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Figure 6.3.3 is a pictorial representation of this data. Note that nonsingularity at

Figure 6.3.3. A quasimap relative a point p P C is a quasimap
from a semistable curve C 1 whose stabilization collapses a chain
of rational curves to p.

p and the nodes implies f 1 takes the generic point of each component of C 1 to X.
Two quasimaps are isomorphic, if they fit into a diagram of the form
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where φ is an isomorphism which preserves the marked point. Since

AutpC 1,π,pq “
`
Cˆ˘# of new components

a quasimap has a finite group of automorphism if and only if each component of
C 1 is either mapped nonconstantly to X or has at least one singular point.

6.3.4. A quasimap to X may be composed pointwise with the projection to the
affine quotient

X0 “ µ´1p0q{G “ Spec pG-invariantsq ,

which has to be constant since X0 is affine. This gives a map QMpXq Ñ X0, and
similarly for relative quasimaps.

By a general result of [20], the moduli space of both ordinary and relative
quasimaps is proper over X0. Our goal in this section is to get a feeling for how
this works and, in particular, to explain the logic behind the definition of a relative
quasimap.

6.3.5. The key issue here is that of completeness, which means that we should
be able to fill in central fibers for maps

g : Bˆ Ñ QMpXqrelative p ,

where Bˆ “ Bzt0u and B is a smooth affine curve with a point 0, under the
assumption that the corresponding map to X0 extends to B.
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We are interested in the case of the following quiver:

vn�1 . . . v2 v1

w1

We denote by aj the coordinates of the torus acting on w1 and by si,k the coordinates
of the torus acting on vi. In this case we have (Let’s relabel w1 to wn�1and put it on
the left vertex ):
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X
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(5)

To get Bethe equations we need to use the following formula:

ba
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@

@si,k
TX

◆
= zi,

where ba (
P

nixi) =
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x
1/2
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. We get the following equations
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s1,k � s1,j~
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, k = 1, . . . ,v1 .(6)

These are Bethe ansatz equations for the periodic anisotropic gl(n) XXZ spin chain on
wn�1 sites with twist parameters z1, . . . , zn�1, impurities (shifts of spectral parameters)
a1, . . . , awn�1 , and quantum parameter ~.

3. XXZ/tRS Duality

In this section we discuss the duality between XXZ spin chain and trigonometric Ruijsenaars-
Schneider model which was first derived in physics literature [GK13,BKK15]. It was there
referred to as quantum/classical duality. Here we shall reviews the arguments as well as
prove main statements.
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integrals of motion of the trigonometric Ruijsenaars-Schneider (tRS) model was formu-
lated. This lead us to a clear understanding of quantum K-theory of the quiver varieties
in question in terms of the tRS system [KPSZ1705].

1.1. Goals of the Paper. A collection of vertices and oriented edges connecting them
forms a quiver. A Nakajima quiver variety can be thought of as a cotangent bundle to spaces
of representations of such quivers modulo the automorphisms of vertices. Currently in the
literature two types of Nakajima quiver varieties attract a significant amount of interest
– ADE-type quivers and their a�ne cousins, which are ubiquitous to many branches of
mathematics (we shall focus solely on the A-type quivers), and Atiyah-Drinfeld-Hitchin-
Manin (ADHM) quivers which arise in the study of moduli spaces of sheaves on surfaces
Fig. 1. These two types of quiver varieties are typically discussed independently and the
goal of the current paper is to build a bridge between geometric properties of these spaces.

v1 v2 . . . vn�1

wn�1
W

V

Figure 1. Left: An�1 quiver variety with framing on the last node (cotan-
gent bundle to a flag variety). Right: The ADHM quiver.

Indeed, at first, these two quiver varieties look completely di↵erent – the former is An-
type quiver with n vertices, while the latter has only one framed vertex and a loop. Yet
we claim that there is a nontrivial correspondence between equivariant K-theories of these
varieties. In particular, we shall demonstrate (see Theorems 3.3 and 4.6) the equivalence
between the following spaces

• T-equivariant K-theory of the moduli space of genus zero quasimaps to An-type
quiver Xn shown on the left in Fig. 1.

KT(QM(P1
, Xn)).

We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal
torus of GL(n,C)⇥C⇥

q ⇥C⇥
~ , where GL(wi,C)⇥C⇥

~ acts as automorphisms of Xn

and C⇥
~ scales the cotangent directions with weight ~, while C⇥

q acts multiplicatively
on the base curve.

• C⇥
q ⇥ C⇥

~ -equivariant K-theory of the ADHM moduli space

kM

l=0

Kq,~(MADHM) .
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where φ is an isomorphism which preserves the marked point. Since

AutpC 1,π,pq “
`
Cˆ˘# of new components

a quasimap has a finite group of automorphism if and only if each component of
C 1 is either mapped nonconstantly to X or has at least one singular point.

6.3.4. A quasimap to X may be composed pointwise with the projection to the
affine quotient

X0 “ µ´1p0q{G “ Spec pG-invariantsq ,

which has to be constant since X0 is affine. This gives a map QMpXq Ñ X0, and
similarly for relative quasimaps.

By a general result of [20], the moduli space of both ordinary and relative
quasimaps is proper over X0. Our goal in this section is to get a feeling for how
this works and, in particular, to explain the logic behind the definition of a relative
quasimap.

6.3.5. The key issue here is that of completeness, which means that we should
be able to fill in central fibers for maps

g : Bˆ Ñ QMpXqrelative p ,

where Bˆ “ Bzt0u and B is a smooth affine curve with a point 0, under the
assumption that the corresponding map to X0 extends to B.
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These are Bethe ansatz equations for the periodic anisotropic gl(n) XXZ spin chain on
wn�1 sites with twist parameters z1, . . . , zn�1, impurities (shifts of spectral parameters)
a1, . . . , awn�1 , and quantum parameter ~.

3. XXZ/tRS Duality

In this section we discuss the duality between XXZ spin chain and trigonometric Ruijsenaars-
Schneider model which was first derived in physics literature [GK13,BKK15]. It was there
referred to as quantum/classical duality. Here we shall reviews the arguments as well as
prove main statements.
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Figure 2: The origami wolrdvolume X =
S
A

XA
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1404446. I am grateful to A. Okounkov, V. Pestun and S. Shatashvili for discus-
sions. I would also like to thank Alex DiRe, Saebyeok Jeong, Xinyu Zhang, Naveen
Prabhakar and Olexander Tsymbalyuk for their feedback and for painfully checking
some of the predictions of the compactness theorem proven in this paper.

The constructions of this paper were reported in 2014-2016 in a series of lectures at
the Simons Center for Geometry and Physics http://scgp.stonybrook.edu/video_
portal/video.php?id=2202, at the Institute for Advanced Studies at Hebrew Univer-
sity https://www.youtube.com/watch?v=vGNfXQ3-Rjg, at the Center for Mathemat-
ical Sciences and Applications at Harvard University http://cmsa.fas.harvard.edu/
nikita-nekrasov-crossed-instantons-qq-character/ and at the String-Math-2015
conference in Sanya, China.

2. Gauge and string theory motivations

2.1. Generalized gauge theory. We study the moduli spaces MX,G of what might be
called supersymmetric gauge fields in the generalized gauge theories, whose space-time
X contains several, possibly intersecting, components: see Fig. 2. We call such X the
origami worldvolume. The gauge groups G|XA

= GA on di�erent components may be
di�erent. The intersections XA [XB lead to the bi-fundamental matter fields charged
under GA ⇥GB. The arrangement is motivated by the string theory considerations,
where the open string Hilbert space, in the presence of several D-branes, splits into
sectors labelled by the boundary conditions. It is well-known [34, 10] that some features
of the open string theory are captured by the noncommutative gauge theory. In fact, the
theories we shall study descend from the maximally supersymmetric Yang-Mills theory,
which is twisted and deformed. One can view the fields of this theory as describing the
deformations of the four dimensional stratified manifolds X = (XA,nA), i.e. singular, in
general, spaces, which can be represented as unions X = [AXA of manifolds with certain
conditions on closures and intersections, endowed with multiplicities, i.e. the strata
XA are allowed to have di�erent multiplicity nA. The local gauge group GA is simply
U(nA). The particular twist of the super-Yang-Mills theory we study corresponds to



Motivation
String theory have been suggesting for a long time that there 
is a strong connection between geometry and integrability

Study of Gromov-Witten invariants was also largely influenced 
by progress in string theory. For a symplectic manifold X GW 
invariants appear in the expansion of quantum multiplication in 
quantum cohomology ring of X.

A particular attention is given to genus zero GW invariants. 

In this talk we shall study equivariant quantum K-theory of 
large family of symplectic varieties and its connection to 
integrable systems 



Physics Motivation
To see why integrability is relevant one considers supersymmetric 
sigma model from the base curve (P1 in our case) into X

Witten demonstrated that relevant class of supersymmetric 
sigma models can be rewritten as supersymmetric gauge 
theories ((2,2) GLSMs) in two dimensions whose field content 
is related to geometry of X. Sigma models thus describe 
infrared dynamics of GLSMs.

Nekrasov and Shatashvili showed how to obtain integrable 
systems from such GLSMs. It was conjectured that SUSY 
vacua of 2d theories compute quantum cohomology ring of 
X, while 3d theories on              describe quantum K-theory.R2 ⇥ S1
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Quantum groups
g Lie algebra loop algebra (Laurent poly valued in g)

V1(a1)⌦ · · ·⌦ Vn(an)

Let

Evaluation modules form a tensor category of ĝ

ĝ = g(t)

Vi are representations of
ai are special values of spectral parameter t

g

Quantum group is a noncommutative deformation U~(ĝ)

with a nontrivial intertwiner — R-matrix

RV1,V2(a1/a2) : V1(a1)⌦ V2(a2) ! V2(a2)⌦ V1(a1)

satisfying Yang-Baxter equation



Quantum Integrability
The intertwiner represents an interaction vertex in integrable models. The 
quantum group is generated by matrix elements of R

[Faddeev Reshetikhin Tachtajan]

RV,W

V (a)

W (u)

physical spaceauxiliary space

Z

twist Z 2 eh Integrability comes from transfer matrix

TW (u) = TrW (u) ((Z ⌦ 1)TV,W )

[TW (u), TW (u0)] = 0

Transfer matrices are usually polynomials 

in u whose coefficients are 

the integrals of motion



XXZ Spin Chain
g = sl2 V = C2(a1)⌦ · · ·⌦ C2(an)spin-1/2 chain on n sites

Spectrum can be found using Bethe Ansatz techniques. However, if we 
want to understand the problem for more general algebras we need to 
think of the Knizhnik-Zamolodchikov difference equation (qKZ)

 (a1, . . . , an) 2 V1(a1)⌦ · · ·⌦ Vn(an)

where

Z

RV1,V2

V1

V1

V2
Vn

VnV2

 (qa1, . . . an) = (Z ⌦ 1⌦ · · ·⌦ 1)RV1,Vn · · ·RV1,V2 (a1, . . . an)

[I. Frenkel Reshetikhin]

In the limit q ! 1
qKZ becomes an eigenvalue problem

q 2 C⇥



Solutions of qKZ
Schematic solution

 ↵ =

Z
dx

x
f↵(x, a)K(x, z, a, q)

indexed by physical space universal kernel
representation

q ! 1
logK(x, z, a, q) ⇠ S(x, z, a)

log q
@S

@xi
= 0 Bethe equations for Bethe roots x

ai
@S

@ai
= ⇤i Eigenvalues of qKZ operators

The map ↵ 7! f↵(x
⇤) Provides diagonalization

[Aganagic Okounkov]

So we need to find `off  shell’ Bethe eigenfunctions f↵(x, a)



Nekrasov-Shatashvili correspondence 
The answer will come from enumerative AG inspired by physics

Hilbert space of states

of quantum integrable system

Equivariant K-theory of 

Nakajima quiver varitey


(line operators in 3d SUSY

gauge theory)

gauge group G =
rkgY

i=1

U(vi) (v1,v2,…) encode weight of rep ↵

Bethe roots x live in maximal torus of G, by integrating over x we project 
on gauge invariant functions of Bethe roots

Flavor group GF =
Y

i

U(wi) whose maximal torus give parameters a

Bifundamental matter Hom(Vi, Vj)



Nekrasov-Shatashvili correspondence 
The quiver variety   X = {Matter fields}/gauge group

We will be computing integrals in K-theory of the space of 
quasimaps                        weighted by degree zdegf

(cf Gromov-Witten invariants, top strings, etc.)

X is a module of some quantum group in Nakajima correspondence 
construction

In particular we shall study quantum K-theory ring with quantum 
parameters z whose structure constant arise from 3 point correlators

subject to equivariant action on the base curve C⇥
q

f Xq

f : C ��� > X



Nakajima Quiver Varieties
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

Rep(v,w) — linear space of quiver reps

µ : T ⇤Rep(v,w) ! Lie(G)⇤

G =
Y

GL(Vi)

moment map

X = µ�1(0)//GNakajima quiver variety

Aut(X) =
Y

GL(Qij)⇥
Y

GL(Wi)⇥ C⇥
~Automorphism group

Maximal torus T = T(Aut(X))

Tensorial polynomials of tautological bundles Vi, Wi and their duals 
generate classical T-equivariant K-theory ring of X
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where the symbol µ−1(0)s denotes the intersection of the set µ−1(0) ⊂ T ∗R with the
stable locus corresponding to injective elements in R:

stable points in T ∗R = {(A,B) : rank(A) = k}.(3)

Now we give the description of fixed points on Nk,n, tautological bundles, torus
action and equivariant K-theory once again, this time from the perspective of Nakajima
varieties. First, we note that Nk,n is naturally equipped with the following tautological
bundles:

V = µ−1(0)s × V/GL(V ), W = µ−1(0)s ×W/GL(V ).

Since GL(V ) does not act on W the bundle W is trivial, and because A is injective we
have V ⊂ W and thus V ⊂ W.

More generally, letKGL(V )(·) = Λ[s±1
1 , s±1

2 , · · · , s±1
k ] be the ring of symmetric Laurent

polynomials in k variables. Every such polynomial τ ∈ KGL(V )(·) is a character of some
virtual representation τ(V ) of GL(V ) (tensorial polynomial in V and V ∗).2 We denote
the corresponding virtual tautological bundles on Nk,n by the same symbol τ :

τ = (µ−1(0)s × τ(V ))/GL(V ).

The tautological bundles τ can be uniquely represented by the symmetric Laurent poly-
nomials in the corresponding Chern roots of V and thus there should be no confusion
in our notations.

We set a framing torus A = C×a1 × · · ·× C×an to be a n-torus acting on W by scaling
the coordinates with characters ai. Let C×! be a one-torus acting on T ∗R by scaling
the cotangent directions with character !. We adopt the notation T = A× C×! .

The action of T on T ∗R induces its action on Nk,n. The fixed set NT
k,n consists of

n!/k!/(n−k)! isolated points representing the k-planes spanned by coordinate vectors.
They are conveniently labeled by k-subsets p = {x1, · · · , xk} ⊂ {a1, · · · , an}.

Let us set the following notation for the disjoint union of Nk,n for all k:

N(n) =
n∐

k=0

Nk,n,

so that the fixed point set N(n)T consists of total 2n points.
The equivariant K-theory KT(N(n)) is a module over the ring of equivariant con-

stants: R = KT(·) = Z[a±1 , · · · , a±1
n , !±1]. The localized K-theory

KT(N(n))loc = KT(N(n))
⊗

R

A =
n⊕

k=0

KT(Nk,n)
⊗

R

A(4)

is an A-vector space (A = Q(a1, · · · , an, !)) of dimension 2n spanned by the K-theory
classes of fixed points Op.

2For example, the polynomial

τ(s1, · · · , sk) = (s1 + · · ·+ sk)
2 −

∑

1≤i1<i2<i3≤k

s−1
i1

s−1
i2

s−1
i3

corresponds to τ(V ) = V ⊗2 − Λ3V ∗.

Ex: T*Grassmannian

v1 = k, w1 = n
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where the symbol µ−1(0)s denotes the intersection of the set µ−1(0) ⊂ T ∗R with the
stable locus corresponding to injective elements in R:

stable points in T ∗R = {(A,B) : rank(A) = k}.(3)

Now we give the description of fixed points on Nk,n, tautological bundles, torus
action and equivariant K-theory once again, this time from the perspective of Nakajima
varieties. First, we note that Nk,n is naturally equipped with the following tautological
bundles:

V = µ−1(0)s × V/GL(V ), W = µ−1(0)s ×W/GL(V ).

Since GL(V ) does not act on W the bundle W is trivial, and because A is injective we
have V ⊂ W and thus V ⊂ W.

More generally, letKGL(V )(·) = Λ[s±1
1 , s±1

2 , · · · , s±1
k ] be the ring of symmetric Laurent

polynomials in k variables. Every such polynomial τ ∈ KGL(V )(·) is a character of some
virtual representation τ(V ) of GL(V ) (tensorial polynomial in V and V ∗).2 We denote
the corresponding virtual tautological bundles on Nk,n by the same symbol τ :

τ = (µ−1(0)s × τ(V ))/GL(V ).

The tautological bundles τ can be uniquely represented by the symmetric Laurent poly-
nomials in the corresponding Chern roots of V and thus there should be no confusion
in our notations.

We set a framing torus A = C×a1 × · · ·× C×an to be a n-torus acting on W by scaling
the coordinates with characters ai. Let C×! be a one-torus acting on T ∗R by scaling
the cotangent directions with character !. We adopt the notation T = A× C×! .

The action of T on T ∗R induces its action on Nk,n. The fixed set NT
k,n consists of

n!/k!/(n−k)! isolated points representing the k-planes spanned by coordinate vectors.
They are conveniently labeled by k-subsets p = {x1, · · · , xk} ⊂ {a1, · · · , an}.

Let us set the following notation for the disjoint union of Nk,n for all k:

N(n) =
n∐

k=0

Nk,n,

so that the fixed point set N(n)T consists of total 2n points.
The equivariant K-theory KT(N(n)) is a module over the ring of equivariant con-

stants: R = KT(·) = Z[a±1 , · · · , a±1
n , !±1]. The localized K-theory

KT(N(n))loc = KT(N(n))
⊗

R

A =
n⊕

k=0

KT(Nk,n)
⊗

R

A(4)

is an A-vector space (A = Q(a1, · · · , an, !)) of dimension 2n spanned by the K-theory
classes of fixed points Op.

2For example, the polynomial

τ(s1, · · · , sk) = (s1 + · · ·+ sk)
2 −

∑

1≤i1<i2<i3≤k

s−1
i1

s−1
i2

s−1
i3

corresponds to τ(V ) = V ⊗2 − Λ3V ∗.

Mention stability conditions here



Evaluation map

evp(f) = f(p) 2 [µ�1(0)/G] � X

Stable if f(p) 2 X

for all but finitely many singular points
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Figure 6.3.3 is a pictorial representation of this data. Note that nonsingularity at

Figure 6.3.3. A quasimap relative a point p P C is a quasimap
from a semistable curve C 1 whose stabilization collapses a chain
of rational curves to p.

p and the nodes implies f 1 takes the generic point of each component of C 1 to X.
Two quasimaps are isomorphic, if they fit into a diagram of the form

C 1
1

φ

!!

f1

""❄
❄

❄
❄

π1

##⑧⑧
⑧
⑧
⑧
⑧
⑧

C X

C 1
2

f2

$$
⑧

⑧
⑧

⑧
π2

%%❄❄❄❄❄❄❄❄

where φ is an isomorphism which preserves the marked point. Since

AutpC 1,π,pq “
`
Cˆ˘# of new components

a quasimap has a finite group of automorphism if and only if each component of
C 1 is either mapped nonconstantly to X or has at least one singular point.

6.3.4. A quasimap to X may be composed pointwise with the projection to the
affine quotient

X0 “ µ´1p0q{G “ Spec pG-invariantsq ,

which has to be constant since X0 is affine. This gives a map QMpXq Ñ X0, and
similarly for relative quasimaps.

By a general result of [20], the moduli space of both ordinary and relative
quasimaps is proper over X0. Our goal in this section is to get a feeling for how
this works and, in particular, to explain the logic behind the definition of a relative
quasimap.

6.3.5. The key issue here is that of completeness, which means that we should
be able to fill in central fibers for maps

g : Bˆ Ñ QMpXqrelative p ,

where Bˆ “ Bzt0u and B is a smooth affine curve with a point 0, under the
assumption that the corresponding map to X0 extends to B.

Resolve to make proper ev map 

Quasimaps
Quasimap f : C �� ! X is described by collection of vector bundles
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as automorphisms of X, where Qij stands for the number of edges between vertices i and
j, C! scales cotangent directions with weight ! and therefore symplectic form with weight
!−1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:
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as automorphisms of X, where Qij stands for the number of edges between vertices i and
j, C! scales cotangent directions with weight ! and therefore symplectic form with weight
!−1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:

on C viof ranks with section satisfying µ = 0

where
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as automorphisms of X, where Qij stands for the number of edges between vertices i and
j, C! scales cotangent directions with weight ! and therefore symplectic form with weight
!−1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

Degree (v1, . . . ,vn�1)

QMd

value of a quasimap defines a map to 
a quotient stack which contains stable 
locus as an open subset



Virtual Sheaves

Fiber of the reduced virtual tangent bundle to
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QMd
relative p

QMd
nonsing p X

evp

eevp

with a proper evaluation map eevp from QMd
relative p to X. The construction of this

resolution and the moduli space of relative quasimaps is explained in [Oko1512]. It follows
a similar construction of relative Gromov-Witten and Donaldson-Thomas moduli spaces.
The main idea of this construction is to allow the base curve to change in cases, when
the relative point becomes singular. When this happens we replace the relative point by
a chain of non-rigid projective lines, such that the endpoint and all the nodes are not
singular. Similarly, for nodal curves, we do not allow the singularity to be in the node, and
if that happens we instead paste in a chain of non-rigid projective lines.

These moduli spaces have a natural action of maximal torus T, lifting its action from X.
When there are at most two special (relative or marked) points and the original curve is
P1 we extend T by additional torus C⇥

q , which scales P1 such that the tangent space T0P1

has character denoted by q. We call the full torus by G = T⇥ C⇥
q .

2.3. Picture Notations, Virtual Structure and Gluing Operator. In the theory of
relative quasimaps it is to use picture notation, introduced by Okounkov in [Oko1512].
Here is some of it, which we will use in this manuscript:

denotes the base curve P1,

denotes a marked point (absolute point),

denotes a relative point,

denotes a nonsingular point.

denotes a node on the base curve.

The moduli spaces of quasimaps constructed above have a perfect deformation-obstruction
theory [CFKM1106]. This allows one to construct a tangent virtual bundle T

vir, a virtual
structure sheaf Ôvir and a virtual canonical bundle. We will define multiplication in the
quantum K-theory using this data. Without going into detail of the construction of this
virtual sheaf, we state the formula of the reduced virtual tangent bundle. Let ({Vi}, {Wi})
be the data defining a quasimap which is nonsingular at fixed point p. We define the fiber
of the reduced virtual tangent bundle to QMd

nonsing p at this point to be equal to:

(5) T
vir
({Vi},{Wi})QM

d
nonsing p = H

•(M � ~M ⇤)� (1 + ~)
M

i

Ext
•(Vi,Vi).

Symmetrized virtual structure sheaf

6 PETER KOROTEEV, PETR P. PUSHKAR, ANDREY V. SMIRNOV, AND ANTON M. ZEITLIN

The symmetrized virtual structure sheaf is defined by:

(6) Ôvir = Ovir ⌦ K 1/2
vir q

deg(P)/2
,

where Kvir = det�1
T
virQMd is the virtual canonical bundle and P is the polarization

bundle.
Since we will be using the symmetrized virtual structure sheaf we will need to adjust

the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = evp1,p2⇤(QM
d
relativep1,p2Ôvir) 2 K

⌦2
T (X)[[z]],(7)

so that the corresponding picture is : .

It plays an important role in the degeneration formula, see e.g. [Oko1512]. Namely, let a
smooth curve C" degenerate to a nodal curve:

C0 = C0,1 [p C0,2.

Here C0,1 and C0,2 are two di↵erent components that are glued to each other at point p.
The degeneration formula counts quasimaps from C" in terms of relative quasimaps from
C0,1 and C0,2, where the relative conditions are imposed at the gluing point p. The family
of spaces QM(C" ! X) is flat, which means that we can replace curve counts for any C"

by C0. In particular, we can replace counts of quasimaps from P1 by a degeneration of it,
for example by two copies of P1 glued at a point.

The gluing operator G 2 EndKT(X)[[z]] is the tool that allows us to replace quasimap
counts on C" by counts on C0,1 and C0,2, so that the following degeneration formula holds:

�(QM(C0 ! X), Ôvirz
d) =

⇣
G�1ev1,⇤(Ôvirz

d), ev2,⇤(Ôvirz
d)
⌘
.

The corresponding picture interpretation is as follows:

= = G�1

2.4. Quantum K-theory Ring. In this section we define multiplication and important
objects of the quantum K-theory ring of X.

As a vector space quantumK-theory ringQKT(X) is isomorphic toKT(X)⌦C[[z{i}]], i 2
I. We will often use the following notation: for a vector d = (di),

z
d =

Y

i2I
z
di
i .

1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).

QMd
nonsing p

Deformation-obstruction theory allows one to construct virtual tangent bundle 
and virtual structure sheaf [Ciocan-Fontanine, Kim, Maulik]

moment map, deformations

C* factorizations in GIT

virtual canonical 

bundle

(possible to do for quiver varieties)



Vertex Function (g=0)
Spaces of quasimaps admit an action of an extra torus      which scales the 
base       keeping two fixed points (0, infinity)

Cq

P1

Define vertex function with quantum (Novikov) parameters
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Proposition 2.6. The multiplicative identity of QKT(X) is given by 1̂(z) (i.e. the quan-

tum tautological class for insertion ⌧ = 1).

Proof. The diagrammatic proof given in [PSZ16] can be applied to any Nakajima quiver
variety. ⇤

2.5. Vertex functions. The spaces QMd
nonsing p2 and QMd

relative p2 admit an action of an

extra torus Cq which scales the original P1 keeping points p1 and p2 fixed. Set Tq = T⇥Cq

be the torus acting on these spaces.

Definition 2.7. The element

V
(⌧)(z) =

1X

d=~0

z
devp2,⇤

⇣
QMd

nonsing p2 ,
bOvir⌧(Vi|p1)

⌘
2 KTq(X)loc[[z]]

is called bare vertex with descendent ⌧ . In picture notation it will be denoted by

⌧

The space QMd
nonsing p2 is not proper (the condition of non-singularity at a point is an

open condition), but the set of Tq-fixed points is, hence the bare vertex is singular at q = 1.

Definition 2.8. The element

V̂
(⌧)(z) =

1X

d=~0

z
devp2,⇤

⇣
QMd

relative p2 ,
bOvir⌧(Vi|p1)

⌘
2 KTq(X)[[z]]

is called capped vertex with descendent ⌧ . In picture notation it will be represented by:

⌧

Note here, that the definition of the capped vertex and the definition of quantum tau-
tological classes are very similar with the main di↵erence being the spaces they live in.
By definition, the quantum tautological classes can be obtained by taking a limit of the
capped vertex: limq!1 V̂

(⌧)(z) = ⌧̂(z). The last limit exists as the coe�cients of V̂ (⌧)(z)
are Laurent polynomials in q, due to the properness of the evaluation map in the relative
case.

In fact, the following strong statement is known about capped vertex functions.

Theorem 2.9. Power series V̂
(⌧)(z) is a Taylor expansion of a rational function in quan-

tum parameters z.

Proof. There are two di↵erent proofs of this theorem: the first is based on large fram-
ing vanishing [Smi16], the second originates from integral representations of solutions of
quantum di↵erence equations [AO]. ⇤

As a corollary, quantum tautological classes ⌧̂(z) are rational functions of z.

[PK Pushkar Smirnov Zeitlin]

Define quantum K-theory as a ring with multiplication
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Definition 2.2. An element of the quantum K-theory

(8) ⌧̂(z) =
1X

d=
�!
0

z
devp2,⇤

⇣
QMd

relative p2 ,
bOvir⌧(Vi|p1)

⌘
2 QKT(X)

is called quantum tautological class corresponding to ⌧ . In picture notation it will be rep-

resented by

⌧

These classes evaluated at 0 are equal to the classical tautological classes onX (⌧̂(0) = ⌧).
For any element F 2 KT(X) the following element

(9)
1X

d=
�!
0

z
devp1,p3⇤

⇣
QMd

p1,p2,p3 , ev
⇤
p2(G

�1
F)bOvir

⌘
2 KT(X)⌦2[[z]]

can be made into an operator from the second copy of KT(X) to the first copy by the
bilinear form (·, ·) defined above. We define the operator of quantum multiplication by F

to be this operator shifted by G�1, i.e

(10) F~ =
1X

d=
�!
0

z
devp1,p3⇤

⇣
QMd

p1,p2,p3 , ev
⇤
p2(G

�1
F)bOvir

⌘
G�1

Definition 2.3. The quantum equivariant K-theory ring of X is vector space QKT(X) =
KT(X)[[z]] endowed with multiplication (10).

This product enjoys properties similar to the product in quantum cohomology. The
proof of the following statement is analogous to the proof of the analogous fact for the
cotangent bundle to Grassmannian [PSZ16].

Theorem 2.4. The quantum K-theory ring QKT(X) is a commutative, associative and

unital algebra.

The operators of quantum multiplication by the quantum tautological bundles obey
the most natural properties. First, assuming Kirwan’s K-theoretic surjectivity conjecture,
we have the following result.

Proposition 2.5. Quantum tautological classes generate the quantum equivariant K-

theory over the quantum equivariant K-theory of a point QKT(·) = C[a±1
m ][[zi]] where am

for m = 1 · · · dimT are the equivariant parameters of T.

Proof. Since, assuming Kirwan’s K-theoretic surjectivity conjecture, classical K-theory is
generated by tautological classes, the quantum K-theory will be generated by quantum
tautological classes according to Nakayama’s Lemma. ⇤

Second, in contrast with quantum cohomology, the multiplicative identity of the quantum
K-theory ring does not always coincide with the multiplicative identity of classicalK-theory
(i.e. the structure sheaf OX):
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and call the corresponding ring quantum K-theory of Nk,n. The word “deformation”
here means that for two K-theory classes A,B we have

A!B = A⊗B +
∞∑

d=1

A!dBzd,

so that if the deformation parameter is equal to zero z → 0 (this special case is usually
referred to as classical limit), the quantum product ! coincides with the classical
tensor product ⊗. The definition of the quantum product follows closely the definition
of the product in quantum cohomology: the classes A !d B ∈ KT(N(n)) (quantum
corrections) are given by certain degree d curve counting in Nk,n.

Next, for a tautological bundle τ ∈ KT(Nk,n) as above, we define a deformation
which will be referred to as quantum tautological bundle:

τ̂ (z) = τ +
∞∑

d>0

τdz
d ∈ KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multipli-
cation by quantum tautological bundles. The following Theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 1. The eigenvalues of operators of quantum multiplication by τ̂ (z) are given
by the values of the corresponding Laurent polynomials τ(s1, · · · , sk) evaluated at the
solutions of the following equations:

n∏
j=1

si − aj
!aj − si

= z !−n/2
k∏

j=1
j ̸=i

si!− sj
si − sj!

, i = 1 · · ·k.(4)

When z = 0 we return to the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (4) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[31], [7] for a more detailed outline.

Let us consider a system of n interacting magnetic dipoles (usually refered to as
spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⊗ C2 ⊗ · · ·⊗ C2.(5)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = −
n∑

i=1

σi
x ⊗ σi+1

x + σi
y ⊗ σi+1

y +∆ σi
z ⊗ σi+1

z ,(6)

where ∆ = !1/2 + !−1/2 is the parameter of anisotropy and σi
m are the standard Pauli

matrices acting in the i-th factor of (5). The periodic boundary conditions are imposed

[Okounkov]
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The symmetrized virtual structure sheaf is defined by:

(6) Ôvir = Ovir ⌦ K 1/2
vir q

deg(P)/2
,

where Kvir = det�1
T
virQMd is the virtual canonical bundle and P is the polarization

bundle.
Since we will be using the symmetrized virtual structure sheaf we will need to adjust

the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = evp1,p2⇤(QM
d
relativep1,p2Ôvir) 2 K

⌦2
T (X)[[z]],(7)

so that the corresponding picture is : .

It plays an important role in the degeneration formula, see e.g. [Oko1512]. Namely, let a
smooth curve C" degenerate to a nodal curve:

C0 = C0,1 [p C0,2.

Here C0,1 and C0,2 are two di↵erent components that are glued to each other at point p.
The degeneration formula counts quasimaps from C" in terms of relative quasimaps from
C0,1 and C0,2, where the relative conditions are imposed at the gluing point p. The family
of spaces QM(C" ! X) is flat, which means that we can replace curve counts for any C"

by C0. In particular, we can replace counts of quasimaps from P1 by a degeneration of it,
for example by two copies of P1 glued at a point.

The gluing operator G 2 EndKT(X)[[z]] is the tool that allows us to replace quasimap
counts on C" by counts on C0,1 and C0,2, so that the following degeneration formula holds:

�(QM(C0 ! X), Ôvirz
d) =

⇣
G�1ev1,⇤(Ôvirz

d), ev2,⇤(Ôvirz
d)
⌘
.

The corresponding picture interpretation is as follows:

= = G�1

2.4. Quantum K-theory Ring. In this section we define multiplication and important
objects of the quantum K-theory ring of X.

As a vector space quantumK-theory ringQKT(X) is isomorphic toKT(X)⌦C[[z{i}]], i 2
I. We will often use the following notation: for a vector d = (di),

z
d =

Y

i2I
z
di
i .

1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).
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gluing

Say this in words: equivariant 
pushforward, etc. 

Moduli space of quasimaps has 
perfect deformation-obstruction 
theory. 
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of [28] and its main property can be expressed by the following formula:

χ(QM(C0 → X), Ôvirz
d) =

(
G−1ev1,∗(Ôvirz

d), ev2,∗(Ôvirz
d)
)
,

where

evi : QM(C0,i → X)relative gluing point → X

are the evaluation maps. The degeneration formula and the gluing operator can be
expressed using picture notation:

= = G−1 .

2.3. Quantum K-theory ring. From now on we consider quasimaps from P1, when
not stated otherwise. The equivariant K-theory of Nk,n is a commutative associative
algebra with respect to the tensor product ⊗. The quantum equivariant K-theory
QKT(Nk,n) is a one-parametric commutative deformation of the tensor product. We
denote the deformation parameter by z and the quantum tensor product by !. This
operation is constructed as follows.

Let (·, ·) be the bilinear form on K-Theory defined above. Using this bilinear form
one can define the operator of quantum multiplication by a class F ∈ KT(Nk,n) in the
following way:

F! =
∞∑

d=0

zdevp1,p3∗
(
QMd

p1,p2,p3, ev
∗
p2(G

−1F)Ôvir

)
G−1 ∈ KT(Nk,n)

⊗2[[z]](14)

where QMd
p1,p2,p3 is a moduli space with relative boundary conditions at each point and

G is the gluing operator. This expression is understood as an operator acting from
the second copy of KT(Nk,n) to the first using the bilinear form defined above. In the
picture notation this operator can be presented as:

G−1F
G−1

Note that the moduli space of degree zero quasimaps is isomorphic to Nk,n, which
implies that

F ! G|z=0 = F ⊗ G.
We will refer to z → 0 case as a classical limit. As we explain in the next section,
to construct the quantum K-theory ring it is not enough to consider quantum multi-
plication by classes from KT(Nk,n). For example, the multiplicative identity element
with respect to ! is in fact an element of KT(Nk,n)[[z]]. This motivates the following
definition of quantum K-theory.

Definition 2. The quantum equivariant K-theory ring of Nk,n is the vector space
QKT(Nk,n) = KT(Nk,n)[[z]] endowed with the multiplication (14).

Let us list a set of basic properties of these algebra.
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Here the sum runs over the T-fixed quasimaps which take value p at the nonsingular point
p2. We use notation ŝ for the Okounkov’s roof function defined by

ŝ(x) =
1

x1/2 � x�1/2
, ŝ(x+ y) = ŝ(x)ŝ(y).

and it is applied to the virtual tangent bundle:

(21) �(d) = charT
⇣
T
vir
{(Vi}, Wn�1)

QMd
⌘
.

The condition d 2 Zn
�0 is determined by stability conditions, which characterize all

allowed degrees for quasimaps.
According to [PSZ16], in order to compute localization contributions one has to write down
the term for a single line bundle of P = �xiq

�diO(di) in �(d). It will be convenient to
adopt the following notations:

'(x) =
1Y

i=0

(1� q
i
x), {x}d =

(~/x, q)d
(q/x, q)d

(�q
1/2~�1/2)d, where (x, q)d =

'(x)

'(qdx)
.

The following statement is true (for the proof see section 3.4 of [PSZ16]).

Lemma 3.1. The contribution of equivariant line bundle xq
�d

O(d) ⇢ P to �(d) is {x}d.

To compute the vertex function we will also need to classify fixed points of QMd
nonsing p2 .

Such a point is described by the data ({Vi}, {Wn�1}), where degVi = di, degWn�1 = 0.
Each bundle Vi can be decomposed into a sum of line bundles Vi = O(di,1)� . . .�O(di,vi)
(here di = di,1 + . . . + di,vi). For a stable quasimap with such data to exist the collection
of di,j must satisfy the following conditions

• di,j � 0,
• for each i = 1, . . . , n � 2 there should exist a subset in {di+1,1, . . . di+1,vi+1} of
cardinality vi {di+1,j1 , . . . di+1,jvi

}, such that di,k � di+1,jk .

To summarize, we will denote collections satisfying such conditions di,j 2 C.
Now we are ready to sum up contributions for the entire vertex function.

Proposition 3.2. Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi = {xi,1, . . . xi,vi}) be

a chain of subsets defining a torus fixed point p 2 X
T
. Then the coe�cient of the vertex

function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1 di,j , N(d) = v0
idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1
di,j�di,k

,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

each fixed point contributes
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.
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3. Vertex Functions

Recently we proved the following statement

Proposition 3.1 ([KPSZ1705]). Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi =
{xi,1, . . . xi,vi}) be a chain of subsets defining a torus fixed point p 2 X

T
. Then the coe�-

cient of the vertex function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1
di,j , N(d) = v0

idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1

di,j�di,k
,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

H =
n�2Y

i=1

viY

j=1

vi+1Y

k=1

{xi,j/xi+1,k}di,j�di+1,k
.

Here . . .
The same formula for the vertex can an be obtained using the following intergal repre-

sentation [AFO1701,AO1704]. It is very useful for a lot of applications, in particular for
computing the eigenvalues ⌧p(z).

Proposition 3.2. The bare vertex function is given by

(23) V
(⌧)
p (z) =

1

2⇡i↵p

Z

Cp

n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint⌧(s1, · · · , sk)
n�1Y

i=1

viY

j=1

dsi,j

si,j
,

where

Eint =
n�1Y

i=1

viY

j,k=1

'

⇣
si,j
si,k

⌘

'

⇣
q
~
si,j
si,k

⌘ ,

Gint =

wn�1Y

j=1

vn�1Y

k=1

'

⇣
q
~
sn�1,k

aj

⌘

'

⇣
sn�1,k

aj

⌘ ,

Hint =
n�2Y

i=1

vi+1Y

j=1

viY

k=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

↵p =
n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint

���
si,j=xi,j

,
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At a given fixed point of extended maximal torus tangent space has

M =
�
O(d)⌦ q�d

�
�

✓
O(d)⌦ q�d

⌦
ai
aj

◆

H
•
✓
O(d)⌦ q

�d
⌦

ai

aj

◆
=

ai

aj

�
1 + q

�1 + . . . q
�d

�character similar to rest

xq�d
O(d) to the character is
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jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
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are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

Here the sum runs over the T-fixed quasimaps which take value p at the nonsingular point
p2. We use notation ŝ for the Okounkov’s roof function defined by

ŝ(x) =
1

x1/2 − x−1/2
, ŝ(x+ y) = ŝ(x)ŝ(y).

and it is applied to the virtual tangent bundle:

(21) χ(d) = charT
(
T vir
{(Vi}, Wn−1)

QMd
)
.

The condition d ∈ Zn
≥0 is determined by stability conditions, which characterize all

allowed degrees for quasimaps.
According to [PSZ16], in order to compute localization contributions one has to write down
the term for a single line bundle of P = ⊕xiq−diO(di) in χ(d). It will be convenient to
adopt the following notations:

ϕ(x) =
∞∏

i=0

(1− qix), {x}d =
(!/x, q)d
(q/x, q)d

(−q1/2!−1/2)d, where (x, q)d =
ϕ(x)

ϕ(qdx)
.

The following statement is true (for the proof see section 3.4 of [PSZ16]).

Lemma 3.1. The contribution of equivariant line bundle xq−dO(d) ⊂ P to χ(d) is {x}d.
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In order to understand the proof we shall use the integral formula for the vertex function.
Using Theorem 4.8 from [KZ1802] we can write vertex (2.10) as follows
(2.15)

V
(1)
p =

e

log ⇣n·log a1···an
log q

2⇡i

Z

Cp

n�1Y

m=1

mY

i=1

dsm,i

sm,i
E(sm,i) e

�
log ⇣m/⇣m+1·log sm,i

log q ·
m+1Y

j=1

Hm,m+1 (sm,i, sm+1,j) ,

where contour Cp surrounds poles corresponding to the fixed point p of the maximal torus
of Xn and the functions in the integrand are given by

(2.16) Hvm,vm+1(sm, sm+1) =
vmY

i=1

vm+1Y

j=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

corresponding to the contribution of Hom(Vm,Vm+1) and

(2.17) E(sn) =
vnY

j,k=1

'

⇣
sn,j

sn,k

⌘

'

⇣
t
sn,j

sn,k

⌘ ,

emerging from Hom(Vm,Vm) in the localization computation, and where

(2.18) '(x) =
1Y

i=0

(1� q
i
x) .

Proof of Theorem 2.6. By acting with the tRS operators on the vertex function in the
integral form (2.15) we get

(2.19) Tr(~⇣)V
(1)
p = V(Tr)

p ,

where on the right we have a vertex function with descendant class Tr which is defined
as follows (see [KPSZ1705]). The tRS momenta pi correspond to multiplication by class
d⇤iVi ⌦ \⇤i+1V⇤

i+1 in KT (Xn), where Vi is the i-th tautological bundle over Xn, and are
given by the following ratio of products of the corresponding Chern roots.

(2.20) pi =
si+1,1 · · · · · si+1,i+1

si,1 · · · · · si,i
, i = 1, . . . , n� 1 .

Using this fact and the definition of tRS operators (2.12) we can define new quantum

classes V(Tr)
p for r = 1, . . . , n. We can refer to them as tRS classes.

In [KPSZ1705] it was proven that the eigenvalues of the multiplication operator by a
quantum class b⌧ in quantum K-theory of Xn is given by ⌧(s), where Chern roots s of the
corresponding virtual bundle solve the XXZ Bethe Ansatz equations for Xn with s playing
the role of Bethe roots. It was also proven in loc. cit. that these Bethe equations are
equivalent to classical tRS equations Tr(~⇣) = er(a).

If we use saddle point analysis to study the right hand side of (2.19) we can then replace
Tr in the integrand by its eigenvalue, which leads us to

(2.21) V(Tr)
p = er(a)V

(1)
p + . . . ,
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Ss(ζ⃗(n−1)/ζn, t) of Ts(sn) to get the following formula for the eigenvalue of Tr(a):

(29) Sr

(
ζnt

1−wn−1
2 , . . . , ζnt

wn−1−1

2

)
·

min(r,wn−1−vn−1)∑

s=0

qdim
(
Λwn−1−vn−1
s

)
·Ss(ζ⃗

(n−1)/ζn, t) ,

where for the first polynomial we used that Sr

(
ζnt

1−wn−1
2 , . . . , ζnt

wn−1−1

2

)
=

ζrner
(
t
1−wn−1

2 , . . . , t
wn−1−1

2

)
. It can be shown using properties of Schur polynomials that

the above expression is equal to an r-symmetric polynomial of variables listed in (24). !

4.2. Vertex Functions from tRS Eigenfunctions. We can also demonstrate how to
compute vertex functions from Proposition 3.1 using the general tRS solution (22) by
properly specifying the contour of integration. In order to do that we need to understand
how to identify each chamber C by choosing contour C in (22).

The prescription goes as follows. We shall only pick poles of functions H in the integrand
and ignore poles of E functions3. Poles of Hvn,vn+1(sn, sn+1) have the form sn,i/sn+1,k =
q−dn,i for some nonnegative degrees dn,i. Thus there is a one-to-one correspondence between
chambers described in the beginning of Sec. 3 and poles of the integrand – we merely select
those poles for which the degrees dn,i satisfy the corresponding inequalities which describe
a given fixed point of the maximal torus.

Once the contour is chosen for a given point p the integral from 3.1 can be evaluated.

Theorem 4.9. Consider αp and V (1)
p as defined previously in Theorem 3.1. Then for

each fixed point p of the maximal torus of X there is a contour C for which integral (22)
evaluates to

(30) V = e
log ζn

∑n−1
i=1 log ai

log q αpV
(1)
p .

Let us illustrate this statement on a simple example.

4.3. Example for T ∗P1. The vertex function (5) for T ∗P1 for a trivial class τ = 1 reads

(31) V (1)
p =

1

2πiαp

∫

Cp

ds

s
(z♯)−

log s
log q

2∏

i=1

ϕ
(
t s
ai

)

ϕ
(

s
ai

) ,

for the two fixed points p = {a1} and p = {a2}. The poles are given by s = apq−d for
nonnegative d. By taking the residues we arrive to the q-hypergeometric function

(32) V (1)
p =

∑

d>0

(z♯)d
2∏

i=1

(
q
!
ap
ai
; q
)

d(
ap
ai
; q
)

d

=2φ1

(
t, t

ap
ap̄

,
ap
ap̄

; q; z♯
)

.

3Moreover, it can be argued [BKK15] that for a contour which encircles all poles of φ functions of the
integrand only poles of H functions survive, whereas poles of E functions are cancelled by zeroes of H ’s.
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by ⌧̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) ⌧p(z) = lim
q!1

V
(⌧)
p (z)

V
(1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by ⌧̂(z) corresponding to a

fixed point p 2 X
T
.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn�1

wn�1

The stability condition is chosen so that maps Wn�1 ! Vn�1 and Vi ! Vi�1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn�1,wn�1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⇢ . . . ⇢ Vn�1 ⇢ Wn�1, where |Vi| = vi,Wn�1 =
{a1, . . . , awn�1}. The special case when vi = i, wn�1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v0
i = vi+1 � vi�1, for i = 2, . . . , n� 2, v0

n�1 = wn�1 � vn�2, v0
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V
(⌧)
p (z):

V
(⌧)
p (z) =

X

d2Zn
�0

X

(V ,W )2(QMd
nonsing p2

)T

ŝ(�(d)) zdqdeg(P)/2
⌧(V |p1).

2We are using standard quaternionic notations.

For the cotangent bundle to partial flag variety we get
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and the contour Cp runs around points corresponding to chamber C and the shifted variable

z
] = z(�~1/2)det(P) 3

.

3.2. Bethe Equations and Baxter Operators. We are now ready to compute the
eigenvalues of the operators corresponding to the tautological bundles.

Theorem 3.4. The eigenvalues of ⌧̂(z)~ is given by ⌧(si,k), where si,k satify Bethe equa-

tions:

v2Y

j=1

s1,k � s2,j

s1,k � ~s2,j
= z1(�~1/2)

�v0
1

v1Y

j=1
j 6=k

s1,j � s1,k~
s1,j~� s1,k

,

vi+1Y

j=1

si,k � si+1,j

si,k � ~si+1,j

vi�1Y

j=1

si�1,j � ~si,k
si�1,j � si,k

= zi(�~1/2)
�v0

i

viY

j=1
j 6=k

si,j � si,k~
si,j~� si,k

,(23)

wn�1Y

j=1

sn�1,k � aj

sn�1,k � ~aj

vn�2Y

j=1

sn�2,j � ~sn�1,k

sn�2,j � sn�1,k
= zn�1(�~1/2)

�v0
n�1

vn�1Y

j=1
j 6=k

sn�1,j � sn�1,k~
sn�1,j~� sn�1,k

,

where k = 1, . . . , vi for i = 1, . . . , vn�1.

Proof. There are several ways of obtaining these equations. One way corresponds to the
study of asymptotics of (20) as it was done in section 3.5 of [PSZ16]. However, there is a
shortcut recently provided by [AO]. One regards TX as an element inK

Q
i GL(Vi)⇥GL(Wn�1)(pt),

so that aj are coordinates of the torus acting on Wn�1 and by si,k are coordinates of the
torus acting on Vi. In this case we have

TX = T (T ⇤Rep(v,w))�
X

i2I
(1 + ~)End(Vi) =(24)

n�2X

i=1

viX

k=1

vi+1X

j=1

✓
si,k

si+1,j
+

si+1,j~
si,k

◆
+

vn�1X

k=1

wn�1X

j=1

✓
sn�1,k

aj
+

aj~
sn�1,k

◆
� (1 + ~)

X

i2I

viX

j,k=1

si,j

si,k
.

To get Bethe equations we need to use the following formula

ba
✓
si,k

@

@si,k
TX

◆
= zi,

where ba (
P

nixi) =
Q⇣

x
1/2
i � x

�1/2
i

⌘ni

. ⇤

3 Note that here we are using the notation defined for z for (�~
1/2), i.e.

z] =
n�1Y

i=1

z]i ,

z]i = zi(�~
1/2)v

0
i .

which are Bethe Ansatz Equations for gl(n) XXZ spin chain

[PK Pushkar Smirnov Zeitlin]
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.



K theory and Many-Body systems
Now we would like to connect quantum K-theory of X with 
integrable many-body systems
Consider vertex for T*Fln with trivial insertion V(z,a,h,q)

Theorem 1 [PK]:
Given integrals of motion of trigonometric Ruijsenaars-Schneider model
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Corollary 2.4. For X as above the vertex function coe�cient for the identity class ⌧ = 1
reads

(2.10)

V
(1)
p (z) =

X

di,j2C

n�1Y

i=1

✓
t
⇣i

⇣i+1

◆di iY

j,k=1

⇣
q
xi,j

xi,k
, q

⌘

di,j�di,k⇣
~ xi,j

xi,k
, q

⌘

di,j�di,k

·
iY

j=1

i+1Y

k=1

⇣
~xi+1,k

xi,j
, q

⌘

di,j�di+1,k⇣
q
xi+1,k

xi,j
, q

⌘

di,j�di+1,k

,

where we define xn,k = ak and t = q
~ .

Vertex functions V (⌧) can be regarded as classes in equivariant K-theory of the moduli
space of quasimaps which we shall denote

(2.11) Hn := KT(QM(P1
, Xn))

for extended maximal torus T.
Now we shall demonstrate that coe�cient functions of K-theory vertices obey Macdonald

di↵erence equations.

2.5. Macdonald Di↵erence Operators. It was also proven in [KZ1802] that K-theoretic
vertex functions of cotangent bundles to flag varieties satisfy tRS di↵erence equations in
equivariant parameters. In this paper we shall need the ‘mirror’ (or symplectic dual)
version of that theorem which states that properly normalized vertex functions also obey
tRS di↵erence equations in quantum parameters ⇣1, . . . , ⇣n. First let us introduce the
di↵erence operators.

Definition 2.5. The di↵erence operators of trigonometric Ruijsenaars-Schneider model

are given by

(2.12) Tr(~⇣) =
X

I⇢{1,...,n}
|I|=r

Y

i2I
j /2I

~ ⇣i � ⇣j

⇣i � ⇣j

Y

i2I
pk ,

where ~⇣ = {⇣1, . . . , ⇣n}, the shift operator pkf(⇣k) = f(q⇣k).

Now we shall prove that the K-theory vertex function after normalization is the eigen-
function of the tRS di↵erence operators.

Theorem 2.6. Let V
(1)
p be the coe�cient for the vertex function for X given in (2.10).

Define

(2.13) V(1)
p =

nY

i=1

✓(~i�n
⇣i, q)

✓(ai⇣i, q)
· V (1)

p ,

where ✓(x, q) = (x, q)1(qx�1
, q)1 is basic theta-function. Then Vp are eigenfunctions for

tRS di↵erence operators (2.12) for all fixed points p

(2.14) Tr(~⇣)V
(1)
p = er(a)V

(1)
p , r = 1, . . . , n ,

where er is elementary symmetric polynomial of degree r of a1, . . . , an .
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Vertex functions V (⌧) can be regarded as classes in equivariant K-theory of the moduli
space of quasimaps which we shall denote

(2.11) Hn := KT(QM(P1
, Xn))

for extended maximal torus T.
Now we shall demonstrate that coe�cient functions of K-theory vertices obey Macdonald

di↵erence equations.
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vertex functions of cotangent bundles to flag varieties satisfy tRS di↵erence equations in
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tRS di↵erence equations in quantum parameters ⇣1, . . . , ⇣n. First let us introduce the
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zi = ⇣i+1/⇣i
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then vertex is their mutual eigenfunction

Theorem 2  [PK Zeitlin]:
Given integrals of motion of dual trigonometric Ruijsenaars-Schneider model

then vertex is their mutual eigenfunction
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Proposition 3.2. The p-th component of a bare vertex function is given by

(5) V (τ)
p (z) =

1

2πiαp

∫

Cp

n−1∏

i=1

vi∏

j=1

dsi,j
si,j

e−
ln(z

♯
i ) ln(si,j)

ln(q) EintGintHintτ(s1, · · · , sk),

where

Eint =
n−1∏

i=1

vi∏

j,k=1

ϕ
(

si,j
si,k

)

ϕ
(
q
!

si,j
si,k

) , Gint =

wn−1∏

j=1

vn−1∏

k=1

ϕ
(
q
!

sn−1,k

aj

)

ϕ
(
sn−1,k

aj

) ,

Hint =
n−2∏

i=1

vi+1∏

j=1

vi∏

k=1

ϕ
(
q
!

si,k
si+1,j

)

ϕ
(

si,k
si+1,j

) ,

αp =
n−1∏

i=1

vi∏

j=1

e−
ln(z♯i ) ln(si,j )

ln(q) EintGintHint

∣∣∣
si,j=xi,j

,

where

(6) ϕ(x) =
∞∏

i=0

(1− qix) ,

and the contour Cp runs around points corresponding to chamber C and the shifted variable

z♯ = z(−!
1/2)det(P). Here z♯ =

∏n−1
i=1 z♯i , so that z♯i = zi(−!

1/2)v
′

i .

In [PSZ], [KPSZ] we found these formulas to be useful to study their asymptotics at
q → 1 which lead to Bethe ansatz equations, producing the relations for the quantum
K-theory ring. In this article, we however will leave parameter q intact.

4. Trigonometric RS Difference Operators

Proposition 3.2 provides integral formulas for vertex functions Vp of X which depend on
the choice of the contour Cp. In this section we study properties of integral (5) without
explicitly specifying the contour. In particular, we shall demonstrate that for a properly
chosen contour (5) solves quantum difference equations of the trigonometric Ruijsenaars-
Schneider model. In this work we shall only study difference equations in equivariant
parameters of X, see [Kor18] (Theorem 2.6).

In full generality tRS Hamiltonians read2

(7) Tr(a) =
∑

I⊂{1,...,n}
|I|=r

∏

i∈I
j /∈I

t ai − aj
ai − aj

∏

i∈I

pk ,

where a = {a1, . . . , awn−1}, the shift operator pkf(ak) = f(qak) and we denoted t = q
! .

In order to understand how the above difference operators act on integrals of the form
(5) we need to study in detail how they act on the ingredients of the integrand. In what

2In this section we use slightly different normalization of the tRS operators than in [KPSZ].
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The important property of the tRS difference operators is that they are self-adjoint with

respect to the measure dsn
sn

· E(sn) :=
vn∏
i=1

dsn,i

sn,i
E(sn,i) on the Cartan subalgebra of U(vn).

Lemma 4.7. Let f(sn) and g(sn) be meromorphic functions of their arguments. Then,
provided that contour C does not encounter any poles of these functions upon shift sn,k →
q−1sn,k, the following identity holds

(19)

∫

C

dsn
sn

· E(sn)f(sn) [Tr(s) · g(sn)] =

∫

C

dsn
sn

·E(sn)
[
Tr(s

−1) · f(sn)
]
g(sn) .

Proof. Consider sn,k where k ∈ I from the definition of difference operators Tr (7). As-
suming that we do not hit any poles, we shift the contour of integration by sn,k → q−1sn,k
only for k ∈ I. This operation can be expressed via acting with inverse shift p−1

n,k on the
integrand of the left hand side of (19)

(20)

∫

C

vn∏

i=1

dsn,i
sn,i

[
∏

k∈I

p−1
n,k · E(sn,i)f(sn)

]

·

⎡

⎢⎢⎣
∑

I⊂{1,...,n}
|I|=r

∏

i∈I
j /∈I

tq−1 sn,i − sn,j
q−1sn,i − sn,j

· g(sn)

⎤

⎥⎥⎦

Using (11) and (18) we arrive to the right hand side of (19). !

4.1. tRS Difference Equations. Now we shall use the lemmas which we have just proven
to construct a solution for the quantum difference tRS equations. First, let us change
quantum parameters in K-theory as follows

z♯1 =
ζ1
ζ2

,

z♯i =
ζi

ζi+1
, i = 2, . . . , n− 2

z♯n−1 =
ζn−1

ζn
.(21)

Theorem 4.8. The following function constructed for the cotangent bundle to the partial
flag variety X labelled by v1, . . . , vn−1,wn−1

(22)

V(a, ζ⃗) =
e

log ζn
∑n−1

i=1 log ai
log q

2πi

∫

C

n−1∏

m=1

vm∏

i=1

dsm,i

sm,i
E(sm,i) e

−
log ζm/ζm+1·log sm,i

log q ·

vm+1∏

j=1

Hvm,vm+1 (sm,i, sm+1,j) ,

where contour C is chosen in such a way that shifts of the contour s → q±1
s do not

encounter any poles, satisfies tRS difference relations

(23) Tr(a)V(a, ζ⃗) = Sr(ζ⃗, t)V(a, ζ⃗) , r = 1, . . . ,wn−1
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Baxter Operator
Consider quantum tautological bundles
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Theorem 3.4. The eigenvalues of τ̂(z)! is given by τ(si,k), where si,k satify Bethe equa-
tions:

v2∏

j=1

s1,k − s2,j
s1,k − !s2,j

= z1(−!
1/2)

−v′
1

v1∏

j=1
j≠k

s1,j − s1,k!

s1,j!− s1,k
,

vi+1∏

j=1

si,k − si+1,j

si,k − !si+1,j

vi−1∏

j=1

si−1,j − !si,k
si−1,j − si,k

= zi(−!
1/2)

−v′
i

vi∏

j=1
j≠k

si,j − si,k!

si,j!− si,k
,(23)

wn−1∏

j=1

sn−1,k − aj
sn−1,k − !aj

vn−2∏

j=1

sn−2,j − !sn−1,k

sn−2,j − sn−1,k
= zn−1(−!

1/2)
−v′

n−1

vn−1∏

j=1
j≠k

sn−1,j − sn−1,k!

sn−1,j!− sn−1,k
,

where k = 1, . . . , vi for i = 1, . . . , vn−1.

Proof. There are several ways of obtaining these equations. One way corresponds to the
study of asymptotics of (20) as it was done in section 3.5 of [PSZ16]. However, there is a
shortcut recently provided by [AO]. One regards TX as an element inK∏

i GL(Vi)×GL(Wn−1)(pt),
so that aj are coordinates of the torus acting on Wn−1 and by si,k are coordinates of the
torus acting on Vi. In this case we have

TX = T (T ∗Rep(v,w)) −
∑

i∈I

(1 + !)End(Vi) =(24)

n−2∑

i=1

vi∑

k=1

vi+1∑

j=1

(
si,k
si+1,j

+
si+1,j!

si,k

)
+

vn−1∑

k=1

wn−1∑

j=1

(
sn−1,k

aj
+

aj!

sn−1,k

)
− (1 + !)

∑

i∈I

vi∑

j,k=1

si,j
si,k

.

To get Bethe equations we need to use the following formula

â

(
si,k

∂

∂si,k
TX

)
= zi,

where â (
∑

nixi) =
∏(

x1/2i − x−1/2
i

)ni

. "

The equations (23) are Bethe ansatz equations for the periodic anisotropic gl(n) XXZ
spin chain on wn−1 sites with twist parameters z1, . . . , zn−1, impurities (shifts of spectral
parameters) a1, . . . , awn−1 , and quantum parameter !, see e.g. [BIK93], [Res1010].

Let us consider the quantum tautological bundles Λ̂kVi(z), k = 1, . . . ,vi. It is useful to
construct a generating function for those, namely

(25) Qi(u) =
vi∑

k=0

(−1)kuvi−k!
ik
2 Λ̂kVi(z).

and their generating function — 
Baxter Q-operator
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Proposition: The eigenvalue of quantum multiplication by Qi is 
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The seemingly strange ! weights will be necessary in Section 4. In the integrable system
literature these operators are known as Baxter operators [Bax82],[Res1010]. The following
Theorem is a consequence of (20).

Proposition 3.5. The eigenvalues of the operator Qi(u) are the following polynomials in
u:

(26) Qi(u) =
vi∏

k=1

(u− !
i
2 si,k),

so that the coefficients are elementary symmetric functions in si,k for fixed i.

Remark. To obtain the full Hilbert space of a gl(n) XXZ model one has to consider
a disjoint union of all partial flag varieties with framing Wn−1 fixed, so that in the basis
of fixed points the classical equivariant K-theory can be expressed as a tensor product
Cn(a1) ⊗ Cn(a2) ⊗ . . .Cn(awn−1), where each of Cn(ai) is an evaluation representation

of U!(ĝl(n)), see e.g. [Nak]. There is a special interesting question regarding universal
formulas for operators Qi(u) which we used in [PSZ16] for gl(2) model, corresponding to
prefunadamental representations of the Borel subalgebra of U!(ĝl(n)) [FH15].

3.3. Compact limit. Simple form of the presentation for the bare vertex computed in this
section, allows us to perform quantum K-theory computations in the case of merely partial
flag varieties, removing the cotangent bundle part. That, as we shall see, corresponds to a
properly defined limit ! → ∞.

First of all, let us note, that following along the lines of Sec. 2 one can construct quantum
tautological bundles corresponding to K-theory of partial flag varieties by simply counting
only those quasimaps whose image does not belong to the fiber. The following Proposition
gives the recipe to compute bare vertices and the spectra of quantum tautological bundles
in this case.

Theorem 3.6. (1) In the integral formula for the bare vertex (22) we take the limit
! → ∞, keeping {z♯} fixed as the new family of Kähler parameters.

(2) The Bethe ansatz equations, characterizing the eigenvalues of quantum tautological
bundles are as follows.

wn−1∏

j=1

sn−1,k − aj
aj

vn−2∏

j=1

sn−1,k

sn−2,j − sn−1,k
= z♯n−1

vn−1∏

j=1,j≠k

−sn−1,k

sn−1,j
, k = 1, . . . ,vn−1 ,

vi+1∏

j=1

si,k − si+1,j

si+1,j

vi−1∏

j=1

si,k
si−1,j − si,k

= z♯i

vi∏

j=1,j≠k

−si,k
si,j

, k = 1, . . . ,vi , i = 2, . . . , n− 2 ,

v2∏

j=1

s1,k − s2,j
s2,j

= z♯1

v1∏

j=1,j≠k

−s1,k
s1,j

, k = 1, . . . ,v1 .

(27)

Using results from integrability we can write XXZ Bethe equations in 
term of polynomials 
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we arrive at the following set of equations which is equivalent to (23)

ζ1
ζ2

·
v1∏

β ̸=α

!σ1,α − σ1,β
!σ1,β − σ1,α

·
v2∏

β=1

σ1,α − !
1/2σ2,β

σ2,β − !
1/2σ1,α

= (−1)δ1 ,

ζi
ζi+1

·

vi−1∏

β=1

σi,α − !
1/2σi−1,β

σi−1,β − !
1/2σi,α

·
vi∏

β ̸=α

!σi,α − σi,β
!σi,β − σi,α

·

vi+1∏

β=1

σi,α − !
1/2σi+1,β

σi+1,β − !
1/2σi,α

= (−1)δi ,(30)

ζn−1

ζn
·

vn−2∏

β=1

σn−1,α − !
1/2σn−2,β

σn−2,β − !
1/2σn−1,α

·

vn−1∏

β ̸=α

!σn−1,α − σn−1,β

!σn−1,β − σn−1,α
·

wn−1∏

β=1

σn−1,α − !
1/2αβ

αβ − !
1/2σn−1,α

= (−1)δn−1 ,

where in the middle equation i = 2, . . . , n − 2 and δi = vi−1 + vi + vi+1 − 1. The reader
may notice that we use slightly non-standard notation for Bethe equations, in particular,
parameters aβ appear in the last equation i = n − 1 (instead of the first equation). Sign
factors (−1)δi in the right hand sides are artifacts of this choice. However, as we saw in
the previous section this way of writing the equations is more convenient from geometric
point of view. Later we shall see that this framework will be convenient in the derivation
of the Lax matrix of the trigonometric Ruijsenaars-Schneider model.

Meanwhile, if we denote v0 = 0 ,vn = wn−1, σn,β = αβ for β = 1, . . . ,wn−1 then (30)
can be written more uniformly as follows

(31)
ζi
ζi+1

vi−1∏

β=1

σi,α − !
1/2σi−1,β

σi−1,β − !
1/2σi,α

·
vi∏

β ̸=α

!σi,α − σi,β
!σi,β − σi,α

·

vi+1∏

β=1

σi,α − !
1/2σi+1,β

σi+1,β − !
1/2σi,α

= (−1)δi .

Following (26) let us write eigenvalues Qi(u) of Baxter operators in terms of the new
variables and couplement it with Qn(u), being the generating function for elementary
symmetric functions of equivariant parameters.

(32) Qi(u) =
vi∏

α=1

(u− σi,α) , P (u) = Qn(u) =

wn−1∏

a=1

(u− αa) .

In addition, we define shifted polynomials when their arguments are multiplied by !−
1
2 to

the corresponding power: Q(n)(u) = Qi(!
−n

2 u), etc.
Then Bethe equations (31) can be expressed in terms of these polynomials as follows

Lemma 4.1. The equation for Bethe root σi,α in (31) arises as u = σi,α locus of the
following equation

(33) !
∆i
2

ζi
ζi+1

Q(1)
i−1Q

(−2)
i Q(1)

i+1

Q(−1)
i−1 Q(2)

i Q(−1)
i+1

= −1 ,

where ∆i = vi+1 + vi−1 − 2vi.

Note that sign δi disappeared.
In order to proceed further we need to rewrite (33) in a slightly different way.
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structure in the columns we can relate shifted k × k matrices from (44) with submatrices
of M . Moreover, one can see that

(46) M (1)
1,...,k = Mk

k , M (1)
1,...,k−1,k+1 = Mk

k−1 ,

but other matrices do not match directly, albeit they look similar. Let us multiply both
sides of (44) by

∏k−1
l=1 ζl. Then we can absorb this product on the left into matrices

M (−1)
1,...,k−1,k+1 and M (−1)

1,...,k by multiplying each of its first k − 1 rows by ζi, i = 1, . . . , k − 1;
while on the right we absorb it into matrix M1,...,k−1. Additionally in the left hand side

we absorb ζk+1 into the last row of M (−1)
1,...,k−1,k+1 and ζk into the last row of M (−1)

1,...,k. To
summarize

(47) ζk+1

k−1∏

l=1

ζl · detM
(−1)
1,...,k−1,k+1 = detM1

k−1 , ζk

k−1∏

l=1

ζl · detM
(−1)
1,...,k = detM1

k ,

and

(48)
k−1∏

l=1

ζl · detM1,...,k−1 = detMk−1,k
1,k ,

so (44) is equivalent to (45). Therefore QQ̃ relations (35) are equivalent to the Desnanot-
Jacobi identity provided that (36,37) hold. !

Finally we are ready to prove the main theorem which relates XXZ Bethe equations with
trigonometric RS model.

Theorem 4.5. Let L be the following matrix

(49) Lij =

n∏

k≠j

(
!−

1/2ζi − !
1/2ζk

)

n∏

k≠i
(ζi − ζk)

pj ,

where

(50) pj = −
Qj(0)

Qj−1(0)
= !j−

1
2 Λ̂jVj(z)" ̂Λj−1V ∗

j−1(z) , j = 1, . . . , n

Then polynomial P (u) from (32) can be represented as

(51) P (u) = det
(
u− L

)
.

Proof. Using Proposition 4.4 we can put j = n in (37)

(52) P (u) =
det

(
M1,...,n

)

det
(
V1,...,n

) .

Let us multiply ith column of M1,...,n by !−
n−i
2 . Since

∏n
i=1 !

−n−i
2 = 1 the determinant

of this matrix will remain the same, however, each matrix element will now contain a

Theorem [PK]: Given Lax matrix of tRS model
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k≠i
(ζi − ζk)

pj ,

where

(50) pj = −
Qj(0)

Qj−1(0)
= !j−

1
2 Λ̂jVj(z)" ̂Λj−1V ∗

j−1(z) , j = 1, . . . , n

Then polynomial P (u) from (32) can be represented as

(51) P (u) = det
(
u− L

)
.

Proof. Using Proposition 4.4 we can put j = n in (37)

(52) P (u) =
det

(
M1,...,n

)

det
(
V1,...,n

) .

Let us multiply ith column of M1,...,n by !−
n−i
2 . Since

∏n
i=1 !

−n−i
2 = 1 the determinant

of this matrix will remain the same, however, each matrix element will now contain a

we get
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In order to understand the proof we shall use the integral formula for the vertex function.
Using Theorem 4.8 from [KZ1802] we can write vertex (2.10) as follows
(2.15)

V
(1)
p =

e

log ⇣n·log a1···an
log q

2⇡i

Z

Cp

n�1Y

m=1

mY

i=1

dsm,i

sm,i
E(sm,i) e

�
log ⇣m/⇣m+1·log sm,i

log q ·
m+1Y

j=1

Hm,m+1 (sm,i, sm+1,j) ,

where contour Cp surrounds poles corresponding to the fixed point p of the maximal torus
of Xn and the functions in the integrand are given by

(2.16) Hvm,vm+1(sm, sm+1) =
vmY

i=1

vm+1Y

j=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

corresponding to the contribution of Hom(Vm,Vm+1) and

(2.17) E(sn) =
vnY

j,k=1

'

⇣
sn,j

sn,k

⌘

'

⇣
t
sn,j

sn,k

⌘ ,

emerging from Hom(Vm,Vm) in the localization computation, and where

(2.18) '(x) =
1Y

i=0

(1� q
i
x) .

Proof of Theorem 2.6. By acting with the tRS operators on the vertex function in the
integral form (2.15) we get

(2.19) Tr(~⇣)V
(1)
p = V(Tr)

p ,

where on the right we have a vertex function with descendant class Tr which is defined
as follows (see [KPSZ1705]). The tRS momenta pi correspond to multiplication by class
d⇤iVi ⌦ \⇤i+1V⇤

i+1 in KT (Xn), where Vi is the i-th tautological bundle over Xn, and are
given by the following ratio of products of the corresponding Chern roots.

(2.20) pi =
si+1,1 · · · · · si+1,i+1

si,1 · · · · · si,i
, i = 1, . . . , n� 1 .

Using this fact and the definition of tRS operators (2.12) we can define new quantum

classes V(Tr)
p for r = 1, . . . , n. We can refer to them as tRS classes.

In [KPSZ1705] it was proven that the eigenvalues of the multiplication operator by a
quantum class b⌧ in quantum K-theory of Xn is given by ⌧(s), where Chern roots s of the
corresponding virtual bundle solve the XXZ Bethe Ansatz equations for Xn with s playing
the role of Bethe roots. It was also proven in loc. cit. that these Bethe equations are
equivalent to classical tRS equations Tr(~⇣) = er(a).

If we use saddle point analysis to study the right hand side of (2.19) we can then replace
Tr in the integrand by its eigenvalue, which leads us to

(2.21) V(Tr)
p = er(a)V

(1)
p + . . . ,
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Appendix A. tRS Difference equation for T
⇤P1

Let us illustrate (2.19) for X2 = T
⇤P1. The vertex function is given by

(A.1) V =
e

log ⇣2·log a1···an
log q

2⇡i

Z

C

ds

s
e

log ⇣1/⇣2·log s
log q

'

⇣
~ s
a1

⌘

'

⇣
s
a1

⌘
'

⇣
~ s
a2

⌘

'

⇣
s
a2

⌘ .

For X2 there are two tRS operators

T1(~⇣) =
~⇣1 � ⇣2

⇣1 � ⇣2
p1 +

~⇣2 � ⇣1

⇣2 � ⇣1
p2 ,

T2(~⇣) = p1p2 .(A.2)

By acting with these operators on the above function we get

T1(~⇣)V = V(T1(s)) ,

T2(~⇣)V = a1a2V ,(A.3)

where the first tRS class (classical tRS Hamiltonian, see [GK13,KPSZ1705]) is given by10

(A.4) T1(s) =
~⇣1 � ⇣2

⇣1 � ⇣2
s+

~⇣2 � ⇣1

⇣2 � ⇣1

a1a2

s
,

and is a linear combination of the tautological bundle V and its conjugate V⇤ over X2 with
coe�cients dependent on quantum parameter z = ⇣1

⇣2
and the equivariant parameters.

In order to prove that V(T1(s)) = (a1 + a2)V(1) we shall use the following integral (see
[NPZ1712], Appendix D)

(A.5) I2 =

Z

C

ds

s


s

✓
1� s

a1

◆✓
1� s

a2

◆�
e

log z·log s
log q

'

⇣
~ s
a1

⌘

'

⇣
s
a1

⌘
'

⇣
~ s
a2

⌘

'

⇣
s
a2

⌘ ,

where contour C is chosen in such a way that shift s ! qs does not pick up any poles.
This can be straightforwardly generalized to the n-particle tRS model. Thus integral I2 in
the shifted variable is equal to itself which leads us to

(A.6) 0 =

Z

C

ds

s


1� ~z
1� z

s+ ~1� ~�1
z

1� z

a1a2

s
� (a1 + a2)

�
e

log z·log s
log q

'

⇣
~ s
a1

⌘

'

⇣
s
a1

⌘
'

⇣
~ s
a2

⌘

'

⇣
s
a2

⌘ ,

from where the statement follows.

10We abusing the notation by denoting by Tr both the tRS class and the operator. Hopefully this will
not confuse the reader.

Vertex
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This can be straightforwardly generalized to the n-particle tRS model. Thus integral I2 in
the shifted variable is equal to itself which leads us to

(A.6) 0 =

Z

C

ds

s


1� ~z
1� z

s+ ~1� ~�1
z

1� z

a1a2

s
� (a1 + a2)

�
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from where the statement follows.

10We abusing the notation by denoting by Tr both the tRS class and the operator. Hopefully this will
not confuse the reader.
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= (a1 + a2)V



K theory via tRS
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for each of them is given by the sum over the products of its matrix elements accompanied
by a sign. It is easy to see that the common divisor for such products is exactly

Y

i2I
j /2I

⇣i ~�
1/2 � ⇣j ~

1/2

⇣i � ⇣j

Y

k2I
pk ,(62)

where I is the number of indices representing the minor. Other terms involve products with
poles (⇣i � ⇣j) where both i, j belong to I. Let us show that all of these poles disappear
as in the 2 ⇥ 2 case. Note, that such pole (⇣i � ⇣j) appears twice in each product. Let
us show that there is no such pole in the final expression. To do that let us expand each
minor using the row decomposition till we reach the 2⇥ 2 minor L{i,j}. Clearly, this is the
only term in this expansion containing such a pole, and by the same calculation as in 2⇥ 2
case as above, it cancels out. Therefore, the coe�cient of (62) in the expansion does not
depend on ⇣i as one can deduce from counting the powers of ⇣i in the numerator and the
denominator. To finish the proof one needs to show that the resulting constant is equal to
1 for any I. That is clear from the normalization of “non-di↵erence terms”, in numerator,
which are responsible for pole cancellation, namely ⇣i(~�

1/2 � ~1/2). ⇤

We are now ready to formulate the main theorem of this section.

Theorem 4.7. Quantum equivariant K-theory of the cotangent bundle to complete n-flag

is given by

(63) QKT (T
⇤Fln) =

C[⇣±1
1 , . . . , ⇣

±1
n ; a±1

1 , . . . , a
±1
n , ~±1; p±1

1 , . . . , p
±1
n ]

{Hr(⇣i, pi, ~) = er(↵1, . . . ,↵n)}
,

where Hr are given in (58).

Proof. The statement directly follows from Proposition 2.5, the fact that coe�cients of
Qi-operators are generators of all tautological bundles, and Theorem 4.5. ⇤

4.3. Dual tRS Model from XXZ Chain. In (58) tRS Hamiltonians are functions of
quantum parameters ⇣1, . . . , ⇣n and the eigenvalues (55) are given by symmetric polynomi-
als of equivariant parameters. It turns out that there is a dual formulation of the integrable
model such that these parameters switch roles and is know as bispectral duality. We can
show that from starting from Bethe equations (31) we can derive the dual set of tRS
Hamiltonians.

Theorem 4.8. Let L
!
be the following matrix

(64) L
!
ij =

nQ
k 6=j

⇣
~1/2↵i � ~�1/2↵k

⌘

nQ
k 6=i

(↵i � ↵k)
p
!
j ,

where the ideal is generated by equations of motion of all Hamiltonians of tRS model

⇣1, . . . , ⇣n are coordinates p1, . . . , pn are momenta

symplectic form
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of the equivariant parameters

(56) Hr(⇣i, pi, ~) = er(↵1, . . . ,↵n) .

The phase space of the tRS model is described as follows. Parameters ⇣1, . . . , ⇣n and
their conjugate momenta p1, . . . , pn serve as canonical coordinates on the cotangent bundle
to (C⇥)n. The symplectic form reads

(57) ⌦ =
nX

i=1

dpi

pi
^ d⇣i

⇣i
.

Remark. It was shown in [BKK15] classical momenta pi can be determined from the
(exponentials of) derivatives of the so-called Yang-Yang function6 for Bethe equations (30).
These defining relations describe a complex Lagrangian submanifold L ⇢ T

⇤ (C⇥)n, such
that the generating function for this submanifold (⌦ is identically zero on L) is given by
the Yang-Yang function.

Proposition 4.6. The Hamiltonians of the n-body tRS model are given by

(58) Hr =
X

I⇢{1,...,n}
|I|=r

Y

i2I
j /2I

⇣i ~�
1/2 � ⇣j ~

1/2

⇣i � ⇣j

Y

k2I
pk ,

where r = 0, 1, . . . , n. In particular,

(59) H1 = TrL =
nX

i=1

nY

j 6=i

⇣i ~�
1/2 � ⇣j ~

1/2

⇣i � ⇣j
pi , Hn = detL =

nY

k=1

pk .

H1, . . . , Hr are also known as Macdonald operators.

Proof. Let us first see how the proposition works in the case of 2⇥ 2 matrix, i.e. n = 2. In
this case the L-matrix looks like this:

(60)

0

BB@

~�1/2⇣1�~1/2⇣2
⇣1�⇣2

p1
~�1/2⇣1�~1/2⇣1

⇣1�⇣2
p2

~�1/2⇣2�~1/2⇣2
⇣1�⇣2

p1
~�1/2⇣2�~1/2⇣1

⇣2�⇣1
p2

1

CCA

An elementary calculation shows that the statement is true and in particular, the determi-
nant of this matrix is equal to p1p2 due to the fact that the second order pole in (⇣1 � ⇣2)
disappear. This will be relevant in the case of higher n.

To prove the statement in the case of general n we use the Fredholm decomposition:

det (u · 1� L) =
nX

r=0

u
n�r(�1)rTr⇤r(L) ,(61)

where ⇤r denotes the exterior power. Clearly, Tr⇤r(L) is just the sum over all minors of
rank r. Let us look at the terms representing each minor in detail. The explicit expression

6Bethe equations arise as derivatives of the Yang-Yang function with respect to all Bethe roots �i,k.

Momenta can be determined from derivatives of Yang-Yang function XXZ 
for Bethe equations. They define Lagrangian 
whose generating function is given by the Yang-Yang function.

L ⇢ T ⇤ �C⇥�n

[Gaiotto PK] 
[Bullimore Kim PK]
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In order to get from QKT (T ⇤Fln) to QKT 0(Fln), where T
0 is the maximal torus of U(n)

the cotangent fibers need to be retracted. As we have already discussed it in Sec. 3.3 this
can be done by sending the equivariant parameter corresponding to C⇥ action on the fiber
to infinity ~ ! 1. It is well known that classical K-theories of G/B and T

⇤
G/B are

isomorphic as rings, so it will be possible to use similar techniques to describe quantum
K-ring of the flag variety – zero section of T ⇤

G/B.
In order to understand quantum multiplication in QKT 0(Fln) we must compute the

~ ! 1 of Bethe equations (23) which is given in (27). Then we will need to follow
the steps of Sec. 4 and present the resulting Bethe equations as conditions for roots of
a characteristic polynomial of some matrix, which will appear to be the Lax matrix of
di↵erence Toda model [Eti].

5.1. Five-Vertex Model and Quantum Toda Chain. Using Baxter Q-polynomials we
can present Bethe equations (27) in a more concise form.

Lemma 5.1. Let

(68) Qi(u) =
nY

j=1

(u� si,j) , M(u) := Qn(u) =
nY

i=1

(u� ↵i) .

Then we can rewrite (27) as

(69)
Qi+1(si,k)

Qi�1(si�1,k)
·

viQ
j=1

si,j

vi+1Q
j=1

si+1,j

= z
#
i (�1)�i(si,k)

vi�vi�1�1
,

where �i are given after (30). As in the previous section we shall focus on complete flag
varieties for which vi = i, thus the exponent of si,k in the right hand side of the above
expression vanishes.

Remark. Equations (27) generalize the result of [Kim95] and serve as Bethe ansatz equa-
tions for the five-vertex model.

Using auxiliary Baxter polynomials we can rewrite (69) in the Q eQ form similarly to (35).

Proposition 5.2. The system of equations (69) for vi = i is equivalent to the following

system

(70) Qi+1(u)�
zi+1

zi
Qi�1(u) · u · pi+1 = Qi(u) eQi(u) , i = 1, . . . , n

where z
#
i = zi

zi+1
, eQi(u), i = 1, . . . , n� 1 are monic polynomials of degree one and

(71) pi = � Qi(0)

Qi�1(0)
.

Proof. Analogous to the proof of Proposition 4.2. ⇤
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#
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Proof. Analogous to the proof of Proposition 4.2. ⇤Analogously to XXZ/tRS duality we can formulate 5-vert/qToda duality
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We can now formulate a statement which connects the five-vertex models with the q-
Toda chain in the same way as the XXZ spin chain is dual to the tRS model (Theorem
4.5).

Theorem 5.3. System of equations (70) is equivalent to

(72) M(u) = detA(u) ,

where A(u) is the Lax matrix of the di↵erence Toda chain. It has the following nonzero

elements

(73) Ai+1,i = 1 , Ai,i = u� pi , Ai,i+1 = �u
zi+1

zi
pi+1 .

Proof. This statement can be readily proven along the lines of Theorem 4.5. ⇤
5.2. Compact Limit of tRS Model. Note that the q-Toda Lax matrix A(u) cannot be
obtained as a scaling limit of the tRS Lax matrix (49). However, one can directly compute
q-Toda Hamiltonians from tRS Hamiltonians (59). This limit was already discussed in the
literature (see e.g. [GLO0803] p.13). In our notations this limit can be implemented as
follows. First we rescale tRS coordinates, momenta (58) and equivariant parameters (55)
as follows

(74) zi = ~i⇣i , pi = ~i�
1
2 pi , ai = ~

n
2 ↵i .

Second, after taking ~ ! 1 limit, we obtain q-Toda Hamiltonian functions which are equal
to symmetric polynomials of ai

(75) H
q-Toda
r (z1, . . . zn; p1, . . . , pn) = er(a1, . . . , an) ,

where the Hamiltonians are

(76) H
q-Toda
r =

X

I={i1<···<ir}
I⇢{1,...,n}

rY

`=1

✓
1� zi`�1

zi`

◆1��i`�i`�1,1 Y

k2I
pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(77) H
q-Toda
1 = p1 +

nX

i=2

pi

✓
1� zi�1

zi

◆
.

Thus we have shown that the gl(n) five-vertex model is dual to the di↵erence Toda
n-body system such that Bethe equations of the former (27) can be rewritten as equations
of motion of the latter.

Finally we can formulate the main statement of this section.

Theorem 5.4. Quantum equivariant K-theory of the complete n-dimensional flag variety

is given by

(78) QKT 0(Fln) =
C[z±1

1 , . . . , z±1
n ; a±1

1 , . . . , a±1
n ; p±1

1 , . . . , p±1
n ]

{Hq-Toda
r (zi, pi) = er(a1, . . . , an)}

,

where H
q-Toda
r are given in (76).

We recover the statement by Givental and Lee
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