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Main Theorem |

[PK Pushkar Smirnov Zeitlin]

Consider the cotangent bundle to the complete n-flag variety Wn—1
Then its quantum equivariant K-theory is given by ~ vi va2 -+ Va1
C[ 1i17 SO Cjﬂ; alila ‘e 7ai17 hi1§p1i17 e 7pi1]

QK (T Fl,) =

(Hr(Ciapia FL) — er(al, “. ,an))

relations — integrals of motion of trigonometric Ruijsenaars-Schneider
model

Gih™ /2 — ¢l
H, = Z H Cz - Cj] Hpk

kel

Maximal torus T =C} x T(U(n))

Q: Have we seen something like this earlier?



Motivation

String theory have been suggesting for a long time that there
'S a strong connection between geometry and integrability

Study of Gromov-Witten invariants was influenced by
progress in string theory. For a symplectic manifold X GW

invariants appear in the expansion of guantum multiplication in
quantum cohomology of X.

A particular attention is given to genus zero GW invariants.

In this talk we shall study equivariant quantum K-theory of
large family of symplectic varieties and its connection to

integrable systems



Physics Motivation

To see why integrabillity is relevant one considers supersymmetric

sigma mode|

Witten demo
sigma mode

from an algebraic curve (P1 in our case) into X

nstrated that relevant class of supersymmetric
|s can be rewritten as supersymmetric gauge

theories ((2,2) GLSMs) in two dimensions whose field content
s related to geometry of X. Sigma models thus describe

infrared dynamics of GLSMSs.

Nekrasov an

d Shatashvili showed how to obtain integrable

systems from such GLSMs. |t was conjectured that SUSY

vacua of 2d

heories compute quantum cohomology ring of

X, while 3d t

neories on R? x S! describe quantum K-theory.
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Quantum geometry
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‘Okounkov] Quantum geometry of symplectic resolutions

Geomeftric Representation Theory

Physics

[Braverman, Maulik, Okounkov 201 1] Quantum cohomology of Springer resolution
‘Maulik Okounkov 2012] Quantum groups and quantum cohomology
Okounkov 2015] Lectures on K theoretic computations

[Witten 1993] The Verlinde algebra and the cohomology of the Grassmannian

[Nekrasov Shatashvili 2009] Supersymmetric vacua and Bethe Ansatz;
Quantum integrability and supersymmetric vacua



Quantum groups

Let g Lie algebra @ — g(t) IOOP algebra (Laurent poly valued in g)
Evaluation modules form a tensor category of g
Vl(afl) SURRRNY Vn(an)

Vi are representations of g
ai are special values of spectral parameter t

Quantum group is a noncommutative deformation Uh(ﬁ)

with a nontrivial intertwiner — R-matrix
RV1,V2 (al/ag) : Vl (al) X Vg(ag) — VQ(CLQ) 029 Vl(al)

satisfying Yang-Baxter equation




Quantum Integrability

[Faddeev Reshetikhin Tachtajan]

The intertwiner represents an interaction vertex in integrable models. The
quantum group is generated by matrix elements of R

twist Z € e Integrability comes from fransfer matrix

< > Ty (1) = Tryy () (Z @ 1) Tyw)
V(a)

Ty (u), T (/)] = 0

Transfer matrices are usually polynomials
in u whose coefficients are

the integrals of motion

auxiliary space physical space



XXZ Spin Chain

g = slo spin-1/2 chain on nsites V= CQ(al) X ® CQ(CLn)

Spectrum can be found using Bethe Ansatz techniques. However, if we
want to understand the problem for more general algebras we need to
think of the Knizhnik-Zamolodchikov difference equation (qKZ)

U(gay,...an)=(Z@1Q---®@1)Ry, v, - Ry, v, V(a1,...an)

where
U(ay,...,an) € Vi(a1) ® - @ V,(an)
[l. Frenkel Reshetikhin]

In the limit ¢ — 1
gKZ becomes an eigenvalue problem




Solutions of qKZ

: , [Aganagic Okounkov]
Schematic solution / dx

— fa(x,0) K(x,2,a,9)
X / \

universal kernel

o —

/

indexed by physical space representation

log K(x, z,a,q) ~ S(;{,Z,a)
99 o1 T
57, O Bethe equations for Bethe roots x
0S
Gig— = A;  Eigenvalues of gKZ operators
i

The map @ +— fu (X*) Provides diagonalization

So we need to find “off shell’ Bethe eigentunctions fo (X, CL)



Nekrasov-Shatashvili correspondence

The answer will come from enumerative AG inspired by physics

Equivariant K-theory of
Nakajima quiver varitey

Hilbert space of states
of quantum integrable system ” (line operators in 3d SUSY
gauge theory)

gauge group G = H U(v;) (V1,Vz,...) encode weight of rep «

Bethe roots x live in maximal torus of G, by integrating over x we project
on Weyl invariant functions of Bethe roots

Flavor group Gp = H U(w;) whose maximal torus gives parameters a

1

Bifundamental matter HOm(V;;a Vg)



Nekrasov-Shatashvili correspondence
The quiver variety X = {Matter fields}/gauge group

X is a module of some quantum group in Nakajima correspondence
construction

We will be computing integrals in K-theory of the space of
quasimaps f : C > X weighted by degree z%¢/
subject to equivariant action on the base nodal curve C;

(cf Gromov-Witten invariants)

In particular we shall study quantum K-theory ring with quantum
parameters z whose structure constant arise from 3 point correlators



Nakajima Quiver Varieties
Rep(v,w) — linear space of quiver reps I
1 T*Rep(v, w) — Lie(G)® moment map .,

Nakajima quiver variety X = u7'(0)//eG = = *(0)4s/G G=]]GLW)
Automorphism group Aut(X) = [ [ GL(Qy;) x [ [ GL(W;) x C

Maximal torus T =T(Aut(X))

Tensorial polynomials of tautological bundles Vi, Wi and their duals
generate classical T-equivariant K-theory ring of X

Ex: T*Gr(k,n) (V) = V2 — A3V
V1 — k, W1 — TN

2 1 -1 —1
T(S1,+++ ,8k) =(s1+ -+ sk)” — g Si S5, Sis
1< <12 <3<k



u
value of a quasimap defines a map to
a quotient stack which contains stable

locus as an open subset

[Ciocan-Fontanine, Kim, Maulik]
[Okounkov]

< gy~ » X is described by collection of vector bundles
¥ on C of ranks Vv; with section f € H(C,.# @ .#* @ h) satisfying y = 0

where 7 =) Hom(#;,%)& Y Qi ® Hom(%,¥;) Wi 1

el 1,7€1
d; degrees of ¥; ._._._I

Evaluation map to quotient stack Resolve to make q
M relative
ev, : QM? = 1~1(0)/G A e

proper ev map &,
p > f(p) e w;\\\

QMdnonsingp > X
QM is nonsingular if  f(p) € X

-

for all but finrtely many singular points




Virtual Sheaves

Deformation-obstruction theory allows one to construct virtual tangent bundle

and virtual structure sheaf [Ciocan-Fontanine, Kim, Maulik]

Fiber of the reduced virtual tangent bundle to QM osing »

v1r d >|<
({”V}{W})QMnonsmgp (%@h% 1‘|‘h @Eib‘t %,7

\

moment map, deformations
C* factorizations in GIT

Symmetrized virtual structure sheaf 0y, = Oy ® 1/ 2qdeal2)/2

VIr
(possible to do for quiver varieties) / \
virtual canonical polarization
bundle bundle

Standard bilinear form on K-theory  (r ¢y = (F o ¢ & K~/?)

(twisting by root of K will be important) \ ,
canonical class



Vertex Function [Okounkov]

[Pushkar Smirnov Zeitlin]

Spaoes of quasimaps admit an action of an extra torus C, which scales the
base P! keeping two fixed points (0, infinity)

Define vertex function with quantum (Novikov) parameters = =]]#"
el

e Z ety ( QMg Ouie(41,)) € Ko, (X el

descendent

Define quantum K-theory as a ring with multiplication
A® B = A®B + ZA@de

T® = Z zdevplapg* (QI\/I;I1 D p3,eV;2(G_13")Ovir) G 1 @? G

d=10

gluing Co = Co,1 Up Co 2 I—— )L — HG—lH

Theorem: QK(X) I1s a commutative associative unital algebra



Vertex computation for T*Fin

At a given fixed point of extended maximal torus tangent space has
M = (O(d) ® q_d) b (O(d) Rq R )

character pge (O(d) 2q¢?® _')

a; _ — . .
=—=(1+¢ " +...¢°") similar to rest
J

Overall the contribution of g %O(d) to the character is

_ (W, q)a , 1j2,1/2\a _ e(®) e 7;
{z}a= (q/%q)d( q/“h~/7)%, where (z,q)q= i) o) :g(l—q:ﬁ)
Vertex Vi(z)= Y > 3(x(d)) 2%¢ = 27 (7], ).

deZ% (v, #)e(QMg )"

nonsing po

fixed point p contributes

Vp(T) (Z) _ Z quN(d)/2 EHG T(xi,jq_di’j) Wn—1

di,jEC
n—1 Vi
—1
b= H H {xi,j/wi,k}di,j—di,k

i=1 j,k=1



Example for T*P:

: C e : vi=1 w; =2
Vertex with trivial insertion ! !

2 (%a_?;q) two fixed points
Vél) _ Z(zh)d H Qi d —o0h (t,ta—p, a_p;q;zﬁ> p ={ai} and p = {a2}
i=1

0p . a A+
d>0 (a_I;aCI)d P P

2
As a contour integral v = ! /@ ()" Tora 1]

Physics: Vortex partition function

N = 2% quiver gauge theory on X; =C,, x Si (O

Lagrangian depends on twisted masses a1, 2

FI parameter z and U(l) R-symmetry logh ( D



Bethe Equations [ o bn

Wn—1
Saddle point approximation provides =1 V{7 (2)
the operator of quantum multiplication "P'*/ = ;51 v (2)
Vi V2 cer V-1

For the cotangent bundle to partial flag variety we get

Theorem 3.4. The eigenvalues of 7(z)® 1is given by T(s; ), where s; 1 satify Bethe equa-

tions:
v v
2 S1Ek — S9.4 1 —V] 181'—81kh
’ J > (_h /2) 2J ’
heo . 1 A )
=1 S1,k — NS254 =1 $1,;10 — S1k
J#k

; Vi

Sik — Sitl,j Si—1,j — NSik Loy Vi T Sig — Sikl
(23) = zi(=h '?) ,
' Si,jlv— Sik
j=1 5J 3

_Z’L

j#k
H S’I’L—l,k o a’j S?’L—Q,j o S?’L—l,k — 5 ( hl/Q)_Vn—l Sn—l,j o Sn—l,k
— An—1\{— ’
=1 Sn—1,k — ha Sn—2,7 Sn—1,k i=1 Sn—l,jh — Sn—1,k
J7k
where k =1,...,v; fort=1,...,v,_1.

which are Bethe Ansatz Equations for gl(n) XXZ spin chain



Bethe Equations for T*Gr(k,n)

[Pushkar Smirnov Zeitlin]
T*Gr(k,n) vi=Fk, Wi =n

Theorem 2. The eigenvalues of operators of quantum multiplication by 7(z) are given
by the values of the corresponding Laurent polynomials 7(sq,--- ,sk) evaluated at the
solutions of the following equations:

twisting by K"1/2

In the Imit z—> 0 obtain classical relations

(Si—aj):(), 1=1---k

1

n

J



K-theory and Many-Body systems

Now we would like to connect quantum K-theory of X with
integrable many-body systems

Consider vertex for T*Fln with trivial insertion V(z,a,h,q)

Theorem | [PK]:
Given integrals of mo’rion of trigonometric Ruijsenaars-Schneider model

- h( —
= 1l C <. Hpk prf(Ck) = f(qSk) 2 = Git1/Gi
Jc{1,...,n} i€J T ied
J|=r J¢I
then vertex is their mutual eigenfunction T,(OVY =e.(avy, r=1,...,n

Theorem 2 [PK Zeitlin]:
Given integrals of motion of dual trigonometric Ruijsenaars-Schneider model

ta; —a;
L= > o= 1w pif (ax) = f(gar) t

q
IJc{1,...,n} i€J icJ - h
flﬂ =r }J¢J
then vertex is their mutual eigenfunction

T.(a)V(a,C) = S, (C,t)V(a,C), r=1,..., Wn_1



Baxter Operator

Consider quantum tautological bundles AkV(z), k=1,...,v;

and their generating function — vi

Qi(w) = 3 (~DF " ERE ARV (2)
Baxter Q-operator z;)

Proposition: The eigenvalue of quantum multiplication by Qi is
Qi(u) = [ [(u—nh2s;)
k=1
Using results from integrability we can write XXZ Bethe equations in
term of polynomials

Wn—1

Qi) = [[ (4 —o010) . Plu) = Qulw) = [[ (u— )

a=1

Theorem [PK]: Given Lax matrix of tRS model

[T (h"2¢ — 02, Q;0) 1 —
Ly = " P, =Ty R e A
[T (G — ¢k - |
ki
pi:Sz'+1,1""'372+1,z'+17 i=1,...n—1 we get P(U) — det(u—L)

87:’1 o o o o o S’I;”I:



Example for T*P1

Vertex v=E

tRS
Hamiltonians

Energy equations

tRS class
/

T1(QV = VI = (a1 + az)V



K theory via tRS

Classical limit g —>1 implies
+1 1. 41 1 341, +1 1
CIGE, ..., CFlart, L et Y p, L p

QKT(T*IW”) — (Hr(Ciapi7 h) — er(al, . ,CLn))

where the ideal is generated by energy equations of all Hamiltonians of tRS model

(1,...,(, arecoordinates pPi,...,Pn are momenta
ag;
Gi

. - dpz‘
symplectic form  2=)_ )
i=1 “°

Momenta can be determined from derivatives of Yang-Yang function XXZ
for Bethe equations. They define Lagrangian £ c T* (C*)"
whose generating function is given by the Yang-Yang function.

[Gaiotto PK]

[Bullimore Kim PK]
tRS/XXZ duality



Compact limit

Equivariant push-forward 137 (z) = %° 3 3(x(d)) 24g2s 27y ),

X 1 ) o
s-roof class  3(2) = 55— $(z +y) = 3(x)3(y)

Contributions from the base and the fiber in T*G/B split  (w,w™"h)

1 1 1 e
w2 — w2 (hw=1) /2 — (hw=1)=/2 1l —w i1l —p 11

1

After rescaling we can take the limit 7 — oo (w,w™th) - —
— W

1

Vertex functions [cf Givental Lee]

p _>2¢1 ( y Uy 0 y 45 < 1¢0 0 y 45 < 4

p p

satisfy g-Toda difference relations



Five-Vertex model and gToda

In the limit we can recover the K-theory ring for complete n-flag n
ClzE ... ﬁi;ailw..,afl;Zilw.., fl I
QK (Fl,) = 37 _Tjda 1 P1 P | -~ o o
(I—I752 (5271%) :e?“(aly"'aa’n)) 1 2 n—1

g-Toda Hamiltonians

r i1 1=0i,—i, 4,1
H;J—Toda _ Z H (1 _dy ) Hpk

I={i1<<ip } £=1 dic keJ
Ic{1,...,n}

Analogously to XXZ/tRS duality we can formulate 5-vert/qToda duality

n

Bethe equations  [[(si—a;) == =

S .
j=1 A



