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integrals of motion of the trigonometric Ruijsenaars-Schneider (tRS) model was formu-
lated. This lead us to a clear understanding of quantum K-theory of the quiver varieties
in question in terms of the tRS system [KPSZ1705].

1.1. Goals of the Paper. A collection of vertices and oriented edges connecting them
forms a quiver. A Nakajima quiver variety can be thought of as a cotangent bundle to spaces
of representations of such quivers modulo the automorphisms of vertices. Currently in the
literature two types of Nakajima quiver varieties attract a significant amount of interest
– ADE-type quivers and their a�ne cousins, which are ubiquitous to many branches of
mathematics (we shall focus solely on the A-type quivers), and Atiyah-Drinfeld-Hitchin-
Manin (ADHM) quivers which arise in the study of moduli spaces of sheaves on surfaces
Fig. 1. These two types of quiver varieties are typically discussed independently and the
goal of the current paper is to build a bridge between geometric properties of these spaces.
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Figure 1. Left: An�1 quiver variety with framing on the last node (cotan-
gent bundle to a flag variety). Right: The ADHM quiver.

Indeed, at first, these two quiver varieties look completely di↵erent – the former is An-
type quiver with n vertices, while the latter has only one framed vertex and a loop. Yet
we claim that there is a nontrivial correspondence between equivariant K-theories of these
varieties. In particular, we shall demonstrate (see Theorems 3.3 and 4.6) the equivalence
between the following spaces

• T-equivariant K-theory of the moduli space of genus zero quasimaps to An-type
quiver Xn shown on the left in Fig. 1.

KT(QM(P1
, Xn)).

We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal
torus of GL(n,C)⇥C⇥

q ⇥C⇥
~ , where GL(wi,C)⇥C⇥

~ acts as automorphisms of Xn

and C⇥
~ scales the cotangent directions with weight ~, while C⇥

q acts multiplicatively
on the base curve.

• C⇥
q ⇥ C⇥

~ -equivariant K-theory of the ADHM moduli space

kM

l=0

Kq,~(MADHM) .

Based on 1908.04394

https://math.berkeley.edu/~pkoroteev/
https://cmsa.fas.harvard.edu/10-9-2019-quantum-matter-seminar/
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://www.berkeley.edu
https://arxiv.org/abs/1908.04394


Seiberg-Witten Solution
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parameterized by u. For u 6= ⌥1 it can be checked that
(@F/@z, @F/@p) does not vanish on Eu, so each Eu is non-
singular. Then F(p, z) implicitly defines a locally holo-
morphic map p = p(z). The exceptions to this occur at
z = 0,1, z±, where

z± = �u± i

p
1� u2 (15)

are the roots of p2 = 0 (i.e. classical turning points). In
a vicinity of these four branching points p(z) behaves as

p ⇠ z
�1/2

, (z ⇠ 0) (16)

p ⇠ z
1/2

, (z ⇠ 1) (17)

p ⇠ (z � z±)
1/2

, (z ⇠ z±) (18)

respectively, i.e. p(z) is locally double-valued. (Note that
we have added a point at z = 1 to the complex plane,
thereby rendering it compact and topologically equiva-
lent to a Riemann sphere, Fig. 4). To make sense of this
double-valuedness, we first introduce two cuts between
the four branching points. For convenience we have cho-
sen to do so between 0,1 and the turning points z±.
Upon this cut domain, p(z) is locally holomorphic.

FIG. 4: (a) Complex z-plane with two cuts. (b) It
compactifies to Riemann sphere with two cuts.

We then introduce a second sheet of the z-plane and
the corresponding Riemann sphere, cut in the same way
as the first. We then analytically continue p(z) on the
first sheet across the cuts onto the second sheet. If p(z)
is analytically continued across the branch cut again, we
arrive back on the first sphere where we started. In this
way, we obtain p(z) as a locally holomorphic function,
whose domain is a doubly-branched cover of the Riemann
sphere. Furthermore, suppose we open up the branch
cuts, keeping track where on the other branch p(z) will
be, if we cross one side of a cut. Identifying these edges
one obtains a torus as in Fig. 5 (where the arrows are
used to signify the glued together edges). Thus the com-
plex algebraic curve Eu can be understood as a compact
Riemann surface of genus g = 1 (generically, every com-
pact Riemann surface is topologically a sphere with some
number of handles g, called the genus of the surface).

In the exceptional points u = ⌥1 the two turning
points collide (z+ = z� = ±1) and the branch cut be-
tween them collapses. The Riemann surface degenerates
into a sphere with two points identified, a singular sur-
face of genus 0. This coincides with one of the loops of
the torus becoming contractible to a point, Fig. 6.

FIG. 5: Construction of Riemann surface of genus 1. Two
Riemann spheres with two cuts each are deformed into
tubes to make the gluing in the final step more clear.

FIG. 6: Riemann surface of genus-1 with two basic cycles �0
and �1 on it. In the limit u ! ⌥1 the torus degenerates
into a singular surface. This coincides with the loop �0
(but not �1) becoming contractible to a point.

A. Integration and topology on torus

The action integrals can be understood as S =
H
�
�

over classical trajectories, where

�(u) = p(✓) d✓ = p(z)
dz

iz
=

(z2 + 2uz + 1)1/2

iz3/2
dz (19)

is the action 1-form which meromorphic on the torus. To
visualize the relevant trajectories we momentarily return
to ✓ and consider it as complex. In this representation
one has square-root branch cuts along the real axis, con-
necting the classical turning points. The action integrals
run just above or below the real axis in between the turn-
ing points. Combining them into closed cycles, one can
push these cycles o↵ the real axis and away from the
turning points without altering the action integrals (by

0 cycle 

vanishes

u = �1

generic 

fiber

u = 1

I

�0

� ! 0I

�1

� ! 0

u = 1
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Cauchy theorem). The two deformed cycles, shown in
Fig. 7, are hereafter called �0 and �1.

FIG. 7: The classically allowed (forbidden) region at energy
2u are shown by the solid (dashed) gray line. A classical
(instanton) periodic orbit, in the complex ✓-plane, leads to
�0(�1) cycles.

Translating these two cycles to the complex z-plane
yields the contours of Fig. 8. Notice that these are in-
deed cycles (i.e. closed contours) owing to the crossing of
branch cuts. On the Riemann surface both wind around
the torus. For this reason, the integrals Sj(u) =

H
�j

�

are known as periods of Eu with respect to �(u). One
can see that the residue of the action form (19) at infin-
ity is zero. Indeed, at large z we have � ⇠ dp. Therefore
we can safely deform the contour around infinity in the
z-plane. Let us consider cycles �0, �1 as defined in Fig. 6.
Any closed cycle on the torus (after appropriate defor-
mation) can be decomposed into a superposition of an
integer number of these two basic cycles. For example,

FIG. 8: (Color online) Cycles �0 and �1 on the complex
z-plane for u = �0.9. Notice that cycle �1 crosses twice
the two cuts from first branch (solid blue line) to second
branch (dashed red line) and back.

the cycles �0 and �1 are

�0 = �0, �1 = 2�1 � �0 . (20)

This is evident if one examines the manner in which these
cycles encircle around the torus. Formally, the basic cy-
cles generate the first homology group of the torus (since
cycles which are alike in this manner are homologous).
One can also consider the first cohomology group of the

torus, generated by two independent 1-forms on the Rie-
mann surface modulo exact 1-forms (the latter integrate
to zero for all cycles on the torus by Stokes’ theorem).
In this work we consider meromorphic 1-forms with zero
residues. Modulo exact forms they are dual to 1-cycles
on the torus by the de Rham theorem31. The duality im-
plies that there are exactly as many independent 1-forms
to integrate upon the surface as independent 1-cycles to
integrate along the surface. For the torus the cohomol-
ogy, like the homology, is two-dimensional, i.e. any three
(or more) 1-forms on the torus are linearly dependent up
to an exact form.

B. Picard-Fuchs equation

As a result, there must exist a linear combination of
1-forms {�00(u),�0(u),�(u)} which is an exact form, here
primes denote derivatives w.r.t. u. This combination
may be found by allowing for (u-dependent) coe�cients
in front of the three 1-forms and looking for an exact
form dz[P2(z)z�1/2(z2 + 2uz + 1)�1/2], where P2(z) is a
second degree polynomial with u-dependent coe�cients.
Matching coe�cients for powers of z leads to 5 equations
for 6 unknown parameters, determining the sought com-
bination up to an overall multiplicative factor. This way
one finds that the operator L = (u2

� 1)@2
u
+1/4 acts on

�(u) as

L�(u) =
d

dz


i

2

1� z
2

z1/2(z2 + 2uz + 1)1/2

�
. (21)

It follows from Stokes’ theorem and the exactness of
L�(u) that LSj(u) = 0 since �j is a cycle on the torus.
Thus Sj(u) satisfies the linear second order ODE16

(u2
� 1)S00

j
(u) +

1

4
Sj(u) = 0 . (22)

This is an example of the Picard-Fuchs equation32,33 (see
Ref. [34] for a review). Exactly this equation appears
extensively in the context of Seiberg-Witten theory.
Inspecting the coe�cient in front of the highest deriva-

tive, one notices that equation (22) has regular singular
points at u = 1 and u = ⌥1, where the torus degener-
ates into a sphere, Fig. 6. Changing variable to u

2, this
equation may be brought to the standard hypergeometric
form35. In the domain | arg(1 � u

2)| < ⇡ it admits two
linearly independent solutions of the form F0(u2) and

Provides mass spectrum of BPS particles
of N=2 gauge theory in 4d in the infrared
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sponding periods (possibly with a sign change). This is
achieved by having �integer/4 and �integer/(2⇤3) pow-
ers in the corresponding solutions.

VIII. CONNECTIONS TO SEIBERG-WITTEN
SOLUTION

Here we briefly review the main features of Seiberg-
Witten (SW) solution12,13, which were adopted in our
calculations17. The original SW construction gives the
spectrum of a four-dimensional supersymmetric SU(2)
Yang Mills theory (SYM). Spectrum of the infrared the-
ory appears to be given by the set of electrically and
magnetically charged particles (BPS dyons), which are
di↵erent from the fundamental particles of the initial UV
theory. The latter consists of a vectormultiplet trans-
forming in the adjoint representation of SU(2), whose
components are: one complex scalar field �, pair of Weyl
fermions (gluini) and a SU(2) gauge field (gluon). In a
classical UV vacuum � aligns along the Cartan generator
of su(2) as h�i = a�3/2, where the complex expectation
value a parameterizes the manifold of classical vacua. In
the quantum theory a more convenient coordinate is

u = htr�2
i (88)

(such that in the classical limit u ! 1 one has u ⇠ a
2),

defining the moduli space of quantum vacua of the theory
Mu.

Given the expectation value a, one defines the gen-
erating function (prepotential) F(a) as a logarithm of
the partition function of the theory, restricted by h�i =
a�3/2. It allows to introduce a canonically conjugated
complex variable

aD =
@F(a)

@a
, (89)

where one may regard (a, aD) as the coordinate and mo-
mentum on Mu. The underlying supersymmetry allows
to argue that a(u) and aD(u) are holomorphic functions
on the moduli space, safe possibly for few isolated singu-
lar points. In the UV limit u ! 1, one finds a one-loop
correction of the form

aD ⇠
ia

⇡

✓
1 + ln

a
2

⇤2

◆
, (90)

where ⇤ is a dynamical scale. Recall that a ⇠
p
u in

this region. Therefore, when the argument of u changes
by 2⇡i, a changes its sign and aD transforms as aD !

�aD + 2a. This rule can be parameterized using the
following monodromy matrix in the (aD, a) basis

M1 =

✓
�1 2
0 �1

◆
. (91)

To find the spectrum of the IR theory means to com-
pute masses of particles which are protected by super-
symmetry (so called BPS dyons). BPS mass formula

reads

Mne,nm(u) = |nea(u) + nmaD(u)| , (92)

where (ne, nm) are electric and magnetic charges of a
dyon respectively, e.g. a monopole has (ne, nm) =
(0,±1). The above relationship can be understood semi-
classically (at large u) by evaluating the energy func-
tional for the UV theory on the electrically and magneti-
cally charged configurations. The N = 2 supersymmetry
guarantees that the very same formula works at strong
coupling as well. There are special loci in the u plane
where the masses (92) vanish. One can identify these
points as singularities for a and aD.

Let us look at the point u0, where the monopole be-
comes massless aD(u0) = 0. By a conformal transforma-
tion one may always scale u0 = 1. In a vicinity of this
point aD behaves as aD / (u � 1), thus near this point
aD(u) is holomorphic, while a(u) is expected to be sin-
gular. Performing a one-loop calculation similar to the
one near u = 1, in the framework of dual theory, one
obtains a relation similar to (90)

a ⇠
iaD

⇡
ln

aD

⇤
. (93)

Recalling that aD ⇠ (u�1), one finds for the monodromy
matrix near u = 1, again in (aD, a) basis:

M1 =

✓
1 0
�2 1

◆
. (94)

From the symmetry considerations one may argue that
there should be at least one more singularity in addition
to u = 1 and u = 1. It follows from the fact that if
a singularity exists at some value of u0 there ought to
be another one at �u0. The Z2 symmetry, which flips
the sign of u, is a result of breaking of the global U(1)
symmetry (so-called R-symmetry) of IR action. The lat-
ter is a remnant of the analogous symmetry in the UV
theory which is common for gauge theories with an ex-
tended supersymmetry. It exists on the classical level,
but is broken by quantum corrections (both perturbative
and instanton) down to the Z2 for u = htr�2

i. There-
fore, there are at least three singularities in Mu, e.g. at
u = 1 and u = ±1. The third singular point u = �1 cor-
responds to a massless dyon of unit electric and magnetic
charges a(�1) + aD(�1) = 0. The monodromy matrix
around it can be computed employing completeness re-
lation M1M�1 = M1 in the complex u-plane.

The non-trivial realization of the SW construction is
that complex variables (aD(u), a(u)), with the analytic
properties deduced above, may be viewed as periods of
algebraic curves (tori) Eu, defined over the moduli space
Mu, with respect to some meromorphic di↵erential �SW .
The simplest way to parameterize such a curve is

Eu : F(y, x) = y
2
� (x� u)(x� 1)(x+ 1) = 0 , (95)

where x, y are complex. The above equation describes a
double cover of the x-plane branched over the four points

Potential

UV vacuum
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sponding periods (possibly with a sign change). This is
achieved by having �integer/4 and �integer/(2⇤3) pow-
ers in the corresponding solutions.
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i (88)

(such that in the classical limit u ! 1 one has u ⇠ a
2),
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Given the expectation value a, one defines the gen-
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correction of the form
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2
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◆
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where ⇤ is a dynamical scale. Recall that a ⇠
p
u in
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To find the spectrum of the IR theory means to com-
pute masses of particles which are protected by super-
symmetry (so called BPS dyons). BPS mass formula

reads

Mne,nm(u) = |nea(u) + nmaD(u)| , (92)

where (ne, nm) are electric and magnetic charges of a
dyon respectively, e.g. a monopole has (ne, nm) =
(0,±1). The above relationship can be understood semi-
classically (at large u) by evaluating the energy func-
tional for the UV theory on the electrically and magneti-
cally charged configurations. The N = 2 supersymmetry
guarantees that the very same formula works at strong
coupling as well. There are special loci in the u plane
where the masses (92) vanish. One can identify these
points as singularities for a and aD.

Let us look at the point u0, where the monopole be-
comes massless aD(u0) = 0. By a conformal transforma-
tion one may always scale u0 = 1. In a vicinity of this
point aD behaves as aD / (u � 1), thus near this point
aD(u) is holomorphic, while a(u) is expected to be sin-
gular. Performing a one-loop calculation similar to the
one near u = 1, in the framework of dual theory, one
obtains a relation similar to (90)
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Recalling that aD ⇠ (u�1), one finds for the monodromy
matrix near u = 1, again in (aD, a) basis:

M1 =
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. (94)

From the symmetry considerations one may argue that
there should be at least one more singularity in addition
to u = 1 and u = 1. It follows from the fact that if
a singularity exists at some value of u0 there ought to
be another one at �u0. The Z2 symmetry, which flips
the sign of u, is a result of breaking of the global U(1)
symmetry (so-called R-symmetry) of IR action. The lat-
ter is a remnant of the analogous symmetry in the UV
theory which is common for gauge theories with an ex-
tended supersymmetry. It exists on the classical level,
but is broken by quantum corrections (both perturbative
and instanton) down to the Z2 for u = htr�2

i. There-
fore, there are at least three singularities in Mu, e.g. at
u = 1 and u = ±1. The third singular point u = �1 cor-
responds to a massless dyon of unit electric and magnetic
charges a(�1) + aD(�1) = 0. The monodromy matrix
around it can be computed employing completeness re-
lation M1M�1 = M1 in the complex u-plane.

The non-trivial realization of the SW construction is
that complex variables (aD(u), a(u)), with the analytic
properties deduced above, may be viewed as periods of
algebraic curves (tori) Eu, defined over the moduli space
Mu, with respect to some meromorphic di↵erential �SW .
The simplest way to parameterize such a curve is

Eu : F(y, x) = y
2
� (x� u)(x� 1)(x+ 1) = 0 , (95)

where x, y are complex. The above equation describes a
double cover of the x-plane branched over the four points
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FIG. 2: (Color online) Band structure for (2, 1) gas with
↵ = 1, cf. Fig. 1b, vs. boundary charge (quasi-
momentum) q. For the complex bands the real part of
✏m(q) is shown in dashed blue.

of two real and two complex bands. For larger values of
↵ there is a sequence of entirely complex narrow bands,
cf. Fig. 1d.

Figure 3 shows normalized spectra for several di↵erent
combinations of charges on the complex energy plane of
u, Eq. (11), at large concentration ↵ = 200. One may
notice odd number n1 + n2 or n1 + n2 � 1 of spectral
sequences, consisting of order

p
↵ exponentially narrow

bands, seen as points. The central sequence goes along
the real axis terminating at the bottom of the spectrum
near u = �1. The other appear in conjugated pairs
terminating near the roots of unity u = �(1)1/(n1+n2).
Close to the termination points the band sequences align
along the lines pointing towards u = 1. Further away
from the termination points they deviate from these lines
and may coalesce.

Although thermodynamics and transport properties of
the Coulomb gases are merely determined by the lowest
band ✏0(q), below we address the wider spectral prop-
erties of Hamiltonians (8), presented in Figs. 1 – 3. To
this end we develop a semiclassical theory which is best
suited for the description of exponentially narrow bands
present at large concentration ↵ & 1.

IV. MONOVALENT (1,1) GAS

To introduce the methods, we first develop a semiclas-
sical spectral theory for the Hermitian Hamiltonian (8),
(9) with n1 = n2 = 1. To this end we look for wavefunc-

tions in the form  = e
i↵

1/2
S , where S is an action for

the classical problem with the normalized Hamiltonian

2u = p
2
� 2 cos ✓ , (12)

-1 1 2 3

-1.0

-0.5
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1.0

(a) (2, 1)

-1 1 2 3
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1.0
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1.0

(c) (4, 1)

-1 1 2 3

-1.0

-0.5

0.5

1.0

(d) (3, 2)

FIG. 3: (Color online) Complex plane of normalized energy
u, Eq. (11), for ↵ = 200 and various valences (n1, n2). The
dotted circle is |u| = 1, the dashed lines connect spectrum
termination points u = �(1)1/(n1+n2) and u = 1,
indicating positions of narrow complex bands.

where u = ✏/(2↵), so u = ⌥1 correspond to the bottom
(top) of the cosine potential. The semiclassical calcu-
lations require knowledge of the action integrals. Our
approach to such integrals is based on complex algebraic
geometry. First, let z = e

i✓ and consider (z, p) as com-
plex variables. Since p(z) resides on the constant energy
hypersurface

2u = p
2
�

✓
z +

1

z

◆
, (13)

we have a family of complex algebraic curves

Eu : F(p, z) = p
2
z � (z2 + 2uz + 1) = 0 (14)

� = p
dz

z

In IR spectrum given by 
period integrals of the curve

Using S-duality define dual 
magnetic variables
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To find the spectrum of the IR theory means to com-
pute masses of particles which are protected by super-
symmetry (so called BPS dyons). BPS mass formula

reads

Mne,nm(u) = |nea(u) + nmaD(u)| , (92)

where (ne, nm) are electric and magnetic charges of a
dyon respectively, e.g. a monopole has (ne, nm) =
(0,±1). The above relationship can be understood semi-
classically (at large u) by evaluating the energy func-
tional for the UV theory on the electrically and magneti-
cally charged configurations. The N = 2 supersymmetry
guarantees that the very same formula works at strong
coupling as well. There are special loci in the u plane
where the masses (92) vanish. One can identify these
points as singularities for a and aD.

Let us look at the point u0, where the monopole be-
comes massless aD(u0) = 0. By a conformal transforma-
tion one may always scale u0 = 1. In a vicinity of this
point aD behaves as aD / (u � 1), thus near this point
aD(u) is holomorphic, while a(u) is expected to be sin-
gular. Performing a one-loop calculation similar to the
one near u = 1, in the framework of dual theory, one
obtains a relation similar to (90)
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Recalling that aD ⇠ (u�1), one finds for the monodromy
matrix near u = 1, again in (aD, a) basis:
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From the symmetry considerations one may argue that
there should be at least one more singularity in addition
to u = 1 and u = 1. It follows from the fact that if
a singularity exists at some value of u0 there ought to
be another one at �u0. The Z2 symmetry, which flips
the sign of u, is a result of breaking of the global U(1)
symmetry (so-called R-symmetry) of IR action. The lat-
ter is a remnant of the analogous symmetry in the UV
theory which is common for gauge theories with an ex-
tended supersymmetry. It exists on the classical level,
but is broken by quantum corrections (both perturbative
and instanton) down to the Z2 for u = htr�2

i. There-
fore, there are at least three singularities in Mu, e.g. at
u = 1 and u = ±1. The third singular point u = �1 cor-
responds to a massless dyon of unit electric and magnetic
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around it can be computed employing completeness re-
lation M1M�1 = M1 in the complex u-plane.

The non-trivial realization of the SW construction is
that complex variables (aD(u), a(u)), with the analytic
properties deduced above, may be viewed as periods of
algebraic curves (tori) Eu, defined over the moduli space
Mu, with respect to some meromorphic di↵erential �SW .
The simplest way to parameterize such a curve is

Eu : F(y, x) = y
2
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where x, y are complex. The above equation describes a
double cover of the x-plane branched over the four points
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Figure 1.1. The three major ways to construct N = 2 theories

Riemann surface embedded as a supersymmetric cycle in some ambient
geometry, and it is believed that the global features of the embedding
should play virtually no rôle in the effective gauge theory dynamics.

Another way of engineering N = 2 theories, using string theory, is
the so-called geometric engineering [14, 15], which is the study of the
gravity-decoupled limit of the IIA compactification on a Calabi-Yau
threefold, with the Calabi-Yau becoming effectively non-compact. A
large class of models comes from toric Calabi-Yau’s. One then employs
the local mirror symmetry to generate curves with differentials, whose
periods capture the special geometry of the N = 2 theory.

In our work we presented another characterization of the integrable
systems underlying the special geometry of the N = 2 theories with
the superconformal ultraviolet limit. Namely, we identify these systems
with the moduli spaces of some gauge/Higgs configurations, such as
monopoles or instantons, with the gauge group Gq corresponding to
the quiver diagram encoding, among other things, the matter sector of
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BPS/CFT
• Physically: Connects BPS observables of N=2 

supersymmetric gauge theories with CFT correlators 

• Mathematically: Relates structures arising on moduli 
spaces of sheaves (instantons) with vertex operator 
algebras 

• Canonical example: [Alday Gaiotto Tachikawa]  
Partition functions vs. CFT conformal blocks  
Symmetries of the instanton moduli spaces vs. 
Vertex operator algebras 



BPS/CFT (AGT)
Gauge theory in Omega background
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Nekrasov used it to count instantons which localize on the tip

AGT states that ZNek = FCFT

Omega background data is matched with the CFT central charge and 
(q)VOA (i.e. W-algebra) data
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AGT Correspondence
Class-S theories are constructed in M-theory with M5 branes 
wrapping M4 ⇥ C [Gaiotto]

Twisted compactification of the theory on M5 branes — (2,0) 6d 
theory on     leads to N=2 theory on  M4C

q1

AGT: ZNek = FCFT

N=2* SU(2) 4d gauge 
theory on

with adj hyper of mass m

Liouville CFT on a torus
with one puncture

2

gauge coupling ⌧
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BPS/CFT and Geometry

One of our goals is to understand BPS/CFT geometrically

Namely we want describe instanton counting and vertex operator 
algebras in terms of quantum geometry (quantum cohomology 
or quantum K-theory) of some family of spaces

Mathematicians have now several proofs of BPS/CFT (AGT) in limiting 
cases (no fundamental matter), those proofs do not use the original 
class-S construction

Physics proof* by Kimura and Pestun uses direct localization computations 

[Schiffmann Vaserot] [Negut]

In other words we want  (q)VOAs to emerge from quantum geometry
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the quiver gauge theory in question. Indeed, the instanton partition function Z of the 5d
theory truncates into a 3d vortex partition function of the defect theory. Note that it’s a
di↵erent kind of defect than the one we just talked about. In M-theory approach of [AT10]
this is a codimension four defect vs. the codimension two defect in the N = 1⇤ theory.

2.8. Matching. In the Higgsing procedure which we have described above the An�1 quiver

yields an M ⇥ n matrix of integers µ(i)
mj , where i = 1, . . . , n and j = 1, . . . ,M . There

are two natural ways to combine those numbers into partitions. If we form a Young
tableaux by combining the matrix elements in rows we get we shall get an n-tuple of

tableaux: µmi =
n
µ(1)
mi , . . . , µ

(n)
mi

o
. Then we can construct an M -tuple of such partitions

µ = {µm1 , . . . , µmM }.
We can see that (2.14) matches with (2.12) upon identifying q2 with q3 and � =�

�(1), . . . ,�(M)
 
with µ provided that a` = a2 for all `! Note that not all �(i)

j (or µi
mj

)
must be nontrivial.

To summarize, the proposed duality works as follows. From the folded instantons con-
struction with branes along n = n12 and M = n13 directions we introduce a defect along
complex line C1 by adding a Zn orbifold � along directions 2 and 4. Due to the symmetry
between 2 and 3 directions we conclude that in the decoupling limit q ! 0 and upon im-
posing ‘quantization conditions’ (2.12) (equivalently (2.14)) the origami partition function
(2.7) turns into a generalized Macdonald polynomial P�.

2.9. Fourier-Mukai Transform. Given the way we formed tuple of partitions µ above
we can reformulate our main result. Indeed, if we apply the so-called (bi)spectral duality
to the An�1 quiver gauge theory with U(M) gauge groups then we’ll arrive at AM�1 gauge
theory with U(n) gauge (and flavor) symmetries. Indeed, in brane realization the spectral
duality corresponds to interchanging NS5 and D5 branes which are used in Hanany-Witten
type constructions of 5d quiver gauge theories. After this 90� turn of branes partitions µ
describe the data of bona fide codimension four defect in the AM�1 quiver gauge theory
with framing.

In other words, the partition function of the maximal monodromy defect in U(n) 5d
N = 1⇤ theory is on locus (2.12) can be identified with the codimension four defect of
the 5d AM�1 quiver gauge theory. Equivalently the above spectral transformation can be

described by rotating partitions µ(`)
mi by 90 degrees.

Notably we have demonstrated that a codimension-two defect is related to a codimension-
four defect by a brane rotation which is a manifestation of the Fourier-Mukai transform in
string theory (cf. [FGT16]).

3. Free Boson Realization and Algebras

3.1. Algebra E. The following algebras which depend on two parameters q1, q2 2 C⇥ are
isomorphic to each other

(3.1) Uq1,q2

✓
ccgl1

◆
' Eq1,q2 ' gl1DAHAS

q1,q2 ' DIMq1,q2 ' D(Ashu✏e) ,E '



Recent Developments
Vertex Algebras at the Corner [Gaiotto Rapcak]

The Magnificent Four [Nekrasov]

VOAs at junctions of supersymmetric intersections in N=4 SYM

D8 brane probed by D0 branes in B field

Quiver W-algebras [Kimura Pestun]
4,5,6d quiver gauge theories on R^4 x S in Omega background

U(1)4 ⇢ Spin(8)
q1, q2, q3, q4

+ additional nongeometric U(1) symmetry

COHA and VOAs [Rapcak Soibelman Yang Zhao]
Action of COHA on the moduli space of spiked instantons



Large-n Limit

Gauge theories are known to have effective description when the  
rank of the gauge group becomes large

Similar ideas work in mathematics — stable limits

String theory enjoys large-n dualities

AdS/CFT,   Gopakumar-Vafa 

U(n) n ! 1

We shall see that BPS/CFT can be viewed as a 
large-n duality!



Triality

N=2 gauge theories

Integrable many-body
systems

Representation theory 
Algebraic geometry

Large-n limits are manifest in each description!

n-particle Calogero model

ILW hydrodynamics

gl(n) DAHA

DI, Hall algebra, qW, etc.

U(n) theory+defect

U(1) theory

n ! 1 n ! 1

n ! 1 [PK Sciarappa]

[PK Sciarappa]
[Maulik Okounkov]

[Schiffmann Vaserot][Negut]

[Li, Costello]
Can skip this slide in talks shorter 
than 1 hrs



Nakajima Quiver Varieties
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

Rep(v,w) — linear space of quiver reps

µ : T ⇤Rep(v,w) ! Lie(G)⇤

G =
Y

GL(Vi)

moment map

X = µ�1(0)//GNakajima quiver variety

Aut(X) =
Y

GL(Qij)⇥
Y

GL(Wi)⇥ C⇥
~Automorphism group

Maximal torus T = T(Aut(X))

Tensorial polynomials of tautological bundles Vi, Wi and their duals 
generate classical T-equivariant K-theory ring of X
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where the symbol µ−1(0)s denotes the intersection of the set µ−1(0) ⊂ T ∗R with the
stable locus corresponding to injective elements in R:

stable points in T ∗R = {(A,B) : rank(A) = k}.(3)

Now we give the description of fixed points on Nk,n, tautological bundles, torus
action and equivariant K-theory once again, this time from the perspective of Nakajima
varieties. First, we note that Nk,n is naturally equipped with the following tautological
bundles:

V = µ−1(0)s × V/GL(V ), W = µ−1(0)s ×W/GL(V ).

Since GL(V ) does not act on W the bundle W is trivial, and because A is injective we
have V ⊂ W and thus V ⊂ W.

More generally, letKGL(V )(·) = Λ[s±1
1 , s±1

2 , · · · , s±1
k ] be the ring of symmetric Laurent

polynomials in k variables. Every such polynomial τ ∈ KGL(V )(·) is a character of some
virtual representation τ(V ) of GL(V ) (tensorial polynomial in V and V ∗).2 We denote
the corresponding virtual tautological bundles on Nk,n by the same symbol τ :

τ = (µ−1(0)s × τ(V ))/GL(V ).

The tautological bundles τ can be uniquely represented by the symmetric Laurent poly-
nomials in the corresponding Chern roots of V and thus there should be no confusion
in our notations.

We set a framing torus A = C×a1 × · · ·× C×an to be a n-torus acting on W by scaling
the coordinates with characters ai. Let C×! be a one-torus acting on T ∗R by scaling
the cotangent directions with character !. We adopt the notation T = A× C×! .

The action of T on T ∗R induces its action on Nk,n. The fixed set NT
k,n consists of

n!/k!/(n−k)! isolated points representing the k-planes spanned by coordinate vectors.
They are conveniently labeled by k-subsets p = {x1, · · · , xk} ⊂ {a1, · · · , an}.

Let us set the following notation for the disjoint union of Nk,n for all k:

N(n) =
n∐

k=0

Nk,n,

so that the fixed point set N(n)T consists of total 2n points.
The equivariant K-theory KT(N(n)) is a module over the ring of equivariant con-

stants: R = KT(·) = Z[a±1 , · · · , a±1
n , !±1]. The localized K-theory

KT(N(n))loc = KT(N(n))
⊗

R

A =
n⊕

k=0

KT(Nk,n)
⊗

R

A(4)

is an A-vector space (A = Q(a1, · · · , an, !)) of dimension 2n spanned by the K-theory
classes of fixed points Op.

2For example, the polynomial

τ(s1, · · · , sk) = (s1 + · · ·+ sk)
2 −

∑

1≤i1<i2<i3≤k

s−1
i1

s−1
i2

s−1
i3

corresponds to τ(V ) = V ⊗2 − Λ3V ∗.

Ex: T*Grassmannian

v1 = k, w1 = n
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Mention stability conditions here



Evaluation map

evp(f) = f(p) 2 [µ�1(0)/G] � X

Stable if f(p) 2 X

for all but finitely many singular points

74 K-theoretic computations in enumerative geometry

Figure 6.3.3 is a pictorial representation of this data. Note that nonsingularity at

Figure 6.3.3. A quasimap relative a point p P C is a quasimap
from a semistable curve C 1 whose stabilization collapses a chain
of rational curves to p.

p and the nodes implies f 1 takes the generic point of each component of C 1 to X.
Two quasimaps are isomorphic, if they fit into a diagram of the form

C 1
1

φ

!!

f1

""❄
❄

❄
❄

π1

##⑧⑧
⑧
⑧
⑧
⑧
⑧

C X

C 1
2

f2

$$
⑧

⑧
⑧

⑧
π2

%%❄❄❄❄❄❄❄❄

where φ is an isomorphism which preserves the marked point. Since

AutpC 1,π,pq “
`
Cˆ˘# of new components

a quasimap has a finite group of automorphism if and only if each component of
C 1 is either mapped nonconstantly to X or has at least one singular point.

6.3.4. A quasimap to X may be composed pointwise with the projection to the
affine quotient

X0 “ µ´1p0q{G “ Spec pG-invariantsq ,

which has to be constant since X0 is affine. This gives a map QMpXq Ñ X0, and
similarly for relative quasimaps.

By a general result of [20], the moduli space of both ordinary and relative
quasimaps is proper over X0. Our goal in this section is to get a feeling for how
this works and, in particular, to explain the logic behind the definition of a relative
quasimap.

6.3.5. The key issue here is that of completeness, which means that we should
be able to fill in central fibers for maps

g : Bˆ Ñ QMpXqrelative p ,

where Bˆ “ Bzt0u and B is a smooth affine curve with a point 0, under the
assumption that the corresponding map to X0 extends to B.

Resolve to make proper ev map 

Quasimaps
Quasimap f : C �� ! X is described by collection of vector bundles

4 PETER KOROTEEV, PETR P. PUSHKAR, ANDREY V. SMIRNOV, AND ANTON M. ZEITLIN

as automorphisms of X, where Qij stands for the number of edges between vertices i and
j, C! scales cotangent directions with weight ! and therefore symplectic form with weight
!−1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:
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on C viof ranks with section satisfying µ = 0

where
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

Degree (v1, . . . ,vn�1)

QMd

value of a quasimap defines a map to 
a quotient stack which contains stable 
locus as an open subset

Skip if a talk is short



Vertex Function (g=0)
Spaces of quasimaps admit an action of an extra torus      which scales the 
base       keeping two fixed points (0, infinity)

Cq

P1

Define vertex function with quantum (Novikov) parameters
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Proposition 2.6. The multiplicative identity of QKT(X) is given by 1̂(z) (i.e. the quan-

tum tautological class for insertion ⌧ = 1).

Proof. The diagrammatic proof given in [PSZ16] can be applied to any Nakajima quiver
variety. ⇤

2.5. Vertex functions. The spaces QMd
nonsing p2 and QMd

relative p2 admit an action of an

extra torus Cq which scales the original P1 keeping points p1 and p2 fixed. Set Tq = T⇥Cq

be the torus acting on these spaces.

Definition 2.7. The element

V
(⌧)(z) =

1X

d=~0

z
devp2,⇤

⇣
QMd

nonsing p2 ,
bOvir⌧(Vi|p1)

⌘
2 KTq(X)loc[[z]]

is called bare vertex with descendent ⌧ . In picture notation it will be denoted by

⌧

The space QMd
nonsing p2 is not proper (the condition of non-singularity at a point is an

open condition), but the set of Tq-fixed points is, hence the bare vertex is singular at q = 1.

Definition 2.8. The element

V̂
(⌧)(z) =

1X

d=~0

z
devp2,⇤

⇣
QMd

relative p2 ,
bOvir⌧(Vi|p1)

⌘
2 KTq(X)[[z]]

is called capped vertex with descendent ⌧ . In picture notation it will be represented by:

⌧

Note here, that the definition of the capped vertex and the definition of quantum tau-
tological classes are very similar with the main di↵erence being the spaces they live in.
By definition, the quantum tautological classes can be obtained by taking a limit of the
capped vertex: limq!1 V̂

(⌧)(z) = ⌧̂(z). The last limit exists as the coe�cients of V̂ (⌧)(z)
are Laurent polynomials in q, due to the properness of the evaluation map in the relative
case.

In fact, the following strong statement is known about capped vertex functions.

Theorem 2.9. Power series V̂
(⌧)(z) is a Taylor expansion of a rational function in quan-

tum parameters z.

Proof. There are two di↵erent proofs of this theorem: the first is based on large fram-
ing vanishing [Smi16], the second originates from integral representations of solutions of
quantum di↵erence equations [AO]. ⇤

As a corollary, quantum tautological classes ⌧̂(z) are rational functions of z.

[PK Pushkar Smirnov Zeitlin]

Define quantum K-theory as a ring with multiplication
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Definition 2.2. An element of the quantum K-theory

(8) ⌧̂(z) =
1X

d=
�!
0

z
devp2,⇤

⇣
QMd

relative p2 ,
bOvir⌧(Vi|p1)

⌘
2 QKT(X)

is called quantum tautological class corresponding to ⌧ . In picture notation it will be rep-

resented by

⌧

These classes evaluated at 0 are equal to the classical tautological classes onX (⌧̂(0) = ⌧).
For any element F 2 KT(X) the following element

(9)
1X

d=
�!
0

z
devp1,p3⇤

⇣
QMd

p1,p2,p3 , ev
⇤
p2(G

�1
F)bOvir

⌘
2 KT(X)⌦2[[z]]

can be made into an operator from the second copy of KT(X) to the first copy by the
bilinear form (·, ·) defined above. We define the operator of quantum multiplication by F

to be this operator shifted by G�1, i.e

(10) F~ =
1X

d=
�!
0

z
devp1,p3⇤

⇣
QMd

p1,p2,p3 , ev
⇤
p2(G

�1
F)bOvir

⌘
G�1

Definition 2.3. The quantum equivariant K-theory ring of X is vector space QKT(X) =
KT(X)[[z]] endowed with multiplication (10).

This product enjoys properties similar to the product in quantum cohomology. The
proof of the following statement is analogous to the proof of the analogous fact for the
cotangent bundle to Grassmannian [PSZ16].

Theorem 2.4. The quantum K-theory ring QKT(X) is a commutative, associative and

unital algebra.

The operators of quantum multiplication by the quantum tautological bundles obey
the most natural properties. First, assuming Kirwan’s K-theoretic surjectivity conjecture,
we have the following result.

Proposition 2.5. Quantum tautological classes generate the quantum equivariant K-

theory over the quantum equivariant K-theory of a point QKT(·) = C[a±1
m ][[zi]] where am

for m = 1 · · · dimT are the equivariant parameters of T.

Proof. Since, assuming Kirwan’s K-theoretic surjectivity conjecture, classical K-theory is
generated by tautological classes, the quantum K-theory will be generated by quantum
tautological classes according to Nakayama’s Lemma. ⇤

Second, in contrast with quantum cohomology, the multiplicative identity of the quantum
K-theory ring does not always coincide with the multiplicative identity of classicalK-theory
(i.e. the structure sheaf OX):
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and call the corresponding ring quantum K-theory of Nk,n. The word “deformation”
here means that for two K-theory classes A,B we have

A!B = A⊗B +
∞∑

d=1

A!dBzd,

so that if the deformation parameter is equal to zero z → 0 (this special case is usually
referred to as classical limit), the quantum product ! coincides with the classical
tensor product ⊗. The definition of the quantum product follows closely the definition
of the product in quantum cohomology: the classes A !d B ∈ KT(N(n)) (quantum
corrections) are given by certain degree d curve counting in Nk,n.

Next, for a tautological bundle τ ∈ KT(Nk,n) as above, we define a deformation
which will be referred to as quantum tautological bundle:

τ̂ (z) = τ +
∞∑

d>0

τdz
d ∈ KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multipli-
cation by quantum tautological bundles. The following Theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 1. The eigenvalues of operators of quantum multiplication by τ̂ (z) are given
by the values of the corresponding Laurent polynomials τ(s1, · · · , sk) evaluated at the
solutions of the following equations:

n∏
j=1

si − aj
!aj − si

= z !−n/2
k∏

j=1
j ̸=i

si!− sj
si − sj!

, i = 1 · · ·k.(4)

When z = 0 we return to the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (4) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[31], [7] for a more detailed outline.

Let us consider a system of n interacting magnetic dipoles (usually refered to as
spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⊗ C2 ⊗ · · ·⊗ C2.(5)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = −
n∑

i=1

σi
x ⊗ σi+1

x + σi
y ⊗ σi+1

y +∆ σi
z ⊗ σi+1

z ,(6)

where ∆ = !1/2 + !−1/2 is the parameter of anisotropy and σi
m are the standard Pauli

matrices acting in the i-th factor of (5). The periodic boundary conditions are imposed

[Okounkov]

6 PETER KOROTEEV, PETR P. PUSHKAR, ANDREY V. SMIRNOV, AND ANTON M. ZEITLIN

The symmetrized virtual structure sheaf is defined by:

(6) Ôvir = Ovir ⌦ K 1/2
vir q

deg(P)/2
,

where Kvir = det�1
T
virQMd is the virtual canonical bundle and P is the polarization

bundle.
Since we will be using the symmetrized virtual structure sheaf we will need to adjust

the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = evp1,p2⇤(QM
d
relativep1,p2Ôvir) 2 K

⌦2
T (X)[[z]],(7)

so that the corresponding picture is : .

It plays an important role in the degeneration formula, see e.g. [Oko1512]. Namely, let a
smooth curve C" degenerate to a nodal curve:

C0 = C0,1 [p C0,2.

Here C0,1 and C0,2 are two di↵erent components that are glued to each other at point p.
The degeneration formula counts quasimaps from C" in terms of relative quasimaps from
C0,1 and C0,2, where the relative conditions are imposed at the gluing point p. The family
of spaces QM(C" ! X) is flat, which means that we can replace curve counts for any C"

by C0. In particular, we can replace counts of quasimaps from P1 by a degeneration of it,
for example by two copies of P1 glued at a point.

The gluing operator G 2 EndKT(X)[[z]] is the tool that allows us to replace quasimap
counts on C" by counts on C0,1 and C0,2, so that the following degeneration formula holds:

�(QM(C0 ! X), Ôvirz
d) =

⇣
G�1ev1,⇤(Ôvirz

d), ev2,⇤(Ôvirz
d)
⌘
.

The corresponding picture interpretation is as follows:

= = G�1

2.4. Quantum K-theory Ring. In this section we define multiplication and important
objects of the quantum K-theory ring of X.

As a vector space quantumK-theory ringQKT(X) is isomorphic toKT(X)⌦C[[z{i}]], i 2
I. We will often use the following notation: for a vector d = (di),

z
d =

Y

i2I
z
di
i .

1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).
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(6) Ôvir = Ovir ⌦ K 1/2
vir q

deg(P)/2
,

where Kvir = det�1
T
virQMd is the virtual canonical bundle and P is the polarization

bundle.
Since we will be using the symmetrized virtual structure sheaf we will need to adjust

the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = evp1,p2⇤(QM
d
relativep1,p2Ôvir) 2 K
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gluing

Say this in words: equivariant 
pushforward, etc. 

Moduli space of quasimaps has 
perfect deformation-obstruction 
theory. 
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of [28] and its main property can be expressed by the following formula:

χ(QM(C0 → X), Ôvirz
d) =

(
G−1ev1,∗(Ôvirz

d), ev2,∗(Ôvirz
d)
)
,

where

evi : QM(C0,i → X)relative gluing point → X

are the evaluation maps. The degeneration formula and the gluing operator can be
expressed using picture notation:

= = G−1 .

2.3. Quantum K-theory ring. From now on we consider quasimaps from P1, when
not stated otherwise. The equivariant K-theory of Nk,n is a commutative associative
algebra with respect to the tensor product ⊗. The quantum equivariant K-theory
QKT(Nk,n) is a one-parametric commutative deformation of the tensor product. We
denote the deformation parameter by z and the quantum tensor product by !. This
operation is constructed as follows.

Let (·, ·) be the bilinear form on K-Theory defined above. Using this bilinear form
one can define the operator of quantum multiplication by a class F ∈ KT(Nk,n) in the
following way:

F! =
∞∑

d=0

zdevp1,p3∗
(
QMd

p1,p2,p3, ev
∗
p2(G

−1F)Ôvir

)
G−1 ∈ KT(Nk,n)

⊗2[[z]](14)

where QMd
p1,p2,p3 is a moduli space with relative boundary conditions at each point and

G is the gluing operator. This expression is understood as an operator acting from
the second copy of KT(Nk,n) to the first using the bilinear form defined above. In the
picture notation this operator can be presented as:

G−1F
G−1

Note that the moduli space of degree zero quasimaps is isomorphic to Nk,n, which
implies that

F ! G|z=0 = F ⊗ G.
We will refer to z → 0 case as a classical limit. As we explain in the next section,
to construct the quantum K-theory ring it is not enough to consider quantum multi-
plication by classes from KT(Nk,n). For example, the multiplicative identity element
with respect to ! is in fact an element of KT(Nk,n)[[z]]. This motivates the following
definition of quantum K-theory.

Definition 2. The quantum equivariant K-theory ring of Nk,n is the vector space
QKT(Nk,n) = KT(Nk,n)[[z]] endowed with the multiplication (14).

Let us list a set of basic properties of these algebra.
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i2I
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1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).

 [Pushkar Smirnov Zeitlin]



Vertex for A-type Quivers
Each equivariant line bundle contributes with 
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Here the sum runs over the T-fixed quasimaps which take value p at the nonsingular point
p2. We use notation ŝ for the Okounkov’s roof function defined by

ŝ(x) =
1

x1/2 � x�1/2
, ŝ(x+ y) = ŝ(x)ŝ(y).

and it is applied to the virtual tangent bundle:

(21) �(d) = charT
⇣
T
vir
{(Vi}, Wn�1)

QMd
⌘
.

The condition d 2 Zn
�0 is determined by stability conditions, which characterize all

allowed degrees for quasimaps.
According to [PSZ16], in order to compute localization contributions one has to write down
the term for a single line bundle of P = �xiq

�diO(di) in �(d). It will be convenient to
adopt the following notations:

'(x) =
1Y

i=0

(1� q
i
x), {x}d =

(~/x, q)d
(q/x, q)d

(�q
1/2~�1/2)d, where (x, q)d =

'(x)

'(qdx)
.

The following statement is true (for the proof see section 3.4 of [PSZ16]).

Lemma 3.1. The contribution of equivariant line bundle xq
�d

O(d) ⇢ P to �(d) is {x}d.

To compute the vertex function we will also need to classify fixed points of QMd
nonsing p2 .

Such a point is described by the data ({Vi}, {Wn�1}), where degVi = di, degWn�1 = 0.
Each bundle Vi can be decomposed into a sum of line bundles Vi = O(di,1)� . . .�O(di,vi)
(here di = di,1 + . . . + di,vi). For a stable quasimap with such data to exist the collection
of di,j must satisfy the following conditions

• di,j � 0,
• for each i = 1, . . . , n � 2 there should exist a subset in {di+1,1, . . . di+1,vi+1} of
cardinality vi {di+1,j1 , . . . di+1,jvi

}, such that di,k � di+1,jk .

To summarize, we will denote collections satisfying such conditions di,j 2 C.
Now we are ready to sum up contributions for the entire vertex function.

Proposition 3.2. Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi = {xi,1, . . . xi,vi}) be

a chain of subsets defining a torus fixed point p 2 X
T
. Then the coe�cient of the vertex

function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1 di,j , N(d) = v0
idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1
di,j�di,k

,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

After classifying fixed points of space of nonsingular quasimaps we can 
compute the vertex
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.
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3. Vertex Functions

Recently we proved the following statement

Proposition 3.1 ([KPSZ1705]). Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi =
{xi,1, . . . xi,vi}) be a chain of subsets defining a torus fixed point p 2 X

T
. Then the coe�-

cient of the vertex function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1
di,j , N(d) = v0

idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1

di,j�di,k
,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

H =
n�2Y

i=1

viY

j=1

vi+1Y

k=1

{xi,j/xi+1,k}di,j�di+1,k
.

Here . . .
The same formula for the vertex can an be obtained using the following intergal repre-

sentation [AFO1701,AO1704]. It is very useful for a lot of applications, in particular for
computing the eigenvalues ⌧p(z).

Proposition 3.2. The bare vertex function is given by

(23) V
(⌧)
p (z) =

1

2⇡i↵p

Z

Cp

n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint⌧(s1, · · · , sk)
n�1Y

i=1

viY

j=1

dsi,j

si,j
,

where

Eint =
n�1Y

i=1

viY

j,k=1

'

⇣
si,j
si,k

⌘

'

⇣
q
~
si,j
si,k

⌘ ,

Gint =

wn�1Y

j=1

vn�1Y

k=1

'

⇣
q
~
sn�1,k

aj

⌘

'

⇣
sn�1,k

aj

⌘ ,

Hint =
n�2Y

i=1

vi+1Y

j=1

viY

k=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

↵p =
n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint

���
si,j=xi,j

,
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EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1
di,j , N(d) = v0

idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1

di,j�di,k
,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

H =
n�2Y

i=1

viY

j=1

vi+1Y

k=1

{xi,j/xi+1,k}di,j�di+1,k
.

Here . . .
The same formula for the vertex can an be obtained using the following intergal repre-

sentation [AFO1701,AO1704]. It is very useful for a lot of applications, in particular for
computing the eigenvalues ⌧p(z).

Proposition 3.2. The bare vertex function is given by

(23) V
(⌧)
p (z) =

1

2⇡i↵p

Z

Cp

n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint⌧(s1, · · · , sk)
n�1Y

i=1

viY

j=1

dsi,j

si,j
,

where

Eint =
n�1Y

i=1

viY

j,k=1

'

⇣
si,j
si,k

⌘

'

⇣
q
~
si,j
si,k

⌘ ,

Gint =

wn�1Y

j=1

vn�1Y

k=1

'

⇣
q
~
sn�1,k

aj

⌘

'

⇣
sn�1,k

aj

⌘ ,

Hint =
n�2Y

i=1

vi+1Y

j=1

viY

k=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

↵p =
n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint

���
si,j=xi,j

,



Bethe Equations
Saddle point approximation provides  
the operator of quantum multiplication
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by ⌧̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) ⌧p(z) = lim
q!1

V
(⌧)
p (z)

V
(1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by ⌧̂(z) corresponding to a

fixed point p 2 X
T
.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn�1

wn�1

The stability condition is chosen so that maps Wn�1 ! Vn�1 and Vi ! Vi�1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn�1,wn�1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⇢ . . . ⇢ Vn�1 ⇢ Wn�1, where |Vi| = vi,Wn�1 =
{a1, . . . , awn�1}. The special case when vi = i, wn�1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v0
i = vi+1 � vi�1, for i = 2, . . . , n� 2, v0

n�1 = wn�1 � vn�2, v0
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V
(⌧)
p (z):

V
(⌧)
p (z) =

X

d2Zn
�0

X

(V ,W )2(QMd
nonsing p2

)T

ŝ(�(d)) zdqdeg(P)/2
⌧(V |p1).

2We are using standard quaternionic notations.

For the cotangent bundle to partial flag variety we get

14 PETER KOROTEEV, PETR P. PUSHKAR, ANDREY V. SMIRNOV, AND ANTON M. ZEITLIN

and the contour Cp runs around points corresponding to chamber C and the shifted variable

z
] = z(�~1/2)det(P) 3

.

3.2. Bethe Equations and Baxter Operators. We are now ready to compute the
eigenvalues of the operators corresponding to the tautological bundles.

Theorem 3.4. The eigenvalues of ⌧̂(z)~ is given by ⌧(si,k), where si,k satify Bethe equa-

tions:

v2Y

j=1

s1,k � s2,j

s1,k � ~s2,j
= z1(�~1/2)

�v0
1

v1Y

j=1
j 6=k

s1,j � s1,k~
s1,j~� s1,k

,

vi+1Y

j=1

si,k � si+1,j

si,k � ~si+1,j

vi�1Y

j=1

si�1,j � ~si,k
si�1,j � si,k

= zi(�~1/2)
�v0

i

viY

j=1
j 6=k

si,j � si,k~
si,j~� si,k

,(23)

wn�1Y

j=1

sn�1,k � aj

sn�1,k � ~aj

vn�2Y

j=1

sn�2,j � ~sn�1,k

sn�2,j � sn�1,k
= zn�1(�~1/2)

�v0
n�1

vn�1Y

j=1
j 6=k

sn�1,j � sn�1,k~
sn�1,j~� sn�1,k

,

where k = 1, . . . , vi for i = 1, . . . , vn�1.

Proof. There are several ways of obtaining these equations. One way corresponds to the
study of asymptotics of (20) as it was done in section 3.5 of [PSZ16]. However, there is a
shortcut recently provided by [AO]. One regards TX as an element inK

Q
i GL(Vi)⇥GL(Wn�1)(pt),

so that aj are coordinates of the torus acting on Wn�1 and by si,k are coordinates of the
torus acting on Vi. In this case we have

TX = T (T ⇤Rep(v,w))�
X

i2I
(1 + ~)End(Vi) =(24)

n�2X

i=1

viX

k=1

vi+1X

j=1

✓
si,k

si+1,j
+

si+1,j~
si,k

◆
+

vn�1X

k=1

wn�1X

j=1

✓
sn�1,k

aj
+

aj~
sn�1,k

◆
� (1 + ~)

X

i2I

viX

j,k=1

si,j

si,k
.

To get Bethe equations we need to use the following formula

ba
✓
si,k

@

@si,k
TX

◆
= zi,

where ba (
P

nixi) =
Q⇣

x
1/2
i � x

�1/2
i

⌘ni

. ⇤

3 Note that here we are using the notation defined for z for (�~
1/2), i.e.

z] =
n�1Y

i=1

z]i ,

z]i = zi(�~
1/2)v

0
i .

which are Bethe Ansatz Equations for gl(n) XXZ spin chain

[Nekrasov Shatashvili]

[PK Pushkar Smirnov Zeitlin]



   K-theory Vertex Functions

           quiver gauge theory on X3 = C✏1 ⇥ S1
�

Lagrangian depends on twisted masses    
FI parameter and U(1) R-symmetry

N = 2⇤

✏1 ⇥

V =2�1

✓
~, ~a1

a2
, q

a1
a2

; q; z

◆

a1, a2
z log ~

q = e✏1

Vertex (trivial class)

Vortex (defet partition function)

After classifying fixed points of space of nonsingular quasimaps we can 
compute the vertex using the localization theorem
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

6 QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY

3. Vertex Functions

Recently we proved the following statement

Proposition 3.1 ([KPSZ1705]). Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi =
{xi,1, . . . xi,vi}) be a chain of subsets defining a torus fixed point p 2 X

T
. Then the coe�-

cient of the vertex function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1
di,j , N(d) = v0

idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1

di,j�di,k
,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

H =
n�2Y

i=1

viY

j=1

vi+1Y

k=1

{xi,j/xi+1,k}di,j�di+1,k
.

Here . . .
The same formula for the vertex can an be obtained using the following intergal repre-

sentation [AFO1701,AO1704]. It is very useful for a lot of applications, in particular for
computing the eigenvalues ⌧p(z).

Proposition 3.2. The bare vertex function is given by

(23) V
(⌧)
p (z) =

1

2⇡i↵p

Z

Cp

n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint⌧(s1, · · · , sk)
n�1Y

i=1

viY

j=1

dsi,j

si,j
,

where

Eint =
n�1Y

i=1

viY

j,k=1

'

⇣
si,j
si,k

⌘

'

⇣
q
~
si,j
si,k

⌘ ,

Gint =

wn�1Y

j=1

vn�1Y

k=1

'

⇣
q
~
sn�1,k

aj

⌘

'

⇣
sn�1,k

aj

⌘ ,

Hint =
n�2Y

i=1

vi+1Y

j=1

viY

k=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

↵p =
n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint

���
si,j=xi,j

,
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Recently we proved the following statement

Proposition 3.1 ([KPSZ1705]). Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi =
{xi,1, . . . xi,vi}) be a chain of subsets defining a torus fixed point p 2 X

T
. Then the coe�-

cient of the vertex function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1
di,j , N(d) = v0

idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1

di,j�di,k
,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

H =
n�2Y

i=1
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k=1
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.

Here . . .
The same formula for the vertex can an be obtained using the following intergal repre-

sentation [AFO1701,AO1704]. It is very useful for a lot of applications, in particular for
computing the eigenvalues ⌧p(z).

Proposition 3.2. The bare vertex function is given by

(23) V
(⌧)
p (z) =

1

2⇡i↵p

Z

Cp

n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint⌧(s1, · · · , sk)
n�1Y

i=1

viY

j=1

dsi,j

si,j
,

where

Eint =
n�1Y

i=1

viY

j,k=1

'

⇣
si,j
si,k

⌘

'

⇣
q
~
si,j
si,k

⌘ ,

Gint =

wn�1Y

j=1

vn�1Y

k=1

'

⇣
q
~
sn�1,k

aj

⌘

'

⇣
sn�1,k

aj

⌘ ,

Hint =
n�2Y

i=1

vi+1Y

j=1

viY

k=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

↵p =
n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint

���
si,j=xi,j

,

xi,j 2 {a1, . . . awn}

v1 = 1, w1 = 2



Difference Equations
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Proof. In order to prove that one just has to use the same principle as in Theorem 2.6
and to prove this identity:

dY

k=1

T
q
ik
 = hE~

,K
(1)

i1
. . .K

(1)

id
�i(19)

namely, use the properties from Proposition 2.5 when moving q-shifted R-operators to the
left of twisted matrices Z(i). Then multiplying on the appropriate coe�cients as in Propo-
sition 2.4 we obtain the statement of the theorem. ⌅

Let us use now an important relation proven in [BLZZ]:

Proposition 2.8. The following combinatorial formula holds for the sums of products of

Hamiltonians:

X

1i1<···<ikN

Hi1 . . . Hik

Y

1↵<�k

C(ai↵/ai� ) =

 
~ 1

2 � ~� 1
2

2

!k X

1i1<···<ikN

�i1 . . .�ik ,(20)

where

C(x) =
x� x

�1

(x~ 1
2 � x�1~� 1

2 )(x~� 1
2 � x�1~ 1

2 )

and �im are eigenvalues of a certain operator which depend only on ~ and {zi}.

The tRS Hamiltonians are given by the following expression:

Ĥd =
X

I⇢{1,...,n},|I|=d

⇣ Y

i2I,j /2I

ai~
1
2 � aj~�

1
2

ai � aj

⌘Y

i2I
T
q
i(21)

In order to put these Hamiltonians in touch with Proposition 2.7, we prove the following
statement.

Proposition 2.9. The ordered expression for tRS Hamiltonians is given by the following

formula:

Ĥd =
X

1i1<···<idn

dY

k=1

Y

j 6=ik

aik~
1
2 � aj~�

1
2

aik � aj

Y

1m<nd

C(aim/ain)
dY

k=1

T
q
ik

(22)

Proof. ?????????????????? ⌅

Using this expression and then combining Proposition 2.8 with Proposition 2.7 we obtain
the main theorem.

Theorem 2.10. Function  , obtained as a weighted sum of coe�cients of the qKZ equation

is an eigenfunction of tRS Hamiltonians Hd.

X = T ⇤Fln

The K-theory vertex function satisfies equation of motion of 
trigonometric Ruijsenaars-Schneider model

ĤdV = ed(z1, . . . , zn�1)V

[PK Pushkar Smirnov Zeitlin]

3d Mirror version (a.k.a. bispectral dual)

Ĥ
!
dV = ed(a1, . . . , an�1)V

Ĥ
!
d(ai, ~, T q

a ) = Ĥd(zi/zi+1, ~�1
, T

q
z )

Quantum K-theory Ring 

QKT (T
⇤Fln) =

C[z±1
i , a±1

i , T±1
q ~, q]

ItRS
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

q ! 0
[PK, PK Zeitlin]



Trigonometric Ruijsenaars-Schneider Hamiltonians form a maximal 
commuting subalgebra inside spherical double affine Hecke 
algebra for gl(n)

Spherical DAHA

Spherical gl(n) DAHA is a deformation quantization of the moduli 
space of flat GL(n;C) connections on a torus with one simple puncture

ABA�1B�1 = C

Mn = {A,B,C}/GL(n;C)

Ĥd are also known as Macdonald operators

{Ĥ1, . . . , Ĥn} ⇢ DAHA
Sn
q,~ (gln)

C = diag(~, . . . , ~, ~1�n)

An = \CJ [Mn]

=: An

[Oblomkov]

If time will be tight then say in words 
that A and B are holonomies of 
electric and magnetic operators


Should be around 50% of time here!!!!



Line Operators and Branes
R3 ⇥ S1             with gauge group U(n) and is described by VEVs of 
 line operators wrapping the circle. 

Mn

A and B are holonomies of electric and magnetic line operators

is the moduli space of vacua in N=2* gauge theory on  

I�

Bcc

q

O

B B

Figure 1. Reduction of the 4d N = 2⇤ theory on the cigar. The extra circle direction S
1 is not

shown.

In this description line operators which form DAHA are local operators on I
1
⌧ . Note

again, that the supersymmetry on the interior of the interval is twice larger, as is required
by the construction of DAHA from line operators in N = 2⇤ theory.

3.2.1 Vortex Counting and Macdonald Polynomials

Macdonald (tRS) operators appear naturally while studying representations of spherical
DAHA [14, 15]. The polynomial solutions of Macdonald operators are Macdonald polyno-
mials. However, there is a more generic class of solutions which are formal power series.
In physics context Macdonald polynomials appear in the study of superconformal index of
4d N = 2 gauge theories, whereas power series can be understood as expansions of holo-
morphic blocks of N = 2⇤ 3d theories. When the mass parameters are specified to certain
values the above series expansion truncates and we again recover Macdonald polynomials.
Let’s describe this in more detail.

The holomorphic block for T [U(2)] theory with FI parameter ⌧1/⌧2 and mass parame-
ters µ1, µ2, ⌘ on Cq ⇥ S

1 reads [16]

B(⌧1, ⌧2;µ1, µ2) =
✓1(⌘�1

⌧1, q)✓1(⌘ ⌧2, q)

✓1(µ1⌧1, q)✓1(µ2⌧2, q)
2�1

✓
⌘
2
, ⌘

2µ1

µ2
; q

µ1

µ2
; q; q⌘�2 ⌧1

⌧2

◆
, (3.8)

where 2�1 stands for q-hypergeometric function. It satisfies difference equations of trigono-
metric Ruijsenaars-Schneider system

T1B = (µ1 + µ2)B ,

T2B = µ1µ2B , (3.9)

where T1,2 are Ruijsenaars-Schneider Hamiltonians, they commute between each other. The
Hamiltonians can be understood as deformation quantization of MH .

3.2.2 Spherical DAHA as Deformation Quantization of MH

First we summarize the parameterization of MH along the lines of [17] and [18].

– 10 –

Line operators are forced to stay at the tip of the cigar and 
slide along the remaining line, hence non-commutativity

R2
q ⇥ R⇥ S1Omega background along real 2-plane

H = Hom(Bcc,B)

algebra — open strings

representations

[Gukov-Witten]
[Nekrasov-Witten]

(Hilbert space of SUSY QM)

An = Hom(Bcc,Bcc)



Hitchin Moduli Space (n=2)
x = TrA y = TrB z = TrAB

for  =1 Mn ' C⇥ ⇥ C⇥

Z2
~x2 + y2 + z2 + xyz = ~+ ~�1 + 2

SU(2) theory sl(2) flat connections

electric magnetic dyonic

Elliptic fibration with one singular fiber of Kodaira type I0*

[Gukov]
[PK Gukov Nawata Saberi]

When N �n = 2c is an odd integer, both (4.23) and (4.16) are satisfied. Hence, an brane
BN can exist and it further breaks up into individual branes ◆(BBunG

) and BDi
where they

share the total flux of the B-field asZ

N

B

2⇡
= �2 !

Z

BunG

B

2⇡
= 0 and

Z

Di

B

2⇡
= �1

2
.

As a result, under the condition that 1/~ = 2N , ↵p/~ 2 Z + 1
2 and �p = 0, an A-brane

B
�=0
F with trivial holonomy on a generic fiber F splits into two A-branes BBunG

and A-branes
◆(BDi

) (i = 1 . . . , 4) as it reaches to the global nilpotent cone N. Correspondingly, the module
F
�=2
2N is resolved into two copies of non-symmetric Verlinde algebra VN�2k and the involution

of (2.31) via the short exact sequence (2.33) after (2.28) when q = e
⇡i/N and t

2 = q
2k+1 in the

representation side. The correspondence between branes and representations in this situation
is illustrated in Figure 5. The presence of B�

F and BN leads to the same conclusion up to the
outer automorphism ◆.

Uk Vk�2`

⇣y(D
�
`
)⇣y(D

+
`
)

D
�
`

D
+
`

N

Nk+2`

F

F2k

B

MH

0gen pt

⇡

x $ �x

y
$

�
y

Figure 5. Compact supports of (B, A, A)-branes and corresponding finite-dimensional modules of
spherical DAHA. This figure depicts the situation where ~ = �1/2N , ↵p/~ = � 2k�1

2 and �p = 0.

Except the situations studied above, an A-brane at the global nilpotent cone is trapped
there and cannot move out to a generic fiber in the Hitchin moduli space.

[SN: Some comments on polynomials representations. Speculations on oper or Teichmuller
component with infinite-dimensional representations?]

5 DAHA and line operators on surface operators

space-time: S
1 ⇥ R ⇥ Cq ⇥ T

⇤
C ⇥ R

3

N M5-branes: S
1 ⇥ R ⇥ Cq ⇥ C ⇥ pt

(puncture) M5’-branes: S
1 ⇥ R ⇥ Cq ⇥ p ⇥ R

2

(surface operator) M5”-branes: S
1 ⇥ R ⇥ {0} ⇥ C ⇥ R

2

Riemann surface C. In addition, the term "non-symmetric" implies that the tame ramification ↵p changes
the dimension of the Hilbert space from the one without puncture.
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Nonabelian Hodge 

correspondence: Mflat(SL(2;C), T 2\{pt}) ' MH(SU(2), T 2\{pt})

MH :



DAHA Modules
Hilbert space comes 

from (Bcc, B’) strings

Algebra acts naturally by attaching 

open strings to closed strings

Lagrangian              Module

A-brane                of DAHA

Fuk(M,⌦) ' Rep(A)B0 ! Hom(Bcc,B0
) gives a functor Hom(Bcc, ·)

dimV =

Z

M
ch(B0) ^ ch(Bcc) ^ Td(M)

Dimension of a module

compact  
branes

Finite dim

reps

The arrows must be reversed for c < 0 :

0 ! ◆&y(V2N�4|c|) ! V
�2

! V2N+4|c| ! 0 for c 2 �1� Z+ ,

0 ! ◆(V2N�4|c|) ! V2N ! V
+

2|c|
� V

�

2|c|
! 0 for c 2 �1/2� Z+ .

Thereofre, we obtain that up to ◆, &, there are three di↵erent series of �-invariant spherical

representations at roots of unity, namely,

• V2N�4c (integral N/2 > c > 0) ,

• V2|c| (half-integral �N/2 < c < 0) ,

• V2N+4|c| (integral �N/2 < c < 0) .

In particular, Cherednik calls V2N�4c the perfect representation. Interestingly, the part

V
sym

2N�4c
= {f 2 V2N�4c | Tf = tf} is also PSL(2,Z)-invariant. Note that the dimensions

of vector spaces are

dimV2N�4c = 2N � 4c , dimV
sym

2N�4c
= N � 2c+ 1.

When c = 1, the subalgebra V
sym

2N�4
of dimension N � 1 is isomorphic to the usual Verlinde

algebra of csl2 with level N . Thus, the irreducible module V2N�4c is called non-symmetric

Verlinde algebra. [SN: This representation should correspond to BunG ⇢ MH .]

1.3 Spherical DAHA of rank one

The element e = (T + t
�1)/(t+ t

�1) is the idempotent e
2 = e, and the algebra SḦ(sl2) :=

eḦ(sl2)e is called the spherical subalgebra. A presentation for the spherical subalgebra

SḦ(sl2) has been given in [2]. We now recall this presentation in our notation. First, let us

define

x = (X +X
�1)e

y = (Y + Y
�1)e

z = q
�1/2(XY +X

�1
Y

�1)e =
[x, y]q

(q � q�1)

⌦ = qx
2 + qy

2 + q
�1

z
2
� q

1/2
yzx .

Then, the spherical subalgebra is generated by x, y, z with relations

[x, y]q = (q � q
�1)z

[y, z]q = (q � q
�1)x

[z, x]q = (q � q
�1)y

⌦ = (q1/2t�1
� q

�1/2
t)2 + (q1/2 + q

�1/2)2 ,

where [a, b]q := q
1/2

ab� q
�1/2

ba denotes the q-commutator. Thus, ⌦ can be regarded as the

quadratic Casimir operator. [SN: Check notations!]

The spherical DAHA is realized as

SḦ[g] ⇠= K
G̃OoC⇥

(R) ⇠= bC[MHitchin(T
2
\pt, G)] ,
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[z, x]q = (q � q�1)y

[y, z]q = (q � q�1)x

(B,B)

B

A = (B,B)

(B,B,B)

A = (B,B)

X

X X = MH(Cp, G)

X A

A = (Bcc,Bcc)� �

H = (Bcc,B0)

Bcc Bcc Bcc B0 Bcc B0

(Bcc,Bcc) (Bcc,B0) (Bcc,B0)

X = MH(Cp, G)

[x, y]q = (q�1 � q)z

[y, z]q = (q�1 � q)x

[z, x]q = (q�1 � q)y

q
�1

x
2 + qy

2 + q
�1

z
2 � q

�
1
2xyz = (q�

1
2 t� q

1
2 t

�1)2 + (q
1
2 + q

�
1
2 )2 ,

q = e
2⇡i~

q

[a, b]q := q
�

1
2ab� q

1
2 ba .

q ! 1

(B,B)

B

A = (B,B)

(B,B,B)

A = (B,B)

X

X X = MH(Cp, G)

X A

A = (Bcc,Bcc)� �

H = (Bcc,B0)

Bcc Bcc Bcc B0 Bcc B0

(Bcc,Bcc) (Bcc,B0) (Bcc,B0)

X = MH(Cp, G)

[x, y]q = (q�1 � q)z

[y, z]q = (q�1 � q)x

[z, x]q = (q�1 � q)y

q
�1

x
2 + qy

2 + q
�1

z
2 � q

�
1
2xyz = (q�

1
2 t� q

1
2 t

�1)2 + (q
1
2 + q

�
1
2 )2 ,

q = e
2⇡i~

q

[a, b]q := q
�

1
2ab� q

1
2 ba .

q ! 1

Algebra-deformation
quantization of functions 
on MH

Bcc : L ! MH

F +B =
i

log q
⌦J

⌦J =
dx ^ dy

2z � xy

[Kapustin Orlov]
[Kapustin Witten]



DAHA Reps

Specify equivariant parameters
q-hypergeometric series                Macdonald polynomials with

E.g. k=2, n=2

Ra = x+ a�1
k z

La = x+ akz

Raising and lowering operators of sl(2) DAHA

Figure 1. Submodule V`

where

An,m = 1 � q
�m+n

2 t
�1

, Bn,m =
⇣
1 � q

m�n

2

⌘
Sm(q, t) , (1.60)

an,m = 1 � q
n�m

2 , bn,m =
⇣
1 � q

m+n

2 t

⌘
Sm(q, t) , (1.61)

where

Sm(q, t) =
(1 � q

m)
�
1 � t

2
q
m�1

�

(1 � tqm�1) (1 � tqm)
. (1.62)

We can first consider a module generated by Z0 = 1. One can check that L0Z0 = 0,
so this is the lowest weight module, let’s call it V . One then can act with raising operators
and generate the entire simple module which will be isomorphic to the entire Hilbert space
(1.50) provided that none of r` in (1.56) vanishes.

However, when
q
`
t
2 = 1 , or q

`+1 = 1 (1.63)

the lowering operator acts trivially and we get a submodule V`+1 ⇢ V, see Fig. 1.
The module structure depends on the parity of the dimension of the module. Indeed,

from q
`
t
2 = 1 (neither q or t are roots of unity) we conclude that t = ±q

� `

2 . First let us
consider ` = 2k. Close examining of Macdonald polynomials (1.49) shows that there is a
pole in the constant term at t = q

�k. Thus the ‘+’ branch cannot be realized whereas
t = �q

�k is perfectly acceptable and provides 2k dimensional module V2k.
For odd ` the situation is a bit more interesting. Due to fractional power in the value

for t which ensures that L2k+1Z2k+1 = 0 both branches t = ±q
�k+ 1

2 can be implemented.
Therefore in this case we have a pair of modules V±

2k+1.
Note that the condition

q
`
t = 1 , (1.64)

which arises in the action of raising operators, cannot be realized as a shortening condition
for a module as it leads to poles in the coefficients of Macdonald polynomials (note that q

is not a root of unity).
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ak = q�k~n�k

RaZa = raZa+1

LaZa = laZa�1

Start with a vertex function for T*Fn

QUANTUM K-THEORY OF QUIVER VARIETIES AND MANY-BODY SYSTEMS 11

Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

~ = t�1

V (z; ~q, q) = P(1,1)(z|q, ~)
V (z; ~q2, q) = P(2,0)(z|q, ~)

Case 3 : t
2 = �q

�n for n 2 Z>0 and q is generic

When t
2 = �q

�n, we have pl(Ln+1) · Pn+1(X; q, t) = 0. Accordingly, the quotient space

Vn+1 := Cq,t[X + X
�1]/(Pn+1)

by an ideal (Pn+1) is an (n + 1)-dimensional irreducible representation of spherical DAHA
[17]. This representation is called additional series in [5, S2.8.2]. It is easy to check from
(2.15) that the y-eigenvalues of Vn+1 are invariant under the sign change ⇣y of y as a set when
t
2 = �q

�n. In addition, when t
2 = �q

�n, Macdonald polynomials obey parity

Pn+1(�X) = (�1)nPn+1(X) ,

which implies Vn+1 is also invariant under the sign change ⇣x of x. In conclusion, the addi-
tional series Vn+1 is invariant under the automorphisms ⇣x, ⇣y, and it is moreover PSL(2,Z)-
invariant.

Case 4 : Two conditions are simultaneously satisfied

Let us now consider the case when two conditions among Case 1, Case 2 and Case 3 are
simultaneously satisfied.

First we consider the situation in which both Case 1 and Case 3 with N > n are satisfied.
If N � n � 1 is odd, then there is a short exact sequence

0 �! ◆(N2N�n�1) �! F
�=�2
2N �! Vn+1 �! 0 , (2.32)

where ◆ : t ! qt
�1 is an outer automorphism of S

..
H that is the spherical version of (C.13).

Indeed, the quantum character variety (2.3) is invariant under ◆. For odd N � n � 1, we have
another irreducible module N2N�n�1 of dimension 2N � n � 1. Moreover, when n = N � 2,
the additional series VN�1 of dimension N � 1 is isomorphic to the ordinary Verlinde algebra
of bsl(2)N with level N [18]. Thus, the additional series Vn+1 at q = e

�⇡i/N with generic n is
called non-symmetric Verlinde algebra or perfect representation [5, S2.9.3].

On the other hand, if N �n� 1 is even, say 2k, then the two conditions implies the other
condition with the outer automorphism ◆:

Case 1 and Case 3 �! ◆(Case2) where 2k = N � n � 1 .

This implies the existence of the finite-dimensional module D
±

k
, and there is actually a short

exact sequence
0 �! ◆(D+

k
� D

�

k
) �! UN �! Vn+1 �! 0 , (2.33)

as well as its ⇣y-image.

In a similar fashion, even in the rest of cases, two simultaneous conditions imply the other
condition up to the outer automorphism ◆. For instance, let us consider the circumstance in
which Case 1 and Case 2 holds with N > 2k. Then, it is easy to verify

Case 1 and Case 2 �! ◆(Case3) where n = N � 2k � 1 ,
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v1 = 1, w1 = 2



Fock Space
Power-symmetric variables

Macdonald polynomials depend only on k and the partition

where D(1,2)
q are tRS Hamiltonians, they commute between each other. For completeness,

let us mention that the operator (2.6) is the first of a set of n commuting operators, given
by

D(r)
n,~⌧

(q, t) = tr(r�1)/2
X

I⇢{1,2,...,n}
#I=r

Y

i2I
j /2I

t⌧i � ⌧j
⌧i � ⌧j

Y

i2I
Tq,i for r = 1, . . . , n (2.12)

In mathematical literature, the operator D(1)
n,~⌧

is known as the first Macdonald difference
operator; its eigenfunctions, known as Macdonald polynomials, are given by symmetric
polynomials in n variables ⌧l of total degree k 6 n, and are in one-to-one correspondence
with partitions � = (�1, . . . ,�n) of k of length n.

Now we can make the following observation8. For a given partition � we identify
parameters µa as follows

µa = q�atn�a , a = 1, . . . , n . (2.13)

Having done so we see that the series expansion of holomorphic block (2.9) truncates and
it turns into a Macdonald polynomial P�(~⌧ ; q, t) corresponding to the partition � as

D(1)
n,~⌧

(q, t)P�(~⌧ ; q, t) = E(�;n)
tRS

P�(~⌧ ; q, t) (2.14)

with an eigenvalue given by

E(�;n)
tRS

=
nX

j=1

q�j tn�j (2.15)

Thus for k = 2 we get

B(⌧1, ⌧2; t�1/2q, t1/2q) = P (⌧1, ⌧2; q, t) ,

B(⌧1, ⌧2; t�1/2, t�1/2q2) = P (⌧1, ⌧2|q, t) . (2.16)

In what follows it is instructive make the following change of variables

pm =
nX

l=1

⌧m
l

, (2.17)

For k = 2 we have two partitions and , corresponding to the Macdonald polynomials
in (2.16)

P =
1

2
(p21 � p2) , P =

1

2
(p21 � p2) +

1� qt

(1 + q)(1� t)
p2 . (2.18)

Most importantly, this expression in terms of power sum symmetric polynomials (2.17) is
the same for any n.

Below we list several examples for degree k = 2 Macdonald polynomials for n = 2 and
n = 3

8
See the end of Section 3 of [6].
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Starting with Fock vacuum |0i

Construct Hilbert space

in terms of the so-called reproduction kernel

Q
(q, t)(⌧, e⌧) =

Y

i,j>1

(t⌧ie⌧j ; q)1
(⌧ie⌧j ; q)1

, (a; q)1 =
Y

s>0

(1� aqs) . (3.8)

The statement holds in general: given two bases {u�}, {v�} of ⇤(q, t), they are dual under
(3.6) if and only if

P
�
u�(⌧)v�(e⌧) =

Q
(q, t)(⌧, e⌧); in this sense, the form of the inner product

is determined by the form of the kernel function. For our discussion, the most relevant basis
of symmetric functions is given by the Macdonald basis {P�(⌧ ; q, t)}, uniquely determined
by the following conditions

(1) P�(⌧ ; q, t) = m�(⌧) +
X

µ<�

u�µ(q, t)mµ(⌧) with u�µ(q, t) 2 Q(q, t) ,

(2) hP�(⌧ ; q, t), Pµ(⌧ ; q, t)iq,t = 0 for � 6= µ ,

(3.9)

where m�(⌧) are monomial symmetric functions and � > µ() |�| = |µ| with �1+. . .+�i >
µ1 + . . .+ µi for all i. From the functions P�(⌧ ; q, t) we recover the n-variables Macdonald
polynomials as P�(⌧1, . . . , ⌧n; q, t) = P�(⌧1, . . . , ⌧n, 0, 0, . . . ; q, t); these are eigenstates of the
Hamiltonians (2.6), (2.12) and satisfy (2.14).

3.1.1 Free Field Realization

We are now ready to discuss the collective coordinate (or free boson) realization of the tRS
Hamiltonian (2.6). The idea here is to introduce a (q, t)-deformed version of the Heisenberg
algebra H(q, t), with generators am (m 2 Z) and commutation relations

[am, an] = m
1� q|m|

1� t|m| �m+n,0 . (3.10)

A canonical basis in the Fock space of H(q, t) is given by the set of states a��|0i =

a��1 · · · a��l(�)
|0i depending on a partition �; a generic state will be a linear combina-

tion of the basis ones, with coefficients in Q(q, t). Let us notice that the bra-ket product
among basis states is such that

h0|0i = 1 , h0|a�a�µ|0i = ��,µz�(q, t) , (3.11)

and therefore coincides with the inner product (3.6). This is in agreement with the natural
isomorphism between this Fock space and ⇤(q, t), simply given by

a��|0i  ! p� (3.12)

for fixed partition �. Now, in order to reproduce the action of D(1)
n,~⌧

in terms of bosonic
operators, we follow [38] (see also [55–57]) and introduce the vertex operators

⌘(z) = exp

 
X

n>0

1� t�n

n
a�nz

n

!
exp

 
�
X

n>0

1� tn

n
anz

�n

!

= : exp

0

@�
X

n 6=0

1� tn

n
anz

�n

1

A : =
X

n2Z
⌘nz

�n

(3.13)
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Commutators

a��|0i = a��1 · · · a��l |0ifor each partition

pm =
nX

l=1

zml

4.3 The �ILW Spectrum from Gauge Theory

Although the procedure described above provides the bH1 eigenvalue at specified k, it turns

out that it is possible to obtain the same results from gauge theory, more precisely from

the so-called ADHM quiver gauge theory in two or three dimensions.

The relation between the ADHM gauged linear sigma model for the U(1) theory (N = 1

model) and the quantum ILW system has been discussed in terms of Bethe/Gauge cor-

respondence in [28]. There the authors explained why the equations which determine

supersymmetric vacua in the Coulomb branch of the 2d ADHM theory correspond to the

Bethe Ansatz Equations for ILW, as well as how the local gauge theory observables hTr ⌃li
evaluated at the solutions of these equations give the ILW spectrum. Here we propose a

similar correspondence to hold between the N = 1 ADHM theory on C⇥ S
1
� and quantum

�ILW. We shall provide the calculations supporting this statement below, while later in

Sec. 5.4 we shall explain how the ADHM theory arises in our construction by using string

theory dualities.

When the radius of the circle � is small the infrared description of the sigma model

is e↵ectively two-dimensional. The supersymmetric Coulomb branch vacua equations for

N = 1 will be (see Appendix A)

sin[
�

2
(⌃s � a)]

kY

t=1
t 6=s

sin[�2 (⌃st � ✏1)] sin[�2 (⌃st � ✏2)]

sin[�2 (⌃st)] sin[�2 (⌃st � ✏)]
=

ep sin[
�

2
(�⌃s + a � ✏)]

kY

t=1
t 6=s

sin[�2 (⌃st + ✏1)] sin[�2 (⌃st + ✏2)]

sin[�2 (⌃st)] sin[�2 (⌃st + ✏)]

(4.43)

because of the 1-loop contributions coming from the KK tower of chiral multiplets10. Here

✏ = ✏1 + ✏2 and ep = e
�2⇡⇠ with ⇠ Fayet-Iliopoulos parameter of the ADHM theory11. For

simplicity, from now on we will set a = 0. When ⇠ ! 1 (i.e. ep ! 0), the solutions are

labelled by partitions � of k, and are given by

⌃s = (i � 1)✏1 + (j � 1)✏2 mod 2⇡i (4.44)

✏1

✏2

Figure 4: The partition (4,3,1,1) of k = 9

10
Equations (4.43) reduce to the Bethe Ansatz Equations for quantum ILW of [28] when � ! 0.

11
As discussed in [28], the Fayet-Iliopoulos parameter ⇠ coincides with the ILW parameter � previously

introduced.

– 24 –

q = e✏1

~ = e✏2
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3.1. Elliptic Hall Algebra E. Following [SV0802, SV0905] algebra E is generated by
elements Zn,m, n,m 2 Z modulo certain relations which we shall not specify here. These
generators can be conveniently positioned in integral lattice Z2 of the coordinate plane
where (n,m) will be their x and y-coordinates. By normalization Z0,0 = 1 is the identity
operator. The commutation relations of E suggest that the entire algebra can be generated
by four elements Z0,±1, Z±1,0. In the given normalization generators on the horizontal axis
Zn,0 are multiplications by x

n, whereas generators on the vertical axis Z0,l for l > 0 are
Macdonald operators written in x-basis. In (2.33) we have already used these generators
to construct An. It is known [BS] that E acts faithfully on Kq,~(Hilb

n).
This following theorem by Schi↵mann and Vasserot enabled the authors to construct

(more or less by definition) E as a stable limit of spherical DAHA A1.

Theorem 3.1 ([SV0802]). There is an explicit surjective algebra homomorphism

(3.3) E ! An .

Using this theorem we can study the connection between modules of An and E.

3.2. Fock Modules of Elliptic Hall Algebra. Generators Zm,n for which m
n = s 2 Q

form a subalgebra of E which can be described as q, ~-deformed Heisenberg algebra with
commutation relations

(3.4) [am, an] = m
1� q

|m|

1� ~|m| �m,�n ,

where an, n 2 Z are the corresponding generators of E which lie on slope s [BS]. The entire
Z2 plane parameterizes by Zm,n can be sliced by lines with all possible rational slopes
passing through the origin. Each slope represents itself a Heisenberg algebra. Here we are
using slightly di↵erent normalization of generators. This normalization is more appropriate
in Ding-Iohara algebra which, as we have already mentioned, is isomorphic to E.

Given the above Heisenberg algebra we can study its Fock space representation F (a)
which is constructed in the standard way.

Proposition 3.2. Let Mn be a highest weight module of An. Then its projective limit

n ! 1 is isomorphic to the Fock module F (a) of E with evaluation parameter a (2.25).

Proof. We can map Macdonald polynomials to states in the Fock space representation of
the q, ~-Heisenberg algebra by claiming that

(3.5) xk = a�k|0i ,

where al obey (3.4). For a partition of size k and length n we can define x� = x�1 · · ·x`(�)
and theh correspondingly state in the Fock module F of E as a��1 · · · a�`(�). Now define a
homomorphism ⇢

n+1
n : ⇤n+1 ! ⇤n as

(3.6) (⇢n+1
n f)(⇣1, . . . , ⇣n) = f(⇣1, . . . , ⇣n, 0)



DAHA Action
Vertex functions or quantum classes for X are elements of quantum K-
theory of X. Equivalently we can view them as elements of equivariant 
K-theory of the space of quasimaps from P1 to X

6 QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY

3. Nakajima Varieties and Macdonald polynomials

Consider the space of quasimaps of complex projective space into the cotangent bundle
to complete n-flag. We construct the following space

(23) Hn = KT (P1 ! T
⇤Fn) ,

Here the maximal torus is T = T(U(n) ⇥ U(1)~ ⇥ U(1)q). This is an infinite-dimensional
vector space whose points are equivariant K-theoretic Givental J-functions (vertex func-
tions)

(24) J(z1, . . . , zn, a1, . . . , an, q, ~) ,
where z1, . . . , zn stand for first Chern classes of the base, a1, . . . , an are equivariant pa-
rameters for U(n) global symmetry, q is the shift parameter (equivalently the parameter
which act on P1 by C⇥), and finally, ~ acts with by C⇥ on the cotangent fibers. All the
arguments of the vertex function take values in C⇥.

It was shown in physics literature [BKK] that J obeys the following set of di↵erence
equations once it is corrected by the stable elliptic envelope

(25) HiZ = ei(a1, . . . , an)Z ,

where Hi are tRS (Macdonald) di↵erence operators and

(26) Z = Stab · J ,

where Stab is the stable envelope for T ⇤Fn. In other words, Z is a (formal) wavefunction
of the (complexified) integrable system.

At generic values of the equivariant parameters for U(n) global symmetry a1, . . . , an the
vertex function is a series of q-hypergeometric type with certain elliptic prefactors.

3.1. X = T
⇤P1

, (n = 2). The vertex function is given by the following series

(27) Z = Stab · 2�1

✓
~, ~a1

a2
; q

a1

a2
; q; q

z

~

◆
.

The hypergeometric function has the following expansion in Kähler parameter

(28) 2�1

✓
~, ~a1

a2
; q

a1

a2
; q; q

z

~

◆
=

1X

k=0

(~; q)k(~a1/a2; q)k
(q; q)k(qa1/a2; q)k

⇣
qz

~

⌘k
,

where (a; q)k =
Qk�1

l=0
(1� aq

l) is the k-th Pochhammer symbol, and in this case

(29) Stab =
✓1(~�1/2

z
�1/2

, q)✓1(~1/2 z�1/2
, q)

✓1(a1z�1/2, q)✓1(a2z�1/2, q)
.

From the above formulae we can derive the condition on equivariant parameters when the
q-hypergeometric series get truncated. For simplicity let us assume a2 = a

�1

1
= a

1/2. For
one such formal solution this condition reads

(30) a
2

` = q
�`~�1

, ` 2 Z+

V 2 with maximal torus
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Specification                                           restricts us to the Fock space 
representation of (q,h)-Heisenberg algebra which is a DAHA module
In other words, we can define the following action
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not more than n columns�

[Schiffmann Vaserot]

[PK 1805.00986]

ak = q�k~n�k

An E

ak = q�k~n�k

Kq,~(�kHilb
k
[C2

])

C⇥
q ⇥ C⇥

~             fixed points are 
Macdonald polynomials



M-theory Description
Hilb

k
[C2

] = Minst
1,k

Starting with M-theory on
n M5 branes wrapping S1 ⇥ Cq ⇥ S3 ⇢

Upon compactification on three sphere 
will get 3d quiver gauge theory on T*Fln

When n becomes large the background undergoes through the 
conifold transition and the resolved conifold becomes a deformed 
conifold Y: S1 ⇥ Cq ⇥ Ct ⇥ Y

Reduction on Y leads us to a 5d U(1) theory with 8 supercharges

Recall that How did U(1) 5d SYM appear?

S1 ⇥ Cq ⇥ C~ ⇥ T ⇤S3
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.
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KT (QM(P1
, X)) Kq,~(Hilb(C2))

Kähler/quantum parameters of X z1, z2 . . . Ring generators x1, x2, . . .

Vertex function Vq at locus (2.25) Classes of (C⇥)2 fixed points [J]

C⇥
q acting on base curve C⇥

q acting on C ⇢ C2

C⇥
~ acting on cotangent fibers of X C⇥

~ acting on another C ⇢ C2

Eigenvalues er of tRS operators Tr Chern polynomials Er of ⇤rU

Table 1. The correspondence between K-theories of quasimaps to Xn and Hilb.

in the left column of the above table to obtain quantum version of the space on the right?
The answer will be formulated later in Sec. 5

3.5. Remarks. Notice that in the left column of Tab. 1 equivariant parameters q and ~
play completely di↵erent roles – the former scales the base curve, while the latter corre-
sponds to C⇥ action on the cotangent directions of Xn. In the right column they are on
completely equal footing and can be interchanged.

The above duality works only when equivariant parameters a1, a2, . . . , an in Xn obey
(2.25). It was discussed in the literature on integrable systems and gauge theories [NS09a]
and more recently in [Sci1606] that locus (2.25) should be interpreted as a set of quantiza-
tion conditions which allow for discrete spectrum of the tRS model. Thus, due to the above
duality, we can observe a symmetry in the tRS spectrum which interchanges (exponential
of) Planck constant q with coupling constant ~ of the tRS model.

4. Moduli Space of Sheaves of Rank N on C2

Let MN denote the moduli space of rank N of torsion free sheaves F of rank N on P2

with framing at infinity: � : F|1 ' O�N
1 . The framing condition forces the first Chern

class to vanish, however, the second Chern class can range over the non-positive integers
c2(F) = �k · [pt]. Therefore the moduli space can be represented as a direct sum of
disconnected components of all degrees

(4.1) MN =
G

k

MN,k .

More details can be found in multiple sources, i.e [FT0904,Neg1209].
There is an action of maximal torus TN := C⇥

q ⇥ C⇥
~ ⇥ T(GL(N)) on each component

MN,k. The first two C⇥ factors act on P2, while the rest acts on framing � with equivariant
parameters a1, . . . aN . We shall be studying TN -equivariant K-theory of MN,k which is
formed by virtual equivariant vector bundles on MN,k. The space Kq,~(MN,k) is a module
over C[q±1

, ~±1
, a±1

1 , . . . a±1
N ].

Eigenvalues of elliptic 
RS model at large n

Eigenvalues of quantum 
multiplication by
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of E.

Thus states in the highest weight module MnN can be matched to vectors in the tensor
Fock module and the generalized Macdonald polynomials are mapped onto ideals (4.2) in
the K-ring of MN .

4.3. Matching Spectra of Macdonald Operators. Analogously with the Hilbert scheme
on C2 we can study K-theory of MN,k, which is generated by the classes of fixed points [~�]
of maximal torus TN .

Lemma 4.2. The eigenvalues of the operator of multiplication by the universal bundle

(4.12) U = W + (1� q)(1� ~)V |J~�
over MN,k, where W is a constant bundle of degree N and tautological bundle V |J~� arise

from the universal quotient sheaf on MN,k ⇥ C2
in K-theory of MN,k is given by

E1(⇤) =
NX

c=1

aa � (1� ~)(1� q)
NX

l=1

X

(i,j)2�(l)

kcX

d=1

s
(l)
d

=
NX

c=1

aa � (1� ~)(1� q)
X

(i,j)2⇤

kX

c=1

s(l)c ,(4.13)

where
PN

l=1 |�l| =
PN

l=1 kl = k and s
(l)
1 , . . . , s

(l)
kl

are in one-to-one correspondence with the

content of tableaux �
(l)

of size kl

(4.14) s
(l)
i,j = q

i�1~j�1
,

for i, j ranging through the arm length and leg lengths of tableaux �
(l)
. Variables s(l)1 , . . . , s(l)k

are in one-to-one correspondence with the content of the asymptotic partition ⇤, where si,j
ranges over the content of ⇤. In (4.13) e1(a1, . . . , aN ) are characters of TW .

Using the above result we can compute eigenvalues Er(⇤) of the operator of multiplica-
tion by the r-th skew-power of the universal bundle ⇤r

U .

Now we can compare these eigenvalues with the tRS eigenvalues.

Proposition 4.3. The eigenvalues of the nN -particle tRS model er and the eigenvalues of

multiplication by r-th skew symmetric power of the universal bundle ⇤r
U over MN,k are

in one-to-one correspondence. In particular

(4.15) E1(⇤) = ~n
NX

l=1

al + ~n�1(1� ~)e1 .

Proof. Let us put r = 1 in (4.13). Then we get

(4.16) E1(⇤) = ~n
NX

l=1

al + ~n(1� ~)e1 =
NX

l=1

al + (1� ~)
NX

l=1

nX

a=1

al(q
�
(l)
a � 1)~a�1

.
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space which is isomorphic to Hn, but has a di↵erent scalar product due to the presence of
additional series in p.

5.2. eRS Eigenvalues. One can perform the localization computation to compute (5.4)
(see [BKK15,KS18]). The first several terms for the eigenvalues of E1 look as follows

(5.7) E1 =
nX

i=1

ai � p(1� ~)(q � ~�1)q�1~n
nX

i=1

ai

nY

j=1
j 6=i

(ai � ~�1
aj)(~ai � qaj)

(ai � aj)(ai � qaj)
+ o(p2) .

5.3. Quantum Multiplication in Kq,~(Hilb). Okounkov and Smirnov [OS1602] studied
the operator of quantum multiplication ML by line bundle L for an arbitrary Nakajima
quiver variety X. This operator enters the quantum di↵erence equation of the form

(5.8)  (qL z) = ML (z) (z) ,

which is solved by a flat q-di↵erence connection on functions of quantum parameter z
with values in KT(X). The authors study stable envelopes which can be represented as real
slopes inside the second cohomology s 2 H

2(X,R). They experience a jump when s crosses
a rational wall in H

2(X,R). One considers all alcoves with respect to a�ne hyperplane
reflections for quantum Weyl group acting on KT (X). Then one can take a path from the
base alcove to another one and each time we cross a wall labelled by rational slope w↵ and
define

(5.9) ML = O(1)M↵1 · · ·M↵L .

It can be shown that the answer is path independent. In the example of Hilbk the H2(X,R)
lattice is one-dimensional.

Operator ML corresponds to the quantum multiplication by ⇤k
V in Kq,~(Hilb

k). In
order to find multiplications by ⇤l

V , 1  l < k one needs to make certain generalizations
to [OS1602].

Using results of [PSZ1612] and [Smi1612], we can formulate the following statement.

Proposition 5.3. The eigenvalues of quantum multiplication operators by bundles ⇤l
V , 1 

l  k in quantum K-theory of MN,k are given by symmetric polynomials el(s1, . . . sk) of

Bethe roots which satisfy the following Bethe equations

(5.10)
NY

l=1

sa � al
sa � q�1~�1al

·
kY

b=1
b 6=a

sa � qsb

sa � q�1sb

sa � ~sb
sa � ~�1sb

sa � q
�1~�1

sb

sa � q~sb
= z , a = 1, . . . , k ,

where al are parameters from (4.4).

The above equations can be obtained from studying saddle point behavior of the vertex
function of Kq,~(MN,k).

In particular, the eigenvalue of the multiplication by M in [OS1602] is given by s1 · · · sk,
where the Bethe roots solve the above equations and are thus functions of all equivariant
parameters and quantum parameter p.
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integrals of motion of the trigonometric Ruijsenaars-Schneider (tRS) model was formu-
lated. This lead us to a clear understanding of quantum K-theory of the quiver varieties
in question in terms of the tRS system [KPSZ1705].

1.1. Goals of the Paper. A collection of vertices and oriented edges connecting them
forms a quiver. A Nakajima quiver variety can be thought of as a cotangent bundle to spaces
of representations of such quivers modulo the automorphisms of vertices. Currently in the
literature two types of Nakajima quiver varieties attract a significant amount of interest
– ADE-type quivers and their a�ne cousins, which are ubiquitous to many branches of
mathematics (we shall focus solely on the A-type quivers), and Atiyah-Drinfeld-Hitchin-
Manin (ADHM) quivers which arise in the study of moduli spaces of sheaves on surfaces
Fig. 1. These two types of quiver varieties are typically discussed independently and the
goal of the current paper is to build a bridge between geometric properties of these spaces.

v1 v2 . . . vn�1

wn�1
W

V

Figure 1. Left: An�1 quiver variety with framing on the last node (cotan-
gent bundle to a flag variety). Right: The ADHM quiver.

Indeed, at first, these two quiver varieties look completely di↵erent – the former is An-
type quiver with n vertices, while the latter has only one framed vertex and a loop. Yet
we claim that there is a nontrivial correspondence between equivariant K-theories of these
varieties. In particular, we shall demonstrate (see Theorems 3.3 and 4.6) the equivalence
between the following spaces

• T-equivariant K-theory of the moduli space of genus zero quasimaps to An-type
quiver Xn shown on the left in Fig. 1.

KT(QM(P1
, Xn)).

We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal
torus of GL(n,C)⇥C⇥

q ⇥C⇥
~ , where GL(wi,C)⇥C⇥

~ acts as automorphisms of Xn

and C⇥
~ scales the cotangent directions with weight ~, while C⇥

q acts multiplicatively
on the base curve.

• C⇥
q ⇥ C⇥

~ -equivariant K-theory of the ADHM moduli space

kM

l=0

Kq,~(MADHM) .
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We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal
torus of GL(n,C)⇥C⇥

q ⇥C⇥
~ , where GL(wi,C)⇥C⇥

~ acts as automorphisms of Xn

and C⇥
~ scales the cotangent directions with weight ~, while C⇥

q acts multiplicatively
on the base curve.

• C⇥
q ⇥ C⇥

~ -equivariant K-theory of the ADHM moduli space

kM

l=0

Kq,~(MADHM) .
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Once the elliptic Calogero-Moser system is downgraded to the trigonometric one the
results of loc. cit. apply after reducing a�ne Laumon space La↵

d to the its finite version
Ld. Here vector d = (d1, . . . ds) shows degrees of parabolic sheaves which are used in the
construction of the Laumon space. For the purposes of our presentation the number of
components in d will always be equal to the rank of gauge group of the supersymmetric
theory which is used in the construction. In physics language the spectrum of the elliptic
Calogero-Moser model is described by instanton counting in N = 2⇤ gauge theory in the
presence of a monodromy defect of maximal Levi type [AT10,Naw14].

The sought generalization of the above results to quantum K-theory should be formu-
lated in terms of the relativistic generalization of the Calogero-Moser system – the elliptic
Ruijsenaars-Schneider (eRS) model. Physically we will be studying five-dimensional N = 1⇤

gauge theory with defect of maximal Levi type [BKK15,KS18].

5.1. Elliptic Ruijsenaars-Schneider Model. The Hamiltonians of the elliptic RS model
can be easily obtained from trigonometric RS Hamiltonians (2.12) by replacing rational
functions with elliptic theta-functions of the first kind

(5.1) Er(~⇣) =
X

I⇢{1,...,n}
|I|=r

Y

i2I
j /2I

✓1(~⇣i/⇣j |p)
✓1(~⇣i/⇣j |p)

Y

i2I
pk ,

where p 2 C⇥ is the new parameter which characterizes the elliptic deformation away from
the trigonometric locus, where p = 1 and we get (2.12) back.

As in the trigonometric case we shall be interested in the eigenvalues and eigenfunctions
of these operators

(5.2) Er(~⇣)Z = ErZ , r = 1, . . . , n .

As a direct generalization of the results of [Neg1112] to K-theory lead to the following

Conjecture 5.1. The solution of (5.2) is given by the K-theoretic holomorphic equivariant

Euler characteristic of the a�ne Laumon space

(5.3) Z =
X

d

~qd
Z

Ld

1 ,

where ~q = (q1, . . . , qn) is a string of C⇥
-valued coordinates on the maximal torus of La↵

d .

The eigenvalues Er are equivariant Chern characters of bundles ⇤r
W , where W is the

constant bundle of the corresponding ADHM space. In other words they have the following

form

(5.4) Er = er +
1X

l=1

plE(l)
r ,

where er are symmetric functions of the equivariant parameters a1, . . . , aN .

Chern roots obey

[PK]



BPS/CFT correspondence from localization 
and operator formalism

Quiver W-algebras
[Kimura Pestun]



qW algebra

Start with quiver gauge 
theory on

Construction of qW algebra from free-boson representation of 
extended Nekrasov partition function

QUANTUM EQUIVARIANT K-THEORY OF NAKAJIMA QUIVER VARIETIES AND INTEGRABILITY 3

We are interested in the case of the following quiver:

vn�1 . . . v2 v1

w1

We denote by aj the coordinates of the torus acting on w1 and by si,k the coordinates
of the torus acting on vi. In this case we have (Let’s relabel w1 to wn�1and put it on
the left vertex ):

TX = T (T ⇤Rep(v,w))�
X

i2I
(1 + ~�1)End(Vi) =(4)

n�1X

i=2

viX

k=1

vi�1X

j=1

✓
si,k

si�1,j
� si�1,j~

si,k

◆
+

v1X

k=1

w1X

j=1

✓
s1,k

aj
+

aj~
s1,k

◆
� (1 + ~�1)

X

i2I

j,k=viX

j,k=1

si,j

si,k
(5)

To get Bethe equations we need to use the following formula:

ba
✓
si,k

@

@si,k
TX

◆
= zi,

where ba (
P

nixi) =
Q⇣

x
1/2
i � x

�1/2
i

⌘ni

. We get the following equations

vn�2Y

j=1

sn�1,k � sn�2,j

sn�1,k � ~sn�2,j
= zn�1

vn�1Y

j=1,j 6=k

sn�1,k � sn�1,j~
sn�1,k~� sn�1,j

, k = 1, . . . ,vn�1 ,

vi�1Y

j=1

si,k � si�1,j

si,k � ~si�1,j

vi+1Y

j=1

si+1,j � ~si,k
si+1,j � si,k

= zi

viY

j=1,j 6=k

si,k � si,j~
si,k~� si,j

, k = 1, . . . ,vi

w1Y

j=1

s1,k � aj

s1,k � ~aj

v2Y

j=1

s2,j � ~s1,k
s2,j � s1,k

= z1

v1Y

j=1,j 6=k

s1,k � s1,j~
s1,k~� s1,j

, k = 1, . . . ,v1 .(6)

These are Bethe ansatz equations for the periodic anisotropic gl(n) XXZ spin chain on
wn�1 sites with twist parameters z1, . . . , zn�1, impurities (shifts of spectral parameters)
a1, . . . , awn�1 , and quantum parameter ~.

3. XXZ/tRS Duality

In this section we discuss the duality between XXZ spin chain and trigonometric Ruijsenaars-
Schneider model which was first derived in physics literature [GK13,BKK15]. It was there
referred to as quantum/classical duality. Here we shall reviews the arguments as well as
prove main statements.

Moduli space of vacua is the space of          periodic monopoles withAn�1

w1    Dirac singularities whose charges are given by the 
number of colors 

Quantization of this moduli space in carefully chosen complex 
structure gives qW(q1,q2) algebra modulo Virasoro constraints!

bC[Mmon] =
qWq1,q2

Vir(v1,...,vn�1)
Ti,�k| i = 0, k > vi

ZNek = bZNek|0i

[Kimura Pestun]

Cq1 ⇥ Cq2 ⇥ S1

QUIVER W-ALGEBRAS 11

where
ti,0 = logq2 qi (3.26)

The elements of the Fock space chRepT[[t]] are formal t-series valued in the ring of T-
characters. The t-constants are lowest-weight states (vacua); they are annihilated by all
lowering operators ∂i,p. A state in the Fock space chRepT[[t]] can be obtained by an action
of an operator in the algebra H on the vacuum |1⟩

3.15. Free bosons and vertex operators. The state |ZT⟩ can be presented as

|ZT⟩ =
∑

X∈MT

≻
∏

x∈X

Si(x),x|1⟩ (3.27)

where
≻
∏

denotes the ≻-ordered product over x ∈ X of the vertex operators

Si,x =: exp
(

∑

p>0

si,−px
p + si,0 log x+ s̃i,0 +

∑

p>0

si,px
−p
)

: (3.28)

Here the free field modes or oscillators are

si,−p
p>0
= (1− qp1)ti,p, si,0 = ti,0, si,p

p>0
= −

1

p

1

1− q−p
2

c[p]ij ∂i,p (3.29)

with commutation relations

[si,p, sj,p′] = −δp+p′,0
1

p

1− qp1
1− q−p

2

c[p]ij , p > 0 (3.30)

The conjugate zero mode s̃i,0 satisfies

[s̃i,0, sj,p] = −βδ0,pc
[0]
ij (3.31)

The normal product notation : eA1eA2 :, where operators A1, A2 are linear in the free fields,
means that all operators (si,p)p≤0 are placed to the left of (si,p)p>0 and s̃i,p.

The relations (3.31) and (3.30), and the relation eA1eA2 = e[A1,A2]eA2eA1 for central [A1, A2],
imply that the operator-state representation of the partition function (3.27) is equivalent to
the quiver gauge theory definition (3.23) if gauge theory couplings κi and qi are evaluated
as

κi = −(c−ij)
[0]
ni, logq2 qi = β + ti,0 + (c−ij)

[logq2 ]nj − (c−ij)
[0] logq2((−1)njνj) (3.32)

where
(c−ij)

[logq2 ] = δij logq2 q
−1 −

∑

e:i→j

logq2(q
−1µe) (3.33)

3.16. Screening charges. The configuration sets X ∈ MT are described by the partitions,
which are explicitly collections of constrained sequences

(λi,α,1 ≥ λi,α,2 ≥ · · · ≥ 0 = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.34)

Let X0 be the ground configuration with all λi,α,∗ = 0.

Let ZX0 be the set of collections of arbitrary integer sequences terminating by zeroes

(λi,α,s1 ? λi,α,s2 ? . . . ? = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.35)

[Nekrasov Pestun Shatashvili]



‘Double’ quantization
There is an integrable systems associated with the moduli space of 
periodic monopoles. Its classical description is given by the Seiberg-
Witten curve of the theory.

In order to quantize the integrable system one turns on one of the 
Omega background parameters — q1 [Hi,Hj ] = 0

Finally, qW-algebra/Vir for the quiver is the q2-deformation of 
the ring of commuting Hamiltonians of the quantum integrable 
system

We shall provide physical and geometric interpretation of 
both Virasoro constraints and the limit

Virasoro constrains can be removed by taking vi ! 1

[Nekrasov, Pestun, Shatashvili]

[Nekrasov, Pestun]

[cf with Aganagic Frenkel Okounkov]



Partition Function

6 TARO KIMURA AND VASILY PESTUN

2.7. Partition function. Define partition function ZT(Γ,Q)γ in topological sector γ be the
T-equivariant index (holomorphic equivariant Euler characteristic) of the structure sheaf on
the moduli space of Γ-quiver sheaves on Q of charge γ

ZT(Γ,Q)γ =
∑

n∈Z

(−1)n chT H
n(M(Γ,Q)γ,OM(Γ,Q)γ ) (2.6)

The total partition function is the sum over the charges

ZT(Γ,Q) =
∑

γ

qγZT(Γ,Q)γ (2.7)

This partition function in the context of N = 2 gauge theories is known under the name
K-theoretic Nekrasov partition function, or the partition function of the 5d quiver gauge
theory reduced on S1 [46].

We can write the partition function using the notation of the derived pushforward π! =
∑

(−1)iRiπ∗ for the projection (integration) map π : M(Γ,Q) → point

ZT(Γ,Q) = chT π!q
γ (2.8)

By definition, the partition function ZT,γ, being a character of a virtual representation
in Rep(T), can be evaluated on an element t ∈ T. In the context of Nekrasov’s partition
function the element t comprises all equivariant parameters.

2.8. Fundamental matter. Since quiver Γ is arbitrary, unlike [2, 6] where Γ was of finite or
affine type, in the present formalism (anti) fundamental matter for a node i is treated simply
as bi-fundamental arrow between the node i and another frozen node which is represented
in constant sheaves with gauge coupling constant q turned off.

2.9. Local observables. Let o ∈ Q be a T-invariant point on space-time Q and let io : o →
Q be the inclusion map that naturally induces io : M(Γ,Q) → M(Γ,Q)×Q.

We define observable sheaves (Yi)i∈Γ0
over the moduli space M(Γ,Q) as the pullback of

the universal sheaf (Ŷi)i∈Γ0
from M(Γ,Q)×Q to M(Γ,Q) by the inclusion io

Yi = i∗oŶi (2.9)

Let Y[p]
i be the p-th Adams operation applied to Yi. The sheaves (Y

[p]
i )i∈Γ0,p∈Z≥0

generate
the ring of observables (using the direct sum modulo equivalence from exact sequences as the
addition and the tensor product as the multiplication) which is a subring in the T-equivariant
K-theory of sheaves on M(Γ,Q).

2.10. Extended partition function. We fix quiver Γ and the space-time Q and drop the
symbols from the notations.

Associated to the local observables (Y[p])i∈Γ0,p∈Z≥0
introduce parameters, called higher

times t = (ti,p)i∈Γ0,p∈Z≥1
and CS levels (κi)i∈Γ0

. We treat higher times ti,p as the conjugate

variable to Y
[p]
i in the sense of the generating function [4]

ZT(t) = chT q
γπ!

∏

i∈Γ0

[det Ŷi]
κi exp(

∞
∑

p=1

ti,pY
[p]
i ) (2.10)

Y-observables and conjugate higher times 

State can be thought of as ordered product of screening charges
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where
ti,0 = logq2 qi (3.26)

The elements of the Fock space chRepT[[t]] are formal t-series valued in the ring of T-
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si,px
−p
)
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Here the free field modes or oscillators are

si,−p
p>0
= (1− qp1)ti,p, si,0 = ti,0, si,p

p>0
= −

1

p

1

1− q−p
2

c[p]ij ∂i,p (3.29)

with commutation relations

[si,p, sj,p′] = −δp+p′,0
1

p

1− qp1
1− q−p

2

c[p]ij , p > 0 (3.30)

The conjugate zero mode s̃i,0 satisfies

[s̃i,0, sj,p] = −βδ0,pc
[0]
ij (3.31)

The normal product notation : eA1eA2 :, where operators A1, A2 are linear in the free fields,
means that all operators (si,p)p≤0 are placed to the left of (si,p)p>0 and s̃i,p.

The relations (3.31) and (3.30), and the relation eA1eA2 = e[A1,A2]eA2eA1 for central [A1, A2],
imply that the operator-state representation of the partition function (3.27) is equivalent to
the quiver gauge theory definition (3.23) if gauge theory couplings κi and qi are evaluated
as

κi = −(c−ij)
[0]
ni, logq2 qi = β + ti,0 + (c−ij)

[logq2 ]nj − (c−ij)
[0] logq2((−1)njνj) (3.32)

where
(c−ij)

[logq2 ] = δij logq2 q
−1 −

∑

e:i→j

logq2(q
−1µe) (3.33)

3.16. Screening charges. The configuration sets X ∈ MT are described by the partitions,
which are explicitly collections of constrained sequences

(λi,α,1 ≥ λi,α,2 ≥ · · · ≥ 0 = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.34)

Let X0 be the ground configuration with all λi,α,∗ = 0.

Let ZX0 be the set of collections of arbitrary integer sequences terminating by zeroes

(λi,α,s1 ? λi,α,s2 ? . . . ? = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.35)

Equivariant localization yields the sum over fixed points of the torus 
action 
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3.6. Cotangent moduli space. From (2.5) we find the K-theory class [T∨
YM] at T-fixed

point Ŷ ∈ MT

[T∨
Ŷ
M] =

1

[ΛQ∨]

⎛

⎝

∑

(i
e
→j)∈Γ1

[M∨
e ][Yo]i[Y

∨
o ]j −

∑

i∈Γ0

[Yo]i[Y
∨
o ]i

⎞

⎠ (3.13)

3.7. Two commutative reductions. Since the space-time Q is a product Q = Q1 × Q2

the reduction from YQ to Yo can be done in two steps in two ways, either first project along
Q2 and then along Q1 (left path) or first project along Q1 and then along Q2 (right path)

[YQ]

[X] := [YQ1
] [YQ2

] =: [X̃]

[Yo]

·[ΛQ]

·[ΛQ2] ·[ΛQ1]

·[ΛQ1] ·[ΛQ2]

(3.14)

so that it holds
[Yo] = [ΛQ1][X], [Yo] = [ΛQ2][X̃] (3.15)

3.8. Quantum q-geometric Langlands Duality. The exchange 1 ↔ 2 in the above dia-
gram leads to the quantum q-geometric Langlands duality q1 ↔ q2.

3.9. Intermediate reduction. The class [T∨
Ŷ
M] at fixed point Ŷ ∈ MT in the equation

(3.13) of the partition function can be expressed in terms of [X] ≡ [YQ1
]

[T∨
YM] =

[ΛQ1]

[ΛQ∨
2 ]

⎛

⎝−
∑

(i,j)∈Γ0×Γ0

[X∨]ic
+
ij [X]j

⎞

⎠ (3.16)

and the K-theory valued half Cartan matrix c+ij defined as

[c+ij ] := δij −
∑

e:j→i

[M∨
e ] (3.17)

with Chern character
ch[c+ij] = δji −

∑

e:j→i

µ−1
e (3.18)

3.10. The set of eigenvalues. Then the Chern characters X = chX at T-fixed point λ
can be explicitly described. Let

Xi = {xi,α,s1}α∈[1...ni],s1∈[1...∞], X = &i∈Γ0
Xi (3.19)

be the set of characters of the monomials associated to boxes (s1,λs1+1) that generate (YQ)
as O(Q2)-module so that

xi,α,s1 = νi,αq
s1−1
1 q

λs1
2 (3.20)

and Xi =
∑

x∈Xi
x.

Let i : X → Γ0 be the node label so that i(x) = i for x ∈ Xi.
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Ŷ
M] =

1

[ΛQ∨]

⎛

⎝

∑

(i
e
→j)∈Γ1

[M∨
e ][Yo]i[Y

∨
o ]j −

∑

i∈Γ0

[Yo]i[Y
∨
o ]i

⎞

⎠ (3.13)

3.7. Two commutative reductions. Since the space-time Q is a product Q = Q1 × Q2

the reduction from YQ to Yo can be done in two steps in two ways, either first project along
Q2 and then along Q1 (left path) or first project along Q1 and then along Q2 (right path)

[YQ]

[X] := [YQ1
] [YQ2

] =: [X̃]

[Yo]

·[ΛQ]

·[ΛQ2] ·[ΛQ1]

·[ΛQ1] ·[ΛQ2]

(3.14)

so that it holds
[Yo] = [ΛQ1][X], [Yo] = [ΛQ2][X̃] (3.15)

3.8. Quantum q-geometric Langlands Duality. The exchange 1 ↔ 2 in the above dia-
gram leads to the quantum q-geometric Langlands duality q1 ↔ q2.

3.9. Intermediate reduction. The class [T∨
Ŷ
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where
ti,0 = logq2 qi (3.26)

The elements of the Fock space chRepT[[t]] are formal t-series valued in the ring of T-
characters. The t-constants are lowest-weight states (vacua); they are annihilated by all
lowering operators ∂i,p. A state in the Fock space chRepT[[t]] can be obtained by an action
of an operator in the algebra H on the vacuum |1⟩

3.15. Free bosons and vertex operators. The state |ZT⟩ can be presented as

|ZT⟩ =
∑

X∈MT

≻
∏

x∈X

Si(x),x|1⟩ (3.27)

where
≻
∏

denotes the ≻-ordered product over x ∈ X of the vertex operators

Si,x =: exp
(

∑

p>0

si,−px
p + si,0 log x+ s̃i,0 +

∑

p>0

si,px
−p
)

: (3.28)

Here the free field modes or oscillators are

si,−p
p>0
= (1− qp1)ti,p, si,0 = ti,0, si,p

p>0
= −

1

p

1

1− q−p
2

c[p]ij ∂i,p (3.29)

with commutation relations

[si,p, sj,p′] = −δp+p′,0
1

p

1− qp1
1− q−p

2

c[p]ij , p > 0 (3.30)

The conjugate zero mode s̃i,0 satisfies

[s̃i,0, sj,p] = −βδ0,pc
[0]
ij (3.31)

The normal product notation : eA1eA2 :, where operators A1, A2 are linear in the free fields,
means that all operators (si,p)p≤0 are placed to the left of (si,p)p>0 and s̃i,p.

The relations (3.31) and (3.30), and the relation eA1eA2 = e[A1,A2]eA2eA1 for central [A1, A2],
imply that the operator-state representation of the partition function (3.27) is equivalent to
the quiver gauge theory definition (3.23) if gauge theory couplings κi and qi are evaluated
as

κi = −(c−ij)
[0]
ni, logq2 qi = β + ti,0 + (c−ij)

[logq2 ]nj − (c−ij)
[0] logq2((−1)njνj) (3.32)

where
(c−ij)

[logq2 ] = δij logq2 q
−1 −

∑

e:i→j

logq2(q
−1µe) (3.33)

3.16. Screening charges. The configuration sets X ∈ MT are described by the partitions,
which are explicitly collections of constrained sequences

(λi,α,1 ≥ λi,α,2 ≥ · · · ≥ 0 = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.34)

Let X0 be the ground configuration with all λi,α,∗ = 0.

Let ZX0 be the set of collections of arbitrary integer sequences terminating by zeroes

(λi,α,s1 ? λi,α,s2 ? . . . ? = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.35)

with familiar commutation relations
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of an operator in the algebra H on the vacuum |1⟩

3.15. Free bosons and vertex operators. The state |ZT⟩ can be presented as

|ZT⟩ =
∑

X∈MT

≻
∏

x∈X

Si(x),x|1⟩ (3.27)

where
≻
∏

denotes the ≻-ordered product over x ∈ X of the vertex operators

Si,x =: exp
(

∑

p>0

si,−px
p + si,0 log x+ s̃i,0 +

∑

p>0

si,px
−p
)

: (3.28)

Here the free field modes or oscillators are

si,−p
p>0
= (1− qp1)ti,p, si,0 = ti,0, si,p

p>0
= −

1

p

1

1− q−p
2

c[p]ij ∂i,p (3.29)

with commutation relations

[si,p, sj,p′] = −δp+p′,0
1

p

1− qp1
1− q−p

2

c[p]ij , p > 0 (3.30)

The conjugate zero mode s̃i,0 satisfies

[s̃i,0, sj,p] = −βδ0,pc
[0]
ij (3.31)

The normal product notation : eA1eA2 :, where operators A1, A2 are linear in the free fields,
means that all operators (si,p)p≤0 are placed to the left of (si,p)p>0 and s̃i,p.

The relations (3.31) and (3.30), and the relation eA1eA2 = e[A1,A2]eA2eA1 for central [A1, A2],
imply that the operator-state representation of the partition function (3.27) is equivalent to
the quiver gauge theory definition (3.23) if gauge theory couplings κi and qi are evaluated
as

κi = −(c−ij)
[0]
ni, logq2 qi = β + ti,0 + (c−ij)

[logq2 ]nj − (c−ij)
[0] logq2((−1)njνj) (3.32)

where
(c−ij)

[logq2 ] = δij logq2 q
−1 −

∑

e:i→j

logq2(q
−1µe) (3.33)

3.16. Screening charges. The configuration sets X ∈ MT are described by the partitions,
which are explicitly collections of constrained sequences

(λi,α,1 ≥ λi,α,2 ≥ · · · ≥ 0 = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.34)

Let X0 be the ground configuration with all λi,α,∗ = 0.

Let ZX0 be the set of collections of arbitrary integer sequences terminating by zeroes

(λi,α,s1 ? λi,α,s2 ? . . . ? = 0 = 0 = . . . )i∈Γ0,α∈[1...ni] (3.35)

qW-algebra is recovered from [S(x), T (x)] = 0



Gauge Origami
Why do these two completely different theories lead to exactly the 
same algebra with some strange identification of parameters? 

Large-n limits were needed in the previous two stories, however they 
were applied to different observables

q $ q1 t $ q2

Extended partition function satisfied qKZ equation which is related 
to tRS model we have talked about earlier
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Type IIB on Calabi-Yau 4
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Local model: [a<b C2
ab ⇢ C4

For example, when 1  a, b  3

}

X4 ⇥ ⌃

singular hypersurface Z2 ⇢ X4

1

2

3

4

Wrap D3 branes on
2-planes in  Z2

n12
n13

X4 = C✏1 ⇥ C✏2 ⇥ C✏3 ⇥ C✏4

P
a ✏a = 0

pointlike on ⌃



Folded Instantons
Take n12=n, n13 = 2 In the presence of  

Abelian orbifold

FROM QUIVER W-ALGEBRAS TO ILW VIA GAUGE ORIGAMI

Abstract. We discuss instanton counting in gauge theories in connection with geometric
representation theory and integrable systems.
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1. Gauge Origami Construction

Consider gauge origami setup by Nekrasov [Nek16] for Type IIA string theory onX⇥S1⇥
R. For our purposes it is enough to take X = C4 in the presence of Omega background
with parameters ✏1, . . . , ✏4 such that

P
a ✏a = 0. We shall study K-theoretic version of

instanton partition function for gauge theories living on D4 branes wrapping C2 ⇥ S1 for
some choice of C2 ⇢ C4.

We shall use gauge origami to study the connection between the results of our previ-
ous papers on quiver q-vertex operator algebras [KP15] and on integrable hydrodynamics
[KS15,KS16]. It will turn out that both constructions can be neatly embedded into a gauge
origami.

Let us start with an origami construction with n12 = n in the presence of Abelian Zn

orbifold along two 2-planes as follows

(1) � = diag(1 ! 1 !�1) ,

where !n = 1. The 12 plane supports N = 2⇤ theory with gauge group U(n) in the Omega
background with defect along the second plane1. Then we need to put some branes in 13
plane, say n13 = N . This configuration with one common complex line (C✏1 in this case)
is called folded instantons [Nek17].

Therefore we get the bAn�1 necklace quiver with U(N) gauge group at each node sup-
ported on C✏1 ⇥C✏3 and bA0 U(n) theory supported on C✏1 ⇥C✏2 whose adjoint hypermul-
tiplet has mass ✏3 in the presence of the monodromy defect along C✏1 .

Now the orbifolding introduces n parameters q1, . . . , qn such that their product is equal
to the instanton parameter of the undeformed N = 2⇤ theory q1 · · · · · qn = q. They will

1there is a little subtlety with the !�1 which we need to fix

1

✏1✏2 ✏3 ✏4

Produces U(n) N=1* theory on               with maximal monodromy 
defect along C✏1 and adjoint mass ✏3

Together with necklace quiver with n U(2) gauge groups on

C✏1 ⇥ C✏2

C✏1 ⇥ C✏3

!n = 1

n n-1 n-2 1
C✏1

C✏2

2
2

2 2

2

q z1 z2 zn�1

q

z1 z2

zn�1

Gauge coupling  
constants



W-algebras from Origami
Origami partition function combines instanton and perturbative data
of both theories 
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Here T+ are ‘positive’ halves of the character (4). The first sum in the above formula has
contributions from the N = 2⇤ theory with the defect and from the necklace theory, whereas
the second double sum has mixes terms. The very last terms has instanton contributions
from both n12 and n13 branes.

Using (4) the instanton origami partition function reads

(6) Z� = Zpert ·
X

�

"
Y

!2�_

qk!!

#
"
h
�T̃�

�

i
,

where " translates pure characters into products.

2. Free Boson Realization

Here we review the construction of [KP15]. The building block for everything is the
universal bundle (sheaf) denoted by Y in our paper. The definition is

(7) Y = N � PK.

where P = (1� q1)(1� q2), and N and K are the bundles on the moduli space. Then, in
terms of ‘x-variable’ it is rewritten as

Y = (1� q1)
X

x2X
x ,

X = x↵,k , ↵ = 1, ..., n, k = 1, ...,1 ,(8)

where

(9) x↵,k = q
�↵,k

2
qk�1

1
⌫↵ .

This x-variable is to be identified as the Bethe root in the NS limit. Applying the Adams
operation to the Y -bundle, we have

(10) Y [p] = (1� qp
1
)
X

x2X
xp ,

In 4d N = 2 theory language, this is a chiral ring operator Y [p] ⇠ Tr�p.
At this moment, Y [p] is a p-th power sum polynomial of x-variables (more precisely,

symmetric function since we have infinitely many x-variables), and thus we can apply the
standard identification of the power sum with the free boson:

P
xp $ a�p (although we

have to impose some q-factor dependence).
We can think of the instanton part of Y-character:

(11) Yinst = (1� q1)
hX

x�
X

x̊
i

where x̊ is the x-variable corresponding to the empty configuration � = ?, which doesn’t
play any role in our formalism.

Then the partition function is given by applying the index to the corresponding character.
For example, the vector character is given by

(12) V = Y Y _/P = (1� q1)
�1(1� q2)

�1XX_ ,

Taking limits q ! 0 , ✏2 ! 0

we get 3d quiver defect gauge theory T*Fln
and finite linear 5d quiver on 

C✏1 ⇥ S1on

C✏1 ⇥ C✏3 ⇥ S1

ak = q�k
1 qn�k

3Locus                                truncates vortex functions to polynomials 
and simultaneously Higgses the 5d theory (truncates instanton series)

Fourier transform
2 2 2 n

[ai, aj ] =
1
j �i+j,0

1�q|j|1

1�q|j|2



ADHM & 1/2 ADHM
K~(T

⇤Fln) ADHM (instanton moduli space)

Claim: ~ ! 1

[PK Koroteeva
Gorsky Vainshtein]

K(Fln) 1/2 ADHM (vortex moduli space)

ONE-DIMENSIONAL QUANTUM HYDRODYNAMICS AT STRONG COUPLING 5

where p⇤ = p~n.

3.4. Free Boson Representation of qToda. The �ILW energies are given by the op-
erator of quantum multiplication by the r-th skew-power ⇤rU of the universal bundle

(25) U = W � (1� ~)(1� q)V

in quantum equivariant K-theory Kq,~(Hilbk(C2)) is given by (for r = 1)

(26) E1(�) = 1� (1� ~)(1� q)e1(s1, . . . , sk) ,

where e1(s1, . . . , sk) = s1+ · · ·+sk is the 1st elementary symmetric polynomial of s1, . . . sk
which solve the following Bethe equations (N for ILWN )

(27)
NY

l=1

sa � al
sa � q~al

·
kY

b=1
b 6=a

sa � q�1sb
sa � qsb

sa � ~�1sb
sa � ~sb

sa � q~sb
sa � q~�1sb

= ep , a = 1, . . . , k ,

where ep = �p/
p
q~ is the Kähler parameter of the ADHM quiver. It was shown in [KS18]

that ILW energies (26) are equal to eRS energies (15) on the locus

(28) ai = aq�i~i�n , i = 1, . . . , n ,

where |�| = k in the limit when n ! 1.

3.5. The Gauge/Hydrodynamics Correspondence. It was show in [KS16,KS18] that
large-n limit of the VEV of the Wilson loops in 5d N = 1⇤ theory are proportional to
characters of the universal bundle on the tangent bundle to the moduli space of U(1)
instantons evaluated on the locus (28), in particular, in case of the fundamental Wilson
loop we get

(29) lim
n!1

h
~n�1(1� ~)

D
WU(n)

Ei ���
�

= a� (1� q)(1� ~)e1(s1, . . . , sk)|� .

4. From Instantons to Vortices

4.1. Scaling Limit. We can take ~ ! 11 limit of the above formulae in the ADHM
construction. We get the following for r = 1

(30) E⇤
1 (�) = a� (1� q)e1(s1, . . . , sk) ,

where Bethe roots now solve the equations arising from the vortex moduli space (N chirals
and one chiral loop)

(31)
NY

l=1

(sa � al) ·
kY

b=1
b 6=a

qsa � sb
sa � qsb

= ep⇤ , a = 1, . . . , k ,

where ep⇤ = ep
Q

N

l=1(�q~al) is the dynamically generated scale and the quantum parameter.
In particular, when N = 1 we have ep⇤ = p

p
q~.

1One needs to be carful with mirror frames – in one of the frames the limit is ~ ! 0

Eigenvalues of affine 
qToda lattice at large n

Eigenvalues of quantum 
multiplication by
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Chern roots obey
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3.1. Inosemtsev Limit to Open qToda. This was established by studying limit ~ ! 1
in (23) after certain rescaling also known as Inosemtsev limit [Ino89]. First we rescale tRS
coordinates, momenta (6) and equivariant parameters ai as follows

(16) zi = ~�i⇣i , pi = ~�i+1/2pi , ai = ~�
n
2 ↵i = ai .

After taking ~ ! 1 limit, we obtain q-Toda Hamiltonian functions which are equal to
symmetric polynomials of ai

(17) Hq-Toda
r (z1, . . . zn; p1, . . . , pn) = er(a1, . . . , an) ,

where the Hamiltonians are

(18) Hq-Toda
r =

X

I={i1<···<ir}
I⇢{1,...,n}

rY

`=1

✓
1� zi`�1

zi`

◆1��i`�i`�1,1 Y

k2I
pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(19) Hopen
1 = p1 +

nX

i=2

pi

✓
1� zi�1

zi

◆
.

3.2. Inosemtsev Limit to Closed qToda. For the elliptic RS model the Inosemtsev
limit works as follows. The theta function has the following expansion near p = 0

(20) ✓1(z|p) = 2p
1
4

+1X

k=0

(�1)kpk(k+1) sin((2k + 1)z) ,

The eRS Hamiltonians contain the following ratio of theta-functions which have the fol-
lowing expansion

(21)
✓1(⇣k/⇣m~|p)
✓1(⇣k/⇣m|p) =

⇣k/⇣m~� p2() +O(p2)

⇣k/⇣m � p2() +O(p2)
. . .
After taking the limit we obtain

(22) Ha↵
1 = p1

✓
1� p⇤

zn
z1

◆
+

nX

i=2

pi

✓
1� zi�1

zi

◆
,

where we assumed p⇤ = p~ 1
2 .

3.3. Spectrum of Closed qToda. One gets the following equations for the spectrum of
quantum closed q-Toda

(23) Hq-Toda
r (~⇣)ZYM = E Toda

r ZYM , r = 1, . . . , n ,

and E Toda
r is given by the ~ ! 1 limit of the eRS energies Er

(24) E Toda
1 =

nX

i=1

ai + p⇤
nX

i=1

ai

nY

j=1
j 6=i

1⇣
1� aj

ai

⌘⇣
1� ai

qaj

⌘ + o((p⇤)2) ,

retracting the fibers,  dimensional transmutation
[Hanany Tong]

Zk ⇢ Hilb
k
[C2

]Subscheme
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Thus we expect that q-Toda eigenvalues (24) on the locus

(32) ai = aq�i , i = 1, . . . , n ,

will reproduce the �ILW energies (30). One can see that ~n�i in (28) will cancel o↵ after
plugging into (24). As expected, fixed points in the vortex moduli space are parameterized
by integers �i – vortex numbers.

Therefore we conclude that the spectrum of �ILW Hamiltonians is in one-to-one cor-
respondence with the operators of quantum multiplication in QKq(Hilb

k(C)) by the sym-
metric powers of the universal bundles.

4.2. Geometric Meaning. One can think of a subscheme Zk of Hilbk[C2] parametrizing
ideals scheme-theoretically supported on C ⇢ C2 (i.e. where the y matrix is identically
0) is the same as the 1/2 ADHM quiver variety. The complete Hall algebra which acts
on �kKq,~(Hilb

k) does not preserve the K-theory of this subscheme Zk, but there is a
one-parameter Heisenberg subalgebra inside it that preserves �kKq(Zk). This Heisenberg
subalgebra is the natural analogue of Nakajima’s construction.

5. Difference BO Equation and its Limit

Consider the periodic Benjamin-Ono equation [Ben67, Ono75] with discrete Laplacian
[TS12] written in terms of exponentiated variables

(33) @tu(X, t) = �u(X, t) v.p.

+1Z

�1

u(Y, t)K(X,Y,�)
dY

Y
,

where the kernel is equal to

(34) K(X,Y,�) =
X2Y 2

�
X2 + Y 2

� �
�2 � 1

�2

(X2 � Y 2) (�2X2 � Y 2) (X2 � �2Y 2)

Here X = ex, Y = ey,� = e� in term of the original notations of [TS12], and � is related
to the radius of the circle on which the 3d theory is compactified.

Now we can take the limit � ! 1 the kernel reduces to

(35) lim
�!1

K(X,Y,�) =
X2 + Y 2

X2 � Y 2
= coth(x� y) ,

which appears in the ordinary BO equation (some Gallelian transformation on u(x, t) is
needed).
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