Non-Abelian Vortices

 and
4d/2d Correspondence

Peter Koroteev

University of Minnesota

\& KITP, Santa Barbara

work in progress with A.Gorsky, H. Chen

Outline

- 4d/2d correspondence in a nutshell
\star From brane construction
* The Dictionary of 4d/2d
* Derivation from vortices
- 4d/2d in Omega background
* $N=2$ theory in Nekrasov-Shatashvili limit
« Monopoles vortices and strings in Omega background

Hanany-Witten construction

SQCD $\quad N_{f}=2 N_{c} \quad$ 2d FI parameter $\quad r=\frac{\Delta x^{6}}{2 \pi g_{s} l_{s}}=\frac{4 \pi}{e^{2}}$
Higgs branch root

$$
\begin{aligned}
& \sigma=X^{4}+i X^{5} \quad, \quad Z=X^{1}+i X^{2} \\
& V= \frac{1}{g^{2}} \operatorname{Tr}\left|\left[\sigma, \sigma^{\dagger}\right]\right|^{2}+\operatorname{Tr}|[\sigma, Z]|^{2}+\operatorname{Tr}\left|\left[\sigma, Z^{\dagger}\right]\right|^{2}+\sum_{a=1}^{N} \psi_{a}^{\dagger} \sigma^{\dagger} \sigma \psi_{a} \\
&+\frac{g^{2}}{2} \operatorname{Tr}\left(\sum_{a} \psi_{a} \psi_{a}^{\dagger}+\left[Z, Z^{\dagger}\right]-r 1_{k}\right)^{2}
\end{aligned}
$$

Color-flavor locked phase of SQCD

4d / 2d duality

$$
\begin{aligned}
& \mathcal{N}=2 \quad S U(N) \quad \text { SQCD } \\
& N_{f}=N+\tilde{N} \quad \text { fund hypers } \\
& \mathrm{w} / \text { masses } \\
& m_{1}, \ldots, m_{N} \quad \mu_{1}, \ldots, \mu_{\tilde{N}} \\
& \tau=\frac{4 \pi i}{g^{2}}+\frac{\theta}{2 \pi}
\end{aligned}
$$

$$
(2,2) U(1) \text { GLSM }
$$

e

$$
\begin{aligned}
& m_{1}, \ldots, m_{N} \quad \mu_{1}, \ldots, \mu_{\tilde{N}} \\
& \tau=i r+\frac{\theta}{2 \pi}
\end{aligned}
$$

vortex moduli space

BPS dyons

 (Seiberg-Witten)kinks interpolating between different vacua

BPS spectra (as functions of masses, Lambda) are the same

4d / 2d duality

$$
\begin{array}{ll|l}
\mathcal{N}=2 & S U(N) \quad \text { SQCD } & (2,2) U(1) \quad \text { GLSM }
\end{array}
$$

e
$N_{f}=N+\tilde{N}$ fund hypers w/ masses

$$
\begin{aligned}
& m_{1}, \ldots, m_{N} \quad \mu_{1}, \ldots, \mu_{\tilde{N}} \\
& \tau=\frac{4 \pi i}{g^{2}}+\frac{\theta}{2 \pi}
\end{aligned}
$$

N chiral +I \tilde{N} chiral -I w/ twisted masses

$$
\begin{aligned}
& m_{1}, \ldots, m_{N} \quad \mu_{1}, \ldots, \mu_{\tilde{N}} \\
& \tau=i r+\frac{\theta}{2 \pi}
\end{aligned}
$$

vortex moduli space

BPS dyons

 (Seiberg-Witten)kinks interpolating between different vacua

BPS spectra (as functions of masses, Lambda) are the same Nonabelian vortices help to understand it from pure field theory constructions

$U\left(N_{c}\right) \mathcal{N}=2 d=4 \quad$ SQCD w/ N_{f} quarks

$$
\begin{aligned}
& \left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\beta}}^{J}\right\}=2 \delta^{I J} P_{\alpha \dot{\beta}}+2 \delta^{I J} Z_{\alpha \dot{\beta}} \\
& \left\{Q_{\alpha}^{I}, Q_{\dot{\beta}}^{J}\right\}=2 Z_{\alpha \beta}^{I J}
\end{aligned}
$$

$$
\mathcal{L}=\operatorname{Im}\left[\tau \int d^{4} \theta \operatorname{Tr}\left(Q^{i \dagger} e^{V} Q_{i}+\tilde{Q}^{i \dagger} e^{V} \tilde{Q}_{i}+\Phi^{\dagger} e^{V} \Phi\right)\right]
$$

bosonic part

$$
+\operatorname{Im}\left[\tau \int d^{2} \theta\left(\operatorname{Tr} W^{\alpha 2}+m_{j}^{i} \tilde{Q}_{i} Q^{j}+Q_{i} \Phi \tilde{Q}^{i}\right)\right]
$$

Fl term
$\left.\left.\mu Q\right|^{2}+\frac{g^{2}}{4}(Q \bar{Q}-\xi)^{2}+|\Phi Q+Q M|^{2}\right\}$
BPS conditions

$$
\begin{aligned}
B_{3}-g^{2}\left(Q \bar{Q}-\xi^{2}\right) & =0 \\
\nabla_{3} Q & =0
\end{aligned}
$$

String tension

$$
T=\xi \int d^{2} x \operatorname{Tr} F_{12}=2 \pi \xi n
$$

$U\left(N_{c}\right) \mathcal{N}=2 d=4 \quad$ SQCD w/ N_{f} quarks

$$
\begin{aligned}
& \left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\beta}}^{J}\right\}=2 \delta^{I J} P_{\alpha \dot{\beta}}+2 \delta^{I J} Z_{\alpha \dot{\beta}} \\
& \left\{Q_{\alpha}^{I}, Q_{\dot{\beta}}^{J}\right\}=2 Z_{\alpha \beta}^{I J}
\end{aligned}
$$

$\mathcal{L}=\operatorname{Im}\left[\tau \int d^{4} \theta \operatorname{Tr}\left(Q^{i \dagger} e^{V} Q_{i}+\tilde{Q}^{i \dagger} e^{V} \tilde{Q}_{i}+\Phi^{\dagger} e^{V} \Phi\right)\right]$

$$
+\operatorname{Im}\left[\tau \int d^{2} \theta\left(\operatorname{Tr} W^{\alpha 2}+m_{j}^{i} \tilde{Q}_{i} Q^{j}+Q_{i} \Phi \tilde{Q}^{i}\right)\right]
$$

bosonic part
Fl term
$\left.\left.{ }_{\mu}\right|^{2}+\frac{g^{2}}{4}(Q \bar{Q}-\xi)^{2}+|\Phi Q+Q M|^{2}\right\}$
BPS conditions

$$
\begin{aligned}
B_{3}-g^{2}\left(Q \bar{Q}-\xi^{2}\right) & =0 \\
\nabla_{3} Q & =0
\end{aligned}
$$

String tension

$$
T=\xi \int d^{2} x \operatorname{Tr} F_{12}=2 \pi \xi n
$$

$U\left(N_{c}\right) \mathcal{N}=2 d=4 \quad$ SQCD w/ N_{f} quarks

$$
\begin{aligned}
& \left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\beta}}^{J}\right\}=2 \delta^{I J} P_{\alpha \dot{\beta}}+2 \delta^{I J} Z_{\alpha \dot{\beta}} \\
& \left\{Q_{\alpha}^{I}, Q_{\beta}^{J}\right\}=2 Z_{\alpha \beta}^{I J}
\end{aligned}
$$

$$
\mathcal{L}=\operatorname{Im}\left[\tau \int d^{4} \theta \operatorname{Tr}\left(Q^{i \dagger} e^{V} Q_{i}+\tilde{Q}^{i \dagger} e^{V} \tilde{Q}_{i}+\Phi^{\dagger} e^{V} \Phi\right)\right]
$$

bosonic part

$$
+\operatorname{Im}\left[\tau \int d^{2} \theta\left(\operatorname{Tr} W^{\alpha 2}+m_{j}^{i} \tilde{Q}_{i} Q^{j}+Q_{i} \Phi \tilde{Q}^{i}\right)\right]
$$

Fl term
$\left.\left.\mu Q\right|^{2}+\frac{g^{2}}{4}(Q \bar{Q}-\xi)^{2}+|\Phi Q+Q M|^{2}\right\}$
BPS conditions

$$
\begin{aligned}
B_{3}-g^{2}\left(Q \bar{Q}-\xi^{2}\right) & =0 \\
\nabla_{3} Q & =0
\end{aligned}
$$

String tension

$$
T=\xi \int d^{2} x \operatorname{Tr} F_{12}=2 \pi \xi n
$$

$U\left(N_{c}\right) \mathcal{N}=2 d=4 \quad$ SQCD w/ N_{f} quarks

$$
\begin{aligned}
& \left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\beta}}^{J}\right\}=2 \delta^{I J} P_{\alpha \dot{\beta}}+2 \delta^{I J} Z_{\alpha \dot{\beta}} \text { strings } \\
& \left\{Q_{\alpha}^{I}, Q_{\beta}^{J}\right\}=2 Z_{\alpha \beta}^{I J}
\end{aligned}
$$

monopoles domain walls
$\mathcal{L}=\operatorname{Im}\left[\tau \int d^{4} \theta \operatorname{Tr}\left(Q^{i \dagger} e^{V} Q_{i}+\tilde{Q}^{i \dagger} e^{V} \tilde{Q}_{i}+\Phi^{\dagger} e^{V} \Phi\right)\right]$

$$
+\operatorname{Im}\left[\tau \int d^{2} \theta\left(\operatorname{Tr} W^{\alpha 2}+m_{j}^{i} \tilde{Q}_{i} Q^{j}+Q_{i} \Phi \tilde{Q}^{i}\right)\right]
$$

bosonic part
FI term
$\left.\left.{ }_{\mu} Q\right|^{2}+\frac{g^{2}}{4}\left(Q \bar{Q}-\Delta_{\xi}\right)^{2}+|\Phi Q+Q M|^{2}\right\}$

BPS conditions

$$
\begin{aligned}
B_{3}-g^{2}\left(Q \bar{Q}-\xi^{2}\right) & =0 \\
\nabla_{3} Q & =0
\end{aligned}
$$

String tension

$$
T=\xi \int d^{2} x \operatorname{Tr} F_{12}=2 \pi \xi n
$$

$U\left(N_{c}\right) \mathcal{N}=2 d=4 \quad$ SQCD w/ N_{f} quarks

$$
\begin{aligned}
& \left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\beta}}^{J}\right\}=2 \delta^{I J} P_{\alpha \dot{\beta}}+2 \delta^{I J} Z_{\alpha \dot{\beta}} \\
& \left\{Q_{\alpha}^{I}, Q_{\dot{\beta}}^{J}\right\}=2 Z_{\alpha \beta}^{I J}
\end{aligned}
$$

monopoles domain walls
$\mathcal{L}=\operatorname{Im}\left[\tau \int d^{4} \theta \operatorname{Tr}\left(Q^{i \dagger} e^{V} Q_{i}+\tilde{Q}^{i} e^{V} \tilde{Q}_{i}+\Phi^{\dagger} e^{V} \Phi\right)\right]$

$$
+\operatorname{Im}\left[\tau \int d^{2} \theta\left(\operatorname{Tr} W^{\alpha 2}+m_{j}^{i} \tilde{Q}_{i} Q^{j}+Q_{i} \Phi \tilde{Q}^{i}\right)\right]
$$

bosonic part
FI term
$\left.\left.{ }_{\mu} Q\right|^{2}+\frac{g^{2}}{4}\left(Q \bar{Q}-\Delta_{\xi}\right)^{2}+|\Phi Q+Q M|^{2}\right\}$
BPS conditions

$$
\begin{aligned}
B_{3}-g^{2}\left(Q \bar{Q}-\xi^{2}\right) & =0 \\
\nabla_{3} Q & =0
\end{aligned}
$$

String tension

$$
T=\xi \int d^{2} x \operatorname{Tr} F_{12}=2 \pi \xi n
$$

$U\left(N_{c}\right) \mathcal{N}=2 d=4 \quad$ SQCD w/ N_{f} quarks

$$
\begin{aligned}
\left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\beta}}^{J}\right\} & =2 \delta^{I J} P_{\alpha \dot{\beta}}+2 \delta^{I J} Z_{\alpha \dot{\beta}} \\
\left\{Q_{\alpha}^{I}, Q_{\beta}^{J}\right\} & =2 Z_{\alpha \beta}^{I J} \text { monopoles domain walls }
\end{aligned}
$$

$\mathcal{L}=\operatorname{Im}\left[\tau \int d^{\dagger} \theta \operatorname{Tr}\left(Q^{i \dagger} e^{V} Q_{i}+\tilde{Q}^{i \dagger} e^{V} \tilde{Q}_{i}+\Phi^{\dagger} e^{V} \Phi\right)\right]$

$$
+\operatorname{Im}\left[\tau \int d^{2} \theta\left(\mathrm{Tr} W^{\alpha 2}+m_{j}^{i} \tilde{Q}_{i} Q^{j}+Q_{i} \Phi \tilde{Q}^{i}\right)\right]
$$

bosonic part
Fl term

$\left.\left.Q\right|^{2}+\frac{g^{2}}{4}(Q \bar{Q}-\xi)^{2}+|\Phi Q+Q M|^{2}\right\}$
BPS conditions

$$
\begin{aligned}
B_{3}-g^{2}\left(Q \bar{Q}-\xi^{2}\right) & =0 \\
\nabla_{3} Q & =0
\end{aligned}
$$

String tension

$$
T=\xi \int d^{2} x \operatorname{Tr} F_{12}=2 \pi \xi n
$$

Monopoles on Higgs Phase $\underset{\substack{\text { Shlimanh Ynosd } \\ \text { Toord }}}{ }$

Higgs branch condition $\quad \phi=\operatorname{diag}\left(m_{i}\right) \quad, \quad q_{i}^{a}=v \delta^{a}{ }_{i} \quad, \quad \tilde{q}_{i}^{a}=0$
Pattern of symmetry breaking depends on the relationship between the differences of masses and FI parameter $\xi=e^{2} v^{2}$

$$
\begin{aligned}
& e v \gg \Delta m \\
& U(N)_{G} \times S U(N)_{F} \xrightarrow{v} S U(N)_{\text {diag }} \xrightarrow[\mathrm{L}_{\text {mon }}]{\longrightarrow} U(1)_{\text {diag }}^{N-1}
\end{aligned}
$$

$$
e v \ll \Delta m
$$

$$
U(N)_{G} \times S U(N)_{F} \xrightarrow{m} U(1)_{G}^{N} \times U(1)_{F}^{N-1} \xrightarrow{v} U(1)_{\text {diag }}^{N-1}
$$

$(2,2)$ 2d GLSM

Consider $\mathrm{U}(\mathrm{I})$ gauge theory

$$
\mathcal{L}_{\text {vortex }}=\frac{1}{2 g^{2}}\left(F_{01}^{2}+|\partial \sigma|^{2}\right)+\sum_{i=1}^{N_{c}}\left(\left|\mathcal{D} \psi_{i}\right|^{2}+\left|\sigma-m_{i}\right|^{2}\left|\psi_{i}\right|^{2}\right)+\frac{g^{2}}{2}\left(\sum_{i=1}^{N_{c}}\left|\psi_{i}\right|^{2}-r\right)^{2}
$$

$\operatorname{Vaccuum} i: \quad \sigma=m_{i} \quad, \quad\left|\psi_{j}\right|^{2}=r \delta_{i j}$
for vortex embedded into i's $U(I)$ subgroup
Fl term runs

$$
r(\mu)=r_{0}-\frac{N_{c}}{2 \pi} \log \left(\frac{M_{U V}}{\mu}\right) \rightleftharpoons \Lambda=\mu \exp \left(-\frac{2 \pi r(\mu)}{N_{c}}\right)
$$

Effective twisted superpotential
$\mathcal{W}(\Sigma)=\frac{i}{2} \tau \Sigma-\frac{1}{4 \pi} \sum_{i=1}^{N_{c}}\left(\Sigma-m_{i}\right) \log \left(\frac{2}{\mu}\left(\Sigma-m_{i}\right)\right) \Longrightarrow \exp \frac{\partial \mathcal{W}}{\partial \sigma}=1$
Central charge $\quad Z=-i \sum_{i=1}^{N_{c}}\left(m_{i} S_{i}+m_{D i} T_{i}\right)$

$$
m_{D i}=-2 i \mathcal{W}\left(e_{i}\right)=\frac{1}{2 \pi i} N_{c} e_{i}+\frac{1}{2 \pi i} \sum_{j=1}^{N_{c}} m_{j} \log \left(\frac{e_{i}-m_{j}}{\Lambda}\right)
$$

‘ANO’ String

$U(N)$ gauge theory with fundamental matter $q \rightarrow U q V \quad U \in U(N)_{G}, \quad V \in S U(N)_{F}$

$$
\begin{aligned}
S=\int d^{4} x \operatorname{Tr} & \left(\frac{1}{2 e^{2}} F^{\mu \nu} F_{\mu \nu}+\frac{1}{e^{2}}\left(\mathcal{D}_{\mu} \phi\right)^{2}\right)+\sum_{i=1}^{N_{f}}\left|\mathcal{D}_{\mu} q_{i}\right|^{2} \\
& -\sum_{i=1}^{N_{f}} q_{i}^{\dagger} \phi^{2} q_{i}-\frac{e^{2}}{4} \operatorname{Tr}\left(\sum_{i=1}^{N_{f}} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)^{2}
\end{aligned}
$$

$$
N_{f}=N_{c}
$$

Vacuum
$\phi=0 \quad, \quad q_{i}^{a}=v \delta_{i}^{a}$
breaks symmetry
(color-flavor locking)

$$
U(N)_{G} \times S U(N)_{F} \rightarrow S U(N)_{\text {diag }}
$$

Induces nontrivial topology on moduli space

To find a string need $\quad q_{N} \sim q \mathrm{e}^{i k \theta}$ winding at infinity

$$
\Pi_{1}\left(U(N) \times S U(N) / S U(N)_{\text {diag }}\right) \cong \mathbf{Z}
$$

q_{N}	$\sim q \mathrm{e}^{i k \theta}$
A_{θ}	$\sim \frac{k}{\rho}$

$$
2 \pi k=\operatorname{Tr} \oint_{\mathbf{S}_{\infty}^{1}} i \partial_{\theta} q q^{-1}=\operatorname{Tr} \oint_{\mathbf{S}_{\infty}^{1}} A_{\theta}=\operatorname{Tr} \int d x^{1} d x^{2} B_{3}
$$

BPS equations for vortex

$$
\begin{aligned}
T_{\text {vortex }}= & \int d x^{1} d x^{2} \operatorname{Tr}\left(\frac{1}{e^{2}} B_{3}^{2}+\frac{e^{2}}{4}\left(\sum_{i=1}^{N} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)^{2}\right)+\sum_{i=1}^{N}\left|\mathcal{D}_{1} q_{i}\right|^{2}+\left|\mathcal{D}_{2} q_{i}\right|^{2} \\
= & \int d x^{1} d x^{2} \frac{1}{e^{2}} \operatorname{Tr}\left(B_{3} \mp \frac{e^{2}}{2}\left(\sum_{i=1}^{N} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)\right)^{2}+\sum_{i=1}^{N}\left|\mathcal{D}_{1} q_{i} \mp i \mathcal{D}_{2} q_{i}\right|^{2} \\
& \mp v^{2} \int d x^{1} d x^{2} \operatorname{Tr} B_{3} \geq \mp v^{2} \int d^{2} x \operatorname{Tr} B_{3}=2 \pi v^{2}|k|
\end{aligned}
$$

gives $\quad B_{3}=\frac{e^{2}}{2}\left(\sum_{i} q_{i} q_{i}^{\dagger}-v^{2} 1_{N}\right)$

Vortices

Simple vortex $w / N=I, k=l$ (ANO) has two collective coordinates-translations in x, y directions
$\mathrm{U}(\mathrm{N})$ vortex has more moduli

$$
A_{z}=\left(\begin{array}{cccc}
A_{z}^{\star} & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right) \quad, \quad q=\left(\begin{array}{llll}
q^{\star} & & & \\
& v & & \\
& & \ddots & \\
& & & v
\end{array}\right)
$$

Moduli space

$$
(k=1)
$$

$$
S U(N)_{\operatorname{diag}} / S[U(N-1) \times U(1)] \cong \mathbb{C P}^{N-1}
$$

For higher k

$$
\operatorname{dim}\left(\mathcal{V}_{k, N}\right)=2 k N
$$

$$
\mathcal{V}_{1, N} \cong \mathbf{C} \times \mathbb{C P}^{N-1}
$$

Non-Abelian String

$$
\begin{aligned}
& \varphi=U\left(\begin{array}{cccc}
\phi_{2}(r) & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \phi_{2}(r) & 0 \\
0 & 0 & \ldots & \phi_{1}(r)
\end{array}\right) U^{-1}, \\
& A_{i}^{\mathrm{SU}(N)}=\frac{1}{N} U\left(\begin{array}{cccc}
1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & -(N-1)
\end{array}\right) U^{-1}\left(\partial_{i} \alpha\right) f_{N A}(r) \\
& A_{i}^{\mathrm{U}(1)}=-\frac{1}{N}\left(\partial_{i} \alpha\right) f(r), \quad A_{0}^{\mathrm{U}(1)}=A_{0}^{\mathrm{SU}(N)}=0, \\
& \text { Matrix U parameterizes } \\
& \text { orientational modes } \\
& \text { Gauge group is broken to } \mathbb{Z}_{N} \\
& \text { Take Abelian string solution } \\
& \text { Make global rotation } \\
& \frac{S U(N)}{S U(N-1) \times U(1)}=\mathbb{C P}^{N-1}
\end{aligned}
$$

All bulk degrees of freedom massive $\quad M^{2}=e^{2} v^{2}$
Theory is fully Higgsed

Omega background

We will be interested in Nekrasov-Shatashvili limit

$$
\Omega^{m}=\left(-i \epsilon x^{2}, i \epsilon x^{1}, 0,0\right)
$$

$$
\epsilon_{2} \rightarrow 0
$$

4d/2d in Omega background
 NS5

$\mathrm{N}=2$ SQCD in Omega background in NS limit with $\mathrm{Nf}=2 \mathrm{Nc}$

$$
\vec{a}=\vec{m}_{F}-\vec{n} \epsilon \quad \vec{n}=\left(n_{1}, \ldots, n_{L}\right) \in \mathbb{Z}^{L}
$$

$\mathcal{W}^{(I)} \stackrel{\text { on-shell }}{ } \equiv \mathcal{W}^{(I I)}$

$(2,2)$ GLSM w/ gauge group U(K) massive adjoint and twisted masses

$$
\begin{array}{cc}
\vec{M}_{F}=\vec{m}_{F}-\frac{3}{2} \vec{\epsilon}, & \vec{M}_{A F}=\vec{m}_{A F}+\frac{1}{2} \vec{\epsilon} . \\
M_{a d j}=\epsilon & K=\sum_{i=1}^{N} n_{i}-N
\end{array}
$$

(a)

4d/2d in Omega background

$\mathrm{N}=2$ SQCD in Omega background in NS limit with $\mathrm{Nf}=2 \mathrm{Nc}$
$\vec{a}=\vec{m}_{F}-\vec{n} \epsilon$
$\vec{n}=\left(n_{1}, \ldots, n_{L}\right) \in \mathbb{Z}^{L}$
$(2,2)$ GLSM w/ gauge group $U(K)$ massive adjoint and twisted masses

$$
\begin{array}{cc}
\vec{M}_{F}=\vec{m}_{F}-\frac{3}{2} \vec{\epsilon}, & \vec{M}_{A F}=\vec{m}_{A F}+\frac{1}{2} \vec{\epsilon} . \\
M_{a d j}=\epsilon & K=\sum_{i=1}^{N} n_{i}-N
\end{array}
$$

4d/2d in Omega background

N=2 SQCD in Omega background in NS limit with $\mathrm{Nf}=2 \mathrm{Nc}$

$$
\vec{a}=\vec{m}_{F}-\vec{n} \epsilon \quad \vec{n}=\left(n_{1}, \ldots, n_{L}\right) \in \mathbb{Z}^{L}
$$

$(2,2)$ GLSM w/ gauge group $U(K)$ massive adjoint and twisted masses

$$
\begin{array}{cc}
\vec{M}_{F}=\vec{m}_{F}-\frac{3}{2} \vec{\epsilon}, & \vec{M}_{A F}=\vec{m}_{A F}+\frac{1}{2} \vec{\epsilon} . \\
M_{a d j}=\epsilon & K=\sum_{i=1}^{N} n_{i}-N
\end{array}
$$

Vorticesin On? in progress

Symmetry breaking pattern
$S U(2)_{c} \times S U(2)_{R} \times S U(2)_{\mathcal{R}} \rightarrow U(1)_{c} \times S U(2)_{R+\mathcal{R}}$
SUSY transform pure SYM

$$
\begin{aligned}
\delta \Lambda_{\alpha}^{I}= & \zeta_{\beta}^{I}\left(\left(\sigma^{m n}\right)_{\alpha}^{\beta} F_{m n}+i[\phi, \bar{\phi}] \delta_{\alpha}^{\beta}+\nabla_{m}\left(\bar{\Omega}^{m} \phi-\Omega^{m} \bar{\phi}\right) \delta_{\alpha}^{\beta}\right) \\
& +\bar{\zeta}_{\dot{\beta}}^{I}\left(\sigma^{m}\right)_{\alpha}^{\dot{\beta}}\left(\nabla_{m} \phi-F_{m n} \Omega^{n}\right)
\end{aligned}
$$

String central charge $\zeta_{3}=\frac{1}{2} \partial_{m}\left(\left(\phi^{a} \bar{\Omega}^{m}-\bar{\phi}^{a} \Omega^{m}\right) B_{3}^{a}\right) \sigma_{\alpha \dot{\alpha}}^{3} \delta^{I J}=\frac{i}{2} B_{3}^{a} \partial_{\varphi}\left(\phi^{a} \bar{\epsilon}-\bar{\phi}^{a} \epsilon\right) \sigma_{\alpha \dot{\alpha}}^{3} \delta^{I J}$ current
yields for a string of tension \sim epsilon

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2}\left|B_{z}^{a}+\phi \tau^{a} \bar{\phi}-i \nabla_{m}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right|^{2}+\frac{1}{2}\left|\mathcal{D}_{1} \phi^{a}+i \mathcal{D}_{2} \phi^{a}-\left(\Omega_{2}-i \Omega_{1}\right) B_{z}^{a}\right|^{2} \\
& +\partial_{m}\left(B_{z}^{a}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right) \geq \partial_{m}\left(B_{z}^{a}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right)
\end{aligned}
$$

Symmetry breaking pattern
$S U(2)_{c} \times S U(2)_{R} \times S U(2)_{\mathcal{R}} \rightarrow U(1)_{c} \times S U(2)_{R+\mathcal{R}}$
SUSY transform pure SYM

$$
\begin{aligned}
\delta \Lambda_{\alpha}^{I}= & \zeta_{\beta}^{I}\left(\left(\sigma^{m n}\right)_{\alpha}^{\beta} F_{m n}+i[\phi, \bar{\phi}] \delta_{\alpha}^{\beta}+\nabla_{m}\left(\bar{\Omega}^{m} \phi-\Omega^{m} \bar{\phi}\right) \delta_{\alpha}^{\beta}\right) \\
& +\bar{\zeta}_{\dot{\beta}}^{I}\left(\sigma^{m}\right)_{\alpha}^{\dot{\beta}}\left(\nabla_{m} \phi-F_{m n} \Omega^{n}\right)
\end{aligned}
$$

String central charge $\zeta_{3}=\frac{1}{2} \partial_{m}\left(\left(\phi^{a} \bar{\Omega}^{m}-\bar{\phi}^{a} \Omega^{m}\right) B_{3}^{a}\right) \sigma_{\alpha \dot{\alpha}}^{3} \delta^{I J}=\frac{i}{2} B_{3}^{a} \partial_{\varphi}\left(\phi^{a} \epsilon-\bar{\phi}^{a} \epsilon\right) \sigma_{\alpha \dot{\alpha}}^{3} \delta^{I J}$ current
yields for a string of tension ~ epsilon

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2}\left|B_{z}^{a}+\phi \tau^{a} \bar{\phi}-i \nabla_{m}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right|^{2}+\frac{1}{2}\left|\mathcal{D}_{1} \phi^{a}+i \mathcal{D}_{2} \phi^{a}-\left(\Omega_{2}-i \Omega_{1}\right) B_{z}^{a}\right|^{2} \\
& +\partial_{m}\left(B_{z}^{a}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right) \geq \partial_{m}\left(B_{z}^{a}\left(\Omega^{m} \bar{\phi}^{a}-\bar{\Omega}^{m} \phi^{a}\right)\right)
\end{aligned}
$$

searching for the field theoretical explanation of the new duality

Conclusions and open questions

- Nonabelian vortices to study BPS spectrum of SQCD
- Generalization of the $4 \mathrm{~d} / 2 \mathrm{~d}$ duality to theories in Omega background
- Connections to integrable systems in 2d...
- Relationship w/ another 4d/2d duality [Vafa et al]
- Holography for Non-Abelian vortices

