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is simple to determine: it is a U(k) gauge theory with 4 real adjoint scalars, or two

complex scalars

σ = X4 + iX5 , Z = X1 + iX2 (3.27)

which combine to give the N = (4, 4) theory in d = 1 + 1. N D4−branes

NS5−branes
012345

01236

039
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Figure 19:

The D4-branes contribute hypermultiplets (ψa, ψ̃a) with a =

1, . . . , N . These hypermultiplets get a mass only when the
D2-branes and D6-branes are separated in the X4 and X5

directions. This means we have a coupling like

N
∑

a=1

ψ†
a {σ†, σ}ψa + ψ̃a {σ†, σ} ψ̃†

a (3.28)

But there is no such coupling between the hypermultiplets
and Z. The coupling (3.28) breaks supersymmetry to N =

(2, 2). So we now understand the D2-brane theory of figure
19. However, the D2-brane theory that we’re really interested in, shown in figure 18,

differs from this in two ways

• The right-hand NS5-brane is moved out of the page. But we already saw in the

manoeuvres around figure 16 that this induces a FI parameter on brane theory.
Except this this time the FI parameter is for the D2-brane theory. It’s given by

r =
∆x6

2πgsls
=

4π

e2
(3.29)

• We only have half of the D4-branes, not all of them. If a full D4-brane gives rise
to a hypermultiplet, one might guess that half a D4-brane should give rise to half

a hypermultiplet, otherwise known as a chiral multiplet. Although the argument
is a little glib, it turns out that this is the correct answer [164].
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2d FI parameter

We end up with the gauge theory in d = 1 + 1 dimensions with N = (2, 2) super-
symmetry

U(k) Gauge Theory + Adjoint Chiral Multiplet Z

+ N Fundamental Chiral Multiplets ψa

This theory has a FI parameter r = 4π/e2. Now this should be looking very familiar —

it’s very similar to the instanton theory we described in Lecture 1. We’ll return to this
shortly. For now let’s keep examining our vortex theory. The potential for the various

scalars is dictated by supersymmetry and is given by

V =
1

g2
Tr |[σ, σ†]|2 + Tr |[σ, Z]|2 + Tr |[σ, Z†]|2 +

N
∑

a=1

ψ†
aσ

†σψa

+
g2

2
Tr

(

∑

a

ψaψ
†
a + [Z, Z†] − r 1k

)2

(3.30)

Here g2 is an auxiliary gauge coupling which we take to infinity g2 → ∞ to restrict us
to the Higgs branch, the vacuum moduli space defined by

MHiggs
∼= {σ = 0, V = 0}/U(k) (3.31)

Counting the various degrees of freedom, the Higgs branch has real dimension 2kN .
From the analogy with the instanton case, it is natural to conjecture that this is the

vortex moduli space [151]

Vk,N
∼= MHiggs (3.32)

While the ADHM construction has a field theoretic underpinning, I know of no field
theory derivation of the above result for vortices. So what evidence do we have that
the Higgs branch indeed coincides with the vortex moduli space? Because of the FI

parameter, MHiggs is a smooth manifold, as is Vk,N and, obviously the dimensions work
out. Both spaces have a SU(N)×U(1) isometry which, in the above construction, act

upon ψ and Z respectively. Finally, in all cases we can check, the two spaces agree (as,
indeed, do their Kähler classes). Let’s look at some examples.

3.4.1 Examples of Vortex Moduli Spaces Revisited

One Vortex in U(N)

The gauge theory for a single k = 1 vortex in U(N) is a U(1) gauge theory. The adjoint
scalar Z decouples, parameterizing the complex plane C, leaving us with the N charged
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Figure 2.2: The Higgs branch root !a = !mF .

tuned to satisfy a relation

−h
L
∏

l=1

(

v − m̃l

)

+ (h+ 2)
L
∏

l=1

(

v −ml

)

= 2
L
∏

l=1

(

v − φl

)

, (2.3)

the Seiberg-Witten curve becomes degenerate

[

L
∏

l=1

(

v − m̃l

)

t− (h + 2)
L
∏

l=1

(

v −ml

)

]

×
[

t+ h
]

= 0 , (2.4)

and !A = !CF . We will soon explain a correspondence between the root of baryonic Higgs

branch and ferromagnetic vacuum of the SL(2,R) integrable model.

2.1 The classical integrable system

We now review the connection between N = 2 supersymmetric gauge theories in four di-

mensions and complex classical integrable systems. We begin by introducing the Heisenberg

spin chain.

We will consider a chain of L complex “spins” [36, 37, 38] corresponding to classical

variables, L±
l , L0

l , for l = 1, 2, . . . , L with Poisson brackets:

{L+
l ,L

−
m} = 2iδlmL0

m {L0
l ,L±

m} = ±iδlmL±
m . (2.5)
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Figure 2.4: A IIA brane construction for Theory II with ε = 0

and

L
∑

l=1

∣

∣

∣
λQl −QlMl

∣

∣

∣

2

+
L
∑

l=1

∣

∣

∣
− Q̃lλ+ Q̃lM̃l

∣

∣

∣

2

= 0 , (2.24)

where λ denotes the adjoint scalar field in the vector multiplet.

For r = 0, Ql = Q̃l = 0 and Theory II has a classical Coulomb branch parametrized by

the eigenvalues {λ1,λ2, . . . ,λN} of the adjoint scalar field in the U(N) vector multiplet. In

the figure this corresponds to the special case where each D2 is suspended between NS5

and NS5′ and can move independently in the x4 and x5 directions. On the other hand, the

eigenvalues of Z parameterise the position of D2-branes in the {2,3}-plane.

For r > 0, the theory is on a Higgs branch with Q "= 0, Q̃ = 0. The vector multiplet VEVs

are fixed by the second D-term condition (2.24). Solutions are labelled by the number of ways

of distributing the N scalars {λj} between the L values {Ml}. Thus we specify a vacuum by

choosing L non-negative integers {n̂l} with
∑L

l=1 n̂l = N . In the brane construction these

correspond to the number of D2 branes ending on each D4 brane as shown in the figure.
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Color-flavor locked 
 phase of SQCD

Higgs branch root

Nf = 2NcSQCD
�x7 ⇠ v

In the simplest case CPN�1 model



         4d / 2d duality [Dorey Hollowood, Tong]
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Nonabelian vortices help to understand it from
 pure field theory constructions
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Im


⇥

Z
d4�Tr

⇣
Qi †eV Qi + Q̃i †eV Q̃i + �†eV �

⌘�

+Im


⇥

Z
d2�

⇣
TrW� 2 +mi

jQ̃iQ
j +Qi�Q̃

i
⌘�

L =

U(Nc) NfN = 2 d = 4

bosonic part FI term

BPS conditions
B3 � g2(QQ̄� ⇠2) = 0

r3Q = 0
T = ⇠

Z
d

2
xTrF12 = 2⇡⇠n

String tension

{QI
↵, Q̄

J
�̇
} = 2�IJP↵�̇ + 2�IJZ↵�̇

{QI
↵, Q

J
�} = 2ZIJ

↵�

with:

A = 1, 2, . . . , Nf ∇µ = ∂µ −
i√
2N

A0
µ − iT aAa

µ . (2.2)

The real parameter ξ is the Fayet–Iliopoulos (FI) term [35]. As we will see
shortly, a nonvanishing ξ puts the theory into the Higgs phase. Moreover, the
superscripts 0 and a refer to the U(1) and SU(N) parts of the gauge group,
respectively. For simplicity we choose both gauge couplings to be equal. This
assumption is not necessary and could have been readily lifted, but we prefer
to work with a single gauge coupling g. If the mass parameters mA are taken
real, we can consistently consider the adjoint fields a0, aa to be real as well
on the solitonic solutions. The above expression then simplifies,

S =

∫

d4x

{

1

4g2
(F 0

µν)
2 +

1

4g2
(F a

µν)
2 +

1

g2
|∂µφ0|2 + 1

g2
|Dµφ

a|2 + |∇µq
A|2+

+
g2

2

(

q̄AT aqA
)2

+
g2

8
(q̄AqA −Nξ)2 +

1

2

∣

∣

∣

∣

(

φ0 2√
2N

+ φa2T a +
√
2mA

)

qA
∣

∣

∣

∣

}

.

(2.3)

It is convenient to organize all fields into matrices, of sizes N×N and N×Nf ,
respectively,

Fµν ≡ F 0
µν

1N√
2N

+ F a
µνT

a, Φ ≡
√
2

(

φ0 1N√
2N

+ φaT a

)

, Q ≡ qAi . (2.4)

Using the notation above, the action (2.3) can be written in the following
compact form:

S =

∫

d4xTr

{

1

2g2
F 2
µν +

1

g2
|DµΦ|2 + |∇µQ|2+ g2

4
(QQ̄− ξ)2 + |ΦQ +QM |2

}

,

(2.5)

where the square mass matrix M is defined as

MAB = δABmA =











m1 0 · · · 0
0 m2 · · · 0
... · · · . . .

...
0 · · · · · · mNf











. (2.6)
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∣

∣

∣
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∣

∣

∣
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where the square mass matrix M is defined as
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Monopoles on Higgs Phase [Tong]

Higgs branch condition

[Shifman, Yung]

of U(N)G, and a further Nf scalars q̃i transforming in the N̄. The bosonic part of the
Lagrangian is given by,

L = Tr

(

1

4e2
FµνF

µν +
1

2e2
|Dµφ|

2

)

+

Nf
∑

i=1

(

|Dµqi|
2 + |Dµq̃i|

2
)

−Tr





1

2e2
[φ†,φ]2 + e2|

Nf
∑

i=1

qiq̃i|
2 +

e2

2
(

Nf
∑

i=1

qiq
†
i − q̃†i q̃i − v2)2





−

Nf
∑

i=1

(

q†i |φ− mi|
2qi + q̃i|φ− mi|

2q̃†i

)

In the above expression we have introduced complex mass parameters mi and a real FI

parameter v2, each consistent with N = 2 supersymmetry. For generic values of these

parameters the theory has a unique vacuum state, up to Weyl permutations, given by,

φ = diag(mi) , qa
i = vδa

i , q̃a
i = 0 (1)

where a = 1, . . . , N is the colour index. The U(N)G gauge symmetry is completely

broken and the theory lies in a gapped, colour-flavour-locked phased.

The pattern of symmetry breaking at intermediate energy scales depends on the
relative values of mi and v2. For |mi −mj | " ev, the flavour group is explicitly broken

by the masses at a higher scale than the spontaneous symmetry breaking induced by

the FI parameter,

U(N)G × SU(N)F
m
−→ U(1)N

G × U(1)N−1
F

v
−→ U(1)N−1

diag (2)

However, if ev " |mi −mj |, then the spontaneous breaking due to the vacuum expec-

tation value of q occurs at a higher scale than the explicit breaking due to masses,

U(N)G × SU(N)F
v

−→ SU(N)diag
m
−→ U(1)N−1

diag (3)

For both patterns (2) and (3) the symmetry breaking due to the masses supports

magnetic monopoles (Π2(SU(N)/U(1)N−1) = ZN−1) while the symmetry breaking due
to the FI parameter breaks a U(1) factor, ensuring the stability of vortices (Π1(U(1)) =

Z). Moreover, the full symmetry breaking enjoys the topology required to support

both monopoles and fluxes. We shall now see that indeed the theory admits magnetic

monopoles attached to two vortex strings which whisk away their flux.
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both monopoles and fluxes. We shall now see that indeed the theory admits magnetic
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An impressionistic rendering of the U(2) monopole in the Higgs phase when Lvort ! Lmon.

The solutions will turn out not to involve the fields q̃ and we set them to zero at this

stage. Moreover, the simplest configurations have Im(mi) = 0 which allows us to also
set Im(φ) = 0. In the following φ will therefore denote a real adjoint scalar field3. Since

the flux will leave the monopole in a tube, we must decide in which direction this string

will head: we choose the x3 direction. Restricting to time independent configurations

the Hamiltonian reads,

H =
1

2e2
B2
ρ +

1

2e2
|Dρφ|

2 + |Dρqi|
2 +

e2

2
(qiq

†
i − v2)2 + q†i (φ− mi)

2qi

=
1

2e2
(D1φ− B1)

2 +
1

2e2
(D2φ− B2)

2 + (D3φ− B3 − e2(qiq
†
i − v2))2

+|D1qi − iD2qi|
2 + |D3qi + (φ− mi)qi|

2 − v2B3 +
1

e2
∂ρ(φBρ)

≥ −v2B3 +
1

e2
∂ρ(φBρ) (4)

where we have left colour indices and traces implicit, summed over the flavour index i,
and introduced the spatial index ρ = 1, 2, 3. Both terms in the final line are topological

invariants. The first measures the flux carried by vortex strings lying in the x3 direction;

the second measures the magnetic charge carried by a monopole. As we shall see, we

can have strings without any need for monopoles, but the presence of a monopole will

require two, semi-infinite vortex strings to carry away its flux. In the Coulomb phase,

the integral of ∂ · (φB) is evaluated on the S2
∞ boundary. In the present case the

monopole’s flux does not make it to all points on the boundary and is instead captured
3It seems likely that interesting dyonic monopole-flux tube configurations can be built by relaxing

this condition to allow Im(mi) $= 0.

3

⇠ = e2v2



(2,2) 2d GLSM [Witten]

The neutral chiral multiplet Z contains a single complex scalar field z, parameterising
the center of mass motion of the vortex. It corresponds to the C factor in (15). Since

this field is free, we pay it no more attention and ignore it in the following. Each

charged chiral multiplet Ψi also contains a complex scalar ψi, i = 1, . . . , Nc, while the

U(1) vector multiplet contains the two dimensional gauge field and a further, neutral,

complex scalar σ. The bosonic part of the Lagrangian describing the internal degrees

of freedom of the vortex is given by,

− Lvortex =
1

2g2

(

F 2
01 + |∂σ|2

)

+
Nc
∑

i=1

(

|Dψi|2 + |σ − mi|2|ψi|2
)

+
g2

2
(

Nc
∑

i=1

|ψi|2 − r)2 (17)

For vanishing twisted masses mi, the theory has a SU(Nc)D global symmetry which is

identified with the SU(Nc)diag symmetry in four dimensions. For generic mi "= 0, this
is broken to U(1)Nc−1

D . The theory also has a U(1)R symmetry which is inherited from

the U(1)R symmetry in four dimensions. This rotates the phases of both σ and mi.

For vanishing masses, the vortex theory has a Higgs branch of vacua given by σ = 0

with the chiral multiplets constrained to obey
∑

i |ψ|2 = r. After dividing by the U(1)

action we see the Higgs branch is CPNc−1 in agreement with (15). In the presence of

twisted masses, performing the same procedure results in a twisted potential on the
Higgs branch of the type constructed in [24] as we show explicitly in Appendix B. The

potential has Nc isolated vacua given by,

Vacuum i : σ = mi , |ψj |2 = rδij (18)

As described above, the ith vacuum corresponds to a vortex embedded in the ith U(1)

subgroup, carrying magnetic charge B = diag(0, . . . , 0, 1, 0, . . . , 0), where the 1 sits in

the ith entry.

So far we have discussed the relevant aspects of the classical two-dimensional theory

on the vortex worldsheet. Let us now turn to the quantum theory. When the twisted
masses vanish mi = 0, there is a one-loop correction to the FI parameter r, leading to

a logarithmic running at scale µ,

r(µ) = r0 −
Nc

2π
log

(

MUV

µ

)

(19)

where r0 is the bare FI parameter defined at the UV cut-off MUV . Note that, since

this theory describes the low-energy dynamics of a soliton, it is inappropriate to take
MUV to infinity. Instead it is set by the mass scale of the vortex: MUV = v2.
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MUV to infinity. Instead it is set by the mass scale of the vortex: MUV = v2.

12

for vortex embedded into 
i’s U(1) subgroup
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subgroup, carrying magnetic charge B = diag(0, . . . , 0, 1, 0, . . . , 0), where the 1 sits in
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FI term runs

Effective twisted superpotential

Σ whose lowest component is the complex scalar field σ, and includes F01 as part of
the auxiliary field. In the presence of twisted masses, this calculation was first done in

[3], resulting in the effective twisted superpotential,

W(Σ) =
i

2
τΣ − 1

4π

Nc
∑

i=1

(Σ − mi) log

(

2

µ
(Σ − mi)

)

Assuming no singularities in the Kähler potential, the Nc quantum vacua of the theory

are determined by the critical points of the twisted superpotential ∂W/∂Σ = 0 and

are given by,

Nc
∏

i=1

(σ − mi) − ΛNc ≡
Nc
∏

i=1

(σ − ei) = 0

which we notice as the same equation describing the branch points of the Seiberg-
Witten curve at the root of the baryonic Higgs branch (8). The classical BPS kinks

which we described above also survive in this effective theory [28] although their mass

is now corrected to include quantum effects. A kink interpolating between the Vacuum

i and Vacuum j has mass Mkink = 2∆W = 2W(ei) − 2W(ej). In the weak coupling

regime |mi − mj | # Λ the leading contribution is precisely the classical result (21).

Deep in the strong coupling regime, |mi − mj | $ Λ, quantum effects are dominant.
The exact BPS mass of the kink can be captured by a correction to the central charge

so that all BPS excitations of the string have masses M = |Z|, now with

Z = −i
Nc
∑

i=1

(miSi + mD iTi)

where all the quantum corrections are encoded in mD,i, each a holomorphic function of

mj and Λ. Using the expressions above, we find that (up to an i-independent irrelevant

constant)

mD i = −2iW(ei) =
1

2πi
Ncei +

1

2πi

Nc
∑

j=1

mj log

(

ei − mj

Λ

)

which we see coincides with the expression computed in four dimensions (10). Note
that these two equations arose from very different origins: the degeneration of the

Seiberg-Witten elliptic curve in four dimensions, and the critical points of the effective

twisted superpotential in two dimensions. This agreement is the main result of [1].
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In (19) we see our first hint that the vortex theory understands something of the four
dimensional quantum dynamics since the one-loop beta function for r is identical to

that of the four-dimensional coupling e2. This ensures that the relationship r = 2π/e2

is preserved under RG flow. Note that although vortices exist by virtue of the overall

U(1) ⊂ U(Nc), the renormalisation of r clearly follows the asymptotically free SU(Nc)

gauge coupling in four dimensions, rather than the infra-red free U(1) coupling. Since

the beta functions for r and 2π/e2 are equal, it follows that if we eliminate r(µ) in
favour of the one-loop RG invariant scale,

Λ = µ exp

(

−2πr(µ)

Nc

)

then this coincides with the dynamically generated scale in four dimensions (4).

The anomaly structure provides further agreement between the vortex theory and

four dimensions. The U(1)R symmetry on the vortex worldsheet is broken by anomalies

to Z2Nc , in agreement with the four dimensional result. This suggests an interplay

between Yang-Mills instantons and worldsheet instantons. We shall return to this

later.

In the presence of twisted masses, the story is similar. The running of the coupling
r(µ) is cut-off at the scale |mi−mj |. For |mi −mj | # Λ, the theory is weakly coupled.

Again, this is in agreement with the four dimensional theory at the root of the baryonic

Higgs branch, which sits far out on the Coulomb branch when |mi − mj | # Λ. In

this regime, the Nc classical vacua of the vortex theory (18) are trustworthy ground

states around which to study excitations. Finally, we note that at strong coupling,

|mi −mj | $ Λ, the Witten index ensures that there remain Nc isolated vacuum states
in the quantum vortex theory.

The Spectrum of the Vortex String

Having identified the theory on the vortex string and described some of its properties,
our task now is to determine its spectrum. In fact this is precisely the calculation

performed by Dorey in [1] where he computed the exact quantum BPS spectrum as a

function of the twisted masses mi and Λ. In this subsection we review the results of

[1] and describe how they relate to the vortex string.

We deal first with the classical, elementary internal excitations of the BPS string.

The vortex theory (17) includes a gapped photon with mass g
√

r. This does not lie
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Vacua

Σ whose lowest component is the complex scalar field σ, and includes F01 as part of
the auxiliary field. In the presence of twisted masses, this calculation was first done in

[3], resulting in the effective twisted superpotential,

W(Σ) =
i

2
τΣ − 1

4π

Nc
∑

i=1

(Σ − mi) log

(

2

µ
(Σ − mi)

)

Assuming no singularities in the Kähler potential, the Nc quantum vacua of the theory

are determined by the critical points of the twisted superpotential ∂W/∂Σ = 0 and

are given by,

Nc
∏

i=1

(σ − mi) − ΛNc ≡
Nc
∏

i=1

(σ − ei) = 0

which we notice as the same equation describing the branch points of the Seiberg-
Witten curve at the root of the baryonic Higgs branch (8). The classical BPS kinks

which we described above also survive in this effective theory [28] although their mass

is now corrected to include quantum effects. A kink interpolating between the Vacuum

i and Vacuum j has mass Mkink = 2∆W = 2W(ei) − 2W(ej). In the weak coupling

regime |mi − mj | # Λ the leading contribution is precisely the classical result (21).

Deep in the strong coupling regime, |mi − mj | $ Λ, quantum effects are dominant.
The exact BPS mass of the kink can be captured by a correction to the central charge

so that all BPS excitations of the string have masses M = |Z|, now with

Z = −i
Nc
∑

i=1

(miSi + mD iTi)

where all the quantum corrections are encoded in mD,i, each a holomorphic function of

mj and Λ. Using the expressions above, we find that (up to an i-independent irrelevant

constant)

mD i = −2iW(ei) =
1

2πi
Ncei +

1

2πi

Nc
∑

j=1

mj log

(

ei − mj

Λ

)

which we see coincides with the expression computed in four dimensions (10). Note
that these two equations arose from very different origins: the degeneration of the

Seiberg-Witten elliptic curve in four dimensions, and the critical points of the effective

twisted superpotential in two dimensions. This agreement is the main result of [1].
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string. As we’re used to by now, such winding is characterized by the homotopy group,
this time

Π1 (U(N) × SU(N)/SU(N)diag) ∼= Z (3.6)

Which means that we can expect vortex strings supported by a single winding number
k ∈ Z. To see that this winding of the scalar is associated with magnetic flux, we use

the same trick as for monopoles. Finiteness of the quark kinetic term requires that
Dq ∼ 1/r2 as r → ∞. But a winding around S1

∞ necessarily means that ∂q ∼ 1/r. To

cancel this, we must turn on A → i∂q q−1 asymptotically. The winding of the scalar at
infinity is determined by an integer k, defined by

2πk = Tr

∮

S1
∞

i∂θq q−1 = Tr

∮

S1
∞

Aθ = Tr

∫

dx1dx2 B3 (3.7)

This time however, in contrast to the case of magnetic monopoles, there is no long

range magnetic flux. Physically this is because the theory has a mass gap, ensuring
any excitations die exponentially. The result, as we shall, is that the magnetic flux is

confined in the center of the vortex string.

The Lagrangian of equation (3.1) is very spe- x3

phase of q

Figure 11:

cial, and far from the only theory admitting vor-
tex solutions. Indeed, the vortex zoo is well pop-

ulated with different objects, many exhibiting cu-
rious properties. Particularly interesting examples
include Alice strings [148, 149], and vortices in Chern-

Simons theories [150]. In this lecture we shall stick
with the vortices arising from (3.1) since, as we

shall see, they are closely related to the instantons
and monopoles described in the previous lectures.

To my knowledge, the properties of non-abelian vortices in this model were studied
only quite recently in [151] (a related model, sharing similar properties, appeared at
the same time [152]).

3.2 The Vortex Equations

To derive the vortex equations we once again perform the Bogomoln’yi completing the
square trick (due, once again, to Bogomoln’yi [14]). We look for static strings in the x3

direction, so make the ansatz ∂0 = ∂3 = 0 and A0 = A3 = 0. We also set φ = 0. In fact
φ will not play a role for the remainder of this lecture, although it will be resurrected
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3. Vortices

In this lecture, we’re going to discuss vortices. The motivation for studying vortices
should be obvious: they are one of the most ubiquitous objects in physics. On table-
tops, vortices appear as magnetic flux tubes in superconductors and fractionally charged

quasi-excitations in quantum Hall fluids. In the sky, vortices in the guise of cosmic
strings have been one one of the most enduring themes in cosmology research. With

new gravitational wave detectors coming on line, there is hope that we may be able
to see the distinctive signatures of these strings as the twist and whip. Finally, and
more formally, vortices play a crucial role in determining the phases of low-dimensional

quantum systems: from the phase-slip of superconducting wires, to the physics of
strings propagating on Calabi-Yau manifolds, the vortex is key.

As we shall see in detail below, in four dimensional theories vortices are string like

objects, carrying magnetic flux threaded through their core. They are the semi-classical
cousins of the more elusive QCD flux tubes. In what follows we will primarily be inter-
ested in the dynamics of infinitely long, parallel vortex strings and the long-wavelength

modes they support. There are a number of reviews on the dynamics of vortices in four
dimensions, mostly in the context of cosmic strings [142, 143, 144].

3.1 The Basics

In order for our theory to support vortices, we must add a further field to our La-
grangian. In fact we must make two deformations

• We increase the gauge group from SU(N) to U(N). We could have done this

before now, but as we have considered only fields in the adjoint representation
the central U(1) would have simply decoupled.

• We add matter in the fundamental representation of U(N). We’ll add Nf scalar
fields qi, i = 1 . . . , Nf .

The action that we’ll work with throughout this lecture is

S =

∫

d4x Tr

(

1

2e2
F µνFµν +

1

e2
(Dµφ)2

)

+

Nf
∑

i=1

|Dµqi|2

−
Nf
∑

i=1

q†iφ
2qi −

e2

4
Tr (

Nf
∑

i=1

qiq
†
i − v2 1N)2 (3.1)

The potential is of the type admitting a completion to N = 1 or N = 2 supersymmetry.
In this context, the final term is called the D-term. Note that everything in the bracket
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of the D-term is an N×N matrix. Note also that the couplings in front of the potential
are not arbitrary: they have been tuned to critical values.

We’ve included a new parameter, v2, in the potential. Obviously this will induce a
vev for q. In the context of supersymmetric gauge theories, this parameter is known as

a Fayet-Iliopoulos term.

We are interested in ground states of the theory with vanishing potential. For Nf <
N , one can’t set the D-term to zero since the first term is, at most, rank Nf , while the
v2 term is rank N . In the context of supersymmetric theories, this leads to spontaneous

supersymmetry breaking. In what follows we’ll only consider Nf ≥ N . In fact, for the
first half of this section we’ll restrict ourselves to the simplest case:

Nf = N (3.2)

With this choice, we can view q as an N ×N matrix qa
i, where a is the color index and

i the flavor index. Up to gauge transformations, there is a unique ground state of the
theory,

φ = 0 , qa
i = vδa

i (3.3)

Studying small fluctuations around this vacuum, we find that all gauge fields and scalars
are massive, and all have the same mass M2 = e2v2. The fact that all masses are equal

is a consequence of tuning the coefficients of the potential.

The theory has a U(N)G ×SU(N)F gauge and flavor symmetry. On the quark fields

q this acts as

q → UqV U ∈ U(N)G, V ∈ SU(N)F (3.4)

The vacuum expectation value (3.3) is preserved only for transformations of the form
U = V , meaning that we have the pattern of spontaneous symmetry breaking

U(N)G × SU(N)F → SU(N)diag (3.5)

This is known as the color-flavor-locked phase in the high-density QCD literature [145].

When N = 1, our theory is the well-studied abelian Higgs model, which has been
known for many years to support vortex strings [146, 147]. These vortex strings also
exist in the non-abelian theory and enjoy rather rich properties, as we shall now see.

Let’s choose the strings to lie in the x3 direction. To support such objects, the scalar
fields q must wind around S1

∞ at spatial infinity in the (x1, x2) plane, transverse to the
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BPS equations for vortexin the following lecture. The tension (energy per unit length) of the string is

Tvortex =

∫

dx1dx2 Tr

(

1

e2
B2

3 +
e2

4
(

N
∑

i=1

qiq
†
i − v2 1N)2

)

+
N
∑

i=1

|D1qi|2 + |D2qi|2

=

∫

dx1dx2 1

e2
Tr

(

B3 ∓
e2

2
(

N
∑

i=1

qiq
†
i − v2 1N)

)2

+
N
∑

i=1

|D1qi ∓ iD2qi|2

∓v2

∫

dx1dx2 TrB3 (3.8)

To get from the first line to the second, we need to use the fact that [D1, D2] = −iB3,
to cancel the cross terms from the two squares. Using (3.7), we find that the tension

of the charge |k| vortex is bounded by

Tvortex ≥ 2πv2 |k| (3.9)

In what follows we focus on vortex solutions with winding k < 0. (These are mapped

into k > 0 vortices by a parity transformation, so there is no loss of generality). The
inequality is then saturated for configurations obeying the vortex equations

B3 =
e2

2
(
∑

i

qiq
†
i − v2 1N) , Dzqi = 0 (3.10)

where we’ve introduced the complex coordinate z = x1 + ix2 on the plane transverse to
the vortex string, so ∂z = 1

2(∂1 − i∂2). If we choose N = 1, then the Lagrangian (3.1)

reduces to the abelian-Higgs model and, until recently, attention mostly focussed on
this abelian variety of the equations (3.10). However, as we shall see below, when the

vortex equations are non-abelian, so each side of the first equation (3.10) is an N ×N
matrix, they have a much more interesting structure.

Unlike monopoles and instantons, no analytic solution to the vortex equations is

known. This is true even for a single k = 1 vortex in the U(1) theory. There’s nothing
sinister about this. It’s just that differential equations are hard and no one has decided

to call the vortex solution a special function and give it a name! However, it’s not
difficult to plot the solution numerically and the profile of the fields is sketched below.

The energy density is localized within a core of the vortex of size L = 1/ev, outside of
which all fields return exponentially to their vacuum.

The simplest k = 1 vortex in the abelian N = 1 theory has just two collective

coordinates, corresponding to its position on the z-plane. But what are the collective
coordinates of a vortex in U(N). We can use the same idea we saw in the instanton
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Figure 12: A sketch of the vortex profile.

lecture, and embed the abelian vortex — let’s denote it q! and A!
z — in the N × N

matrices of the non-abelian theory. We have

Az =















A!
z

0
. . .

0















, q =















q!

v
. . .

v















(3.11)

where the columns of the q matrix carry the color charge, while the rows carry the flavor

charge. We have chosen the embedding above to lie in the upper left-hand corner but
this isn’t unique. We can rotate into other embeddings by acting with the SU(N)diag

symmetry preserved in the vacuum. Dividing by the stabilizer, we find the internal
moduli space of the single non-abelian vortex to be

SU(N)diag/S[U(N − 1) × U(1)] ∼= CP
N−1 (3.12)

The appearance of CP
N−1 as the internal space of the vortex is interesting: it tells us

that the low-energy dynamics of a vortex string is the much studied quantum CP
N−1

sigma model. We’ll see the significance of this in the following lecture. For now, let’s
look more closely at the moduli of the vortices.

3.3 The Moduli Space

We’ve seen that a single vortex has 2N collective coordinates: 2 translations, and

2(N − 1) internal modes, dictating the orientation of the vortex in color and flavor
space. We denote the moduli space of charge k vortices in the U(N) gauge theory as
Vk,N . We’ve learnt above that

V1,N
∼= C × CP

N−1 (3.13)
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where the columns of the q matrix carry the color charge, while the rows carry the flavor

charge. We have chosen the embedding above to lie in the upper left-hand corner but
this isn’t unique. We can rotate into other embeddings by acting with the SU(N)diag

symmetry preserved in the vacuum. Dividing by the stabilizer, we find the internal
moduli space of the single non-abelian vortex to be

SU(N)diag/S[U(N − 1) × U(1)] ∼= CP
N−1 (3.12)

The appearance of CP
N−1 as the internal space of the vortex is interesting: it tells us

that the low-energy dynamics of a vortex string is the much studied quantum CP
N−1

sigma model. We’ll see the significance of this in the following lecture. For now, let’s
look more closely at the moduli of the vortices.

3.3 The Moduli Space

We’ve seen that a single vortex has 2N collective coordinates: 2 translations, and

2(N − 1) internal modes, dictating the orientation of the vortex in color and flavor
space. We denote the moduli space of charge k vortices in the U(N) gauge theory as
Vk,N . We’ve learnt above that

V1,N
∼= C × CP

N−1 (3.13)
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For higher k

What about higher k? An index theorem [154, 151] tells us that the number of collective
coordinates is

dim(Vk,N) = 2kN (3.14)

Look familiar? Remember the result for k instantons in U(N) that we found in lecture
1: dim(Ik,N) = 4kN . We’ll see more of this similarity between instantons and vortices

in the following.

As for previous solitons, the counting (3.14) has a natural interpretation: k parallel
vortex strings may be placed at arbitrary position, each carrying 2(N −1) independent
orientational modes. Thinking physically in terms of forces between vortices, this is a

consequence of tuning the coefficient e2/4 in front of the D-term in (3.1) so that the
mass of the gauge bosons equals the mass of the q scalars. If this coupling is turned

up, the scalar mass increases and so mediates a force with shorter range than the gauge
bosons, causing the vortices to repel. (Recall the general rule: spin 0 particles give rise

to attractive forces; spin 1 repulsive). This is a type II non-abelian superconductor. If
the coupling decreases, the mass of the scalar decreases and the vortices attract. This
is a non-abelian type I superconductor. In the following, we keep with the critically

coupled case (3.1) for which the first order equations (3.10) yield solutions with vortices
at arbitrary position.

3.3.1 The Moduli Space Metric

There is again a natural metric on Vk,N arising from taking the overlap of zero modes.

These zero modes must solve the linearized vortex equations together with a suitable
background gauge fixing condition. The linearized vortex equations read

DzδAz̄ −Dz̄δAz =
ie2

4
(δq q† + q δq†) and Dzδq = iδAzq (3.15)

where q is to be viewed as an N × N matrix in these equations. The gauge fixing
condition is

DzδAz̄ + Dz̄δAz = −ie2

4
(δq q† − q δq†) (3.16)

which combines with the first equation in (3.15) to give

Dz̄δAz = −ie2

4
δq q† (3.17)

Then, from the index theorem, we know that there are 2kN zero modes (δαAz, δαq),

α, β = 1, . . . , 2kN solving these equations, providing a metric on Vk,N defined by

gαβ = Tr

∫

dx1dx2 1

e2
δαAaδβAz̄ +

1

2
δαqδβq† + h.c. (3.18)
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Non-Abelian String
[Shifman Yung]

act trivially on the BPS string. Imposing the conditions (4.2.17) and requir-
ing the left-hand sides of Eqs. (4.2.14) to vanish 16 we get, upon substituting
the ansatz (4.2.6), the first-order equations (4.2.11).

4.3 Elementary non-Abelian strings

The elementary ZN strings in the model (4.1.7) give rise to bona fide non-
Abelian strings provided the condition (4.1.13) is satisfied [117, 118, 119, 120].
This means that, in addition to trivial translational moduli, they have extra
moduli corresponding to spontaneous breaking of a non-Abelian symmetry.
Indeed, while the “flat” vacuum (4.1.14) is SU(N)C+F symmetric, the solu-
tion (4.2.6) breaks this symmetry 17 down to U(1)×SU(N − 1) (at N > 2).
This ensures the presence of 2(N − 1) orientational moduli.

To obtain the non-Abelian string solution from the ZN string (4.2.6) we
apply the diagonal color-flavor rotation preserving the vacuum (4.1.14). To
this end it is convenient to pass to the singular gauge where the scalar fields
have no winding at infinity, while the string flux comes from the vicinity of
the origin. In this gauge we have

ϕ = U













φ2(r) 0 ... 0

... ... ... ...

0 ... φ2(r) 0

0 0 ... φ1(r)













U−1 ,

ASU(N)
i =

1

N
U













1 ... 0 0

... ... ... ...

0 ... 1 0

0 0 ... −(N − 1)













U−1 (∂iα) fNA(r) ,

AU(1)
i = − 1

N
(∂iα) f(r) , AU(1)

0 = ASU(N)
0 = 0 , (4.3.1)

16If, instead of (4.2.17), we required other combinations of the SUSY transformation pa-
rameters to vanish (changing the signs in (4.2.17)) we would get the anti-string equations,
with the opposite direction of the gauge fluxes.

17At N = 2 the string solution breaks SU(2) down to U(1).
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Matrix U parameterizes 
orientational modes

Gauge group is broken to ZN

All bulk degrees of freedom massive M2 = e2v2

Theory is fully Higgsed

[Auzzi, Bolognesi, 
Evslin, Konishi, Yung]

Take Abelian string solution
Make global rotation

SU(N)

SU(N � 1)⇥ U(1)
= CPN�1



Omega background

SO(4) ! SO(2)⇥ SO(2)

2 Setup
sec:Setup

We are intended to follow the notations of Shifman and Yung in Euclidean signature. We
benefit from this while studying static configurations, where in the gauge A

0

= 0 the La-
grangian is nothing but the energy density.

Omega deformation. Torus action on R4 is given by two matrices ⌦m
an , a = 5, 6 which act

by rotations in 12 and 34 planes respectively. In the NS limit matrix ⌦
6

vanishes, therefore
we shall denote ⌦ = ⌦

5

. Metric on the deformed torus reads

GABdx
A
dx

B = Adzdz̄ + (dxm + ⌦m
dz + ⌦̄m

dz̄)2 , (2.1) eq:MetricTorusOmega

where z = x

5 + ix

6

, z̄ = x

5 � ix

6 and the vector field ⌦m = ⌦m
n x

n. In the notations of [
Ito:2011wv
6]

⌦m = (�i✏x

2

, i✏x

1

, 0, 0). The components of the metric in the limit A ! 0 read

Gmn = �mn , Gam = ⌦am , Gab = �ab + ⌦m
a ⌦bm . (2.2)

In order to study deformations of the action is convenient to use dual frame description
GAB = e

(c)
A e

(c)
B . The components of sixbeins read

e

(m)

n = �

m
n , e

(m)

a = ⌦m
a , e

(a)
m = 0 , e

(a)
b = �

a
b . (2.3) eq:vielbeins

Supersymmetry algebra. Supersymmetry algebra for N = 2 theory has the following
form

{QI
↵, Q̄J ↵̇} = 2P↵↵̇�

I
J + 2Z↵↵̇�

I
J ,

{QI
↵, Q

J
�} = ✏↵�✏

IJ
Z

mon

+ (Z
d.w.

)IJ↵� . (2.4)

There are three types on central charges: string, monopole and domain wall types.
The full global symmetry of the theory is SU(2)L ⇥ SU(2)R ⇥ SU(2)R ⇥ SU(2)c. It is

broken by the Omega background in the NS limit to SU(2)R+R ⇥ SU(2)c. Twisted super-
charges

Q = �

↵
I Q

I
↵ , Qm = (�̄m)

I↵
QI↵ , Qmn = (�mn)

↵
IQ

I
↵ . (2.5)

The former operator above is also known as BRST operator. Omega deformation in the NS
limit breaks Lorentz invariance in four dimensions leaving only four supercharges which form
(2, 2) theory. The (2,2) SUSY algebra is generated by Q

1

, Q

2

, Q̄

13

, Q̄

14

[
Ito:2011wv
6] and reads work

out Donaldson-Witten twist

{Qm, Q̄} = 2Pm + 2Zm . . . (2.6)
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2
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2
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1

2
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mn

, (2.7)

we have ⇣
3

= ⇣

4
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12
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34

= 0. recheck! which part of SUSY algebra is actually conserved
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We will be interested in Nekrasov-Shatashvili limit

✏2 ! 0

[Nekrasov et al]



4d/2d in Omega background [Dorey 
Hollowood Lee]

N=2 SQCD in Omega background 
in NS limit with Nf=2Nc

Theory I and Theory II respectively). The duality applies to the large class of four dimen-

sional theories with N = 2 supersymmetry which can be realised by the standard quiver

construction as in [1]. As our main example we have,

Theory I: Four-dimensional N = 2 SQCD with gauge group SU(L), L hypermultiplets

in the fundamental representation with masses !mF = (m1, . . . , mL) and L hypermultiplets in

the anti-fundamental with masses !mAF = (m̃1, . . . , m̃L). The theory is conformally invariant

in the UV with marginal coupling τ = 4πi/g2 + ϑ/2π.

For some purposes it will also be useful to consider the corresponding U(L) gauge theory.

We consider Theory I in the presence of a particular #1 Nekrasov deformation with param-

eter ε which preserves N = (2, 2) supersymmetry in an R1,1 subspace of four-dimensional

spacetime. The resulting effective theory in two dimensions is characterised by a (twisted)

superpotential, W(I) with holomorphic dependence on (twisted) chiral superfields. The su-

perpotential W(I) receives an infinite series of corrections from perturbation theory and

instantons which encode the four-dimensional origin of the theory. It has an L-dimensional

lattice of stationary points corresponding to supersymmetric vacua of the deformed theory.

These are determined by the F-term equation,

!a = !mF − !nε !n = (n1, . . . , nL) ∈ Z
L

where !a = (a1, . . . , aL) are the usual special Kähler coordinates on the Coulomb branch of

the four-dimensional theory. A generic point on the Coulomb branch of the undeformed

theory can be recovered in an appropriate ε → 0, |!n| → ∞ limit.

We will propose an exact duality of Theory I to a surprisingly simple model defined in

two-dimensions which holds for all positive values of the integers {nl} introduced above;

Theory II: Two-dimensional N = (2, 2) supersymmetric Yang-Mills theory with gauge

group U(N) with L chiral multiplets in the fundamental representation with twisted masses

!MF = (M1, . . . ,ML) and L chiral multiplets in the anti-fundamental with twisted masses

#1As we explain in Section 2.2 below there are a family of inequivalent deformations related to each other

by the low-energy electromagnetic duality group of the four-dimensional theory.

2

(2,2) GLSM w/ gauge group U(K)
massive adjoint and twisted masses

K =
NX

i=1

ni �N

!MAF = (M̃1, . . . , M̃L). In addition the theory has a single chiral multiplet in the adjoint

representation with mass ε. The FI parameter r and 2d vacuum angle θ combine to form a

complex marginal coupling τ̂ = ir + θ/2π.

Theory II has a twisted effective superpotential W(II) which is one-loop exact [2]. In both

Theory I and Theory II, the superpotential determines the chiral ring of supersymmetric

vacuum states.

Claim: The chiral rings of Theory I and Theory II are isomorphic. In particular, there

is a 1-1 correspondence between the supersymmetric vacua of the two theories and, with an

appropriate identification of complex parameters, the values of the twisted superpotentials

coincide in corresponding vacua (up to a vacuum-independent additive constant),

W(I)

on−shell

≡ W(II)

The rank N of the 2d gauge group is identified in terms of the 4d parameters according to

N + L =
∑L

l=1 nl. Thus, when |ε| is small, low values of N correspond to points near the

Higgs branch root of the 4d theory. The deformation parameter ε of Theory I is identified

with adjoint mass of Theory II. The explicit map between the remaining parameters takes

the form,

τ̂ = τ +
1

2
(N + 1) , !MF = !mF − 3

2
!ε , !MAF = !mAF +

1

2
!ε . (1.1)

where !ε = (ε, ε, . . . , ε). Further details of the map between the chiral rings of the two theories

is given in Subection 2.5 below.

The initial motivation for this duality comes from the mysterious connection between

supersymmetric gauge theories and quantum integrable systems developed in a remarkable

series of papers by Nekrasov and Shatashvili (NS) [3, 4]. These authors propose a general

correspondence in which the space of supersymmetric vacua of a theory with N = (2, 2)

supersymmetry is identified with the Hilbert space of a quantum integrable system. The

generators of the chiral ring are mapped to the commuting conserved charges of the integrable

system. The twisted superpotential itself corresponds to the so-called Yang-Yang potential

which is naturally thought of as a generating function for the conserved charges. The ideas
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Figure 4.2: (a) Theory II: n̂ D2 branes suspended between a D4 and an NS5. (b) Theory I:

D4 brane breaks on NS5.

The duality proposed in this paper relates the world-volume theory on a surface operator

probing the Higgs branch of a four dimensional gauge theory with a corresponding bulk

theory (ie the same four dimensional gauge theory without surface operator on its Coulomb

branch). As such it is reminiscent of the AdS/CFT correspondence and other large-N

dualities. This observation can be made precise in the context of geometric engineering

where the Nekrasov partition function of four-dimensional theory is computed by the closed

topological string on a suitable local geometry. More precisely we should consider the closed

string partition function computed using the refined topological vertex of [45]. On the

other hand, the partition function for gauge theory in the presence of a surface operator

corresponds to an open topological string partition function [46, 47]. The proposed duality

therefore asserts the equality of certain open and closed topological string partition functions

and it is natural to ask if it is related to the geometric transition of Gopakumar and Vafa

[31]. Strictly speaking the latter is defined only in the unrefined case corresponding to

ε1 = −ε2 = gs while our duality proposal applies only to the NS limit ε2 → 0. Nevertheless

there are strong similarities which suggest that a “refined” geometric transition should exist

and should be equivalent in the NS limit to the duality proposed in this paper (see also [28]).
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4d/2d in Omega background [Dorey 
Hollowood Lee]

N=2 SQCD in Omega background 
in NS limit with Nf=2Nc
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sional theories with N = 2 supersymmetry which can be realised by the standard quiver

construction as in [1]. As our main example we have,
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For some purposes it will also be useful to consider the corresponding U(L) gauge theory.

We consider Theory I in the presence of a particular #1 Nekrasov deformation with param-
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spacetime. The resulting effective theory in two dimensions is characterised by a (twisted)

superpotential, W(I) with holomorphic dependence on (twisted) chiral superfields. The su-

perpotential W(I) receives an infinite series of corrections from perturbation theory and

instantons which encode the four-dimensional origin of the theory. It has an L-dimensional

lattice of stationary points corresponding to supersymmetric vacua of the deformed theory.

These are determined by the F-term equation,

!a = !mF − !nε !n = (n1, . . . , nL) ∈ Z
L

where !a = (a1, . . . , aL) are the usual special Kähler coordinates on the Coulomb branch of

the four-dimensional theory. A generic point on the Coulomb branch of the undeformed

theory can be recovered in an appropriate ε → 0, |!n| → ∞ limit.

We will propose an exact duality of Theory I to a surprisingly simple model defined in

two-dimensions which holds for all positive values of the integers {nl} introduced above;

Theory II: Two-dimensional N = (2, 2) supersymmetric Yang-Mills theory with gauge

group U(N) with L chiral multiplets in the fundamental representation with twisted masses

!MF = (M1, . . . ,ML) and L chiral multiplets in the anti-fundamental with twisted masses

#1As we explain in Section 2.2 below there are a family of inequivalent deformations related to each other

by the low-energy electromagnetic duality group of the four-dimensional theory.
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(2,2) GLSM w/ gauge group U(K)
massive adjoint and twisted masses

K =
NX

i=1

ni �N

!MAF = (M̃1, . . . , M̃L). In addition the theory has a single chiral multiplet in the adjoint

representation with mass ε. The FI parameter r and 2d vacuum angle θ combine to form a

complex marginal coupling τ̂ = ir + θ/2π.

Theory II has a twisted effective superpotential W(II) which is one-loop exact [2]. In both

Theory I and Theory II, the superpotential determines the chiral ring of supersymmetric

vacuum states.

Claim: The chiral rings of Theory I and Theory II are isomorphic. In particular, there

is a 1-1 correspondence between the supersymmetric vacua of the two theories and, with an

appropriate identification of complex parameters, the values of the twisted superpotentials

coincide in corresponding vacua (up to a vacuum-independent additive constant),

W(I)

on−shell

≡ W(II)

The rank N of the 2d gauge group is identified in terms of the 4d parameters according to

N + L =
∑L

l=1 nl. Thus, when |ε| is small, low values of N correspond to points near the

Higgs branch root of the 4d theory. The deformation parameter ε of Theory I is identified

with adjoint mass of Theory II. The explicit map between the remaining parameters takes

the form,

τ̂ = τ +
1

2
(N + 1) , !MF = !mF − 3

2
!ε , !MAF = !mAF +

1

2
!ε . (1.1)

where !ε = (ε, ε, . . . , ε). Further details of the map between the chiral rings of the two theories

is given in Subection 2.5 below.

The initial motivation for this duality comes from the mysterious connection between

supersymmetric gauge theories and quantum integrable systems developed in a remarkable

series of papers by Nekrasov and Shatashvili (NS) [3, 4]. These authors propose a general

correspondence in which the space of supersymmetric vacua of a theory with N = (2, 2)

supersymmetry is identified with the Hilbert space of a quantum integrable system. The

generators of the chiral ring are mapped to the commuting conserved charges of the integrable

system. The twisted superpotential itself corresponds to the so-called Yang-Yang potential

which is naturally thought of as a generating function for the conserved charges. The ideas
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Figure 4.2: (a) Theory II: n̂ D2 branes suspended between a D4 and an NS5. (b) Theory I:

D4 brane breaks on NS5.

The duality proposed in this paper relates the world-volume theory on a surface operator

probing the Higgs branch of a four dimensional gauge theory with a corresponding bulk

theory (ie the same four dimensional gauge theory without surface operator on its Coulomb

branch). As such it is reminiscent of the AdS/CFT correspondence and other large-N

dualities. This observation can be made precise in the context of geometric engineering

where the Nekrasov partition function of four-dimensional theory is computed by the closed

topological string on a suitable local geometry. More precisely we should consider the closed

string partition function computed using the refined topological vertex of [45]. On the

other hand, the partition function for gauge theory in the presence of a surface operator

corresponds to an open topological string partition function [46, 47]. The proposed duality

therefore asserts the equality of certain open and closed topological string partition functions

and it is natural to ask if it is related to the geometric transition of Gopakumar and Vafa

[31]. Strictly speaking the latter is defined only in the unrefined case corresponding to

ε1 = −ε2 = gs while our duality proposal applies only to the NS limit ε2 → 0. Nevertheless

there are strong similarities which suggest that a “refined” geometric transition should exist

and should be equivalent in the NS limit to the duality proposed in this paper (see also [28]).
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D4 brane breaks on NS5.

The duality proposed in this paper relates the world-volume theory on a surface operator

probing the Higgs branch of a four dimensional gauge theory with a corresponding bulk

theory (ie the same four dimensional gauge theory without surface operator on its Coulomb

branch). As such it is reminiscent of the AdS/CFT correspondence and other large-N

dualities. This observation can be made precise in the context of geometric engineering

where the Nekrasov partition function of four-dimensional theory is computed by the closed

topological string on a suitable local geometry. More precisely we should consider the closed

string partition function computed using the refined topological vertex of [45]. On the

other hand, the partition function for gauge theory in the presence of a surface operator

corresponds to an open topological string partition function [46, 47]. The proposed duality

therefore asserts the equality of certain open and closed topological string partition functions

and it is natural to ask if it is related to the geometric transition of Gopakumar and Vafa

[31]. Strictly speaking the latter is defined only in the unrefined case corresponding to

ε1 = −ε2 = gs while our duality proposal applies only to the NS limit ε2 → 0. Nevertheless

there are strong similarities which suggest that a “refined” geometric transition should exist

and should be equivalent in the NS limit to the duality proposed in this paper (see also [28]).
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3 Non-Abelian strings in Super Yang-Mills theory
sec:FluxTube

It is a standard lore in the study of topological defects in supersymmetric theories that BPS
strings only exist when a gauge group is at least semi-simple, e.g. U(N). A simple reason
for this is based on existence of a nontrivial fundamental group of the resulting moduli space
due to presence of a U(1) factor. The latter causes a nonzero FI term which supports string
solutions. Let us call them FI strings. In the present paper we address to a di↵erent kind
of string-like objects which have not been discussed in the literature before, we shall refer
to them as ✏-strings. As we shall later see their tension is equal to ✏ and classical field
configurations are supported on them. For simplicity we shall only focus on the gauge group
SU(2) in this section.

Action. In this section we shall work with N = 2 Super Yang-Mills theory in four dimen-
sions. Lagrangian reads

L = Im
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SUSY transformations and supercurrent. Supersymmetry transformations of the
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Was calculated in [
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6]. Its time components has the following form (assuming static
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String central charge and tension. Here we are talking about di↵erent kind of strings.
To understand what kind of objects are we dealing with let us see how the supercurrent
transforms under the supersymmetries (

eq:SuperCurrent
3.4)
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where L is the Lagrangian of the system. We see that there is a correction which represents
the string central charge. More specifically the correction takes the following form
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The central charge is given by
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We can immediately see that multivalueness of � as a function of the azimuthal angle is
required in order to make the central charge nonzero. The tension of the string solution
under consideration (let’s call them ✏-strings) is therefore given by

T =

1Z

0

d⇢⇢B

a
3

Re(✏�̄a)
���
2⇡

0

. (3.9)

Assuming that
�(⇢,') = �(⇢)e

i'
n
, (3.10) eq:AngleAnsarzPhi

where n is an integer, we arrive to
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The above expression for the tension of ✏-string only makes sense if it is finite. In order to
establish that one has to solve BPS equations in order to find the profile functions for � andeq:BPSeqnsFull
B

3

as function of the radial coordinate ⇢.

BPS equations. Let us now find the BPS equations which describe such a string. Bosonic
part of the action
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yields for a string of tension ~ epsilon

SU(2)c ⇥ SU(2)R ⇥ SU(2)R ! U(1)c ⇥ SU(2)R+R

Symmetry breaking pattern
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3 Non-Abelian strings in Super Yang-Mills theory
sec:FluxTube

It is a standard lore in the study of topological defects in supersymmetric theories that BPS
strings only exist when a gauge group is at least semi-simple, e.g. U(N). A simple reason
for this is based on existence of a nontrivial fundamental group of the resulting moduli space
due to presence of a U(1) factor. The latter causes a nonzero FI term which supports string
solutions. Let us call them FI strings. In the present paper we address to a di↵erent kind
of string-like objects which have not been discussed in the literature before, we shall refer
to them as ✏-strings. As we shall later see their tension is equal to ✏ and classical field
configurations are supported on them. For simplicity we shall only focus on the gauge group
SU(2) in this section.

Action. In this section we shall work with N = 2 Super Yang-Mills theory in four dimen-
sions. Lagrangian reads
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In components it takes the following form
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SUSY transformations and supercurrent. Supersymmetry transformations of the
gluino field

�⇤I
↵ = ⇣

I
�((�

mn)�↵Fmn + i[�, �̄]��↵ +rm(⌦̄
m
�� ⌦m

�̄)��↵)

+ ⇣̄

I
˙�
(�m)

˙�
↵(rm�� Fmn⌦

n) (3.3)

Was calculated in [
Ito:2011wv
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String central charge and tension. Here we are talking about di↵erent kind of strings.
To understand what kind of objects are we dealing with let us see how the supercurrent
transforms under the supersymmetries (

eq:SuperCurrent
3.4)
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where L is the Lagrangian of the system. We see that there is a correction which represents
the string central charge. More specifically the correction takes the following form
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The central charge is given by
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We can immediately see that multivalueness of � as a function of the azimuthal angle is
required in order to make the central charge nonzero. The tension of the string solution
under consideration (let’s call them ✏-strings) is therefore given by
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where n is an integer, we arrive to
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The above expression for the tension of ✏-string only makes sense if it is finite. In order to
establish that one has to solve BPS equations in order to find the profile functions for � andeq:BPSeqnsFull
B

3

as function of the radial coordinate ⇢.
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Symmetry breaking pattern

Searching for the field theoretical explanation of the 
new duality



Conclusions and open questions

• Nonabelian vortices to study BPS spectrum of 
SQCD 

• Generalization of the 4d/2d duality to theories in 
Omega background

• Connections to integrable systems in 2d...

• Relationship w/ another 4d/2d duality [Vafa et al]

• Holography for Non-Abelian vortices


