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Figure 6.3.3 is a pictorial representation of this data. Note that nonsingularity at

Figure 6.3.3. A quasimap relative a point p P C is a quasimap
from a semistable curve C 1 whose stabilization collapses a chain
of rational curves to p.

p and the nodes implies f 1 takes the generic point of each component of C 1 to X.
Two quasimaps are isomorphic, if they fit into a diagram of the form
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where φ is an isomorphism which preserves the marked point. Since

AutpC 1,π,pq “
`
Cˆ˘# of new components

a quasimap has a finite group of automorphism if and only if each component of
C 1 is either mapped nonconstantly to X or has at least one singular point.

6.3.4. A quasimap to X may be composed pointwise with the projection to the
affine quotient

X0 “ µ´1p0q{G “ Spec pG-invariantsq ,

which has to be constant since X0 is affine. This gives a map QMpXq Ñ X0, and
similarly for relative quasimaps.

By a general result of [20], the moduli space of both ordinary and relative
quasimaps is proper over X0. Our goal in this section is to get a feeling for how
this works and, in particular, to explain the logic behind the definition of a relative
quasimap.

6.3.5. The key issue here is that of completeness, which means that we should
be able to fill in central fibers for maps

g : Bˆ Ñ QMpXqrelative p ,

where Bˆ “ Bzt0u and B is a smooth affine curve with a point 0, under the
assumption that the corresponding map to X0 extends to B.
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We are interested in the case of the following quiver:

vn�1 . . . v2 v1

w1

We denote by aj the coordinates of the torus acting on w1 and by si,k the coordinates
of the torus acting on vi. In this case we have (Let’s relabel w1 to wn�1and put it on
the left vertex ):
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To get Bethe equations we need to use the following formula:
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. We get the following equations
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These are Bethe ansatz equations for the periodic anisotropic gl(n) XXZ spin chain on
wn�1 sites with twist parameters z1, . . . , zn�1, impurities (shifts of spectral parameters)
a1, . . . , awn�1 , and quantum parameter ~.

3. XXZ/tRS Duality

In this section we discuss the duality between XXZ spin chain and trigonometric Ruijsenaars-
Schneider model which was first derived in physics literature [GK13,BKK15]. It was there
referred to as quantum/classical duality. Here we shall reviews the arguments as well as
prove main statements.

A-TYPE QUIVER VARIETIES AND ADHM MODULI SPACES 3

integrals of motion of the trigonometric Ruijsenaars-Schneider (tRS) model was formu-
lated. This lead us to a clear understanding of quantum K-theory of the quiver varieties
in question in terms of the tRS system [KPSZ1705].

1.1. Goals of the Paper. A collection of vertices and oriented edges connecting them
forms a quiver. A Nakajima quiver variety can be thought of as a cotangent bundle to spaces
of representations of such quivers modulo the automorphisms of vertices. Currently in the
literature two types of Nakajima quiver varieties attract a significant amount of interest
– ADE-type quivers and their a�ne cousins, which are ubiquitous to many branches of
mathematics (we shall focus solely on the A-type quivers), and Atiyah-Drinfeld-Hitchin-
Manin (ADHM) quivers which arise in the study of moduli spaces of sheaves on surfaces
Fig. 1. These two types of quiver varieties are typically discussed independently and the
goal of the current paper is to build a bridge between geometric properties of these spaces.

v1 v2 . . . vn�1

wn�1
W

V

Figure 1. Left: An�1 quiver variety with framing on the last node (cotan-
gent bundle to a flag variety). Right: The ADHM quiver.

Indeed, at first, these two quiver varieties look completely di↵erent – the former is An-
type quiver with n vertices, while the latter has only one framed vertex and a loop. Yet
we claim that there is a nontrivial correspondence between equivariant K-theories of these
varieties. In particular, we shall demonstrate (see Theorems 3.3 and 4.6) the equivalence
between the following spaces

• T-equivariant K-theory of the moduli space of genus zero quasimaps to An-type
quiver Xn shown on the left in Fig. 1.

KT(QM(P1
, Xn)).

We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal
torus of GL(n,C)⇥C⇥

q ⇥C⇥
~ , where GL(wi,C)⇥C⇥

~ acts as automorphisms of Xn

and C⇥
~ scales the cotangent directions with weight ~, while C⇥

q acts multiplicatively
on the base curve.

• C⇥
q ⇥ C⇥

~ -equivariant K-theory of the ADHM moduli space

kM

l=0

Kq,~(MADHM) .
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Higher Symmetries
In this talk we shall discuss some higher symmetries which arise in 
physics and geometry.

This algebra often appears in the BPS/CFT correspondence:

Connects BPS observables of N=2 supersymmetric gauge 
theories with CFT correlators (Mathematically: relates 
structures arising on moduli spaces of sheaves (instantons) 
with vertex operator algebras or qVOAs)
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the quiver gauge theory in question. Indeed, the instanton partition function Z of the 5d
theory truncates into a 3d vortex partition function of the defect theory. Note that it’s a
di↵erent kind of defect than the one we just talked about. In M-theory approach of [AT10]
this is a codimension four defect vs. the codimension two defect in the N = 1⇤ theory.

2.8. Matching. In the Higgsing procedure which we have described above the An�1 quiver

yields an M ⇥ n matrix of integers µ(i)
mj , where i = 1, . . . , n and j = 1, . . . ,M . There

are two natural ways to combine those numbers into partitions. If we form a Young
tableaux by combining the matrix elements in rows we get we shall get an n-tuple of

tableaux: µmi =
n
µ(1)
mi , . . . , µ

(n)
mi

o
. Then we can construct an M -tuple of such partitions

µ = {µm1 , . . . , µmM }.
We can see that (2.14) matches with (2.12) upon identifying q2 with q3 and � =�

�(1), . . . ,�(M)
 
with µ provided that a` = a2 for all `! Note that not all �(i)

j (or µi
mj

)
must be nontrivial.

To summarize, the proposed duality works as follows. From the folded instantons con-
struction with branes along n = n12 and M = n13 directions we introduce a defect along
complex line C1 by adding a Zn orbifold � along directions 2 and 4. Due to the symmetry
between 2 and 3 directions we conclude that in the decoupling limit q ! 0 and upon im-
posing ‘quantization conditions’ (2.12) (equivalently (2.14)) the origami partition function
(2.7) turns into a generalized Macdonald polynomial P�.

2.9. Fourier-Mukai Transform. Given the way we formed tuple of partitions µ above
we can reformulate our main result. Indeed, if we apply the so-called (bi)spectral duality
to the An�1 quiver gauge theory with U(M) gauge groups then we’ll arrive at AM�1 gauge
theory with U(n) gauge (and flavor) symmetries. Indeed, in brane realization the spectral
duality corresponds to interchanging NS5 and D5 branes which are used in Hanany-Witten
type constructions of 5d quiver gauge theories. After this 90� turn of branes partitions µ
describe the data of bona fide codimension four defect in the AM�1 quiver gauge theory
with framing.

In other words, the partition function of the maximal monodromy defect in U(n) 5d
N = 1⇤ theory is on locus (2.12) can be identified with the codimension four defect of
the 5d AM�1 quiver gauge theory. Equivalently the above spectral transformation can be

described by rotating partitions µ(`)
mi by 90 degrees.

Notably we have demonstrated that a codimension-two defect is related to a codimension-
four defect by a brane rotation which is a manifestation of the Fourier-Mukai transform in
string theory (cf. [FGT16]).

3. Free Boson Realization and Algebras

3.1. Algebra E. The following algebras which depend on two parameters q1, q2 2 C⇥ are
isomorphic to each other

(3.1) Uq1,q2

✓
ccgl1

◆
' Eq1,q2 ' gl1DAHAS

q1,q2 ' DIMq1,q2 ' D(Ashu✏e) ,

Quantum 
Toroidal gl1

Elliptic Hall 
algebra

spherical  
     DAHA gl1

Ding-Iohara-Miki  
algebra

Drinfeld double 
of shuffle algebra

E '



BPS/CFT and Geometry

One of our goals is to understand BPS/CFT geometrically

Namely we want describe instanton counting and vertex operator 
algebras in terms of quantum geometry (quantum cohomology 
or quantum K-theory) of some family of spaces

Mathematicians have now several proofs of BPS/CFT (AGT) in limiting 
cases (no fundamental matter), those proofs do not use the original 
class-S construction

Physics proof* by Kimura and Pestun uses direct localization computations 

[Schiffmann Vaserot] [Negut]

In other words we want  (q)VOAs to emerge from quantum geometry



Recent Developments
Vertex Algebras at the Corner [Gaiotto Rapcak]

The Magnificent Four [Nekrasov]

VOAs at junctions of supersymmetric intersections in N=4 SYM

D8 brane probed by D0 branes in B field

Quiver W-algebras [Kimura Pestun]
4,5,6d quiver gauge theories on R^4 x S in Omega background

U(1)4 ⇢ Spin(8)
q1, q2, q3, q4

+ additional nongeometric U(1) symmetry

COHA and VOAs [Rapcak Soibelman Yang Zhao]
Action of COHA on the moduli space of spiked instantons



Nakajima Quiver Varieties
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

Rep(v,w) — linear space of quiver reps

µ : T ⇤Rep(v,w) ! Lie(G)⇤

G =
Y

GL(Vi)

moment map

X = µ�1(0)//GNakajima quiver variety

Aut(X) =
Y

GL(Qij)⇥
Y

GL(Wi)⇥ C⇥
~Automorphism group

Maximal torus T = T(Aut(X))

Tensorial polynomials of tautological bundles Vi, Wi and their 
duals generate classical T-equivariant K-theory ring of X



Evaluation map

evp(f) = f(p) 2 [µ�1(0)/G] � X

Stable if f(p) 2 X

for all but finitely many singular points

74 K-theoretic computations in enumerative geometry

Figure 6.3.3 is a pictorial representation of this data. Note that nonsingularity at

Figure 6.3.3. A quasimap relative a point p P C is a quasimap
from a semistable curve C 1 whose stabilization collapses a chain
of rational curves to p.

p and the nodes implies f 1 takes the generic point of each component of C 1 to X.
Two quasimaps are isomorphic, if they fit into a diagram of the form

C 1
1

φ

!!

f1

""❄
❄

❄
❄

π1

##⑧⑧
⑧
⑧
⑧
⑧
⑧

C X

C 1
2

f2

$$
⑧

⑧
⑧

⑧
π2

%%❄❄❄❄❄❄❄❄

where φ is an isomorphism which preserves the marked point. Since

AutpC 1,π,pq “
`
Cˆ˘# of new components

a quasimap has a finite group of automorphism if and only if each component of
C 1 is either mapped nonconstantly to X or has at least one singular point.

6.3.4. A quasimap to X may be composed pointwise with the projection to the
affine quotient

X0 “ µ´1p0q{G “ Spec pG-invariantsq ,

which has to be constant since X0 is affine. This gives a map QMpXq Ñ X0, and
similarly for relative quasimaps.

By a general result of [20], the moduli space of both ordinary and relative
quasimaps is proper over X0. Our goal in this section is to get a feeling for how
this works and, in particular, to explain the logic behind the definition of a relative
quasimap.

6.3.5. The key issue here is that of completeness, which means that we should
be able to fill in central fibers for maps

g : Bˆ Ñ QMpXqrelative p ,

where Bˆ “ Bzt0u and B is a smooth affine curve with a point 0, under the
assumption that the corresponding map to X0 extends to B.

Resolve to make proper ev map 

Quasimaps
Quasimap f : C �� ! X is described by collection of vector bundles
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as automorphisms of X, where Qij stands for the number of edges between vertices i and
j, C! scales cotangent directions with weight ! and therefore symplectic form with weight
!−1. Let us denote by T the maximal torus of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:
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equivariant K-theory ring KT(X). For a Nakajima quiver variety X one can define a
set of tautological bundles on it Vi,Wi, i ∈ I. Tensorial polynomials of these bundles and
their duals generate KT(X) according to Kirwan’s surjectivity conjecture, which is recently
shown to be true on the level of cohomology [MN]. All bundles Wi are trivial. Let (·, ·) be
a bilinear form on KT(X) defined by the following formula

(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].

2.2. Quasimaps.

Definition 2.1. A quasimap f from C to X

(2) f : C !!" X

Is a collection of vector bundles Vi on C of ranks vi together with a section of the bundle

(3) f ∈ H0(C,M ⊕ M ∗ ⊗ !),

satisfying µ = 0, where

M =
∑

i∈I

Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd

nonsing p ⊂ QMd of quasimaps nonsingular at the given point p is endowed with
a natural evaluation map:

(4) QMd
nonsing p

evp
−→ X

that sends a quasimap to its value at p. The moduli space of relative quasimaps QMd
relative p

is a resolution of evp (or compactification), meaning we have a commutative diagram:

on C viof ranks with section satisfying µ = 0

where
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(1) (F,G) = χ(F ⊗ G⊗K−1/2),

where K is the canonical class and χ is Euler characteristic. Such necessary extra shift
will be explained below. For more information on quiver varieties in this context, one can
consult original papers [Nak9802], [Nak] or [Neg], [MO12].
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satisfying µ = 0, where
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Hom(Wi,Vi)⊕
∑

i,j∈I

Qij ⊗Hom(Vi,Vj),

so that Wi are trivial bundles of rank wi and µ is the moment map. Here ! is a trivial line
bundle with weight ! introduced to have the action of T on the space of quasimaps. The
degree of a quasimap is a the vector of degrees of bundles Vi.

For a point on the curve p ∈ C we have an evaluation map to the quotient stack evp :
QMd → L(v,w)/G defined by evp(f) = f(p). Note that the quotient stack contains X as
an open subset corresponding to locus of semistable points:

X = µ−1
ss (0)/G ⊂ L(v,w)/G.

A quasimap f is called nonsingular at p if f(p) ⊂ X. In short, we conclude that the open
subset QMd
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

Degree (v1, . . . ,vn�1)

value of a quasimap defines a map to 
a quotient stack which contains stable 
locus as an open subset

QMd



Vertex Function (g=0)
Spaces of quasimaps admit an action of an extra torus      which scales the 
base       keeping two fixed points (0, infinity)

Cq

P1

Define vertex function with quantum (Novikov) parameters
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Proposition 2.6. The multiplicative identity of QKT(X) is given by 1̂(z) (i.e. the quan-

tum tautological class for insertion ⌧ = 1).

Proof. The diagrammatic proof given in [PSZ16] can be applied to any Nakajima quiver
variety. ⇤

2.5. Vertex functions. The spaces QMd
nonsing p2 and QMd

relative p2 admit an action of an

extra torus Cq which scales the original P1 keeping points p1 and p2 fixed. Set Tq = T⇥Cq

be the torus acting on these spaces.

Definition 2.7. The element

V
(⌧)(z) =

1X

d=~0

z
devp2,⇤

⇣
QMd

nonsing p2 ,
bOvir⌧(Vi|p1)

⌘
2 KTq(X)loc[[z]]

is called bare vertex with descendent ⌧ . In picture notation it will be denoted by

⌧

The space QMd
nonsing p2 is not proper (the condition of non-singularity at a point is an

open condition), but the set of Tq-fixed points is, hence the bare vertex is singular at q = 1.

Definition 2.8. The element

V̂
(⌧)(z) =

1X

d=~0

z
devp2,⇤

⇣
QMd

relative p2 ,
bOvir⌧(Vi|p1)

⌘
2 KTq(X)[[z]]

is called capped vertex with descendent ⌧ . In picture notation it will be represented by:

⌧

Note here, that the definition of the capped vertex and the definition of quantum tau-
tological classes are very similar with the main di↵erence being the spaces they live in.
By definition, the quantum tautological classes can be obtained by taking a limit of the
capped vertex: limq!1 V̂

(⌧)(z) = ⌧̂(z). The last limit exists as the coe�cients of V̂ (⌧)(z)
are Laurent polynomials in q, due to the properness of the evaluation map in the relative
case.

In fact, the following strong statement is known about capped vertex functions.

Theorem 2.9. Power series V̂
(⌧)(z) is a Taylor expansion of a rational function in quan-

tum parameters z.

Proof. There are two di↵erent proofs of this theorem: the first is based on large fram-
ing vanishing [Smi16], the second originates from integral representations of solutions of
quantum di↵erence equations [AO]. ⇤

As a corollary, quantum tautological classes ⌧̂(z) are rational functions of z.

[PK Pushkar Smirnov Zeitlin]

Define quantum K-theory as a ring with multiplication
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Definition 2.2. An element of the quantum K-theory

(8) ⌧̂(z) =
1X

d=
�!
0

z
devp2,⇤

⇣
QMd

relative p2 ,
bOvir⌧(Vi|p1)

⌘
2 QKT(X)

is called quantum tautological class corresponding to ⌧ . In picture notation it will be rep-

resented by

⌧

These classes evaluated at 0 are equal to the classical tautological classes onX (⌧̂(0) = ⌧).
For any element F 2 KT(X) the following element

(9)
1X

d=
�!
0

z
devp1,p3⇤

⇣
QMd

p1,p2,p3 , ev
⇤
p2(G

�1
F)bOvir

⌘
2 KT(X)⌦2[[z]]

can be made into an operator from the second copy of KT(X) to the first copy by the
bilinear form (·, ·) defined above. We define the operator of quantum multiplication by F

to be this operator shifted by G�1, i.e

(10) F~ =
1X

d=
�!
0

z
devp1,p3⇤

⇣
QMd

p1,p2,p3 , ev
⇤
p2(G

�1
F)bOvir

⌘
G�1

Definition 2.3. The quantum equivariant K-theory ring of X is vector space QKT(X) =
KT(X)[[z]] endowed with multiplication (10).

This product enjoys properties similar to the product in quantum cohomology. The
proof of the following statement is analogous to the proof of the analogous fact for the
cotangent bundle to Grassmannian [PSZ16].

Theorem 2.4. The quantum K-theory ring QKT(X) is a commutative, associative and

unital algebra.

The operators of quantum multiplication by the quantum tautological bundles obey
the most natural properties. First, assuming Kirwan’s K-theoretic surjectivity conjecture,
we have the following result.

Proposition 2.5. Quantum tautological classes generate the quantum equivariant K-

theory over the quantum equivariant K-theory of a point QKT(·) = C[a±1
m ][[zi]] where am

for m = 1 · · · dimT are the equivariant parameters of T.

Proof. Since, assuming Kirwan’s K-theoretic surjectivity conjecture, classical K-theory is
generated by tautological classes, the quantum K-theory will be generated by quantum
tautological classes according to Nakayama’s Lemma. ⇤

Second, in contrast with quantum cohomology, the multiplicative identity of the quantum
K-theory ring does not always coincide with the multiplicative identity of classicalK-theory
(i.e. the structure sheaf OX):
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and call the corresponding ring quantum K-theory of Nk,n. The word “deformation”
here means that for two K-theory classes A,B we have

A!B = A⊗B +
∞∑

d=1

A!dBzd,

so that if the deformation parameter is equal to zero z → 0 (this special case is usually
referred to as classical limit), the quantum product ! coincides with the classical
tensor product ⊗. The definition of the quantum product follows closely the definition
of the product in quantum cohomology: the classes A !d B ∈ KT(N(n)) (quantum
corrections) are given by certain degree d curve counting in Nk,n.

Next, for a tautological bundle τ ∈ KT(Nk,n) as above, we define a deformation
which will be referred to as quantum tautological bundle:

τ̂ (z) = τ +
∞∑

d>0

τdz
d ∈ KT(Nk,n)[[z]]

One of the goals of this paper is to study the spectrum of operators of quantum multipli-
cation by quantum tautological bundles. The following Theorem is the generalization
of Proposition 1 to the quantum level.

Theorem 1. The eigenvalues of operators of quantum multiplication by τ̂ (z) are given
by the values of the corresponding Laurent polynomials τ(s1, · · · , sk) evaluated at the
solutions of the following equations:

n∏
j=1

si − aj
!aj − si

= z !−n/2
k∏

j=1
j ̸=i

si!− sj
si − sj!

, i = 1 · · ·k.(4)

When z = 0 we return to the statement of Proposition 1.

1.4. XXZ model and Baxter Q-operator. A specialist can immediately recognize
that (4) are nothing but the Bethe ansatz equations for the so-called XXZ spin chain.
Let us briefly recall some basic facts about this quantum integrable system, see also
[31], [7] for a more detailed outline.

Let us consider a system of n interacting magnetic dipoles (usually refered to as
spins) on a 1-dimensional periodic lattice. Each spin can take two possible configura-
tions “up” and “down”, such that the space of the quantum states of this system has
dimension 2n:

H = C2 ⊗ C2 ⊗ · · ·⊗ C2.(5)

In this system of spins only the neighboring ones (with labels i and i+1) can interact.
The energy of the interaction is described by the following Hamiltonian:

H2 = −
n∑

i=1

σi
x ⊗ σi+1

x + σi
y ⊗ σi+1

y +∆ σi
z ⊗ σi+1

z ,(6)

where ∆ = !1/2 + !−1/2 is the parameter of anisotropy and σi
m are the standard Pauli

matrices acting in the i-th factor of (5). The periodic boundary conditions are imposed

[Okounkov]
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The symmetrized virtual structure sheaf is defined by:

(6) Ôvir = Ovir ⌦ K 1/2
vir q

deg(P)/2
,

where Kvir = det�1
T
virQMd is the virtual canonical bundle and P is the polarization

bundle.
Since we will be using the symmetrized virtual structure sheaf we will need to adjust

the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = evp1,p2⇤(QM
d
relativep1,p2Ôvir) 2 K

⌦2
T (X)[[z]],(7)

so that the corresponding picture is : .

It plays an important role in the degeneration formula, see e.g. [Oko1512]. Namely, let a
smooth curve C" degenerate to a nodal curve:

C0 = C0,1 [p C0,2.

Here C0,1 and C0,2 are two di↵erent components that are glued to each other at point p.
The degeneration formula counts quasimaps from C" in terms of relative quasimaps from
C0,1 and C0,2, where the relative conditions are imposed at the gluing point p. The family
of spaces QM(C" ! X) is flat, which means that we can replace curve counts for any C"

by C0. In particular, we can replace counts of quasimaps from P1 by a degeneration of it,
for example by two copies of P1 glued at a point.

The gluing operator G 2 EndKT(X)[[z]] is the tool that allows us to replace quasimap
counts on C" by counts on C0,1 and C0,2, so that the following degeneration formula holds:

�(QM(C0 ! X), Ôvirz
d) =

⇣
G�1ev1,⇤(Ôvirz

d), ev2,⇤(Ôvirz
d)
⌘
.

The corresponding picture interpretation is as follows:

= = G�1

2.4. Quantum K-theory Ring. In this section we define multiplication and important
objects of the quantum K-theory ring of X.

As a vector space quantumK-theory ringQKT(X) is isomorphic toKT(X)⌦C[[z{i}]], i 2
I. We will often use the following notation: for a vector d = (di),

z
d =

Y

i2I
z
di
i .

1In fact, the gluing operator is a rational function of the quantum parameters G 2 End(KT(X))(z).
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gluing

Say this in words: equivariant 
pushforward, etc.
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of [28] and its main property can be expressed by the following formula:

χ(QM(C0 → X), Ôvirz
d) =

(
G−1ev1,∗(Ôvirz

d), ev2,∗(Ôvirz
d)
)
,

where

evi : QM(C0,i → X)relative gluing point → X

are the evaluation maps. The degeneration formula and the gluing operator can be
expressed using picture notation:

= = G−1 .

2.3. Quantum K-theory ring. From now on we consider quasimaps from P1, when
not stated otherwise. The equivariant K-theory of Nk,n is a commutative associative
algebra with respect to the tensor product ⊗. The quantum equivariant K-theory
QKT(Nk,n) is a one-parametric commutative deformation of the tensor product. We
denote the deformation parameter by z and the quantum tensor product by !. This
operation is constructed as follows.

Let (·, ·) be the bilinear form on K-Theory defined above. Using this bilinear form
one can define the operator of quantum multiplication by a class F ∈ KT(Nk,n) in the
following way:

F! =
∞∑

d=0

zdevp1,p3∗
(
QMd

p1,p2,p3, ev
∗
p2(G

−1F)Ôvir

)
G−1 ∈ KT(Nk,n)

⊗2[[z]](14)

where QMd
p1,p2,p3 is a moduli space with relative boundary conditions at each point and

G is the gluing operator. This expression is understood as an operator acting from
the second copy of KT(Nk,n) to the first using the bilinear form defined above. In the
picture notation this operator can be presented as:

G−1F
G−1

Note that the moduli space of degree zero quasimaps is isomorphic to Nk,n, which
implies that

F ! G|z=0 = F ⊗ G.
We will refer to z → 0 case as a classical limit. As we explain in the next section,
to construct the quantum K-theory ring it is not enough to consider quantum multi-
plication by classes from KT(Nk,n). For example, the multiplicative identity element
with respect to ! is in fact an element of KT(Nk,n)[[z]]. This motivates the following
definition of quantum K-theory.

Definition 2. The quantum equivariant K-theory ring of Nk,n is the vector space
QKT(Nk,n) = KT(Nk,n)[[z]] endowed with the multiplication (14).

Let us list a set of basic properties of these algebra.
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(6) Ôvir = Ovir ⌦ K 1/2
vir q

deg(P)/2
,

where Kvir = det�1
T
virQMd is the virtual canonical bundle and P is the polarization

bundle.
Since we will be using the symmetrized virtual structure sheaf we will need to adjust

the standard bilinear form on K-theory. That is the reason to for the shift of the bilinear
form in (1).

In order to construct the quantum product we need an important element in the theory of
relative quasimaps, namely the gluing operator. This is the operator1 G 2 End(KT(X))[[z]]
defined by:

G = evp1,p2⇤(QM
d
relativep1,p2Ôvir) 2 K
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Vortex
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.
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3. Vertex Functions

Recently we proved the following statement

Proposition 3.1 ([KPSZ1705]). Let p = V1 ⇢ . . . ⇢ Vn�1 ⇢ {a1, · · · , awn�1} (Vi =
{xi,1, . . . xi,vi}) be a chain of subsets defining a torus fixed point p 2 X

T
. Then the coe�-

cient of the vertex function for this point is given by:

V
(⌧)
p (z) =

X

di,j2C
z
d
q
N(d)/2

EHG ⌧(xi,jq
�di,j ),

where d = (d1, . . . , dn�1), di =
Pvi

j=1
di,j , N(d) = v0

idi,

E =
n�1Y

i=1

viY

j,k=1

{xi,j/xi,k}�1

di,j�di,k
,

G =

vn�1Y

j=1

wn�1Y

k=1

{xn�1,j/ak}dn�1,j ,

H =
n�2Y

i=1

viY

j=1

vi+1Y

k=1

{xi,j/xi+1,k}di,j�di+1,k
.

Here . . .
The same formula for the vertex can an be obtained using the following intergal repre-

sentation [AFO1701,AO1704]. It is very useful for a lot of applications, in particular for
computing the eigenvalues ⌧p(z).

Proposition 3.2. The bare vertex function is given by

(23) V
(⌧)
p (z) =

1

2⇡i↵p

Z

Cp

n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint⌧(s1, · · · , sk)
n�1Y

i=1

viY

j=1

dsi,j

si,j
,

where

Eint =
n�1Y

i=1

viY

j,k=1

'

⇣
si,j
si,k

⌘

'

⇣
q
~
si,j
si,k

⌘ ,

Gint =

wn�1Y

j=1

vn�1Y

k=1

'

⇣
q
~
sn�1,k

aj

⌘

'

⇣
sn�1,k

aj

⌘ ,

Hint =
n�2Y

i=1

vi+1Y

j=1

viY

k=1

'

⇣
q
~

si,k
si+1,j

⌘

'

⇣
si,k

si+1,j

⌘ ,

↵p =
n�1Y

i=1

viY

j=1

e
�

ln(z
]
i ) ln(si,j)

ln(q) EintGintHint

���
si,j=xi,j

,
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xi,j 2 {a1, . . . awn}

v1 = 1, w1 = 2
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QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY 5

Proof. In order to prove that one just has to use the same principle as in Theorem 2.6
and to prove this identity:

dY

k=1

T
q
ik
 = hE~

,K
(1)

i1
. . .K

(1)

id
�i(19)

namely, use the properties from Proposition 2.5 when moving q-shifted R-operators to the
left of twisted matrices Z(i). Then multiplying on the appropriate coe�cients as in Propo-
sition 2.4 we obtain the statement of the theorem. ⌅

Let us use now an important relation proven in [BLZZ]:

Proposition 2.8. The following combinatorial formula holds for the sums of products of

Hamiltonians:

X

1i1<···<ikN

Hi1 . . . Hik

Y

1↵<�k

C(ai↵/ai� ) =

 
~ 1

2 � ~� 1
2

2

!k X

1i1<···<ikN

�i1 . . .�ik ,(20)

where

C(x) =
x� x

�1

(x~ 1
2 � x�1~� 1

2 )(x~� 1
2 � x�1~ 1

2 )

and �im are eigenvalues of a certain operator which depend only on ~ and {zi}.

The tRS Hamiltonians are given by the following expression:

Ĥd =
X

I⇢{1,...,n},|I|=d

⇣ Y

i2I,j /2I

ai~
1
2 � aj~�

1
2

ai � aj

⌘Y

i2I
T
q
i(21)

In order to put these Hamiltonians in touch with Proposition 2.7, we prove the following
statement.

Proposition 2.9. The ordered expression for tRS Hamiltonians is given by the following

formula:

Ĥd =
X

1i1<···<idn

dY

k=1

Y

j 6=ik

aik~
1
2 � aj~�

1
2

aik � aj

Y

1m<nd

C(aim/ain)
dY

k=1

T
q
ik

(22)

Proof. ?????????????????? ⌅

Using this expression and then combining Proposition 2.8 with Proposition 2.7 we obtain
the main theorem.

Theorem 2.10. Function  , obtained as a weighted sum of coe�cients of the qKZ equation

is an eigenfunction of tRS Hamiltonians Hd.

X = T ⇤Fln

The K-theory vertex function satisfies equation of motion of 
trigonometric Ruijsenaars-Schneider model

ĤdV = ed(z1, . . . , zn�1)V

[PK Pushkar Smirnov Zeitlin]

3d Mirror version (a.k.a. bispectral dual)

Ĥ
!
dV = ed(a1, . . . , an�1)V

Ĥ
!
d(ai, ~, T q

a ) = Ĥd(zi/zi+1, ~�1
, T

q
z )

Quantum K-theory Ring 

QKT (T
⇤Fln) =

C[z±1
i , a±1

i , T±1
q ~, q]

ItRS
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

q ! 0
[PK, PK Zeitlin]



Trigonometric Ruijsenaars-Schneider Hamiltonians form a maximal 
commuting subalgebra inside spherical double affine Hecke 
algebra for gl(n)

Spherical DAHA

Spherical gl(n) DAHA is a geometric quantization of the moduli 
space of flat GL(n;C) connections on a torus with one simple puncture

ABA�1B�1 = C

Mn = {A,B,C}/GL(n;C)

Ĥd are also known as Macdonald operators

{Ĥ1, . . . , Ĥn} ⇢ DAHA
Sn
q,~ (gln)

C = diag(~, . . . , ~, ~1�n)

An = \CJ [Mn]

=: An

[Oblomkov]

If time will be tight then say in words 
that A and B are holonomies of 
electric and magnetic operators


Should be around 50% of time here!!!!



Line Operators and Branes
R3 ⇥ S1             with gauge group U(n) and is described by VEVs of 
 line operators wrapping the circle. 

Mn

A and B are holonomies of electric and magnetic line operators

is the moduli space of vacua in N=2* gauge theory on  

I�

Bcc

q

O

B B

Figure 1. Reduction of the 4d N = 2⇤ theory on the cigar. The extra circle direction S
1 is not

shown.

In this description line operators which form DAHA are local operators on I
1
⌧ . Note

again, that the supersymmetry on the interior of the interval is twice larger, as is required
by the construction of DAHA from line operators in N = 2⇤ theory.

3.2.1 Vortex Counting and Macdonald Polynomials

Macdonald (tRS) operators appear naturally while studying representations of spherical
DAHA [14, 15]. The polynomial solutions of Macdonald operators are Macdonald polyno-
mials. However, there is a more generic class of solutions which are formal power series.
In physics context Macdonald polynomials appear in the study of superconformal index of
4d N = 2 gauge theories, whereas power series can be understood as expansions of holo-
morphic blocks of N = 2⇤ 3d theories. When the mass parameters are specified to certain
values the above series expansion truncates and we again recover Macdonald polynomials.
Let’s describe this in more detail.

The holomorphic block for T [U(2)] theory with FI parameter ⌧1/⌧2 and mass parame-
ters µ1, µ2, ⌘ on Cq ⇥ S

1 reads [16]

B(⌧1, ⌧2;µ1, µ2) =
✓1(⌘�1

⌧1, q)✓1(⌘ ⌧2, q)

✓1(µ1⌧1, q)✓1(µ2⌧2, q)
2�1

✓
⌘
2
, ⌘

2µ1

µ2
; q

µ1

µ2
; q; q⌘�2 ⌧1

⌧2

◆
, (3.8)

where 2�1 stands for q-hypergeometric function. It satisfies difference equations of trigono-
metric Ruijsenaars-Schneider system

T1B = (µ1 + µ2)B ,

T2B = µ1µ2B , (3.9)

where T1,2 are Ruijsenaars-Schneider Hamiltonians, they commute between each other. The
Hamiltonians can be understood as deformation quantization of MH .

3.2.2 Spherical DAHA as Deformation Quantization of MH

First we summarize the parameterization of MH along the lines of [17] and [18].

– 10 –

Line operators are forced to stay at the tip of the cigar and 
slide along the remaining line, hence non-commutativity

R2
q ⇥ R⇥ S1Omega background along real 2-plane

H = Hom(Bcc,B)

algebra — open strings

representations

[Gukov-Witten]
[Nekrasov-Witten]

(Hilbert space of SUSY QM)

An = Hom(Bcc,Bcc)



Hitchin Moduli Space (n=2)
x = TrA y = TrB z = TrAB

for  =1 Mn ' C⇥ ⇥ C⇥

Z2
~x2 + y2 + z2 + xyz = ~+ ~�1 + 2

SU(2) theory sl(2) flat connections

electric magnetic dyonic

Elliptic fibration with one singular fiber of Kodaira type I0*

[Gukov]
[PK Gukov Nawata Saberi]

When N �n = 2c is an odd integer, both (4.23) and (4.16) are satisfied. Hence, an brane
BN can exist and it further breaks up into individual branes ◆(BBunG

) and BDi
where they

share the total flux of the B-field asZ

N

B

2⇡
= �2 !

Z

BunG

B

2⇡
= 0 and

Z

Di

B

2⇡
= �1

2
.

As a result, under the condition that 1/~ = 2N , ↵p/~ 2 Z + 1
2 and �p = 0, an A-brane

B
�=0
F with trivial holonomy on a generic fiber F splits into two A-branes BBunG

and A-branes
◆(BDi

) (i = 1 . . . , 4) as it reaches to the global nilpotent cone N. Correspondingly, the module
F
�=2
2N is resolved into two copies of non-symmetric Verlinde algebra VN�2k and the involution

of (2.31) via the short exact sequence (2.33) after (2.28) when q = e
⇡i/N and t

2 = q
2k+1 in the

representation side. The correspondence between branes and representations in this situation
is illustrated in Figure 5. The presence of B�

F and BN leads to the same conclusion up to the
outer automorphism ◆.

Uk Vk�2`

⇣y(D
�
`
)⇣y(D

+
`
)

D
�
`

D
+
`

N

Nk+2`

F

F2k

B

MH

0gen pt

⇡

x $ �x

y
$

�
y

Figure 5. Compact supports of (B, A, A)-branes and corresponding finite-dimensional modules of
spherical DAHA. This figure depicts the situation where ~ = �1/2N , ↵p/~ = � 2k�1

2 and �p = 0.

Except the situations studied above, an A-brane at the global nilpotent cone is trapped
there and cannot move out to a generic fiber in the Hitchin moduli space.

[SN: Some comments on polynomials representations. Speculations on oper or Teichmuller
component with infinite-dimensional representations?]

5 DAHA and line operators on surface operators

space-time: S
1 ⇥ R ⇥ Cq ⇥ T

⇤
C ⇥ R

3

N M5-branes: S
1 ⇥ R ⇥ Cq ⇥ C ⇥ pt

(puncture) M5’-branes: S
1 ⇥ R ⇥ Cq ⇥ p ⇥ R

2

(surface operator) M5”-branes: S
1 ⇥ R ⇥ {0} ⇥ C ⇥ R

2

Riemann surface C. In addition, the term "non-symmetric" implies that the tame ramification ↵p changes
the dimension of the Hilbert space from the one without puncture.

– 26 –

Nonabelian Hodge 

correspondence: Mflat(SL(2;C), T 2\{pt}) ' MH(SU(2), T 2\{pt})

MH :



DAHA Modules
Hilbert space comes 

from (Bcc, B’) strings

Algebra acts naturally by attaching 

open strings to closed strings

Lagrangian              Module

A-brane                of DAHA

Fuk(M,⌦) ' Rep(A)B0 ! Hom(Bcc,B0
) gives a functor Hom(Bcc, ·)

dimV =

Z

M
ch(B0) ^ ch(Bcc) ^ Td(M)

Dimension of a module

compact  
branes

Finite dim

reps

The arrows must be reversed for c < 0 :

0 ! ◆&y(V2N�4|c|) ! V
�2

! V2N+4|c| ! 0 for c 2 �1� Z+ ,

0 ! ◆(V2N�4|c|) ! V2N ! V
+

2|c|
� V

�

2|c|
! 0 for c 2 �1/2� Z+ .

Thereofre, we obtain that up to ◆, &, there are three di↵erent series of �-invariant spherical

representations at roots of unity, namely,

• V2N�4c (integral N/2 > c > 0) ,

• V2|c| (half-integral �N/2 < c < 0) ,

• V2N+4|c| (integral �N/2 < c < 0) .

In particular, Cherednik calls V2N�4c the perfect representation. Interestingly, the part

V
sym

2N�4c
= {f 2 V2N�4c | Tf = tf} is also PSL(2,Z)-invariant. Note that the dimensions

of vector spaces are

dimV2N�4c = 2N � 4c , dimV
sym

2N�4c
= N � 2c+ 1.

When c = 1, the subalgebra V
sym

2N�4
of dimension N � 1 is isomorphic to the usual Verlinde

algebra of csl2 with level N . Thus, the irreducible module V2N�4c is called non-symmetric

Verlinde algebra. [SN: This representation should correspond to BunG ⇢ MH .]

1.3 Spherical DAHA of rank one

The element e = (T + t
�1)/(t+ t

�1) is the idempotent e
2 = e, and the algebra SḦ(sl2) :=

eḦ(sl2)e is called the spherical subalgebra. A presentation for the spherical subalgebra

SḦ(sl2) has been given in [2]. We now recall this presentation in our notation. First, let us

define

x = (X +X
�1)e

y = (Y + Y
�1)e

z = q
�1/2(XY +X

�1
Y

�1)e =
[x, y]q

(q � q�1)

⌦ = qx
2 + qy

2 + q
�1

z
2
� q

1/2
yzx .

Then, the spherical subalgebra is generated by x, y, z with relations

[x, y]q = (q � q
�1)z

[y, z]q = (q � q
�1)x

[z, x]q = (q � q
�1)y

⌦ = (q1/2t�1
� q

�1/2
t)2 + (q1/2 + q

�1/2)2 ,

where [a, b]q := q
1/2

ab� q
�1/2

ba denotes the q-commutator. Thus, ⌦ can be regarded as the

quadratic Casimir operator. [SN: Check notations!]

The spherical DAHA is realized as

SḦ[g] ⇠= K
G̃OoC⇥

(R) ⇠= bC[MHitchin(T
2
\pt, G)] ,

– 4 –

[z, x]q = (q � q�1)y

[y, z]q = (q � q�1)x

(B,B)

B

A = (B,B)

(B,B,B)

A = (B,B)

X

X X = MH(Cp, G)

X A

A = (Bcc,Bcc)� �

H = (Bcc,B0)

Bcc Bcc Bcc B0 Bcc B0

(Bcc,Bcc) (Bcc,B0) (Bcc,B0)

X = MH(Cp, G)

[x, y]q = (q�1 � q)z

[y, z]q = (q�1 � q)x

[z, x]q = (q�1 � q)y

q
�1

x
2 + qy

2 + q
�1

z
2 � q

�
1
2xyz = (q�

1
2 t� q

1
2 t

�1)2 + (q
1
2 + q

�
1
2 )2 ,

q = e
2⇡i~

q

[a, b]q := q
�

1
2ab� q

1
2 ba .

q ! 1

(B,B)

B

A = (B,B)

(B,B,B)

A = (B,B)

X

X X = MH(Cp, G)

X A

A = (Bcc,Bcc)� �

H = (Bcc,B0)

Bcc Bcc Bcc B0 Bcc B0

(Bcc,Bcc) (Bcc,B0) (Bcc,B0)

X = MH(Cp, G)

[x, y]q = (q�1 � q)z

[y, z]q = (q�1 � q)x

[z, x]q = (q�1 � q)y

q
�1

x
2 + qy

2 + q
�1

z
2 � q

�
1
2xyz = (q�

1
2 t� q

1
2 t

�1)2 + (q
1
2 + q

�
1
2 )2 ,

q = e
2⇡i~

q

[a, b]q := q
�

1
2ab� q

1
2 ba .

q ! 1

Algebra-deformation
quantization of functions 
on MH

Bcc : L ! MH

F +B =
i

log q
⌦J

⌦J =
dx ^ dy

2z � xy

[Kapustin Orlov]
[Kapustin Witten]



DAHA Reps

Specify equivariant parameters
q-hypergeometric series                Macdonald polynomials with

E.g. k=2, n=2

Ra = x+ a�1
k z

La = x+ akz

Raising and lowering operators of sl(2) DAHA

Figure 1. Submodule V`

where

An,m = 1 � q
�m+n

2 t
�1

, Bn,m =
⇣
1 � q

m�n

2

⌘
Sm(q, t) , (1.60)

an,m = 1 � q
n�m

2 , bn,m =
⇣
1 � q

m+n

2 t

⌘
Sm(q, t) , (1.61)

where

Sm(q, t) =
(1 � q

m)
�
1 � t

2
q
m�1

�

(1 � tqm�1) (1 � tqm)
. (1.62)

We can first consider a module generated by Z0 = 1. One can check that L0Z0 = 0,
so this is the lowest weight module, let’s call it V . One then can act with raising operators
and generate the entire simple module which will be isomorphic to the entire Hilbert space
(1.50) provided that none of r` in (1.56) vanishes.

However, when
q
`
t
2 = 1 , or q

`+1 = 1 (1.63)

the lowering operator acts trivially and we get a submodule V`+1 ⇢ V, see Fig. 1.
The module structure depends on the parity of the dimension of the module. Indeed,

from q
`
t
2 = 1 (neither q or t are roots of unity) we conclude that t = ±q

� `

2 . First let us
consider ` = 2k. Close examining of Macdonald polynomials (1.49) shows that there is a
pole in the constant term at t = q

�k. Thus the ‘+’ branch cannot be realized whereas
t = �q

�k is perfectly acceptable and provides 2k dimensional module V2k.
For odd ` the situation is a bit more interesting. Due to fractional power in the value

for t which ensures that L2k+1Z2k+1 = 0 both branches t = ±q
�k+ 1

2 can be implemented.
Therefore in this case we have a pair of modules V±

2k+1.
Note that the condition

q
`
t = 1 , (1.64)

which arises in the action of raising operators, cannot be realized as a shortening condition
for a module as it leads to poles in the coefficients of Macdonald polynomials (note that q

is not a root of unity).

– 10 –

ak = q�k~n�k

RaZa = raZa+1

LaZa = laZa�1

Start with a vertex function for T*Fn

1 2
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.

~ = t�1

V (z; ~q, q) = P(1,1)(z|q, ~)
V (z; ~q2, q) = P(2,0)(z|q, ~)

Case 3 : t
2 = �q

�n for n 2 Z>0 and q is generic

When t
2 = �q

�n, we have pl(Ln+1) · Pn+1(X; q, t) = 0. Accordingly, the quotient space

Vn+1 := Cq,t[X + X
�1]/(Pn+1)

by an ideal (Pn+1) is an (n + 1)-dimensional irreducible representation of spherical DAHA
[17]. This representation is called additional series in [5, S2.8.2]. It is easy to check from
(2.15) that the y-eigenvalues of Vn+1 are invariant under the sign change ⇣y of y as a set when
t
2 = �q

�n. In addition, when t
2 = �q

�n, Macdonald polynomials obey parity

Pn+1(�X) = (�1)nPn+1(X) ,

which implies Vn+1 is also invariant under the sign change ⇣x of x. In conclusion, the addi-
tional series Vn+1 is invariant under the automorphisms ⇣x, ⇣y, and it is moreover PSL(2,Z)-
invariant.

Case 4 : Two conditions are simultaneously satisfied

Let us now consider the case when two conditions among Case 1, Case 2 and Case 3 are
simultaneously satisfied.

First we consider the situation in which both Case 1 and Case 3 with N > n are satisfied.
If N � n � 1 is odd, then there is a short exact sequence

0 �! ◆(N2N�n�1) �! F
�=�2
2N �! Vn+1 �! 0 , (2.32)

where ◆ : t ! qt
�1 is an outer automorphism of S

..
H that is the spherical version of (C.13).

Indeed, the quantum character variety (2.3) is invariant under ◆. For odd N � n � 1, we have
another irreducible module N2N�n�1 of dimension 2N � n � 1. Moreover, when n = N � 2,
the additional series VN�1 of dimension N � 1 is isomorphic to the ordinary Verlinde algebra
of bsl(2)N with level N [18]. Thus, the additional series Vn+1 at q = e

�⇡i/N with generic n is
called non-symmetric Verlinde algebra or perfect representation [5, S2.9.3].

On the other hand, if N �n� 1 is even, say 2k, then the two conditions implies the other
condition with the outer automorphism ◆:

Case 1 and Case 3 �! ◆(Case2) where 2k = N � n � 1 .

This implies the existence of the finite-dimensional module D
±

k
, and there is actually a short

exact sequence
0 �! ◆(D+

k
� D

�

k
) �! UN �! Vn+1 �! 0 , (2.33)

as well as its ⇣y-image.

In a similar fashion, even in the rest of cases, two simultaneous conditions imply the other
condition up to the outer automorphism ◆. For instance, let us consider the circumstance in
which Case 1 and Case 2 holds with N > 2k. Then, it is easy to verify

Case 1 and Case 2 �! ◆(Case3) where n = N � 2k � 1 ,

– 9 –



Fock Space
Power-symmetric variables

Macdonald polynomials depend only on k and the partition

where D(1,2)
q are tRS Hamiltonians, they commute between each other. For completeness,

let us mention that the operator (2.6) is the first of a set of n commuting operators, given
by

D(r)
n,~⌧

(q, t) = tr(r�1)/2
X

I⇢{1,2,...,n}
#I=r

Y

i2I
j /2I

t⌧i � ⌧j
⌧i � ⌧j

Y

i2I
Tq,i for r = 1, . . . , n (2.12)

In mathematical literature, the operator D(1)
n,~⌧

is known as the first Macdonald difference
operator; its eigenfunctions, known as Macdonald polynomials, are given by symmetric
polynomials in n variables ⌧l of total degree k 6 n, and are in one-to-one correspondence
with partitions � = (�1, . . . ,�n) of k of length n.

Now we can make the following observation8. For a given partition � we identify
parameters µa as follows

µa = q�atn�a , a = 1, . . . , n . (2.13)

Having done so we see that the series expansion of holomorphic block (2.9) truncates and
it turns into a Macdonald polynomial P�(~⌧ ; q, t) corresponding to the partition � as

D(1)
n,~⌧

(q, t)P�(~⌧ ; q, t) = E(�;n)
tRS

P�(~⌧ ; q, t) (2.14)

with an eigenvalue given by

E(�;n)
tRS

=
nX

j=1

q�j tn�j (2.15)

Thus for k = 2 we get

B(⌧1, ⌧2; t�1/2q, t1/2q) = P (⌧1, ⌧2; q, t) ,

B(⌧1, ⌧2; t�1/2, t�1/2q2) = P (⌧1, ⌧2|q, t) . (2.16)

In what follows it is instructive make the following change of variables

pm =
nX

l=1

⌧m
l

, (2.17)

For k = 2 we have two partitions and , corresponding to the Macdonald polynomials
in (2.16)

P =
1

2
(p21 � p2) , P =

1

2
(p21 � p2) +

1� qt

(1 + q)(1� t)
p2 . (2.18)

Most importantly, this expression in terms of power sum symmetric polynomials (2.17) is
the same for any n.

Below we list several examples for degree k = 2 Macdonald polynomials for n = 2 and
n = 3

8
See the end of Section 3 of [6].
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Starting with Fock vacuum |0i

Construct Hilbert space

in terms of the so-called reproduction kernel

Q
(q, t)(⌧, e⌧) =

Y

i,j>1

(t⌧ie⌧j ; q)1
(⌧ie⌧j ; q)1

, (a; q)1 =
Y

s>0

(1� aqs) . (3.8)

The statement holds in general: given two bases {u�}, {v�} of ⇤(q, t), they are dual under
(3.6) if and only if

P
�
u�(⌧)v�(e⌧) =

Q
(q, t)(⌧, e⌧); in this sense, the form of the inner product

is determined by the form of the kernel function. For our discussion, the most relevant basis
of symmetric functions is given by the Macdonald basis {P�(⌧ ; q, t)}, uniquely determined
by the following conditions

(1) P�(⌧ ; q, t) = m�(⌧) +
X

µ<�

u�µ(q, t)mµ(⌧) with u�µ(q, t) 2 Q(q, t) ,

(2) hP�(⌧ ; q, t), Pµ(⌧ ; q, t)iq,t = 0 for � 6= µ ,

(3.9)

where m�(⌧) are monomial symmetric functions and � > µ() |�| = |µ| with �1+. . .+�i >
µ1 + . . .+ µi for all i. From the functions P�(⌧ ; q, t) we recover the n-variables Macdonald
polynomials as P�(⌧1, . . . , ⌧n; q, t) = P�(⌧1, . . . , ⌧n, 0, 0, . . . ; q, t); these are eigenstates of the
Hamiltonians (2.6), (2.12) and satisfy (2.14).

3.1.1 Free Field Realization

We are now ready to discuss the collective coordinate (or free boson) realization of the tRS
Hamiltonian (2.6). The idea here is to introduce a (q, t)-deformed version of the Heisenberg
algebra H(q, t), with generators am (m 2 Z) and commutation relations

[am, an] = m
1� q|m|

1� t|m| �m+n,0 . (3.10)

A canonical basis in the Fock space of H(q, t) is given by the set of states a��|0i =

a��1 · · · a��l(�)
|0i depending on a partition �; a generic state will be a linear combina-

tion of the basis ones, with coefficients in Q(q, t). Let us notice that the bra-ket product
among basis states is such that

h0|0i = 1 , h0|a�a�µ|0i = ��,µz�(q, t) , (3.11)

and therefore coincides with the inner product (3.6). This is in agreement with the natural
isomorphism between this Fock space and ⇤(q, t), simply given by

a��|0i  ! p� (3.12)

for fixed partition �. Now, in order to reproduce the action of D(1)
n,~⌧

in terms of bosonic
operators, we follow [38] (see also [55–57]) and introduce the vertex operators

⌘(z) = exp

 
X

n>0

1� t�n

n
a�nz

n

!
exp

 
�
X

n>0

1� tn

n
anz

�n

!

= : exp

0

@�
X

n 6=0

1� tn

n
anz

�n

1

A : =
X

n2Z
⌘nz

�n

(3.13)
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Commutators

a��|0i = a��1 · · · a��l |0ifor each partition

pm =
nX

l=1

zml

4.3 The �ILW Spectrum from Gauge Theory

Although the procedure described above provides the bH1 eigenvalue at specified k, it turns

out that it is possible to obtain the same results from gauge theory, more precisely from

the so-called ADHM quiver gauge theory in two or three dimensions.

The relation between the ADHM gauged linear sigma model for the U(1) theory (N = 1

model) and the quantum ILW system has been discussed in terms of Bethe/Gauge cor-

respondence in [28]. There the authors explained why the equations which determine

supersymmetric vacua in the Coulomb branch of the 2d ADHM theory correspond to the

Bethe Ansatz Equations for ILW, as well as how the local gauge theory observables hTr ⌃li
evaluated at the solutions of these equations give the ILW spectrum. Here we propose a

similar correspondence to hold between the N = 1 ADHM theory on C⇥ S
1
� and quantum

�ILW. We shall provide the calculations supporting this statement below, while later in

Sec. 5.4 we shall explain how the ADHM theory arises in our construction by using string

theory dualities.

When the radius of the circle � is small the infrared description of the sigma model

is e↵ectively two-dimensional. The supersymmetric Coulomb branch vacua equations for

N = 1 will be (see Appendix A)

sin[
�

2
(⌃s � a)]

kY

t=1
t 6=s

sin[�2 (⌃st � ✏1)] sin[�2 (⌃st � ✏2)]

sin[�2 (⌃st)] sin[�2 (⌃st � ✏)]
=

ep sin[
�

2
(�⌃s + a � ✏)]

kY

t=1
t 6=s

sin[�2 (⌃st + ✏1)] sin[�2 (⌃st + ✏2)]

sin[�2 (⌃st)] sin[�2 (⌃st + ✏)]

(4.43)

because of the 1-loop contributions coming from the KK tower of chiral multiplets10. Here

✏ = ✏1 + ✏2 and ep = e
�2⇡⇠ with ⇠ Fayet-Iliopoulos parameter of the ADHM theory11. For

simplicity, from now on we will set a = 0. When ⇠ ! 1 (i.e. ep ! 0), the solutions are

labelled by partitions � of k, and are given by

⌃s = (i � 1)✏1 + (j � 1)✏2 mod 2⇡i (4.44)

✏1

✏2

Figure 4: The partition (4,3,1,1) of k = 9

10
Equations (4.43) reduce to the Bethe Ansatz Equations for quantum ILW of [28] when � ! 0.

11
As discussed in [28], the Fayet-Iliopoulos parameter ⇠ coincides with the ILW parameter � previously

introduced.
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q = e✏1

~ = e✏2
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3.1. Elliptic Hall Algebra E. Following [SV0802, SV0905] algebra E is generated by
elements Zn,m, n,m 2 Z modulo certain relations which we shall not specify here. These
generators can be conveniently positioned in integral lattice Z2 of the coordinate plane
where (n,m) will be their x and y-coordinates. By normalization Z0,0 = 1 is the identity
operator. The commutation relations of E suggest that the entire algebra can be generated
by four elements Z0,±1, Z±1,0. In the given normalization generators on the horizontal axis
Zn,0 are multiplications by x

n, whereas generators on the vertical axis Z0,l for l > 0 are
Macdonald operators written in x-basis. In (2.33) we have already used these generators
to construct An. It is known [BS] that E acts faithfully on Kq,~(Hilb

n).
This following theorem by Schi↵mann and Vasserot enabled the authors to construct

(more or less by definition) E as a stable limit of spherical DAHA A1.

Theorem 3.1 ([SV0802]). There is an explicit surjective algebra homomorphism

(3.3) E ! An .

Using this theorem we can study the connection between modules of An and E.

3.2. Fock Modules of Elliptic Hall Algebra. Generators Zm,n for which m
n = s 2 Q

form a subalgebra of E which can be described as q, ~-deformed Heisenberg algebra with
commutation relations

(3.4) [am, an] = m
1� q

|m|

1� ~|m| �m,�n ,

where an, n 2 Z are the corresponding generators of E which lie on slope s [BS]. The entire
Z2 plane parameterizes by Zm,n can be sliced by lines with all possible rational slopes
passing through the origin. Each slope represents itself a Heisenberg algebra. Here we are
using slightly di↵erent normalization of generators. This normalization is more appropriate
in Ding-Iohara algebra which, as we have already mentioned, is isomorphic to E.

Given the above Heisenberg algebra we can study its Fock space representation F (a)
which is constructed in the standard way.

Proposition 3.2. Let Mn be a highest weight module of An. Then its projective limit

n ! 1 is isomorphic to the Fock module F (a) of E with evaluation parameter a (2.25).

Proof. We can map Macdonald polynomials to states in the Fock space representation of
the q, ~-Heisenberg algebra by claiming that

(3.5) xk = a�k|0i ,

where al obey (3.4). For a partition of size k and length n we can define x� = x�1 · · ·x`(�)
and theh correspondingly state in the Fock module F of E as a��1 · · · a�`(�). Now define a
homomorphism ⇢

n+1
n : ⇤n+1 ! ⇤n as

(3.6) (⇢n+1
n f)(⇣1, . . . , ⇣n) = f(⇣1, . . . , ⇣n, 0)



DAHA Action
Vertex functions or quantum classes for X are elements of quantum K-
theory of X. Equivalently we can view them as elements of equivariant 
K-theory of the space of quasimaps from P1 to X

6 QUASIMAP COUNTS, STABLE BASIS AND QUANTUM/CLASSICAL DUALITY

3. Nakajima Varieties and Macdonald polynomials

Consider the space of quasimaps of complex projective space into the cotangent bundle
to complete n-flag. We construct the following space

(23) Hn = KT (P1 ! T
⇤Fn) ,

Here the maximal torus is T = T(U(n) ⇥ U(1)~ ⇥ U(1)q). This is an infinite-dimensional
vector space whose points are equivariant K-theoretic Givental J-functions (vertex func-
tions)

(24) J(z1, . . . , zn, a1, . . . , an, q, ~) ,
where z1, . . . , zn stand for first Chern classes of the base, a1, . . . , an are equivariant pa-
rameters for U(n) global symmetry, q is the shift parameter (equivalently the parameter
which act on P1 by C⇥), and finally, ~ acts with by C⇥ on the cotangent fibers. All the
arguments of the vertex function take values in C⇥.

It was shown in physics literature [BKK] that J obeys the following set of di↵erence
equations once it is corrected by the stable elliptic envelope

(25) HiZ = ei(a1, . . . , an)Z ,

where Hi are tRS (Macdonald) di↵erence operators and

(26) Z = Stab · J ,

where Stab is the stable envelope for T ⇤Fn. In other words, Z is a (formal) wavefunction
of the (complexified) integrable system.

At generic values of the equivariant parameters for U(n) global symmetry a1, . . . , an the
vertex function is a series of q-hypergeometric type with certain elliptic prefactors.

3.1. X = T
⇤P1

, (n = 2). The vertex function is given by the following series

(27) Z = Stab · 2�1

✓
~, ~a1

a2
; q

a1

a2
; q; q

z

~

◆
.

The hypergeometric function has the following expansion in Kähler parameter

(28) 2�1

✓
~, ~a1

a2
; q

a1

a2
; q; q

z

~

◆
=

1X

k=0

(~; q)k(~a1/a2; q)k
(q; q)k(qa1/a2; q)k

⇣
qz

~

⌘k
,

where (a; q)k =
Qk�1

l=0
(1� aq

l) is the k-th Pochhammer symbol, and in this case

(29) Stab =
✓1(~�1/2

z
�1/2

, q)✓1(~1/2 z�1/2
, q)

✓1(a1z�1/2, q)✓1(a2z�1/2, q)
.

From the above formulae we can derive the condition on equivariant parameters when the
q-hypergeometric series get truncated. For simplicity let us assume a2 = a

�1

1
= a

1/2. For
one such formal solution this condition reads

(30) a
2

` = q
�`~�1

, ` 2 Z+

V 2 with maximal torus
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Specification                                           restricts us to the Fock space 
representation of (q,h)-Heisenberg algebra which is a DAHA module
In other words, we can define the following action
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not more than n columns�

[Schiffmann Vaserot]

[PK 1805.00986]

ak = q�k~n�k

An E

ak = q�k~n�k

Kq,~(�kHilb
k
[C2

])

C⇥
q ⇥ C⇥

~             fixed points are 
Macdonald polynomials



Large-n transition
Hilb

k
[C2

] = Minst
1,k

Starting with M-theory on
n M5 branes wrapping S1 ⇥ Cq ⇥ S3 ⇢

Upon compactification on three sphere 
will get 3d quiver gauge theory on T*Fln

When n becomes large the background undergoes through the 
conifold transition and the resolved conifold becomes a deformed 
conifold Y: S1 ⇥ Cq ⇥ Ct ⇥ Y

Reduction on Y leads us to a 5d U(1) theory with 8 supercharges

Recall that How did U(1) 5d SYM appear?

S1 ⇥ Cq ⇥ C~ ⇥ T ⇤S3
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Part (4) of the Theorem above immediately implies that the eigenvalues of the operator
of quantum multiplication by τ̂(z) can be computed from the asymptotics of the bare
vertex functions.

Corollary 2.14. The following expression:

(20) τp(z) = lim
q→1

V (τ)
p (z)

V (1)
p (z)

gives the eigenvalues of the operator of quantum multiplication by τ̂(z) corresponding to a
fixed point p ∈ XT.

3. Computations for Partial Flags

In this section we will study in detail and apply the formalism which we have developed in
the previous section to the case when Nakajima quiver variety X is the cotangent bundle to
the space of partial flags. In other words, we are interested in studying quantum K-theory
of the following quiver of type An

2

v1 v2 . . . vn−1

wn−1

The stability condition is chosen so that maps Wn−1 → Vn−1 and Vi → Vi−1 are sur-
jective. For the variety to be non-empty the sequence v1, . . . ,vn−1,wn−1 must be non-
decreasing. The fixed points of this Nakajima quiver variety and the stability condition
are classified by chains of subsets V1 ⊂ . . . ⊂ Vn−1 ⊂ Wn−1, where |Vi| = vi,Wn−1 =
{a1, . . . , awn−1}. The special case when vi = i, wn−1 = n is known as complete flag va-
riety, which we denote as Fln. It will be convenient to introduce the following notation:
v′
i = vi+1 − vi−1, for i = 2, . . . , n− 2, v′

n−1 = wn−1 − vn−2, v′
1 = v2.

Remark. In principle, in the computations below one could add extra framings to vertices
to study the most generic situation in the setting of An quiver, but we shall refrain from
doing it in this work to make calculations more transparent and simple.

3.1. Bare vertex for partial flags. The key for computing the bare vertex is the local-
ization theorem in K-theory, which gives the following formula for the equivariant push-

forward, which constituetes bare vertex V (τ)
p (z):

V (τ)
p (z) =

∑

d∈Zn
≥0

∑

(V ,W )∈(QMd
nonsing p2

)T

ŝ(χ(d)) zdqdeg(P)/2τ(V |p1).

2We are using standard quaternionic notations.
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KT (QM(P1
, X)) Kq,~(Hilb(C2))

Kähler/quantum parameters of X z1, z2 . . . Ring generators x1, x2, . . .

Vertex function Vq at locus (2.25) Classes of (C⇥)2 fixed points [J]

C⇥
q acting on base curve C⇥

q acting on C ⇢ C2

C⇥
~ acting on cotangent fibers of X C⇥

~ acting on another C ⇢ C2

Eigenvalues er of tRS operators Tr Chern polynomials Er of ⇤rU

Table 1. The correspondence between K-theories of quasimaps to Xn and Hilb.

in the left column of the above table to obtain quantum version of the space on the right?
The answer will be formulated later in Sec. 5

3.5. Remarks. Notice that in the left column of Tab. 1 equivariant parameters q and ~
play completely di↵erent roles – the former scales the base curve, while the latter corre-
sponds to C⇥ action on the cotangent directions of Xn. In the right column they are on
completely equal footing and can be interchanged.

The above duality works only when equivariant parameters a1, a2, . . . , an in Xn obey
(2.25). It was discussed in the literature on integrable systems and gauge theories [NS09a]
and more recently in [Sci1606] that locus (2.25) should be interpreted as a set of quantiza-
tion conditions which allow for discrete spectrum of the tRS model. Thus, due to the above
duality, we can observe a symmetry in the tRS spectrum which interchanges (exponential
of) Planck constant q with coupling constant ~ of the tRS model.

4. Moduli Space of Sheaves of Rank N on C2

Let MN denote the moduli space of rank N of torsion free sheaves F of rank N on P2

with framing at infinity: � : F|1 ' O�N
1 . The framing condition forces the first Chern

class to vanish, however, the second Chern class can range over the non-positive integers
c2(F) = �k · [pt]. Therefore the moduli space can be represented as a direct sum of
disconnected components of all degrees

(4.1) MN =
G

k

MN,k .

More details can be found in multiple sources, i.e [FT0904,Neg1209].
There is an action of maximal torus TN := C⇥

q ⇥ C⇥
~ ⇥ T(GL(N)) on each component

MN,k. The first two C⇥ factors act on P2, while the rest acts on framing � with equivariant
parameters a1, . . . aN . We shall be studying TN -equivariant K-theory of MN,k which is
formed by virtual equivariant vector bundles on MN,k. The space Kq,~(MN,k) is a module
over C[q±1

, ~±1
, a±1

1 , . . . a±1
N ].

Eigenvalues of elliptic 
RS model at large n

Eigenvalues of quantum 
multiplication by
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of E.

Thus states in the highest weight module MnN can be matched to vectors in the tensor
Fock module and the generalized Macdonald polynomials are mapped onto ideals (4.2) in
the K-ring of MN .

4.3. Matching Spectra of Macdonald Operators. Analogously with the Hilbert scheme
on C2 we can study K-theory of MN,k, which is generated by the classes of fixed points [~�]
of maximal torus TN .

Lemma 4.2. The eigenvalues of the operator of multiplication by the universal bundle

(4.12) U = W + (1� q)(1� ~)V |J~�
over MN,k, where W is a constant bundle of degree N and tautological bundle V |J~� arise

from the universal quotient sheaf on MN,k ⇥ C2
in K-theory of MN,k is given by

E1(⇤) =
NX

c=1

aa � (1� ~)(1� q)
NX

l=1

X

(i,j)2�(l)

kcX

d=1

s
(l)
d

=
NX

c=1

aa � (1� ~)(1� q)
X

(i,j)2⇤

kX

c=1

s(l)c ,(4.13)

where
PN

l=1 |�l| =
PN

l=1 kl = k and s
(l)
1 , . . . , s

(l)
kl

are in one-to-one correspondence with the

content of tableaux �
(l)

of size kl

(4.14) s
(l)
i,j = q

i�1~j�1
,

for i, j ranging through the arm length and leg lengths of tableaux �
(l)
. Variables s(l)1 , . . . , s(l)k

are in one-to-one correspondence with the content of the asymptotic partition ⇤, where si,j
ranges over the content of ⇤. In (4.13) e1(a1, . . . , aN ) are characters of TW .

Using the above result we can compute eigenvalues Er(⇤) of the operator of multiplica-
tion by the r-th skew-power of the universal bundle ⇤r

U .

Now we can compare these eigenvalues with the tRS eigenvalues.

Proposition 4.3. The eigenvalues of the nN -particle tRS model er and the eigenvalues of

multiplication by r-th skew symmetric power of the universal bundle ⇤r
U over MN,k are

in one-to-one correspondence. In particular

(4.15) E1(⇤) = ~n
NX

l=1

al + ~n�1(1� ~)e1 .

Proof. Let us put r = 1 in (4.13). Then we get

(4.16) E1(⇤) = ~n
NX

l=1

al + ~n(1� ~)e1 =
NX

l=1

al + (1� ~)
NX

l=1

nX

a=1

al(q
�
(l)
a � 1)~a�1

.
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space which is isomorphic to Hn, but has a di↵erent scalar product due to the presence of
additional series in p.

5.2. eRS Eigenvalues. One can perform the localization computation to compute (5.4)
(see [BKK15,KS18]). The first several terms for the eigenvalues of E1 look as follows

(5.7) E1 =
nX

i=1

ai � p(1� ~)(q � ~�1)q�1~n
nX

i=1

ai

nY

j=1
j 6=i

(ai � ~�1
aj)(~ai � qaj)

(ai � aj)(ai � qaj)
+ o(p2) .

5.3. Quantum Multiplication in Kq,~(Hilb). Okounkov and Smirnov [OS1602] studied
the operator of quantum multiplication ML by line bundle L for an arbitrary Nakajima
quiver variety X. This operator enters the quantum di↵erence equation of the form

(5.8)  (qL z) = ML (z) (z) ,

which is solved by a flat q-di↵erence connection on functions of quantum parameter z
with values in KT(X). The authors study stable envelopes which can be represented as real
slopes inside the second cohomology s 2 H

2(X,R). They experience a jump when s crosses
a rational wall in H

2(X,R). One considers all alcoves with respect to a�ne hyperplane
reflections for quantum Weyl group acting on KT (X). Then one can take a path from the
base alcove to another one and each time we cross a wall labelled by rational slope w↵ and
define

(5.9) ML = O(1)M↵1 · · ·M↵L .

It can be shown that the answer is path independent. In the example of Hilbk the H2(X,R)
lattice is one-dimensional.

Operator ML corresponds to the quantum multiplication by ⇤k
V in Kq,~(Hilb

k). In
order to find multiplications by ⇤l

V , 1  l < k one needs to make certain generalizations
to [OS1602].

Using results of [PSZ1612] and [Smi1612], we can formulate the following statement.

Proposition 5.3. The eigenvalues of quantum multiplication operators by bundles ⇤l
V , 1 

l  k in quantum K-theory of MN,k are given by symmetric polynomials el(s1, . . . sk) of

Bethe roots which satisfy the following Bethe equations

(5.10)
NY

l=1

sa � al
sa � q�1~�1al

·
kY

b=1
b 6=a

sa � qsb

sa � q�1sb

sa � ~sb
sa � ~�1sb

sa � q
�1~�1

sb

sa � q~sb
= z , a = 1, . . . , k ,

where al are parameters from (4.4).

The above equations can be obtained from studying saddle point behavior of the vertex
function of Kq,~(MN,k).

In particular, the eigenvalue of the multiplication by M in [OS1602] is given by s1 · · · sk,
where the Bethe roots solve the above equations and are thus functions of all equivariant
parameters and quantum parameter p.
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integrals of motion of the trigonometric Ruijsenaars-Schneider (tRS) model was formu-
lated. This lead us to a clear understanding of quantum K-theory of the quiver varieties
in question in terms of the tRS system [KPSZ1705].

1.1. Goals of the Paper. A collection of vertices and oriented edges connecting them
forms a quiver. A Nakajima quiver variety can be thought of as a cotangent bundle to spaces
of representations of such quivers modulo the automorphisms of vertices. Currently in the
literature two types of Nakajima quiver varieties attract a significant amount of interest
– ADE-type quivers and their a�ne cousins, which are ubiquitous to many branches of
mathematics (we shall focus solely on the A-type quivers), and Atiyah-Drinfeld-Hitchin-
Manin (ADHM) quivers which arise in the study of moduli spaces of sheaves on surfaces
Fig. 1. These two types of quiver varieties are typically discussed independently and the
goal of the current paper is to build a bridge between geometric properties of these spaces.

v1 v2 . . . vn�1

wn�1
W

V

Figure 1. Left: An�1 quiver variety with framing on the last node (cotan-
gent bundle to a flag variety). Right: The ADHM quiver.

Indeed, at first, these two quiver varieties look completely di↵erent – the former is An-
type quiver with n vertices, while the latter has only one framed vertex and a loop. Yet
we claim that there is a nontrivial correspondence between equivariant K-theories of these
varieties. In particular, we shall demonstrate (see Theorems 3.3 and 4.6) the equivalence
between the following spaces

• T-equivariant K-theory of the moduli space of genus zero quasimaps to An-type
quiver Xn shown on the left in Fig. 1.

KT(QM(P1
, Xn)).

We shall work with wn�1 = n and vi = i for i = 1, . . . , n� 1; then Xn is called the
cotangent bundle to complete flag variety in Cn. In the above T is the maximal
torus of GL(n,C)⇥C⇥

q ⇥C⇥
~ , where GL(wi,C)⇥C⇥

~ acts as automorphisms of Xn

and C⇥
~ scales the cotangent directions with weight ~, while C⇥

q acts multiplicatively
on the base curve.

• C⇥
q ⇥ C⇥

~ -equivariant K-theory of the ADHM moduli space

kM

l=0

Kq,~(MADHM) .
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quantum deformation:
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Once the elliptic Calogero-Moser system is downgraded to the trigonometric one the
results of loc. cit. apply after reducing a�ne Laumon space La↵

d to the its finite version
Ld. Here vector d = (d1, . . . ds) shows degrees of parabolic sheaves which are used in the
construction of the Laumon space. For the purposes of our presentation the number of
components in d will always be equal to the rank of gauge group of the supersymmetric
theory which is used in the construction. In physics language the spectrum of the elliptic
Calogero-Moser model is described by instanton counting in N = 2⇤ gauge theory in the
presence of a monodromy defect of maximal Levi type [AT10,Naw14].

The sought generalization of the above results to quantum K-theory should be formu-
lated in terms of the relativistic generalization of the Calogero-Moser system – the elliptic
Ruijsenaars-Schneider (eRS) model. Physically we will be studying five-dimensional N = 1⇤

gauge theory with defect of maximal Levi type [BKK15,KS18].

5.1. Elliptic Ruijsenaars-Schneider Model. The Hamiltonians of the elliptic RS model
can be easily obtained from trigonometric RS Hamiltonians (2.12) by replacing rational
functions with elliptic theta-functions of the first kind

(5.1) Er(~⇣) =
X

I⇢{1,...,n}
|I|=r

Y

i2I
j /2I

✓1(~⇣i/⇣j |p)
✓1(~⇣i/⇣j |p)

Y

i2I
pk ,

where p 2 C⇥ is the new parameter which characterizes the elliptic deformation away from
the trigonometric locus, where p = 1 and we get (2.12) back.

As in the trigonometric case we shall be interested in the eigenvalues and eigenfunctions
of these operators

(5.2) Er(~⇣)Z = ErZ , r = 1, . . . , n .

As a direct generalization of the results of [Neg1112] to K-theory lead to the following

Conjecture 5.1. The solution of (5.2) is given by the K-theoretic holomorphic equivariant

Euler characteristic of the a�ne Laumon space

(5.3) Z =
X

d

~qd
Z

Ld

1 ,

where ~q = (q1, . . . , qn) is a string of C⇥
-valued coordinates on the maximal torus of La↵

d .

The eigenvalues Er are equivariant Chern characters of bundles ⇤r
W , where W is the

constant bundle of the corresponding ADHM space. In other words they have the following

form

(5.4) Er = er +
1X

l=1

plE(l)
r ,

where er are symmetric functions of the equivariant parameters a1, . . . , aN .

Chern roots obey



ADHM & 1/2 ADHM
K~(T

⇤Fln) ADHM (instanton moduli space)

Claim: ~ ! 1

[PK Koroteeva
Gorsky Vainshtein]

K(Fln) 1/2 ADHM (vortex moduli space)
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where p⇤ = p~n.

3.4. Free Boson Representation of qToda. The �ILW energies are given by the op-
erator of quantum multiplication by the r-th skew-power ⇤rU of the universal bundle

(25) U = W � (1� ~)(1� q)V

in quantum equivariant K-theory Kq,~(Hilbk(C2)) is given by (for r = 1)

(26) E1(�) = 1� (1� ~)(1� q)e1(s1, . . . , sk) ,

where e1(s1, . . . , sk) = s1+ · · ·+sk is the 1st elementary symmetric polynomial of s1, . . . sk
which solve the following Bethe equations (N for ILWN )

(27)
NY

l=1

sa � al
sa � q~al

·
kY

b=1
b 6=a

sa � q�1sb
sa � qsb

sa � ~�1sb
sa � ~sb

sa � q~sb
sa � q~�1sb

= ep , a = 1, . . . , k ,

where ep = �p/
p
q~ is the Kähler parameter of the ADHM quiver. It was shown in [KS18]

that ILW energies (26) are equal to eRS energies (15) on the locus

(28) ai = aq�i~i�n , i = 1, . . . , n ,

where |�| = k in the limit when n ! 1.

3.5. The Gauge/Hydrodynamics Correspondence. It was show in [KS16,KS18] that
large-n limit of the VEV of the Wilson loops in 5d N = 1⇤ theory are proportional to
characters of the universal bundle on the tangent bundle to the moduli space of U(1)
instantons evaluated on the locus (28), in particular, in case of the fundamental Wilson
loop we get

(29) lim
n!1

h
~n�1(1� ~)

D
WU(n)

Ei ���
�

= a� (1� q)(1� ~)e1(s1, . . . , sk)|� .

4. From Instantons to Vortices

4.1. Scaling Limit. We can take ~ ! 11 limit of the above formulae in the ADHM
construction. We get the following for r = 1

(30) E⇤
1 (�) = a� (1� q)e1(s1, . . . , sk) ,

where Bethe roots now solve the equations arising from the vortex moduli space (N chirals
and one chiral loop)

(31)
NY

l=1

(sa � al) ·
kY

b=1
b 6=a

qsa � sb
sa � qsb

= ep⇤ , a = 1, . . . , k ,

where ep⇤ = ep
Q

N

l=1(�q~al) is the dynamically generated scale and the quantum parameter.
In particular, when N = 1 we have ep⇤ = p

p
q~.

1One needs to be carful with mirror frames – in one of the frames the limit is ~ ! 0

Eigenvalues of affine 
qToda lattice at large n

Eigenvalues of quantum 
multiplication by
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Chern roots obey
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3.1. Inosemtsev Limit to Open qToda. This was established by studying limit ~ ! 1
in (23) after certain rescaling also known as Inosemtsev limit [Ino89]. First we rescale tRS
coordinates, momenta (6) and equivariant parameters ai as follows

(16) zi = ~�i⇣i , pi = ~�i+1/2pi , ai = ~�
n
2 ↵i = ai .

After taking ~ ! 1 limit, we obtain q-Toda Hamiltonian functions which are equal to
symmetric polynomials of ai

(17) Hq-Toda
r (z1, . . . zn; p1, . . . , pn) = er(a1, . . . , an) ,

where the Hamiltonians are

(18) Hq-Toda
r =

X

I={i1<···<ir}
I⇢{1,...,n}

rY

`=1

✓
1� zi`�1

zi`

◆1��i`�i`�1,1 Y

k2I
pk ,

where i0 = 0. For instance, the first Hamiltonian reads

(19) Hopen
1 = p1 +

nX

i=2

pi

✓
1� zi�1

zi

◆
.

3.2. Inosemtsev Limit to Closed qToda. For the elliptic RS model the Inosemtsev
limit works as follows. The theta function has the following expansion near p = 0

(20) ✓1(z|p) = 2p
1
4

+1X

k=0

(�1)kpk(k+1) sin((2k + 1)z) ,

The eRS Hamiltonians contain the following ratio of theta-functions which have the fol-
lowing expansion

(21)
✓1(⇣k/⇣m~|p)
✓1(⇣k/⇣m|p) =

⇣k/⇣m~� p2() +O(p2)

⇣k/⇣m � p2() +O(p2)
. . .
After taking the limit we obtain

(22) Ha↵
1 = p1

✓
1� p⇤

zn
z1

◆
+

nX

i=2

pi

✓
1� zi�1

zi

◆
,

where we assumed p⇤ = p~ 1
2 .

3.3. Spectrum of Closed qToda. One gets the following equations for the spectrum of
quantum closed q-Toda

(23) Hq-Toda
r (~⇣)ZYM = E Toda

r ZYM , r = 1, . . . , n ,

and E Toda
r is given by the ~ ! 1 limit of the eRS energies Er

(24) E Toda
1 =

nX

i=1

ai + p⇤
nX

i=1

ai

nY

j=1
j 6=i

1⇣
1� aj

ai

⌘⇣
1� ai

qaj

⌘ + o((p⇤)2) ,

retracting the fibers,  dimensional transmutation
[Hanany Tong]


