p.
The degeneration formula counts quasimaps from C

"

in terms of relative quasimaps from
C0,1 and C0,2, where the relative conditions are imposed at the gluing point p. The family
of spaces QM(C

"

! X) is flat, which means that we can replace curve counts for any C
"

by C0. In particular, we can replace counts of quasimaps from P1 by a degeneration of it,
for example by two copies of P1 glued at a point.

The gluing operator G 2 EndKT(X)[[z]] is the tool that allows us to replace quasimap
counts on C

"

by counts on C0,1 and C0,2, so that the following degeneration formula holds:

�(QM(C0 ! X), Ôvirz
d) =

⇣
G�1ev1,⇤(Ôvirz

d), ev2,⇤(Ôvirz
d)
⌘
.

The corresponding picture interpretation is as follows:

= = G�1

2.4. Quantum K-theory Ring. In this section we define multiplication and important
objects of the quantum K-theory ring of X.

As a vector space quantumK-theory ringQKT(X) is isomorphic toKT(X)⌦C[[z{i}]], i 2
I. We will often use the following notation: for a vector d = (d

i

),

zd =
Y

i2I
zdi
i

.

1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).

For any 
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Definition 2.3. The quantum equivariant K-theory ring of X is vector space QKT(X) =
KT(X)[[z]] endowed with multiplication (10).

This product enjoys properties similar to the product in quantum cohomology. The
proof of the following statement is analogous to the proof of the analogous fact for the
cotangent bundle to Grassmannian [PSZ16].

Theorem 2.4. The quantum K-theory ring QKT(X) is a commutative, associative and
unital algebra.

The operators of quantum multiplication by the quantum tautological bundles obey
the most natural properties. First, assuming Kirwan’s K-theoretic surjectivity conjecture,
we have the following result.

Proposition 2.5. Quantum tautological classes generate the quantum equivariant K-
theory over the quantum equivariant K-theory of a point QKT(·) = C[a±1

m

][[z
i

]] where a
m

for m = 1 · · · dimT are the equivariant parameters of T.

Proof. Since, assuming Kirwan’s K-theoretic surjectivity conjecture, classical K-theory is
generated by tautological classes, the quantum K-theory will be generated by quantum
tautological classes according to Nakayama’s Lemma. ⇤

Second, in contrast with quantum cohomology, the multiplicative identity of the quantum
K-theory ring does not always coincide with the multiplicative identity of classicalK-theory
(i.e. the structure sheaf O

X

):

define operator of quantum multiplication
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cotangent bundle to Grassmannian [PSZ16].
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the most natural properties. First, assuming Kirwan’s K-theoretic surjectivity conjecture,
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Proof. Since, assuming Kirwan’s K-theoretic surjectivity conjecture, classical K-theory is
generated by tautological classes, the quantum K-theory will be generated by quantum
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(i.e. the structure sheaf O

X
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Define the quantum equivariant K-theory ring of X 
QKT(X) = KT(X)[[z]] with multiplication 
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and call the corresponding ring quantum K-theory of Nk,n. The word “deformation”
here means that for two K-theory classes A,B we have

A!B = A⊗B +
∞∑

d=1

A!dBzd,

so that if the deformation parameter is equal to zero z → 0 (this special case is usually
referred to as classical limit), the quantum product ! coincides with the classical
tensor product ⊗. The definition of the quantum product follows closely the definition
of the product in quantum cohomology: the classes A !d B ∈ KT(N(n)) (quantum
corrections) are given by certain degree d curve counting in Nk,n.

Next, for a tautological bundle τ ∈ KT(Nk,n) as above, we define a deformation
which will be referred to as quantum tautological bundle:

τ̂ (z) = τ +
∞∑

d>0

τdz
d ∈ KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multipli-
cation by quantum tautological bundles. The following Theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 1. The eigenvalues of operators of quantum multiplication by τ̂ (z) are given
by the values of the corresponding Laurent polynomials τ(s1, · · · , sk) evaluated at the
solutions of the following equations:

n∏
j=1

si − aj
!aj − si

= z !−n/2
k∏

j=1
j ̸=i

si!− sj
si − sj!

, i = 1 · · ·k.(4)

When z = 0 we return to the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (4) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[31], [7] for a more detailed outline.

Let us consider a system of n interacting magnetic dipoles (usually refered to as
spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⊗ C2 ⊗ · · ·⊗ C2.(5)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = −
n∑

i=1

σi
x ⊗ σi+1

x + σi
y ⊗ σi+1

y +∆ σi
z ⊗ σi+1

z ,(6)

where ∆ = !1/2 + !−1/2 is the parameter of anisotropy and σi
m are the standard Pauli

matrices acting in the i-th factor of (5). The periodic boundary conditions are imposed

BAXTER Q-OPERATOR FROM QUANTUM K-THEORY 13

Theorem 7. The quantum K-theory ring QKT(Nk,n) is a commutative, associative
unital algebra.

Proof. Commutativity of this algebra follows from the construction, by switching points
p2 and p3. Associativity of this ring follows from the fact that operators of quantum
multiplication by two different sheafs F and G commute. The picture proof of this is
as follows:

G−1F
G−1 ×

G−1G
G−1 =

1

G−1F G−1G
G−1 =

2

G−1

G−1F G−1G
=
3

G−1

G−1G G−1F
=
4

G−1G G−1F
G−1 =

5

G−1G
G−1 ×

G−1F
G−1

Here equalities 1 and 5 come from gluing formulas, 2 and 4 degeneration formulas
and equality 3 is a deformation of the base curve. The existence and properties of
multiplicative identity element in QKT(Nk,n) is discussed in the next section. !

2.4. Multiplicative identity element of QKT(Nk,n). Until now most of the defi-
nitions and statements about quantum K-theory were analogous to ones in quantum
cohomology. However, there is one major difference related to the structure of the
multiplicative identity element of the ring QKT(Nk,n). In quantum cohomology, the
element representing the multiplicative identity with respect to the quantum product
coincides with the multiplicative identity of the classical theory, i.e. it is given by the
fundamental class. In the quantum K-theory it is not true anymore, so that the mul-
tiplicative identity in the quantum K-theory ring does not coincide with the structure
sheaf ONk,n

.
Let us define the following element of QKT(Nk,n):

1̂(z) =
∞∑

d=0

zdevp2,∗
(
QMd

relative p2 , Ôvir

)
∈ KT(Nk,n)[[z]].(15)

This class can be represented by the picture:

1̂(z) = 1(16)

Theorem 8. The class 1̂(z) is a multiplicative identity element of the quantum K-
theory ring, i.e. 1̂(z)" α = α for all α ∈ QKT(Nk,n)

unit element
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Proposition 2.6. The multiplicative identity of QKT(X) is given by 1̂(z) (i.e. the quan-
tum tautological class for insertion ⌧ = 1).

Proof. The diagrammatic proof given in [PSZ16] can be applied to any Nakajima quiver
variety. ⇤

2.5. Vertex functions. The spaces QMd
nonsing p

2

and QMd
relative p

2

admit an action of an

extra torus C
q

which scales the original P1 keeping points p1 and p2 fixed. Set T
q

= T⇥C
q

be the torus acting on these spaces.

Definition 2.7. The element

V (⌧)(z) =
1X

d=~0

zdev
p

2

,⇤
⇣
QMd

nonsing p
2

, bOvir⌧(Vi

|
p

1

)
⌘
2 KTq(X)

loc

[[z]]

is called bare vertex with descendent ⌧ . In picture notation it will be denoted by

⌧

The space QMd
nonsing p

2

is not proper (the condition of non-singularity at a point is an
open condition), but the set of T

q

-fixed points is, hence the bare vertex is singular at q = 1.

Definition 2.8. The element

V̂ (⌧)(z) =
1X

d=~0

zdev
p

2

,⇤
⇣
QMd

relative p
2

, bOvir⌧(Vi

|
p

1

)
⌘
2 KTq(X)[[z]]

is called capped vertex with descendent ⌧ . In picture notation it will be represented by:

⌧

Note here, that the definition of the capped vertex and the definition of quantum tau-
tological classes are very similar with the main di↵erence being the spaces they live in.
By definition, the quantum tautological classes can be obtained by taking a limit of the
capped vertex: lim

q!1 V̂
(⌧)(z) = ⌧̂(z). The last limit exists as the coe�cients of V̂ (⌧)(z)

are Laurent polynomials in q, due to the properness of the evaluation map in the relative
case.

In fact, the following strong statement is known about capped vertex functions.

Theorem 2.9. Power series V̂ (⌧)(z) is a Taylor expansion of a rational function in quan-
tum parameters z.

Proof. There are two di↵erent proofs of this theorem: the first is based on large fram-
ing vanishing [Smi16], the second originates from integral representations of solutions of
quantum di↵erence equations [AO]. ⇤

As a corollary, quantum tautological classes ⌧̂(z) are rational functions of z.

Localization computation gives
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by ⌧̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) ⌧p(z) = lim
q!1

V
(⌧)
p (z)

V
(1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by ⌧̂(z) corresponding to a
fixed point p 2 XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type A

n

2

v1 v2 . . . v
n�1

w
n�1

The stability condition is chosen so that maps W
n�1 ! V

n�1 and V
i

! V
i�1 are sur-

jective. For the variety to be non-empty the sequence v1, . . . ,vn�1,wn�1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⇢ . . . ⇢ V

n�1 ⇢ W
n�1, where |V

i

| = v
i

,W
n�1 =

{a1, . . . , awn�1

}. The special case when v
i

= i, w
n�1 = n is known as complete flag va-

riety, which we denote as Fl
n

. It will be convenient to introduce the following notation:
v0
i

= v
i+1 � v

i�1, for i = 2, . . . , n� 2, v0
n�1 = w

n�1 � v
n�2, v0

1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of A

n

quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V
(⌧)
p (z):

V
(⌧)
p (z) =

X

d2Zn
�0

X

(V ,W )2(QMd
nonsing p

2

)T

ŝ(�(d)) zdqdeg(P)/2⌧(V |
p

1

).

2We are using standard quaternionic notations.where
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Here the sum runs over the T-fixed quasimaps which take value p at the nonsingular point
p2. We use notation ŝ for the Okounkov’s roof function defined by

ŝ(x) =
1

x1/2 � x�1/2
, ŝ(x+ y) = ŝ(x)ŝ(y).

and it is applied to the virtual tangent bundle:

(21) �(d) = charT
⇣
T vir

{(Vi}, Wn�1

)QM
d
⌘
.

The condition d 2 Zn

�0 is determined by stability conditions, which characterize all
allowed degrees for quasimaps.
According to [PSZ16], in order to compute localization contributions one has to write down
the term for a single line bundle of P = �x

i

q�diO(d
i

) in �(d). It will be convenient to
adopt the following notations:

'(x) =
1Y

i=0

(1� qix), {x}
d

=
(~/x, q)

d

(q/x, q)
d

(�q1/2~�1/2)d, where (x, q)
d

=
'(x)

'(qdx)
.

The following statement is true (for the proof see section 3.4 of [PSZ16]).

Lemma 3.1. The contribution of equivariant line bundle xq�dO(d) ⇢ P to �(d) is {x}
d

.

To compute the vertex function we will also need to classify fixed points of QMd
nonsing p

2

.
Such a point is described by the data ({V

i

}, {W
n�1}), where degV

i

= d
i

, degW
n�1 = 0.

Each bundle V
i

can be decomposed into a sum of line bundles V
i

= O(d
i,1)� . . .�O(d

i,vi)
(here d

i

= d
i,1 + . . . + d

i,vi). For a stable quasimap with such data to exist the collection
of d

i,j

must satisfy the following conditions

• d
i,j

� 0,
• for each i = 1, . . . , n � 2 there should exist a subset in {d

i+1,1, . . . di+1,vi+1

} of
cardinality v

i

{d
i+1,j

1

, . . . d
i+1,jvi

}, such that d
i,k

� d
i+1,jk .

To summarize, we will denote collections satisfying such conditions d
i,j

2 C.
Now we are ready to sum up contributions for the entire vertex function.

Proposition 3.2. Let p = V1 ⇢ . . . ⇢ V
n�1 ⇢ {a1, · · · , awn�1

} (V
i

= {x
i,1, . . . xi,vi}) be

a chain of subsets defining a torus fixed point p 2 XT. Then the coe�cient of the vertex
function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
zdqN(d)/2EHG ⌧(x

i,j

q�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1 di,j , N(d) = v0
i

d
i

,

E =
n�1Y

i=1

viY

j,k=1

{x
i,j

/x
i,k

}�1
di,j�di,k

,

G =

vn�1Y

j=1

wn�1Y

k=1

{x
n�1,j/a

k

}
dn�1,j ,

applied to virtual tangent character
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must satisfy the following conditions

• d
i,j

� 0,
• for each i = 1, . . . , n � 2 there should exist a subset in {d

i+1,1, . . . di+1,vi+1

} of
cardinality v

i

{d
i+1,j

1

, . . . d
i+1,jvi

}, such that d
i,k

� d
i+1,jk .

To summarize, we will denote collections satisfying such conditions d
i,j

2 C.
Now we are ready to sum up contributions for the entire vertex function.

Proposition 3.2. Let p = V1 ⇢ . . . ⇢ V
n�1 ⇢ {a1, · · · , awn�1

} (V
i

= {x
i,1, . . . xi,vi}) be

a chain of subsets defining a torus fixed point p 2 XT. Then the coe�cient of the vertex
function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
zdqN(d)/2EHG ⌧(x

i,j

q�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1 di,j , N(d) = v0
i

d
i

,

E =
n�1Y

i=1

viY

j,k=1

{x
i,j

/x
i,k

}�1
di,j�di,k

,

G =

vn�1Y

j=1

wn�1Y

k=1

{x
n�1,j/a

k

}
dn�1,j ,
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Here the sum runs over the T-fixed quasimaps which take value p at the nonsingular point
p2. We use notation ŝ for the Okounkov’s roof function defined by

ŝ(x) =
1

x1/2 � x�1/2
, ŝ(x+ y) = ŝ(x)ŝ(y).

and it is applied to the virtual tangent bundle:

(21) �(d) = charT
⇣
T vir

{(Vi}, Wn�1

)QM
d
⌘
.

The condition d 2 Zn

�0 is determined by stability conditions, which characterize all
allowed degrees for quasimaps.
According to [PSZ16], in order to compute localization contributions one has to write down
the term for a single line bundle of P = �x

i

q�diO(d
i

) in �(d). It will be convenient to
adopt the following notations:

'(x) =
1Y

i=0

(1� qix), {x}
d

=
(~/x, q)

d

(q/x, q)
d

(�q1/2~�1/2)d, where (x, q)
d

=
'(x)

'(qdx)
.

The following statement is true (for the proof see section 3.4 of [PSZ16]).

Lemma 3.1. The contribution of equivariant line bundle xq�dO(d) ⇢ P to �(d) is {x}
d

.

To compute the vertex function we will also need to classify fixed points of QMd
nonsing p

2

.
Such a point is described by the data ({V

i

}, {W
n�1}), where degV

i

= d
i

, degW
n�1 = 0.

Each bundle V
i

can be decomposed into a sum of line bundles V
i

= O(d
i,1)� . . .�O(d

i,vi)
(here d

i

= d
i,1 + . . . + d

i,vi). For a stable quasimap with such data to exist the collection
of d

i,j

must satisfy the following conditions

• d
i,j

� 0,
• for each i = 1, . . . , n � 2 there should exist a subset in {d

i+1,1, . . . di+1,vi+1

} of
cardinality v

i

{d
i+1,j

1

, . . . d
i+1,jvi

}, such that d
i,k

� d
i+1,jk .

To summarize, we will denote collections satisfying such conditions d
i,j

2 C.
Now we are ready to sum up contributions for the entire vertex function.

Proposition 3.2. Let p = V1 ⇢ . . . ⇢ V
n�1 ⇢ {a1, · · · , awn�1

} (V
i

= {x
i,1, . . . xi,vi}) be

a chain of subsets defining a torus fixed point p 2 XT. Then the coe�cient of the vertex
function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
zdqN(d)/2EHG ⌧(x

i,j

q�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1 di,j , N(d) = v0
i

d
i

,

E =
n�1Y

i=1

viY

j,k=1

{x
i,j

/x
i,k

}�1
di,j�di,k

,

G =

vn�1Y

j=1

wn�1Y

k=1

{x
n�1,j/a

k

}
dn�1,j ,

After classifying fixed points of space of nonsingular quasimaps we can 
compute the vertex
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Here the sum runs over the T-fixed quasimaps which take value p at the nonsingular point
p2. We use notation ŝ for the Okounkov’s roof function defined by

ŝ(x) =
1

x1/2 � x�1/2
, ŝ(x+ y) = ŝ(x)ŝ(y).

and it is applied to the virtual tangent bundle:

(21) �(d) = charT
⇣
T vir

{(Vi}, Wn�1

)QM
d
⌘
.

The condition d 2 Zn

�0 is determined by stability conditions, which characterize all
allowed degrees for quasimaps.
According to [PSZ16], in order to compute localization contributions one has to write down
the term for a single line bundle of P = �x

i

q�diO(d
i

) in �(d). It will be convenient to
adopt the following notations:

'(x) =
1Y

i=0

(1� qix), {x}
d

=
(~/x, q)

d

(q/x, q)
d

(�q1/2~�1/2)d, where (x, q)
d

=
'(x)

'(qdx)
.

The following statement is true (for the proof see section 3.4 of [PSZ16]).

Lemma 3.1. The contribution of equivariant line bundle xq�dO(d) ⇢ P to �(d) is {x}
d

.

To compute the vertex function we will also need to classify fixed points of QMd
nonsing p

2

.
Such a point is described by the data ({V

i

}, {W
n�1}), where degV

i

= d
i

, degW
n�1 = 0.

Each bundle V
i

can be decomposed into a sum of line bundles V
i

= O(d
i,1)� . . .�O(d

i,vi)
(here d

i

= d
i,1 + . . . + d

i,vi). For a stable quasimap with such data to exist the collection
of d

i,j

must satisfy the following conditions

• d
i,j

� 0,
• for each i = 1, . . . , n � 2 there should exist a subset in {d

i+1,1, . . . di+1,vi+1

} of
cardinality v

i

{d
i+1,j

1

, . . . d
i+1,jvi

}, such that d
i,k

� d
i+1,jk .

To summarize, we will denote collections satisfying such conditions d
i,j

2 C.
Now we are ready to sum up contributions for the entire vertex function.

Proposition 3.2. Let p = V1 ⇢ . . . ⇢ V
n�1 ⇢ {a1, · · · , awn�1

} (V
i

= {x
i,1, . . . xi,vi}) be

a chain of subsets defining a torus fixed point p 2 XT. Then the coe�cient of the vertex
function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
zdqN(d)/2EHG ⌧(x

i,j

q�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1 di,j , N(d) = v0
i

d
i

,

E =
n�1Y

i=1

viY

j,k=1

{x
i,j

/x
i,k

}�1
di,j�di,k

,

G =

vn�1Y

j=1

wn�1Y

k=1

{x
n�1,j/a

k

}
dn�1,j ,
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.



Bethe Equations
Saddle point approximation provides  
the operator of quantum multiplication
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by ⌧̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) ⌧p(z) = lim
q!1

V
(⌧)
p (z)

V
(1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by ⌧̂(z) corresponding to a
fixed point p 2 XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type A

n

2

v1 v2 . . . v
n�1

w
n�1

The stability condition is chosen so that maps W
n�1 ! V

n�1 and V
i

! V
i�1 are sur-

jective. For the variety to be non-empty the sequence v1, . . . ,vn�1,wn�1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⇢ . . . ⇢ V

n�1 ⇢ W
n�1, where |V

i

| = v
i

,W
n�1 =

{a1, . . . , awn�1

}. The special case when v
i

= i, w
n�1 = n is known as complete flag va-

riety, which we denote as Fl
n

. It will be convenient to introduce the following notation:
v0
i

= v
i+1 � v

i�1, for i = 2, . . . , n� 2, v0
n�1 = w

n�1 � v
n�2, v0

1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of A

n

quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V
(⌧)
p (z):

V
(⌧)
p (z) =

X

d2Zn
�0

X

(V ,W )2(QMd
nonsing p

2

)T

ŝ(�(d)) zdqdeg(P)/2⌧(V |
p

1

).

2We are using standard quaternionic notations.

For the cotangent bundle to partial flag variety we get
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and the contour Cp runs around points corresponding to chamber C and the shifted variable

z] = z(�~1

/

2)det(P) 3.

3.2. Bethe Equations and Baxter Operators. We are now ready to compute the
eigenvalues of the operators corresponding to the tautological bundles.

Theorem 3.4. The eigenvalues of ⌧̂(z)~ is given by ⌧(s
i,k

), where s
i,k

satify Bethe equa-
tions:

v
2Y

j=1

s1,k � s2,j
s1,k � ~s2,j

= z1(�~1

/

2)
�v0

1

v
1Y

j=1
j 6=k

s1,j � s1,k~
s1,j~� s1,k

,

vi+1Y

j=1

s
i,k

� s
i+1,j

s
i,k

� ~s
i+1,j

vi�1Y

j=1

s
i�1,j � ~s

i,k

s
i�1,j � s

i,k

= z
i

(�~1

/

2)
�v0

i

viY

j=1
j 6=k

s
i,j

� s
i,k

~
s
i,j

~� s
i,k

,(23)

wn�1Y

j=1

s
n�1,k � a

j

s
n�1,k � ~a

j

vn�2Y

j=1

s
n�2,j � ~s

n�1,k

s
n�2,j � s

n�1,k
= z

n�1(�~1

/

2)
�v0

n�1

vn�1Y

j=1
j 6=k

s
n�1,j � s

n�1,k~
s
n�1,j~� s

n�1,k
,

where k = 1, . . . , v
i

for i = 1, . . . , v
n�1.

Proof. There are several ways of obtaining these equations. One way corresponds to the
study of asymptotics of (20) as it was done in section 3.5 of [PSZ16]. However, there is a
shortcut recently provided by [AO]. One regards TX as an element inKQ

i GL(Vi)⇥GL(Wn�1

)(pt),
so that a

j

are coordinates of the torus acting on W
n�1 and by s

i,k

are coordinates of the
torus acting on V

i

. In this case we have

TX = T (T ⇤Rep(v,w))�
X

i2I
(1 + ~)End(V

i

) =(24)

n�2X

i=1

viX

k=1

vi+1X

j=1

✓
s
i,k

s
i+1,j

+
s
i+1,j~
s
i,k

◆
+

vn�1X

k=1

wn�1X

j=1

✓
s
n�1,k

a
j

+
a
j

~
s
n�1,k

◆
� (1 + ~)

X

i2I

viX

j,k=1

s
i,j

s
i,k

.

To get Bethe equations we need to use the following formula

ba
✓
s
i,k

@

@s
i,k

TX

◆
= z

i

,

where ba (
P

n
i

x
i

) =
Q⇣

x
1/2
i

� x
�1/2
i

⌘
ni

. ⇤

3 Note that here we are using the notation defined for z for (�~
1/2), i.e.

z] =
n�1Y

i=1

z]i ,

z]i = zi(�~
1/2)v

0
i .

which are Bethe Ansatz Equations for gl(n) XXZ spin chain



Bethe Equations
Baxter Q-operator generates quantum tautological bundles

Qi(u) =
viX

k=0

(�1)kuvi�k~ ik
2 [⇤kVi(z)
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Remark. One can easily find the Bethe equations for the flop of X. This amounts to
replacing z

i

by z�1
i

.

The equations (23) are Bethe ansatz equations for the periodic anisotropic gl(n) XXZ
spin chain on w

n�1 sites with twist parameters z1, . . . , zn�1, impurities (shifts of spectral
parameters) a1, . . . , awn�1

, and quantum parameter ~, see e.g. [BIK], [Res1010].

Let us consider the quantum tautological bundles [⇤kV
i

(z), k = 1, . . . ,v
i

. It is useful to
construct a generating function for those, namely

(25) Q
i

(u) =
viX

k=0

(�1)kuvi�k~
ik
2

[⇤kV
i

(z).

The seemingly strange ~ weights will be necessary in Section 4. In the integrable system
literature these operators are known as Baxter operators [Bax82],[Res1010]. The following
Theorem is a consequence of (20).

Proposition 3.5. The eigenvalues of the operator Q
i

(u) are the following polynomials in
u:

(26) Q
i

(u) =
viY

k=1

(u� ~
i
2 s

i,k

),

so that the coe�cients are elementary symmetric functions in s
i,k

for fixed i.

Remark. To obtain the full Hilbert space of a gl(n) XXZ model one has to consider
a disjoint union of all partial flag varieties with framing W

n�1 fixed, so that in the basis
of fixed points the classical equivariant K-theory can be expressed as a tensor product
Cn(a1) ⌦ Cn(a2) ⌦ . . .Cn(awn�1

), where each of Cn(a
i

) is an evaluation representation

of U~(bgl(n)), see e.g. [Nak]. There is a special interesting question regarding universal
formulas for operators Q

i

(u) which we used in [PSZ16] for gl(2) model, corresponding to
prefunadamental representations of the Borel subalgebra of U~(bgl(n)) [FH15].

3.3. Compact limit. Simple form of the presentation for the bare vertex computed in this
section, allows us to perform quantum K-theory computations in the case of merely partial
flag varieties, removing the cotangent bundle part. That, as we shall see, corresponds to a
properly defined limit ~ ! 1.

First of all, let us note, that following along the lines of Sec. 2 one can construct quantum
tautological bundles corresponding to K-theory of partial flag varieties by simply counting
only those quasimaps whose image does not belong to the fiber. The following Proposition
gives the recipe to compute bare vertices and the spectra of quantum tautological bundles
in this case.

Proposition 3.6. (1) In the integral formula for the bare vertex (22) we take the limit
~ ! 1, keeping {z]} fixed as the new family of Kähler parameters.

To obtain the full Hilbert space of  gl(n) XXZ chain one takes a 
disjoint union of all partial flag varieties with fixed framing, so that in 
the basis of fixed points the classical equivariant K-theory expressed 
as Cn(a1)⌦ Cn(a2)⌦ . . .Cn(awn�1) U~(bgl(n))of evaluation reps of



XXZ in Baxter form

For cotangent bundles to complete flags vi = i, wn�1 = n

After slight change of variables we can write Bethe equations in Baxter form
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4.1. XXZ Spin Chain. To start let us change the Kähler parameters in Bethe equations
(23) according to

z1 =
⇣1
⇣2

,

z
i

=
⇣
i

⇣
i+1

, i = 2, . . . , n� 2

z
n�1 =

⇣
n�1

⇣
n

.(28)

Additionally after rescaling Bethe roots and equivariant parameters

(29) �
i,k

= ~
i
2 s

i,k

, i = 1, . . . , n� 1 , ↵
k

= ~
n
2 a

k

,

we arrive at the following set of equations which is equivalent to (23)

⇣1
⇣2

·
v
1Y

� 6=↵

~�1,↵ � �1,�
~�1,� � �1,↵

·
v
2Y

�=1

�1,↵ � ~1

/

2�2,�

�2,� � ~1

/

2�1,↵
= (�1)�1 ,

⇣
i

⇣
i+1

·
vi�1Y

�=1

�
i,↵

� ~1

/

2�
i�1,�

�
i�1,� � ~1

/

2�
i,↵

·
viY

� 6=↵

~�
i,↵

� �
i,�

~�
i,�

� �
i,↵

·
vi+1Y

�=1

�
i,↵

� ~1

/

2�
i+1,�

�
i+1,� � ~1

/

2�
i,↵

= (�1)�i ,(30)

⇣
n�1

⇣
n

·
vn�2Y

�=1

�
n�1,↵ � ~1

/

2�
n�2,�

�
n�2,� � ~1

/

2�
n�1,↵

·
vn�1Y

� 6=↵

~�
n�1,↵ � �

n�1,�

~�
n�1,� � �

n�1,↵
·
wn�1Y

�=1

�
n�1,↵ � ~1

/

2↵
�

↵
�

� ~1

/

2�
n�1,↵

= (�1)�n�1 ,

where in the middle equation i = 2, . . . , n � 2 and �
i

= v
i�1 + v

i

+ v
i+1 � 1. The reader

may notice that we use slightly non-standard notation for Bethe equations, in particular,
parameters a

�

appear in the last equation i = n � 1 (instead of the first equation). Sign
factors (�1)�i in the right hand sides are artifacts of this choice. However, as we saw in
the previous section this way of writing the equations is more convenient from geometric
point of view. Later we shall see that this framework will be convenient in the derivation
of the Lax matrix of the trigonometric Ruijsenaars-Schneider model.

Meanwhile, if we denote v0 = 0 ,v
n

= w
n�1, �n

�

= ↵
�

for � = 1, . . . ,w
n�1 then (30) can

be written more uniformly as follows

(31)
⇣
i

⇣
i+1

vi�1Y

�=1

�
i,↵

� ~1

/

2�
i�1,�

�
i�1,� � ~1

/

2�
i,↵

·
viY

� 6=↵

~�
i,↵

� �
i,�

~�
i,�

� �
i,↵

·
vi+1Y

�=1

�
i,↵

� ~1

/

2�
i+1,�

�
i+1,� � ~1

/

2�
i,↵

= (�1)�i .

Following (26) let us write eigenvalues Q
i

(u) of Baxter operators in terms of the new
variables and couplement it with Q

n

(u), being the generating function for elementary
symmetric functions of equivariant parameters.

(32) Q
i

(u) =
viY

↵=1

(u� �
i,↵

) , P (u) = Q
n

(u) =

wn�1Y

a=1

(u� ↵
a

) .
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In addition, we define shifted polynomials when their arguments are multiplied by ~� 1

2 to
the corresponding power: Q(n)(u) = Q

i

(~�n
2 u), etc.

Then Bethe equations (31) can be expressed in terms of these polynomials as follows

Lemma 4.1. The equation for Bethe root �
i,↵

in (31) arises as u = �
i,↵

locus of the
following equation

(33) ~
�i
2

⇣
i

⇣
i+1

Q
(1)
i�1Q

(�2)
i

Q
(1)
i+1

Q
(�1)
i�1 Q

(2)
i

Q
(�1)
i+1

= �1 ,

where �
i

= v
i+1 + v

i�1 � 2v
i

.

Note that sign �
i

disappeared.
In order to proceed further we need to rewrite (33) in a slightly di↵erent way.
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i
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i

~�
Pi�1

j=1

�j
2

is equivalent to the following system of equations

(34) e⇣
i+1Q

(1)
i

eQ(�1)
i

� e⇣
i

Q
(�1)
i

eQ(1)
i

= (e⇣
i+1 � e⇣

i

)Q
i�1Qi+1 ,

where eQ
i

(u) are auxiliary polynomials of degree v
i�1 � v

i

+ v
i+1.
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i+1Qi

eQ(2)
i
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i
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(2)
i
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i+1 � e⇣

i

)Q(1)
i�1Q

(1)
i+1 ,

e⇣
i+1Q

(�2)
i

eQ
i

+ e⇣
i

Q
i

eQ(�1)
i

= (e⇣
i+1 � e⇣

i

)Q(�1)
i�1 Q

(�1)
i+1 .

Then we can evaluate both equations above at roots of unshifted Q
i

, and divide one
equation by another to obtain (33). Note that the unknown polynomials eQ

i

drop out. ⇤

Remark. It is worth noting, that the operators, whose eigenvalues are eQ
i

are not just
auxiliary, but have a geometric meaning. Namely, they correspond to the generating func-
tions of quantum tautological classes of exterior powers of the flop flag variety, i.e. V _

i

, so
that the sequence 0 ! V

i

! W
n�1 ! V _

i

! 0 is exact.

From now on let us study solutions of Bethe equations corresponding to complete flag,
namely for v

i

= i in (31) and w
n�1 = n.
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= i is equivalent to the following
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i

eQ(�1)
i

� ⇣
i

Q
(�1)
i

eQ(1)
i
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i+1 � ⇣

i

)Q
i�1Qi+1 .

Indeed, in this case �
i

= 0 and ez
i

= ⇣
i

.
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XXZ/tRS duality
In the remaining time we shall represent XXZ Bethe equations as 
equations of motion of trigonometric Ruijsenaars-Schneider model 
We continue working with complete flags
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4.2. Construction of tRS Lax Matrix. First let us find a general solution for Baxter
polynomials which solves (35).

Proposition 4.4. Solutions of (35) are given by

(36) Q
j

(u) =
det

⇣
M1,...,j

⌘

det
⇣
V1,...,j

⌘ , eQ
j

(u) =
det

⇣
M1,...,j�1,j+1

⌘

det
⇣
V1,...,j�1,j+1

⌘ ,

where
(37)

M
i

1

,...,ij =

2

664

q
(j�1)
i

1

⇣
i

1

q
(j�3)
i

1

· · · ⇣j�1
i

1

q
(1�j)
i

1

...
...

. . .
...

q
(j�1)
ij

⇣
ijq

(j�3)
ij

· · · ⇣j�1
ij

q
(1�j)
ij

3

775 , V
i

1

,...,ij =

2

64
1 ⇣

i

1

· · · ⇣j�1
i

1

...
...

. . .
...

1 ⇣
ij · · · ⇣j�1

ij

3

75 ,

and where we define polynomials q
i

= u� p
i

and numbers in the parentheses in the super-
scripts denote multiplicative shifts of the argument of q

i

.

Proof. One can see that the desired structure emerges if we solve the equations iteratively.
From the first equation from (35) we get

(38) Q2 =
⇣2Q

(1)
1

eQ(�1)
1 � ⇣1Q

(�1)
1

eQ(1)
1

⇣2 � ⇣1
.

In what follows we relabel Q1 = q1 and eQ1 = q2. From the construction of the quiver it is
obvious that both polynomials q1 and q2 are monic of degree one. The next equation from
(35) reads

(39) ⇣3Q
(1)
2

eQ(�1)
2 � ⇣2Q

(�1)
2

eQ(1)
2 = (⇣2 � ⇣1)Q3Q2 ,

which we can solve for Q3. Let us introduce new polynomial q3 such that

(40) eQ2 =
⇣3q

(1)
1 q

(�1)
3 � ⇣1q

(�1)
1 q

(1)
3

⇣3 � ⇣1
.

Again, from the construction it is obvious that q3 is monic of degree one. The solution for
Q3 can now be succinctly written as

(41) Q3 =
det

⇣
⇣j�1
i

q
(4�2j)
i

⌘

det(⇣j�1
i

)
,

where the determinants are taken over indices i, j = 1, 2, 3 and q
(4�2j)
i

(u) = q
i

(~�2+ju).
We can see that (41) has the desired form (36,37).

We can show that k-th polynomial, which satisfy (35), can be written as in (36). In
denominators of (37) we can recognize Vandermonde determinants of the corresponding
matrices. Recall that

(42) det(⇣j�1
i

) =
Y

1i<jk

(⇣
i

� ⇣
j

) , i, j = 1, . . . , k ,

The proof uses Desnanot-Jacobi determinant formula
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Theorem 4.5. Let L be the following matrix

(49) L
ij

=

nQ
k 6=j

⇣
~�1

/

2⇣
i

� ~1

/

2⇣
k

⌘

nQ
k 6=i

(⇣
i

� ⇣
k

)
p
j

,

where

(50) p
j

= � Q
j

(0)

Q
j�1(0)

= ~�j+ 1

2

[⇤jV
j

(z)~ \⇤j�1V ⇤
j�1(z) , j = 1, . . . , n

Then polynomial P (u) from (32) can be represented as

(51) P (u) = det
⇣
u� L

⌘
.

Proof. Using Proposition 4.4 we can put j = n in (37)

(52) P (u) =
det

⇣
M1,...,n

⌘

det
⇣
V1,...,n

⌘ .

Let us multiply ith column of M1,...,n by ~�
n�i
2 . Since

Q
n

i=1 ~�
n�i
2 = 1 the determinant

of this matrix will remain the same, however, each matrix element will now contain a
monic polynomial in u of degree one, while the multiplicative shifts will be applied to its
coe�cients p

i

. Let us call this matrix M 0
1,...,n(u). We can now simplify the formulae by

inverting Vandermonde matrix V1,...,n as follows

(53) Q
n

(u) = det (u · 1� L) , L = M 0
1,...,n(0) ·

⇣
V1,...,n

⌘�1
.

Straightforward computation shows that L is provided by (49). ⇤

Matrix L is known as Lax matrix for trigonometric Ruijsenaars-Schneider model5. The
theorem shows that its characteristic polynomial is equal to Baxter polynomial P (u) whose
roots are equivarint parameters a1, . . . , an. By expanding both sides of (51) in u we find
explicitly the tRS Hamiltonians H1, . . . , Hn

(54) det (u · 1� L(⇣
i

, p
i

, ~)) =
nX

r=0

(�1)rH
r

(⇣
i

, p
i

, ~)un�r .

The eigenvalues of these Hamiltonians according to (51) are given by symmetric polynomial
functions

(55) e
r

(↵1, . . . ,↵n

) =
X

I⇢{1,...,n}
|I|=r

Y

k2I
↵
k

5In the literature slightly di↵erent normalizations are used

Lax matrix of tRS model can be written explicitly
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Lax matrix of tRS model can be written explicitly

It generates tRS(Macdonald) Hamiltonians
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of the equivariant parameters

(56) H
r

(⇣
i

, p
i

, ~) = e
r

(↵1, . . . ,↵n

) .

The phase space of the tRS model is described as follows. Parameters ⇣1, . . . , ⇣n and
their conjugate momenta p1, . . . , pn serve as canonical coordinates on the cotangent bundle
to (C⇥)n. The symplectic form reads

(57) ⌦ =
nX

i=1

dp
i

p
i

^ d⇣
i

⇣
i

.

Remark. It was shown in [BKK15] classical momenta p
i

can be determined from the
(exponentials of) derivatives of the so-called Yang-Yang function6 for Bethe equations (30).
These defining relations describe a complex Lagrangian submanifold L ⇢ T ⇤ (C⇥)n, such
that the generating function for this submanifold (⌦ is identically zero on L) is given by
the Yang-Yang function.

Proposition 4.6. The Hamiltonians of the n-body tRS model are given by

(58) H
r

=
X

I⇢{1,...,n}
|I|=r

Y

i2I
j /2I

⇣
i

~�1

/

2 � ⇣
j

~1

/

2

⇣
i

� ⇣
j

Y

k2I
p
k

,

where r = 0, 1, . . . , n. In particular,

(59) H1 = TrL =
nX

i=1

nY

j 6=i

⇣
i

~�1

/

2 � ⇣
j

~1

/

2

⇣
i

� ⇣
j

p
i

, H
n

= detL =
nY

k=1

p
k

.

H1, . . . , Hr

are also known as Macdonald operators.

Proof. Let us first see how the proposition works in the case of 2⇥ 2 matrix, i.e. n = 2. In
this case the L-matrix looks like this:

(60)

0

BB@

~�1/
2

⇣

1

�~1/2⇣
2

⇣

1

�⇣

2

p1
~�1/

2

⇣

1

�~1/2⇣
1

⇣

1

�⇣

2

p2

~�1/
2

⇣

2

�~1/2⇣
2

⇣

1

�⇣

2

p1
~�1/

2

⇣

2

�~1/2⇣
1

⇣

2

�⇣

1

p2

1

CCA

An elementary calculation shows that the statement is true and in particular, the determi-
nant of this matrix is equal to p1p2 due to the fact that the second order pole in (⇣1 � ⇣2)
disappear. This will be relevant in the case of higher n.

To prove the statement in the case of general n we use the Fredholm decomposition:

det (u · 1� L) =
nX

r=0

un�r(�1)rTr⇤r(L) ,(61)

where ⇤r denotes the exterior power. Clearly, Tr⇤r(L) is just the sum over all minors of
rank r. Let us look at the terms representing each minor in detail. The explicit expression

6Bethe equations arise as derivatives of the Yang-Yang function with respect to all Bethe roots �i,k.



Main Theorem
Combining the results together
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for each of them is given by the sum over the products of its matrix elements accompanied
by a sign. It is easy to see that the common divisor for such products is exactly

Y

i2I
j /2I

⇣
i

~�1

/

2 � ⇣
j

~1

/

2

⇣
i

� ⇣
j

Y

k2I
p
k

,(62)

where I is the number of indices representing the minor. Other terms involve products with
poles (⇣

i

� ⇣
j

) where both i, j belong to I. Let us show that all of these poles disappear
as in the 2 ⇥ 2 case. Note, that such pole (⇣

i

� ⇣
j

) appears twice in each product. Let
us show that there is no such pole in the final expression. To do that let us expand each
minor using the row decomposition till we reach the 2⇥ 2 minor L{i,j}. Clearly, this is the
only term in this expansion containing such a pole, and by the same calculation as in 2⇥ 2
case as above, it cancels out. Therefore, the coe�cient of (62) in the expansion does not
depend on ⇣

i

as one can deduce from counting the powers of ⇣
i

in the numerator and the
denominator. To finish the proof one needs to show that the resulting constant is equal to
1 for any I. That is clear from the normalization of “non-di↵erence terms”, in numerator,
which are responsible for pole cancellation, namely ⇣

i
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/

2 � ~1

/

2). ⇤

We are now ready to formulate the main theorem of this section.

Theorem 4.7. Quantum equivariant K-theory of the cotangent bundle to complete n-flag
is given by
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n
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n

, ~±1; p±1
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n

]
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r

(⇣
i

, p
i

, ~) = e
r

(↵1, . . . ,↵n

)} ,

where H
r

are given in (58).

Proof. The statement directly follows from Proposition 2.5, the fact that coe�cients of
Q

i

-operators are generators of all tautological bundles, and Theorem 4.5. ⇤

4.3. Dual tRS Model from XXZ Chain. In (58) tRS Hamiltonians are functions of
quantum parameters ⇣1, . . . , ⇣n and the eigenvalues (55) are given by symmetric polynomi-
als of equivariant parameters. It turns out that there is a dual formulation of the integrable
model such that these parameters switch roles and is know as bispectral duality. We can
show that from starting from Bethe equations (31) we can derive the dual set of tRS
Hamiltonians.

Theorem 4.8. Let L! be the following matrix
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� ~�1
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(↵
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� ↵
k

)
p!
j
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where the ideal is generated by equations of motion of all Hamiltonians of tRS model

⇣1, . . . , ⇣n are coordinates p1, . . . , pn are momenta

symplectic form
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of the equivariant parameters

(56) H
r
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, p
i

, ~) = e
r

(↵1, . . . ,↵n

) .

The phase space of the tRS model is described as follows. Parameters ⇣1, . . . , ⇣n and
their conjugate momenta p1, . . . , pn serve as canonical coordinates on the cotangent bundle
to (C⇥)n. The symplectic form reads
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i
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Remark. It was shown in [BKK15] classical momenta p
i

can be determined from the
(exponentials of) derivatives of the so-called Yang-Yang function6 for Bethe equations (30).
These defining relations describe a complex Lagrangian submanifold L ⇢ T ⇤ (C⇥)n, such
that the generating function for this submanifold (⌦ is identically zero on L) is given by
the Yang-Yang function.

Proposition 4.6. The Hamiltonians of the n-body tRS model are given by
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where r = 0, 1, . . . , n. In particular,
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H1, . . . , Hr

are also known as Macdonald operators.

Proof. Let us first see how the proposition works in the case of 2⇥ 2 matrix, i.e. n = 2. In
this case the L-matrix looks like this:
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An elementary calculation shows that the statement is true and in particular, the determi-
nant of this matrix is equal to p1p2 due to the fact that the second order pole in (⇣1 � ⇣2)
disappear. This will be relevant in the case of higher n.

To prove the statement in the case of general n we use the Fredholm decomposition:

det (u · 1� L) =
nX

r=0

un�r(�1)rTr⇤r(L) ,(61)

where ⇤r denotes the exterior power. Clearly, Tr⇤r(L) is just the sum over all minors of
rank r. Let us look at the terms representing each minor in detail. The explicit expression

6Bethe equations arise as derivatives of the Yang-Yang function with respect to all Bethe roots �i,k.

Momenta can be determined from derivatives of Yang-Yang function XXZ 
for Bethe equations. They define Lagrangian 
whose generating function is given by the Yang-Yang function.

L ⇢ T ⇤ �C⇥�n

[Gaiotto PK] 
[Bullimore Kim PK]
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In order to get from QK
T

(T ⇤Fl
n

) to QK
T

0(Fl
n

), where T 0 is the maximal torus of U(n)
the cotangent fibers need to be retracted. As we have already discussed it in Sec. 3.3 this
can be done by sending the equivariant parameter corresponding to C⇥ action on the fiber
to infinity ~ ! 1. It is well known that classical K-theories of G/B and T ⇤G/B are
isomorphic as rings, so it will be possible to use similar techniques to describe quantum
K-ring of the flag variety – zero section of T ⇤G/B.

In order to understand quantum multiplication in QK
T

0(Fl
n

) we must compute the
~ ! 1 of Bethe equations (23) which is given in (27). Then we will need to follow
the steps of Sec. 4 and present the resulting Bethe equations as conditions for roots of
a characteristic polynomial of some matrix, which will appear to be the Lax matrix of
di↵erence Toda model [Eti].

5.1. Five-Vertex Model and Quantum Toda Chain. Using Baxter Q-polynomials we
can present Bethe equations (27) in a more concise form.

Lemma 5.1. Let

(68) Q
i

(u) =
nY

j=1

(u� s
i,j

) , M(u) := Q
n

(u) =
nY

i=1

(u� ↵
i

) .

Then we can rewrite (27) as

(69)
Q

i+1(s
i,k

)

Q
i�1(s

i�1,k)
·

viQ
j=1

s
i,j

vi+1Q
j=1

s
i+1,j

= z#
i

(�1)�i(s
i,k

)vi�vi�1

�1 ,

where �
i

are given after (30). As in the previous section we shall focus on complete flag
varieties for which v

i

= i, thus the exponent of s
i,k

in the right hand side of the above
expression vanishes.

Remark. Equations (27) generalize the result of [Kim95] and serve as Bethe ansatz equa-
tions for the five-vertex model.

Using auxiliary Baxter polynomials we can rewrite (69) in the Q eQ form similarly to (35).

Proposition 5.2. The system of equations (69) for v
i

= i is equivalent to the following
system

(70) Q
i+1(u)�

z
i+1

z
i

Q
i�1(u) · u · p

i+1 = Q
i

(u) eQ
i

(u) , i = 1, . . . , n

where z#
i

= zi
zi+1

, eQ
i

(u), i = 1, . . . , n� 1 are monic polynomials of degree one and

(71) p
i

= � Q
i

(0)

Q
i�1(0)

.

Proof. Analogous to the proof of Proposition 4.2. ⇤

QUANTUM K-THEORY OF QUIVER VARIETIES AND MANY-BODY SYSTEMS 25

In order to get from QK
T

(T ⇤Fl
n

) to QK
T

0(Fl
n

), where T 0 is the maximal torus of U(n)
the cotangent fibers need to be retracted. As we have already discussed it in Sec. 3.3 this
can be done by sending the equivariant parameter corresponding to C⇥ action on the fiber
to infinity ~ ! 1. It is well known that classical K-theories of G/B and T ⇤G/B are
isomorphic as rings, so it will be possible to use similar techniques to describe quantum
K-ring of the flag variety – zero section of T ⇤G/B.

In order to understand quantum multiplication in QK
T

0(Fl
n

) we must compute the
~ ! 1 of Bethe equations (23) which is given in (27). Then we will need to follow
the steps of Sec. 4 and present the resulting Bethe equations as conditions for roots of
a characteristic polynomial of some matrix, which will appear to be the Lax matrix of
di↵erence Toda model [Eti].

5.1. Five-Vertex Model and Quantum Toda Chain. Using Baxter Q-polynomials we
can present Bethe equations (27) in a more concise form.

Lemma 5.1. Let

(68) Q
i

(u) =
nY

j=1

(u� s
i,j

) , M(u) := Q
n

(u) =
nY

i=1

(u� ↵
i

) .

Then we can rewrite (27) as

(69)
Q

i+1(s
i,k

)

Q
i�1(s

i�1,k)
·

viQ
j=1

s
i,j

vi+1Q
j=1

s
i+1,j

= z#
i

(�1)�i(s
i,k

)vi�vi�1

�1 ,

where �
i

are given after (30). As in the previous section we shall focus on complete flag
varieties for which v

i

= i, thus the exponent of s
i,k

in the right hand side of the above
expression vanishes.

Remark. Equations (27) generalize the result of [Kim95] and serve as Bethe ansatz equa-
tions for the five-vertex model.
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system
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Proof. Analogous to the proof of Proposition 4.2. ⇤Analogously to XXZ/tRS duality we can formulate 5-vert/qToda duality
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We can now formulate a statement which connects the five-vertex models with the q-
Toda chain in the same way as the XXZ spin chain is dual to the tRS model (Theorem
4.5).

Theorem 5.3. System of equations (70) is equivalent to

(72) M(u) = detA(u) ,

where A(u) is the Lax matrix of the di↵erence Toda chain. It has the following nonzero
elements

(73) A
i+1,i = 1 , A

i,i

= u� p
i

, A
i,i+1 = �u

z
i+1

z
i

p
i+1 .

Proof. This statement can be readily proven along the lines of Theorem 4.5. ⇤
5.2. Compact Limit of tRS Model. Note that the q-Toda Lax matrix A(u) cannot be
obtained as a scaling limit of the tRS Lax matrix (49). However, one can directly compute
q-Toda Hamiltonians from tRS Hamiltonians (59). This limit was already discussed in the
literature (see e.g. [GLO0803] p.13). In our notations this limit can be implemented as
follows. First we rescale tRS coordinates, momenta (58) and equivariant parameters (55)
as follows

(74) z
i

= ~i⇣
i

, p
i

= ~i�
1

2 p
i

, a
i

= ~
n
2 ↵

i

.

Second, after taking ~ ! 1 limit, we obtain q-Toda Hamiltonian functions which are equal
to symmetric polynomials of a

i

(75) Hq-Toda
r

(z1, . . . zn; p1, . . . , pn) = e
r

(a1, . . . , an) ,

where the Hamiltonians are

(76) Hq-Toda
r

=
X

I={i
1

<···<ir}
I⇢{1,...,n}

rY

`=1

✓
1� z

i`�1

z
i`

◆1��i`�i`�1

,1 Y

k2I
p
k

,

where i0 = 0. For instance, the first Hamiltonian reads

(77) Hq-Toda
1 = p1 +

nX

i=2

p
i

✓
1� z

i�1

z
i

◆
.

Thus we have shown that the gl(n) five-vertex model is dual to the di↵erence Toda
n-body system such that Bethe equations of the former (27) can be rewritten as equations
of motion of the latter.

Finally we can formulate the main statement of this section.

Theorem 5.4. Quantum equivariant K-theory of the complete n-dimensional flag variety
is given by

(78) QK
T

0(Fl
n

) =
C[z±1

1 , . . . , z±1
n

; a±1
1 , . . . , a±1

n

; p±1
1 , . . . , p±1

n

]

{Hq-Toda

r

(z
i

, p
i

) = e
r

(a1, . . . , an)}
,

where Hq-Toda

r

are given in (76).
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We can now formulate a statement which connects the five-vertex models with the q-
Toda chain in the same way as the XXZ spin chain is dual to the tRS model (Theorem
4.5).

Theorem 5.3. System of equations (70) is equivalent to

(72) M(u) = detA(u) ,

where A(u) is the Lax matrix of the di↵erence Toda chain. It has the following nonzero
elements
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Proof. This statement can be readily proven along the lines of Theorem 4.5. ⇤
5.2. Compact Limit of tRS Model. Note that the q-Toda Lax matrix A(u) cannot be
obtained as a scaling limit of the tRS Lax matrix (49). However, one can directly compute
q-Toda Hamiltonians from tRS Hamiltonians (59). This limit was already discussed in the
literature (see e.g. [GLO0803] p.13). In our notations this limit can be implemented as
follows. First we rescale tRS coordinates, momenta (58) and equivariant parameters (55)
as follows
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where i0 = 0. For instance, the first Hamiltonian reads

(77) Hq-Toda
1 = p1 +
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Thus we have shown that the gl(n) five-vertex model is dual to the di↵erence Toda
n-body system such that Bethe equations of the former (27) can be rewritten as equations
of motion of the latter.

Finally we can formulate the main statement of this section.

Theorem 5.4. Quantum equivariant K-theory of the complete n-dimensional flag variety
is given by
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are given in (76).

We recover the statement by Givental and Lee
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